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Learning Objectives

1. Describe the process of diffusion.

2. Understand how diffusion can be modeled by random walks
(microscopic theory).

3. Understand Fick’s Laws of diffusion (macroscopic theory).
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Diffusion
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Diffusion definitions

Common: Diffusion is the process by which particles move
naturally from regions of high concentration to regions of low
concentrations.

What is natural? How do they “know” where to move?

Particles collide forcing them to wander around - execute a
random walk.

Particles initially confined in a small region of space wander
around in all directions and spread out.

Alternative: Diffusion is the migration of molecules or small
particles due to random motion.
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Characterize Diffusion

How far do particles spread?

Where do they end up?
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Diffusion models

How do we model diffusion? Two theories:

Microscopic view
Look at random walks of individual particles.

Stochastic - we can’t predict the motion of a single particle.

Investigate probability distributions.

Macroscopic view
Look at average motion of a larger number of particles executing
random walks.

Deterministic - we can predict average motion of particles.

Use continuous models - Fick’s Laws of Diffusion.
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Random walk - one dimension

Consider motion of particles along x axis.

1. Start at time t = 0 and position
x = 0.

2. Each time step ∆t: move one unit
to the left −1 or to the right +1
with 50% probability and steps are
independent.

3. Particles don’t interact.
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Simulating a 1D random walk

Consider a single particle.

Note down the final position of the particle after n steps.

Repeat N times eg. 105 (equivalent to having N particles).

Plot a histogram of the final positions of particle.
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Final particle positions

The particle most likely returns to start position.

Probability to return to center falls with more time steps.
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Discussion

Variance is n - the number of steps.

Particles execute n steps in t = n∆t so the standard deviation
is
√
n.

Standard deviation is proportional to
√
t.
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2D random walks

Follow rules 1) and 3) of a 1D random
walk in both directions.

Assume there is equal probability to
move in any of the four directions.

3D random walks are similar.
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Diffusion - macroscopic theory

Consider two cells in 1D with centers shown.

The concentration of particles C in each cell in known at some
time t.

What is the net flux J through area A in some time t?

Flux - number of particles passing an area per time.
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Fick’s 1st Law of Diffusion

J = −D
∂C

∂x

Net flux is proportional to minus the concentration gradient.

Constant of proportionality D – diffusion coefficient.

Particles move from high to low concentrations.

If particles are uniformly distributed, ∂C/∂x = 0 then J = 0.

If J = 0, the distribution doesn’t change and system is in
equilibrium.
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1D Diffusion equation

Also known as Fick’s Second Law of Diffusion or Heat equation.

∂C

∂t
= D

∂2C

∂x2

Rate of change of concentration in time is proportional to the
curvature of concentration.

D is the diffusion coefficient.
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Interpreting ∂C/∂t = D∂2C/∂x2

∂2C/∂x2 > 0 ⇒ C(t, x) is concave up ∂C/∂t > 0 ⇒ C(t, x)
increases.

∂2C/∂x2 < 0 ⇒ C(t, x) is concave down
∂C/∂t < 0 ⇒ C(t, x) decreases.

∂C/∂x constant ⇒ ∂2C/∂x2 = 0 ⇒ ∂C/∂t = 0 and the
concentration is stationary – there is equal exchange of
particles.
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Simulation macroscopic diffusion

If we know initial distribution and what happens at the
boundaries of region being considered, we can figure out later
distributions.

A nonuniform distribution of particles will redistribute itself in
time.
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Conclusions

Diffusion arises from random motions of particles resulting in
spreading out.

We can characterize diffusion on a microscopic with random
walks or macroscopic level with Fick’s laws.

Diffusion acts to dilute concentration and reduce gradients of
concentration.

Mathematical Modeling and Simulation 16 / 16


	Microscopic Theory

