Traffic flow analysis / modeling Microscopic Scale -> each vehicle is an individual entity can be written for each a) an ODE tracking change in position & velocity b) cellular automation model Nagel-Schreckenberg model Macroscopic scale Use systems of PDEs to track the density of vehicles or mean track quantities like mean velocity Think of our discussion on diffusion. Terms Density -> number of vehicles per unit length of roadway $Flow \rightarrow number of vehicles passing a reference point per unit of time.$ Inverse of flow is headway \rightarrow that elapses between it vehicle passing a reference point in space and the (i+1)th vehicle In congestion -> h is constant as traffic jam forms h -> thfmity $q = k \vee q = \frac{1}{h}$

$\ddot{x}_{j} = F(s_{j}, \dot{x}_{j}, \dot{x}_{j+1})$ $x_{j} position \qquad s_{j} = x_{j+1} - x_{j} - 1$ $\dot{x}_{j} speed \qquad gap to leader$ $\ddot{x}_{j} acceleration$ $\dot{x}_{j+1} lead vehicle speed$ $\overbrace{X_{j-1}}^{V} X_{j} X_{j+1-1} X_{j+1}$ $Two models$ $A) follow the leader model \qquad \dot{x}_{j} = \beta \frac{\dot{x}_{j+1} - \dot{x}_{j}}{(s_{j})^{2}}$ $acceleration proportional to difference in speed and inversely proportional to the square of the difference in position if \dot{x}_{j+1} > \dot{x}_{j} lead vehicle faster \dot{x}_{j+1} < \dot{x}_{j} lead vehicle slower \rightarrow slow dawn acceleration negative decceleration m^{2}/s$	Car	following Models Agent based implementation	•
$\begin{array}{cccc} x_{j} & position & s_{j} = x_{j+1} - x_{j} - l \\ x_{j} & speed & gap to leader \\ x_{j} & acceleration & \\ x_{j+1} & lead vehicle speed & & & \\ \hline &$	• •	$\mathbf{\ddot{v}} = \mathbf{F}(\mathbf{s}; \mathbf{\dot{x}}; \mathbf{\dot{x}})$	•
$\dot{x}_{j} speed \qquad gap to leader \dot{x}_{j} acceleration \dot{x}_{j+1} lead vehicle speed \int \underbrace{ \begin{array}{c} & & \\ $	• •		•
$\dot{x}_{j} \qquad \text{Speed} \qquad \text{gap to leader} \\ \dot{x}_{j} \qquad \text{acceleration} \\ \dot{x}_{j+1} \qquad \text{lead vehicle speed} \\ \hline \qquad \qquad$		X_j position $S_j = X_{j+1} - X_j - L$	•
$\dot{x}_{j+1} lead vehicle speed$ $\vec{x}_{j+1} \vec{x}_{j} \vec{x}_{j} \vec{x}_{j+1-2} \vec{x}_{j+1}$ $T_{ivo} models$ $A) follow the leader model \dot{x}_{j} = \left(\begin{array}{c} \dot{x}_{j+1} - \dot{x}_{j} \\ (s_{j})^{2} \end{array}\right)^{2}$ $acceleration proportional to acfference in speed and inversely, poportional to defference in speed and inversely, poportional to the square of the difference in position if \dot{x}_{j+1} > \dot{x}_{j} lead vehicle faster \dot{x}_{j+1} - \dot{x}_{j} > 0 so acceleration positive \dot{x}_{j+1} < \dot{x}_{j} lead vehicle slower \rightarrow slow duon acceleration negative duon acceleration negative duon duon $	• •	x; speed gap to leader	•
