Multiscale Modeling and Methods Problem Set 3 by Madison Shoraka

(Out Mon 10/07/2024, Due Mon 10/14/2024)

Problem 1

Consider the elementary cellular automata rule 110:

current pattern	111	110	101	100	011	010	001	000
new state for center cell	0	1	1	0	1	1	1	0

- 1. Construct the global system state graph for a 4 cell lattice with periodic boundary conditions. After construction, write its corresponding adjacency matrix.
- 2. Construct another global system state graph but this time for a 5 cell lattice with periodic boundary conditions. Again write its corresponding adjacency matrix.
- 3. Compute the average in-degree of each graph. What does this number in relation to the size of the system tell you about the graphs' general structures?
- 4. Compare and contrast the 4 cell and 5 cell graph shapes: are they forests/trees or do they contain cycles. Are the graphs connected?
- 5. Note the cycles of each graph and state any attracting vertices if they exist.
- 6. What do you think would happen if you increased the number of lattice cells to 6?

Instructions

Email your solutions (i.e., a scan or typed version of your pen-and-paper part; and programming codes in a way that they can be run by someone else) to madison.shoraka@temple.edu with the email subject Math 8200. Homework 3 and all the submitted filenames starting with your family name.