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Abstract: These lecture notes give a completely self-contained
introduction to the control theory of linear time-invariant systems.
No prior knowledge is required apart from linear algebra and some
basic familiarity with ordinary differential equations. Thus, the
course is suited for students of mathematics in their second or third
year, and for theoretically inclined engineering students. Because of
its appealing simplicity and elegance, the behavioral approach has
been adopted to a large extent. A short list of recommended text
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reading.
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Motivating example

A control problem you have, without doubt, already solved many times in your
life is to balance a stick on your fingertip. The stick can be seen as a dynamical
system. The upright position of the stick is an unstable equilibrium of the system.
By moving your hand, you can (to some extent) control the system. Actually,
you’ll be trying to move your hand in a way that forces the stick to go back to
the upright position when it is going to fall. The way you do this is by observing
into which direction the stick is falling, and by reacting appropriately, that is, by
moving the lower end of the stick into the same direction.

For simplicity, let us study the following closely related (but easier) problem:
Suppose that the lower end of the stick is fixed, but one can apply an external
torque to it. Thus we have an “inverted pendulum”.

Modelling: First, we need to set up a mathematical model describing the dy-
namical system under consideration. This step requires some background knowl-
edge from physics. Also, one introduces simplifying assumptions at this stage: for
instance, we’ll assume that the mass of the stick is concentrated in a point that
has distance l from its lower end. Thus, we are disregarding the actual shape and
mass distribution of the stick. Secondly, we’ll assume that there is no friction.

Let θ(t) be the angle between the pendulum and the vertical position at time t.
Let u(t) be the applied torque at time t. Let m and l be the mass and the length
of the pendulum, respectively. Then we have

ml2θ̈(t)−mgl sin(θ(t)) = u(t)

for all t ∈ R, where g is the gravitational acceleration.

Model analysis: Our model is a non-linear, second order, ordinary differential
equation (ODE). Since m, l are, for physical reasons, positive real constants, the
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equation can be made explicit, that is, it can be rewritten as

θ̈(t) = g

l
sin(θ(t)) + 1

ml2
u(t).

Let us write ω :=
√

g

l
and b := 1

ml2
, which are real and positive constants.

Transformation to standard form: To use basic facts from the theory of
ODE, we bring the system into the standard form ẋ(t) = f(t, x(t)). This can be
achieved by introducing

x(t) :=

[
θ(t)

θ̇(t)

]

.

With this, we can rewrite our equation as

ẋ1(t) = x2(t)

ẋ2(t) = ω2 sin(x1(t)) + bu(t).

Provided that u : R → R is a continuous function, classical ODE theory implies
that given x(0) = x0 ∈ R

2, the associated initial value problem has a unique
solution x : R → R

2, from which we get θ : R → R via θ(t) = [1, 0]x(t).

Equilibria of the underlying uncontrolled system: Let us consider the
system with u ≡ 0, that is, no external torque is acting. Then we have

ẋ1(t) = x2(t)

ẋ2(t) = ω2 sin(x1(t)),

which has the standard form ẋ(t) = f(x(t)), where

f : R2 → R
2,

[
x1
x2

]

7→

[
x2

ω2 sin(x1)

]

.

Such a system is called autonomous. The equilibria of ẋ(t) = f(x(t)) are the
points x̄ ∈ R

2 with f(x̄) = 0. In the present case, these are the points of the

form

[
kπ
0

]

, where k ∈ Z.

Next, we study the stability of the equilibria. A sufficient condition for asymptotic
stability of x̄ is that all the eigenvalues of

A =
∂f

∂x

∣
∣
∣
∣
x=x̄
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have a negative real part. On the other hand, if A has an eigenvalue with a
positive real part, then x̄ is an unstable equilibrium. We have

A =

[
0 1

ω2 cos(x1) 0

]∣
∣
∣
∣
x1=kπ

=

[
0 1

ω2(−1)k 0

]

.

The characteristic polynomial of A is χA(s) = s2−ω2(−1)k. If k is even, we have

λ1,2 = ±ω

and we may conclude that that x̄ is unstable. If k is odd, we obtain

λ1,2 = ±iω,

and hence the stability of x̄ cannot be decided based on the Jacobian matrix A.
Nevertheless, using other methods, one can show that x̄ is stable for odd k (but
not asymptotically stable). Physically, the equilibria with even k correspond to
the upright position of the pendulum, and the equilibria with odd k correspond
to the downright (hanging) position.

Linearization: We are interested in the behavior of the system near the equi-
libria. For this, we set

x̃1 := x1 − x̄1 = x1 − kπ

x̃2 := x2 − x̄2 = x2.

Thus, the new variables x̃i describe the deviation of xi from the equilibrium value
x̄i. In terms of x̃i, the system reads (omitting the argument t for simplicity)

˙̃x1 = ẋ1 = x2 = x̃2
˙̃x2 = ẋ2 = ω2 sin(x1) + bu = ω2 sin(x̃1 + kπ) + bu.

Consider the Taylor series of sin(x̃1 + kπ) near zero, that is,

sin(x̃1 + kπ) = sin(kπ)
︸ ︷︷ ︸

=0

+cos(kπ)
︸ ︷︷ ︸

=(−1)k

x̃1 + higher order terms.

Linearization means to disregard all higher powers of x̃1 in the Taylor series ex-
pansion. This is justified when we assume that the deviation from the equilibrium
is sufficiently small. We obtain

˙̃x1 = x̃2
˙̃x2 = ω2(−1)kx̃1 + bu,
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that is,

˙̃x =

[
0 1

ω2(−1)k 0

]

︸ ︷︷ ︸

=A

x̃+

[
0
b

]

︸ ︷︷ ︸

=B

u.

