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The theory of homogenization deals with finding the effective behavior of systems whose
coefficients oscillate on the microscale. Application is found in the study of composite or
crystaline materials where the interest is in finding the consequence of a given microstruc-
ture or in achieveing materials possessing physical properties which aren’t possessed by its
constitutive materials.

In these notes we discuss the homogenization of elliptic PDEs of the form,{
∇ · A(z)∇u(z) = f(z), z ∈ Ω

u(z) = g(z), z ∈ ∂Ω,
(0.1)

where there exists β > α > 0 such that for all z ∈ Ω and ξ ∈ Rn, A(z) is symmetric,

α0|ξ|2 ≤ ξTA(z)ξ ≤ β|ξ|2, (0.2)

and the coefficients are [0, ϵ]d-periodic (See Figure 1). Such equations describe the steady
state (heat/electrical) conductivity with source, f . In Figure 2, an example of a domain
on which the conducivity, A, oscillates between constant values A = k1 and A = k2 on the
micro-scale.
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To highlight the effect of period microstructure in such systems, in figure I give a list
of possible cell structures consisting of two materials of different conductivity with various
volume fractions:

Consider materials resulting from microstructures given by (A) and (B). If k1 and k2 are
isotropic, one might expect material (A) to retain isotropic behavior and (B) to act anisotropic.
In fact, letting k1 = cIn for some c > 0 and k2 ≡ 0, material (B) would conduct only in the
e2 direction and not at all in the e1 direction.

Generally, two types of results are sought ([1]):

1. An effective conductivity tensor, A0, which does not depend on ϵ, where A0 is related
to problem (0.1) in the following way: Given {uϵ} where uϵ solves (0.1) weakly in
H1(Ω), A0 is the effective conductivity tensor if uϵ converges weakly to u0 in H1(Ω)
and A(x

ϵ
)∇uϵ converges weakly to A0u0 where u0 solves{

∇ · A0(z)∇u0(z) = f(z), z ∈ Ω

u0(z) = g(z), z ∈ ∂Ω.
(0.3)

2. An approximation, ϕϵ, of uϵ with explicit convergence bounds in H1(Ω); i.e. something
of the form

∥ϕϵ − uϵ∥H1(Ω) ≤ cϵα.

for some explicitly given power α > 0. To make this useful, it should also be required
that ϕϵ has a simple construction (much simpler than that of uϵ).

Multi-scale expansion

In this section, I give the standard formal derivation of the formulas for the effective con-
ductivity, A0, as well as the approximation ϕϵ (as found in [2] and [3]). First, so that we
don’t need to redefine A for each ϵ as ϵ →+ 0, we may consider A to be [0, 1]d-periodic and
u satisfying the equation {

∇ · A
(
z
ϵ

)
∇uϵ(z) = f(z), z ∈ Ω

uϵ(z) = g(z), z ∈ ∂Ω.
(0.4)
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This is equivalent to the earlier formulation. To guide our study of the problem, we note
that there are two distinct scales: the lab scale which remains O(diam(Ω)), and the micro
scale, ϵ. The we introduce two new variables to account for these:

x := z, and y :=
z

ϵ
.

Variations in x capture variations in z: if ∆x = ∆z; while variations in y capture imper-
ceivable, micro-scale variations in z: if ∆y ∼ O(1) then ∆z ∼ O(ϵ). To study the effective
behavior of the system as ϵ →+ 0, it is advantageous to use a formal two-scale expansion of
uϵ:

uϵ(z) = u0(x, y) + ϵu1(x, y) + ϵ2u2(x, y) + . . . . (0.5)

To use this expansion, we require ui(x, y) to be periodic in y for i = 0, 1, . . . , and we use the
differentiation rule:

∇ = ∇x +
1

ϵ
∇y.

We begin applying this to (0.1):(
∇x +

1

ϵ
∇y

)(
u0(x, y) +ϵu1(x, y) + ϵ2u2(x, y) + . . .

