Kernel Density Estimation	· · · · · · ·
Create a smooth unve given a set of data	· · · · · · ·
Visualization technique	· · · · · · ·
Continuous replacement of histogram	· · · · · · ·
Estimate probability density function of rando	m vanable
higher bandwidth	points can
low bandwidth -> consider points close to current	position
Weight distances of all data points	· · · · · · ·
Kernel function - how the point distances are	weight <i>e</i> cl
$\hat{p}_n(x) = \sum_{\text{observations}} K\left(\frac{x - \text{observation}}{\text{bandwidth}}\right)$	
K - kernel functron	· · · · · · ·
· · · · · · · · · · · · · · · · · · ·	
Probability density - relationship between observation their probability	msk.

Histogram plots provide a fast & reliable way to the probability density of a data sample visualite involves selecting Parametric probability density estimation a common distribution and estimating the parameters for the density function from a data sample. Non parametric probability density estimation involves using a technique to fit a model to the arbitrary distribution of the data ey. tomet density estimation KDE function $\frac{1}{nh}\sum_{i=1}^{n} K\left(\frac{X_{i-x}}{h}\right)$ $\hat{\rho}_{n}(x) =$ (controls amount of smoothing) h>0 - bandwidth K(x) - kemel function, smooth, symmetric Epanechnikov kemel Uniform Kernel Gaussian Kernel smoothes each data point Xi into a small donerry bump KDE all the small bumps together to get a final & suns denoty estimate

Gaussian kernels In 10 $exp(-x^{2}/20^{2})$ K (x;r) = JIT V $exp(-(x^{2}+y^{2})/2\pi^{2})$ K(x,y;o) = $\int_{N}^{N} \frac{1}{w^{2}} \sum_{i=1}^{N} exp\left(-\left(\left(\frac{X-X_{i}}{w}\right)^{2} + \left(\frac{Y-Y}{w}\right)^{2}\right)^{2}\right)\right)$ K(x,y) Mattab In