$T_{ivo models}$ A) follow the leaster model $\dot{x}_j = \beta \frac{\dot{x}_{jr1} - \dot{x}_j}{(s_j)^2}$ acceleration proportional to difference in speed and inversely proportional to the square of the difference in position if $\dot{x}_{ji1} > \dot{x}_j$ lead vehicle faster $\dot{x}_{ji1} - \dot{x}_j > 0$ so acceleration positive $\dot{x}_{ji1} - \dot{x}_j = \beta \frac{\dot{x}_{jr1} - \dot{x}_j}{(s_j)^2}$	• •		•
Xj-1 Xj Xj Xj+1-e Xj+1 Two models A) follow the leader model $\ddot{x}_j = \beta \frac{\dot{x}_{j+1} - \dot{x}_j}{(S_j)^2}$ acceleration proportional to difference in speed and inversely proportional to the square of the difference in position if $\dot{x}_{j+1} > \dot{x}_j$ lead vehicle faster $\dot{x}_{j+1} - \dot{x}_j > 0$ So acceleration positive $\dot{x}_{j+1} < \dot{x}_j$ dead vehicle slower \rightarrow slow dawn acceleration regative	• •	rjti read venicie speed	•
Xj-1 Xj Xj Xj+1-e Xj+1 Two models A) Blaw the leader model $\ddot{X}_j = \beta \frac{\dot{X}_{j+1} - \dot{X}_j}{(S_j)^2}$ acceleration proportional to difference in speed and inversely, proportional to the square of the difference in position if $\ddot{X}_{j+1} > \dot{X}_j$ lead vehicle faster $\dot{X}_{j+1} - \dot{X}_j > 0$ So acceleration positive $\dot{X}_{j+1} < \dot{X}_j$ lead vehicle slower \rightarrow slow dawn acceleration regative	• •		•
Xj-1 Xj Xj Xj+1-2 Xj+1 Two models A) Bilaw the leader model $\ddot{x}_j = \beta \frac{\dot{x}_{j+1} - \dot{x}_j}{(S_j)^2}$ acceleration proportional to difference in speed and inversely proportional to the square of the difference in position if $\dot{x}_{j+1} > \dot{x}_j$ lead vehicle faster $\dot{x}_{j+1} - \dot{x}_j > 0$ So acceleration positive $\dot{x}_{j+1} < \dot{x}_j$ lead vehicle slower \rightarrow slow dawn acceleration regative	• •		
Two models A) Estima the leader model $\dot{x}_j = \beta \frac{\dot{x}_{j\tau 1} - \dot{x}_j}{(s_j)^2}$ equilibrium flow stable $\dot{x}_j = \beta \frac{\dot{x}_{j\tau 1} - \dot{x}_j}{(s_j)^2}$ acceleration proportional to difference in speed and inversely, proportional to the square of the difference in position if $\dot{x}_{j\tau 1} > \dot{x}_j$ lead vehicle faster $\dot{x}_{j\tau 1} - \dot{x}_j > 0$ so acceleration positive $\dot{x}_{j\tau 1} < \dot{x}_j$ lead vehicle slower \rightarrow slow dawn acceleration regative			•
A) Blaw the leader model $\dot{x}_j = \beta \frac{\dot{x}_{j+1} - \dot{x}_j}{(s_j)^2}$ equilibrium flow stable $\dot{x}_j = \beta \frac{\dot{x}_{j+1} - \dot{x}_j}{(s_j)^2}$ acceleration proportional to difference in speed and inversely proportional to the square of the difference in position \dot{x}_j lead vehicle faster $\dot{x}_{j+1} - \dot{x}_j > 0$ so acceleration positive $\dot{x}_{j+1} - \dot{x}_j > 0$ so acceleration positive $\dot{x}_{j+1} - \dot{x}_j > 0$ so acceleration regative	• •	$X_{j} - \lambda = X_{j} - \lambda = X_{j} - \lambda = X_{j+1} - \lambda = X_{j+1$	•