)
=

=
1

ϵ

(
∇yu

0
)
+
(
∇xu

0 +∇yu
1
)
+ ϵ

(
∇xu

1 +∇yu
2
)
+O(ϵ3).

so that (0.1) becomes(
∇x +

1

ϵ
∇y

)
· A(y)

(
∇x +

1

ϵ
∇y

)(
u0(x, y) + ϵu1(x, y) + ϵ2u2(x, y) + . . .

)
=

=
1

ϵ2
∇y · A(y)∇yu

0 +
1

ϵ

(
∇x · A(y)∇yu

0 +∇y · A(y)
(
∇xu

0 +∇yu
1
))

+∇x · A(y)
(
∇xu

0 +∇yu
1
)
+∇y · A(y)

(
∇xu

1 +∇yu
2
)
+ . . .

=f(x).

for z ∈ Ω and y ∈ Q, with boundary conditions u0(x, y) = f(x) for x ∈ ∂Ω, ui(x, y) = 0 for
x ∈ ∂Ω for i > 1, and with periodic boundary conditions for ui(x, y) for each i with respect
to y. Equating terms of the same order, we get a system of three equations:

∇y · A(y)∇yu
0(x, y) = 0,

∇x · A(y)∇yu
0 +∇y · A(y) (∇xu

0 +∇yu
1) = 0,

∇x · A(y) (∇xu
0 +∇yu

1) +∇y · A(y) (∇xu
1 +∇yu

2) = f(x)

(0.6)

Consider the first equation,
∇y · A(y)∇yu

0(x, y) = 0.

Viewing this as an homogeneous elliptic PDE in y with periodic boundary conditions, we
seek solutions in the class, H1(Qp)(Q-periodic H1 functions). Since this is homogeneous
with periodic boundary conditions, for each fixed x, u0(x, y) must be constant in y. Thus,

u0(x, y) = u0(x).
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Now consider the second equation, which, due to the observation that u0 is constant in y,
now simplifies to

∇y · A(y)
(
∇xu

0(x) +∇yu
1
)
= 0.

Consider the solutions, vj(y) (unique up to additive constant) of the following problems

∇y · A(y)
(
ej +∇yv

j
)
= 0, j = 1, . . . , n

Where {ej}nj=1 is the standard basis of Rn. By Linearity,

∇yu
1(x, y) = ∇y

(
v(y)T∇xu

0(x)
)

where v =

v1

...
vn


For the last equation,

∇x · A(y)
(
∇xu

0 +∇yu
1
)
+∇y · A(y)

(
∇xu

1 +∇yu
2
)
= f(x),

Assume for now that all quantities are smooth. Then applying the averaging operator (over
the variable, y), ⟨·⟩, the above equation simplifies to

⟨∇x · A(y)
(
∇xu

0 +∇yu
1
)
− f⟩ = 0.

Given that f is a function of only x, we have,

∇x · ⟨A(y)
(
∇xu

0 +∇yu
1
)
⟩ = f.

By the definition of v(y), we have,

∇x · ⟨A(y)
(
In +∇yv

T (y)
)
⟩∇xu

0 = f.

Now define the effective conductivity to be

A0 := ⟨A(y)
(
In +∇yv

T (y)
)
⟩

Now, A0, u0 and u1 are determined by the following system of equations:

{
∇y · A(y)

(
In +∇yv(y)

T
)
= 0,

v ∈ (H1(Qp))
n.

A0 := ⟨A(y)
(
In +∇yv

T (y)
)
⟩

{
∇x · A0∇xu

0(x) = f(x), u0 ∈ H1(Ω).

u0(x)|∂Ω = g(x)

u1(x, y) = v(y)T∇xu
0(x)

(0.7)

The first equation is called the ”cell-problem”. The approximation to uϵ, denoted ϕϵ, is
given by

ϕϵ(z) = u0(z) + ϵu1(z,
z

ϵ
).
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A helpful rule for calculating A0

It is helpful to have a rule for calculating the effective conductivity, A0 (this is found in [1])

Lemma 0.1. If u is any Q-periodic potential function (u = λ+∇v for some v is Q-periodic)
and ∇ · (A(z)u(z)) = 0, then

A0⟨u⟩ = ⟨Au⟩
where

⟨u⟩ = 1

|Q|

∫
Q

u(z)dz.

