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Phase Portraits

1 Phase Portraits

Consider an autonomous system of ordinary differential equations (ODEs)

x′(t) = f(x, y)

y′(t) = g(x, y).

Here autonomous refers to the fact that the functions on the right hand side of the equation do not explicitly
depend on time.

• The phase portrait is a graphical tool to visualize how the solutions of a given system of differential
equations behaves in the long run. It is a representative set of solutions for the system of ODEs,
plotted as parametric curves (with t as the parameter) on the Cartesian plane tracing the path of each
particular solution.

• The plane where the phase portrait lives is called the phase plane.

• The parametric curves traced by the solutions are called their trajectories.

Analogy for a parametric curve: To help visualize what a parametric curve is: suppose we have a stream

of water and we drop a stick in it, the point
(
x(t), y(t)

)
represents the location of the stick in the stream

at a time t and the parametric curve will be a trace of all the locations of the stick as it moves along the
stream.

1.1 Drawing a phase portrait

• Define a grid in the phase plane with points denoted (xi, yj) for some indices i, j.

• For each grid point plug (xi, yj) into scalar functions f and g to find x′ and y′ at that point. (x′, y′)
represents the tangent vector of the solution’s trajectory. It gives the instantaneous direction of motion
at that point.

• The magnitude of the vector at (xi, yj) on the grid is given by rij =
√

f(xi, yj)2 + g(xi, yj)2, while the

direction is given by arctan
( g(xi, yj)
f(xi, yj)

)
.

• The magnitudes of the vectors can be normalized so that each vector has length 1.

1.2 Fixed points and classification

Fixed points also known as equilibrium points, critical points or stationary points are points (x, y) where
x′ = 0 and y′ = 0. These points are essential in determining the long-term behavior of solutions. They can
be classified by the type/shapes formed by the trajectories about each fixed point and by stability.
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1.3 Linear Systems

When the system of ODEs is linear we can use a matrix to write x′ = Ax, where x = (x, y). In the case
that A is nonsingular, that means x′ = Ax = 0 only has a single fixed point at (0, 0). To classify this fixed
point, the eigenvalues of A have to be identified i.e. λj such that Axj = λjxj where xj are the eigenvectors.

1.4 Nonlinear Systems

When the system of ODEs is nonlinear we cannot use a matrix to denote the right handside. We can still
find fixed points by setting x′ = 0 and y′ = 0. A nonliner system can have zero, one, two, three, or any
number of fixed points. Since there are many fixed points on the phase portrait, each trajectory could be
influenced by more than one fixed point. The type and stability of each fixed point needs to be determined
locally, in a small neighborhood of the fixed point in the phase plane. We can approximate the behavior of
trajectories near the fixed point by using a linearization of f and g about the fixed point. We compute the
Jacobian matrix consisting of all first-order partial derivatives of the system and evaluate it at each fixed
point to find

J =

[
∂f(xi,yj)

∂x
∂f(xi,yj)

∂y
∂g(xi,yj)

∂x
∂g(xi,yj)

∂y

]
(1)

where (xi, yj) denotes an arbitrary fixed points. We use eigenvalues of J to determine the type and
stability of the fixed point.

1.5 Classifications of fixed points

1.5.1 Terms:

• Asymptotically stable - all trajectories of the solutions converge to the fixed point as t → ∞.

• Unstable - all(save for a few in case of saddle point) trajectories move away from the fixed point as
t → ∞.

• Stable(neutrally stable) - trajectories stay within a fixed orbit that’s within a finite distance away
from the fixed point

1.5.2 Classification by eigenvalue type

1. λ1 and λ2 are real, distinct, and positive
The fixed point is a node. Asymptotically stable if eigenvalues are negative, otherwise unstable.
At a node, trajectories are tangential to the slow eigendirection - the eigendirection whose λ has the
smallest magnitude.

2. λ1 and λ2 are real and have opposite signs
The fixed point is a saddle point. It is always unstable.
The stable manifold is the eigendirection with the negative eigenvalue.

3. λ1 = λ2 real with two linearly independent eigenvectors
The fixed point is a star/proper node. Asymptotically stable if eigenvalue is negative, otherwise
unstable.

4. λ1 = λ2 real with only one eigenvector
The fixed point is an degenerate/improper node. Asymptotically stable if eigenvalue is negative,
otherwise unstable.

5. λ1 and λ2 are complex conjugate pairs with zero real part
The fixed point is a center. It is neutrally stable.
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6. λ1 and λ2 are complex conjugate pairs with nonzero real part
The fixed point is a spiral. Trajectories spiral away (unstable) from fixed point if Re(λ) > 0 and
spiral towards (asymptotically stable) the fixed point if Re(λ) < 0.
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Example

Find and classify fixed points for the Lotka-Volterra predator-prey model

x′ = x− xy

y′ = xy − y.

Fixed points: Solve x′ = 0 and y′ = 0 simultaneously to find the following points (0, 0) and (1, 1).
The Jacobian is [

1− y −x
y x− 1

]
(2)

Evaluating at (0, 0) results in

J =

[
1 0
0 −1

]
There are two real, distinct eigenvalues of opposite signs λ1 = 1, λ2 = −1 so the fixed point is an unstable
saddle point. Does it make sense to have a saddle point here?
Evaluating at (1, 1) results in

J =

[
0 −1
1 0

]
The eigenvalues can be obtained by finding the determinant of J − λI and setting it to zero:

det

([
λ −1
1 λ

])
= λ2 + 1 = 0

So the eigenvalues are λ1 = i, λ2 = −i and the fixed point is a center and hence stable. Centers are closed
trajectories signifying periodic solutions. Population cycles of growth and decline emerge.
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2 In-class exercises

1. Find the fixed points of all the models in the code temple abm population local.m. You can use
Matlab’s solve function.

2. Find the Jacobian function for each of the models.

3. Classify the fixed points you find by plugging in the point into the Jacobian function and using Matlab’s
eigs function

4. Run the code for each model and anaylze the phase portrait. Do your classifications match up with
the phase portrait?

5. What does the phase portrait tell us about solutions of the system of equations in each model?

6. On the phase portrait, the trajectory/solution matching up with initial condition given is traced, try a
different initial condition or different model parameters to see how the phase portraits and trajectories
change.

The trajectory is computed using a numerical method called Euler’s method which we will discuss in
the coming lectures.
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