A) Blaw the leader model $\dot{x}_j = \beta \frac{\dot{x}_{j+1} - \dot{x}_j}{(s_j)^2}$ equilibrium flow stable $\dot{x}_j = \beta \frac{\dot{x}_{j+1} - \dot{x}_j}{(s_j)^2}$ acceleration proportional to difference in speed and inversely proportional to the square of the difference in position \dot{x}_j lead vehicle faster $\dot{x}_{j+1} - \dot{x}_j > 0$ so acceleration positive $\dot{x}_{j+1} - \dot{x}_j > 0$ so acceleration positive $\dot{x}_{j+1} - \dot{x}_j > 0$ so acceleration regative	• •		•
A) Bilans the leader model $\dot{x}_j = \beta \frac{\dot{x}_{j+1} - \dot{x}_j}{(s_j)^2}$ equilibrium flow stable $\dot{x}_j = \beta \frac{\dot{x}_{j+1} - \dot{x}_j}{(s_j)^2}$ acceleration proportional to difference in speed and inversely proportional to the square of the difference in position if $\dot{x}_{j+1} > \dot{x}_j$ lead vehicle faster $\dot{x}_{j+1} - \dot{x}_j > 0$ so acceleration positive $\dot{x}_{j+1} < \dot{x}_j$ lead vehicle slower \rightarrow slow down acceleration regative	• •		•
acceleration proportional to difference in speed and inversely, proportional to the square of the difference in position if $\dot{x}_{j+1} > \dot{x}_j$ lead vehicle faster $\dot{x}_{j+1} - \dot{x}_j > 0$ so acceleration positive $\dot{x}_{j+1} - \dot{x}_j > 0$ so acceleration positive $\dot{x}_{j+1} < \dot{x}_j$ lead vehicle slower \rightarrow slow down acceleration negative			•
acceleration proportional to difference in speed and inversely, proportional to the square of the difference in position if $\dot{x}_{j+1} > \dot{x}_j$ lead vehicle faster $\dot{x}_{j+1} - \dot{x}_j > 0$ so acceleration positive $\dot{x}_{j+1} - \dot{x}_j = 0$ so acceleration positive $\dot{x}_{j+1} - \dot{x}_j = 0$ dead vehicle slower \rightarrow slow down acceleration negative		Two models	•
acceleration proportional to difference in speed and inversely, proportional to the square of the difference in position if $\dot{x}_{j+1} > \dot{x}_j$ lead vehicle faster $\dot{x}_{j+1} - \dot{x}_j > 0$ so acceleration positive $\dot{x}_{j+1} - \dot{x}_j = 0$ so acceleration positive $\dot{x}_{j+1} - \dot{x}_j = 0$ dead vehicle slower \rightarrow slow down acceleration negative			•
$\begin{array}{cccc} \text{if} & \dot{x}_{j+1} > \dot{x}_{j} & \text{lead vehicle faster} \\ \dot{x}_{j+1} - \dot{x}_{j} > 0 & \text{so acceleration positive} \\ \dot{x}_{j+1} < \dot{x}_{j} & \text{dead vehicle slower} \rightarrow \text{slow dawn} \\ & & \text{acceleration regative} \end{array}$			•
$ \begin{array}{cccc} \text{if} & \dot{x}_{j+1} > \dot{x}_{j} & \text{lead vehicle faster} \\ \dot{x}_{j+1} - \dot{x}_{j} > 0 & \text{so acceleration positive} \\ \dot{x}_{j+1} < \dot{x}_{j} & \text{lead vehicle slower} \rightarrow \text{slow dawn} \\ & & \text{acceleration vegative} \\ \end{array} $	A)	follow the leader model $\dot{x}_j = \beta \frac{\dot{x}_{j+1} - \dot{x}_j}{(s_j)^2}$ equilibrium flow stable	•