I give this without proof. However, it is not random. The function given by the cell
problem,

u = In +∇yv(y)
T ,

is a periodic potential function with ∇y ·A(y)u = 0 and ⟨u⟩ = In. We also see by the system
of equations (0.7), that

A0⟨u⟩ = A0 = ⟨A(y)u⟩

0.1 An example in 1D

Let a(z) be a real scalar valued [0, 1]-periodic function which represents the conductivity
tensor in the following problem:

d
dz

(
a( z

ϵ
)du

ϵ(z)
dz

)
= f, z ∈ [0, 1],

uϵ(0) = a,

uϵ(1) = b.

For some f ∈ L2[0, 1] and a, b ∈ R. Assume ∃C > c > 0 such that ∀z ∈ [0, 1], c ≤ a(z) ≤ C.
We will use lemma 0.1 to calculate the effective tensor, a0. Consider the function u(y) = 1

a(y)
.

u(y) =
d

dy

∫ y

0

1

a(y)
dy,

(i.e. u is a potential function), and

d

dy
(a(y)u(y)) =

d

dy
1 = 0.

Thus, u satisfies the assumptions in the lemma. Then, by the lemma and the definition of
u,

a0⟨u(y)⟩ = ⟨a(y)u(y)⟩ = ⟨a(y)
a(y)

⟩ = ⟨1⟩ = 1.

Thus,

a0 =
1

⟨u(y)⟩
=

1

⟨ 1
a(y)

⟩
= ⟨a(y)−1⟩−1.

The effect conductivity tensor is then the harmonic mean of the original conductivity tensor.
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Problem set

(1) Find the effective conductivity tensor Consider a periodic conductivity of the
form

A(z) =

(
a1(z1) 0

0 a2(z1)

)
where z =

(
z1
z2

)
,

This represents materials such as those with cell structure (B); although here ai(z) is
smooth. The goal of this problem is to use Lemma 0.1 to calculate A0.
Assume that A0 is a constant diagonal 2× 2 matrix and assume A(z) is smooth.

(a) Show for all u(z) = u(z1), ∇ · Au(z) = ∂1 (a1(x1)u1(x1)).

(b) Find a u(z) such that u1(z1)a(z1) is constant and u(z) is a potential. Follow the
1D example for this.

(c) Calculate A0.

(2) Calculate the approximation The goal of this problem is to compare the explicit
solution of 

d
dz

(
(a

(
z
ϵ

)
d
dz
uϵ(z)

)
= 0, z ∈ [0, 1]

uϵ(0) = 0,

uϵ(1) = 1,

to ϕϵ(z) = u0(z) + ϵu1(z, z
ϵ
), where u0, u1 are given by the following system:

{
d
dy

(
a(y)

(
1 + d

dy
v(y)

))
= 0, y ∈ [0, 1]

v is [0, 1]-periodic.

a0 := ⟨a(y)
(
1 + d

dy
v(y)

)
⟩


a0 d2

dx2u
0(x) = 0, x ∈ [0, 1].

u0(0) = 0,

u0(1) = 1.

u1(x, y) = v(y) d
dx
u0(x)

⟨·⟩ is the average over [0, 1]. Derive the explicit formulas for uϵ and ϕϵ and show the
following convergence holds:

∥uϵ − u0∥L2(0,1) →ϵ→0+ 0∥∥∥∥ d

dz
uϵ − d

dz
ϕϵ

∥∥∥∥
L2(0,1)

→ϵ→0+ 0.

It is assumed that a(z) is [0, 1]-periodic and C1(R) and ∃C > c > 0 such that c <
a(z) < C. a0 = ⟨a(y)−1⟩−1 is given, but it doesn’t matter as it can be factored out of

6



the third equation in the system.
You will need the following fact about the convergence of averages:

Lemma 0.2. Let a(y) be a bounded measurable [0, 1]-periodic function on R, then∥∥∥∥∫ z

0

a

(
t

ϵ

)
dt− z

∫ 1

0

a(y)dy

∥∥∥∥
L2(0,1)

→ϵ→0+ 0.

You do NOT need to prove this; however, it is not complicated to prove and in doing
so you can get a convergence rate.
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