$ \begin{array}{cccc} \text{if} & \dot{x}_{j+1} > \dot{x}_{j} & \text{lead vehicle faster} \\ \dot{x}_{j+1} - \dot{x}_{j} > 0 & \text{so acceleration positive} \\ \dot{x}_{j+1} < \dot{x}_{j} & \text{dead vehicle slower} \rightarrow \text{slow dawn} \\ & \text{acceleration regative} \\ \end{array} $	A)	follow the leader model $\dot{x}_j = \beta \frac{\dot{x}_{j+1} - \dot{x}_j}{(s_j)^2}$ equilibrium flow stable	• • •
$ \begin{array}{cccc} \text{if} & \dot{x}_{j+1} > \dot{x}_{j} & \text{lead vehicle faster} \\ \dot{x}_{j+1} - \dot{x}_{j} > 0 & \text{so acceleration positive} \\ \dot{x}_{j+1} < \dot{x}_{j} & \text{dead vehicle slower} \rightarrow \text{slow dawn} \\ & \text{acceleration regative} \\ \end{array} $	A)	follow the leader model $\dot{x}_j = \beta \frac{\dot{x}_{j+1} - \dot{x}_j}{(s_j)^2}$ equilibrium flow stable	• • • • •
$\dot{x}_{j+1} < \dot{x}_{j}$ lead vehicle slower \rightarrow slow down acceleration negative	(A) 	follow the leader model $\dot{x}_j = \beta \frac{\dot{x}_{j+1} - \dot{x}_j}{(S_j)^2}$ equilibrium flow stable $\dot{x}_j = \beta \frac{\dot{x}_{j+1} - \dot{x}_j}{(S_j)^2}$ acceleration proportional to difference in speed and inversely proportional to the square of the difference in position	• • • • • •
$\dot{x}_{j+1} < \dot{x}_{j}$ lead vehicle slower \rightarrow slow down acceleration negative	(A) 	follow the leader model $\dot{x}_j = \beta \frac{\dot{x}_{j+1} - \dot{x}_j}{(S_j)^2}$ equilibrium flow stable $\dot{x}_j = \beta \frac{\dot{x}_{j+1} - \dot{x}_j}{(S_j)^2}$ acceleration proportional to difference in speed and inversely proportional to the square of the difference in position	• • • • • •
acceleration negative	(A) 	follow the leader model $\dot{x}_j = \beta \frac{\dot{x}_{j+1} - \dot{x}_j}{(S_j)^2}$ equilibrium flow stable $\dot{x}_j = \beta \frac{\dot{x}_{j+1} - \dot{x}_j}{(S_j)^2}$ acceleration proportional to difference in speed and inversely proportional to the square of the difference in position	• • • • • • •
acceleration negative		follow the leader model $\dot{x}_j = \beta \frac{\dot{x}_{j+1} - \dot{x}_j}{(s_j)^2}$ equilibrium flaw stable $\dot{x}_j = \beta \frac{\dot{x}_{j+1} - \dot{x}_j}{(s_j)^2}$ acceleration proportional to difference in speed and inversely, proportional to the square of the difference in position difference in position $\dot{x}_{j+1} - \dot{x}_j$ lead vehicle faster $\dot{x}_{j+1} - \dot{x}_j > 0$ so acceleration positive	•
deccel eration m2/		Follow the leader model $\dot{x}_j = \beta \frac{\dot{x}_{j+1} - \dot{x}_j}{(s_j)^2}$ equilibrium flaw stable $\dot{x}_j = \beta \frac{\dot{x}_{j+1} - \dot{x}_j}{(s_j)^2}$ acceleration proportional to difference in speed and inversely, proportional to the square of the difference in position difference in position $\dot{x}_{j+1} > \dot{x}_j$ lead vehicle faster $\dot{x}_{j+1} - \dot{x}_j > 0$ so acceleration positive $\dot{x}_{j+1} - \dot{x}_j = 0$ so x	•
b opposition to a start 10		Follow the leader model $\dot{x}_j = \begin{pmatrix} \dot{x}_{j+1} - \dot{x}_j \\ \dot{y}_j \end{pmatrix}$ equilibrium flow stable $\dot{x}_j = \begin{pmatrix} \dot{x}_{j+1} - \dot{x}_j \\ \dot{y}_j \end{pmatrix}^2$ acceleration proportional to difference in speed and inversely, proportional to the square of the difference in position $\dot{y}_j + \dot{y}_j + \dot{y}_j = \dot{y}_j$ if $\dot{x}_{j+1} > \dot{x}_j$ lead vehicle faster $\dot{x}_{j+1} - \dot{x}_j > 0$ so acceleration positive $\dot{x}_{j+1} < \dot{x}_j$ dead vehicle slower \rightarrow slow dawn acceleration regative	•

• •	lquilibrate					u'de	••••
• •	rapid accele	ration of	Sj 1	small	ak 1.10	• • •	· · · ·
	less rapid	îţ	gap tt si la	ral	enicel		
• •		• • • •	• • •	• • •	• •	• • •	
Spe	ed equilibrate	rapidly	when	Sj small			
• •			• • •	• • •	• •	• • •	••••
B)	More general X may be unst		• • •	· · · ·	· ·	· · ·	••••
• •	· · · · · · · · ·	j≚ <u>Ç×</u>	$\frac{\mathbf{j}+\mathbf{i} - \mathbf{x}_{j}}{(\mathbf{y}_{j})^{2}}$	+ «(V	(s _j) - X	;).	••••
• •	augmentation						- X·)
V(s)							
) Optimal vel vehicle u dead veh	contal wan	st to g	o given	the	yap to	
• •	. Sj small			• • •	• •		• • •
	Sj large						
• •			• • •	• • •	• •	• • •	• • • •
				• • •			

					•		٠					•			
•	Questions	•	• •	•	•	• •		•	•		٠	٠	•	•	•

	Que	s Nov	s	• •	٠	٠	٠	•	•	٠	٠	•	•	•	•	•	•	٠	•	٠	٠	٠
່)	Wha vid	t leo?	was	ya		ma	in N	tu	kea	way	•	mes	Sac	pe	fra	n	'th	e	•	•	•	•
2)	In beb	the	f	Mori of	s l th	lead e	er vel	n nic	nodu Le ¹ s	el	, u Ve	oha loci	t i fie:	, 5 5 5	the		lon	g ti	ne	•	•	•
3)	W H	lhat re	c ve	an hicle	ya es	n s a	say t	ı e	r b a qu	nt 17:16	H riu	e .m	spa 7	.cen	g	Ъ .	etu	een	•	•	•	•
, 4) , ,	For uns	lan tarol	y e ?	he	Le	ader	-	m	odel			dyn	.an	ાં ૮૦૫	Цу		5}a	ble		•	•	•
. 5)	K)	rat	d	oes		stak	le	. n	rla	n?	•	•	•	•	•	•	•	•	•	•	•	•
• •	unif	st	art	n	ear	ny.	• •	en	nad	r	n	ear	by	•	•	•	•	•	•	•	•	•
••••	•	. St . V	art 10	fi egu	ar a 1 sp	way ace o	L.	a p · Ca	opro ars	oacl	۸ .	sy	sten	r	steu	e	•	•	•	•	•	•
• •	٠	٠	•	, r	•	٠	٠	•	•	٠	٠	٠	٠	•	•	•	•	•	٠	•	•	•
• •	•	٠	•	• •	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•
		٠	•	• •	•	٠	•	•	٠	•	•	•	•	•	•	•	•	٠	•	٠	•	
• •	•	•	0	• •	•	•	•	•	•	•	•	•	•	•	•	•	0	•	•	•	•	ø
• •	0	•	•	• •	•	٠	•	٠	٠	٠	٠	٠	٠	•	•	•	•	•	•	•	•	•
••••	•	•	•	· · ·	•	•	0	•	•	•	٠	٠	٠	•	•	•	•	•	•	•	•	•
· · ·	•	•	•	· · ·	•	•	•	•	•	•	•	٠	•	٠	•	•	•	•	•	•	•	•
· · ·	•	•	•	· · ·	•	•	•	•	•	•	•	•	•	•	•	•	0	•	•	•	•	•
• •	• • • • •	•	•	· · ·	•	•	•	•	•	•	•	•	•	•	•	•	0	•	•	•	•	•
• •	•	•	•	· · · · · · · · · · · · · · · · · · ·	•	•	•	•	•	•	•	•	•	•	•	•	0	•	•	• • • • • •	•	•

	٠	٠	•	٠	•	•
	٠	٠	•	٠	•	•
	٠	•	•	٠	•	•
	٠	٠	•	٠	•	•
	٠	•	٠	•	•	•
B) Optimal velocity encoded by V 10m/s	•	•	٠	•	•	•
10m/s	٠	٠	•	٠	•	•
	۰	٠	•	•	•	•
	٠	•	٠	•	•	•
roughly uniform speed (uniform flow)	٠	٠	•	٠	•	•
(and and the speece (and the fund)	۰	٠	•	•	•	•
uniform flow state - add pertubation	•	•	•	•	•	•
uniform flow state — add pertubation randomness in choice of initial velocity 1 and half to 2 minutes -> see instabilities	٠	٠	•	٠	•	•
1 and half to 2 minutes -> See in stabilities	٠	•	•	٠	•	•
	۰	٠	•	•	•	•
	٠	•	٠	•	•	•
6) What does unstable mean?	٠	•	•	•	•	•
	٠	٠	•	٠	•	•
7) When vehicles aim at a pairticular optimed speed, the vehicles granitule to wards equispaced orientation?	٠	•	٠	•	•	•
speed, the vehicles grantile invarials equispaced	٠	•	•	٠	•	•
· · · · · · · · · · · · · · · · · · ·	٠	٠	•	٠	•	•
11 non instrubilities occur some cars are moving	•	•	٥	•	•	•
When instabilities occur, some cars are moving at slower speeds than optimal "traffic jams"	٠	•	٠	•	•	•
	٠	٠	•	•	•	•
¥ 8) What happens if instead of starting relocities at 5 + 10 ≠ rand(size(q))	•	•	•	•	•	•
sturt at rand(size(q))	•	•	•	•		•
		•	•	٠		
* 9) Plot V function from 0 to 20 V	•	•	•	•	•	
\star 10) Try Euler step with $dt = 0.5$ What happens & why?	٠	٠	•	٠		
"What happens & why?	•	٠	•	•		

•	•	•	•	•	•	•	•	•	• •	•		•	•	•	•	•	•	•	•	•	•	•	•	•
	۲o	fh'a	: 1	Wa	rve																			
, in the second se	Ť	10	Ť	Ť	<u>ل</u> ر		N		م ا : دار	,				.\	_0	ich	Να.					,	Ť.	Ť
•	•	•	•	•	."0	veru	ng	•	ζ <i>α</i> ιδ Γ	wr 10	an	لعه	•	in	. 0	-150	718U	gver	Λo		•	٠	•	•
٠	•	•	•	•	tra	Ţ\$. 0	m	, hi	ġh	wa	y.	•	•	•	•	•	•	•	•	•	•	•	•
	٠																						•	
	1Na	u a	ନ୍ଦ	ה ב	J	d	را≲ل	02.00	·_	w	ZINO		han	rels	ι	h	្រស	MAN	Qu	الدرمد	t			
•	V		1) J		。				0-1		•	1100		•	•	go				•	•	٠	•
•	٠	•	. 0	Ŧ	, inco	e	•	•	• •	•	•	L.	•	•	•	•	•	•	•	•	•	•	•	•
•	٠	•	•	•	tinna	· Sp	eed	ここ	<u> </u>)av	e L	eng		•	•	•	•	•	•	•	•	٠	•	•
	•				•		•			fre	2qu	enc	y	•	•	•	•			•			•	•
										•	Y		0											
					(nest	•	NACIO	e ,	dic	true	80	لير	2	20	ю		ih	Ir) Co (- 670	d c			
•	•	•	•	•	Crest	•		Ÿ			λe	. 0.		.00	. //	•	γc	. (- UN	د .	٠	•	•
•	•	•	•	•	٠	•	•	•	• •	•		•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	٠	•	•	٠	•	•	•	• •	•		•	•	•	•	•	•	•	•	•	•	٠	•	•
	٠		•	•	•	•	•	•		•		•	•	•	•	•	•			•			•	
•	•	•	•	•																				
•	•	٠	•	•	•	•	•	•	• •	•		•	•	•	•	•	•	٠	•	•	•	٠	•	•
٠	•	•	٠	٠	٠	•	•	•	• •	•		•	•	٠	•	•	٠	•	•	•	•	•	٠	•
	•				•	•	•		• •			•	•		•	•	•						•	•
	•	•	•		٠	•	•																	
•	•	•	•	•	•	•	•	•	•••	•		•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	٠	•	•	•	•	•	•	•••	•		•	•	•	•	•	•	•	•	•	•	٠	•	•
•	•	•	٠	•	•	•	•	•	• •	•		•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•		•	•	•		•		•		•	•	•	•	•	•	•	•		•	•	•	•
	•	•			•		•	•											•		•	•		
•	٠	•	٠	•	٠	•	•	•	• •	•		•	•	•	•	•	•	•	•	•	•	•	•	٠
•	٠	•	٠	•	٠	•	•	•	• •	•		•	•	٠	•	•	•	•	•	•	•	•	•	•
•	٠	•	•	•	٠	•	٠	•	• •	•		•	•	•	•	•	•	•	•	•	•	٠	•	•
•	•	•		•	٠	•	•	•	• •	•		•	•		•	•		•	•		•	٠	•	
			•		•							•	•	•	•	•	•						•	
•	•	•	•	•	•	•	•	•	• •	•		•	•	•	•	•	•	•	•	•	•	•	•	•
•	٠	٠	٠	•	•	•	•	•	• •	•		•	•	•	•	•	•	•	•	•	•	٠	•	•
•	•	٠	٠	•	٠	•	•	•	• •	•		•	•	•	•	•	•	•	•	•	•	٠	•	•
•	•	•		•	•		٠	•		•		•	•	•	•	•	•		•		•	•	•	