It should come as no surprise that A is nothing but the matrix ∂f

∂x
|x=x̄ computed

earlier. We call ˙̃x = Ax̃+ Bu the linearization of the system at x̄.

Typical control questions: Consider x̄ = 0 ∈ R
2 and

ẋ1(t) = x2(t)

ẋ2(t) = ω2 sin(x1(t)) + bu(t).

Suppose that x0 ∈ R
2 and τ > 0 are given. Find (if possible) u(·) such that the

solution of the corresponding initial value problem will satisfy x(τ) = x̄.

In terms of our pendulum, this means: given an initial angle θ(0) and an initial
angular velocity θ̇(0) (corresponding to a perturbation of the upright position),
and given a time τ > 0, find (if possible) a torque function u(·) such that the
pendulum returns to its equilibrium position x̄ after time τ . If such a u(·) exists,
one says that the system can be controlled from x0 to x̄ in time τ .

Related questions: Is this possible for all x0 that are “close enough” to x̄? Is this
possible for all τ > 0?

Another class of problems stems from the following consideration: Instead of
requiring x(τ) = 0 (i.e., the pendulum returns to the upright position in finite
time τ), we may be satisfied with limt→∞ x(t) = 0 (i.e., the pendulum approaches
the equilibrium asymptotically as time tends to infinity), but we would want this
to work for all x0 in a neighborhood of x̄, with one and the same u(·). Does
there exist u(·) such that for all x0 that are close enough to x̄, the solution of the
resulting initial value problem satisfies limt→∞ x(t) = 0? If yes, how can we find
such a function u(·)?

The same questions are also relevant for the linearized system (where they are
easier to test, as one might expect). Moreover, if the answer is positive for the
linearization, can we conclude (under certain conditions) that the same is true
for the original system?

The focus of these lecture notes is on the linear case. At some points, we will
come back to the non-linear situation and we’ll discuss some facts about non-
linear systems that can be derived from studying their linearizations.



Chapter 1

Introduction

1.1 What is a system?

The word “system” comes from the Greek word συστηµα, which originally meant
something like “to stand/put/place together.”

Here are some “definitions” I found surfing the web:

A system is

• . . . a thing that has components which may act independently, but are
connected somehow.

• . . . a complex unity formed of many often diverse parts subject to a common
plan or serving a common purpose.

• . . . a collection of parts that interact with each other to function as a whole.

• . . . a group of interrelated elements involved in a collective entity.

• . . . a set of interrelated components related by flows of energy, material, or
information.

• I will know one when I see it.

If that sounds vague, it’s meant to.

11
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We are interested in dynamical systems (Greek: δυναµικoς; original meaning:
powerful/strong; here: pertaining to power in motion, involving or causing action
or change, opposed to static).

The components/parts/elements of a dynamical system evolve in time. Mathe-
matically speaking, they are functions of time, and they will be called “signals.”

We start with some very general, abstract, and comprehensive definitions of a
dynamical system. In the following section, we will introduce some important
structural properties. Thus we will specialize step by step, until we arrive at
a more concrete class of dynamical systems, which will then be investigated in
detail.

Definition 1.1 A dynamical system Σ is determined by the following data:

• a set T , called the time set;

• a set W , called the signal value set;

• a set B ⊆ W T , called the behavior.

The set T is our mathematical model of time. We will deal exclusively with the
following cases:

• T = Z or a subinterval, especially N := {0, 1, 2, . . .} (discrete time);

• T = R or a subinterval, especially R+ := [0,∞) (continuous time).

A signal w is a function of time, taking its values in the signal value set W . We
write

w : T → W, t 7→ w(t).

The set W T is the set of all functions from T to W , therefore it is the set of all
signals.

Typically, not all signals in W T can occur in our system (or at least, a system in
which anything can happen would not be very interesting from the mathematical
point of view). Usually, there will be a system law which is satisfied only by
some signals.
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The subset B of W T formalizes this law which governs the system. The signals
w ∈ B are precisely those which are compatible with the system law, that is, they
may occur in our system. We also call them admissible, and we write

B = {w ∈ W T | w satisfies the system law}.

Typically, a signal has several, say q, components coming from the same set K
(usually, K = R). Then W = Kq, and a signal has the form

w : T → Kq, t 7→ w(t) =






w1(t)
...

wq(t)




 .

In that case, we call w a signal vector, andW T is the set of all signal vectors.
Each component wi of w is again called a signal.

This leads to a slight modification of our definition.

Definition 1.2 A dynamical system Σ is determined by the following data:

• a set T , called the time set;

• a set K, called the signal value set;

• a positive integer q, called the number of signals;

• a set B ⊆ (Kq)T = (KT )q, called the behavior.

Define A := KT . This will be called a signal set. Finally, we arrive at the
following definition.

Definition 1.3 A dynamical system Σ is determined by the following data:

• a set A, called the signal set;

• a positive integer q, called the number of signals;

• a set B ⊆ Aq, called the behavior.



14 CHAPTER 1. INTRODUCTION

Here, A and q define the setting/mathematical framework for our description of
the system: A is the set of all signals, and Aq is the set of all signal vectors with q
components. The signal vectors w ∈ B are precisely those which are compatible
with the system law, that is,

B = {w ∈ Aq | w satisfies the system law}.

Remark 1.4 Prototypes of signal sets:

• the set of all functions from N to R,

A = R
N

(such functions are usually called sequences);

• the set of k times continuously differentiable functions from R to R (where
0 ≤ k ≤ ∞)

A = Ck(R);

• the set of generalized functions or distributions

A = D′(R).

Remark 1.5 The intermediary Definition 1.2 is actually superfluous. Any sys-
tem according to 1.2 can put into the setting of Definition 1.1 by puttingW = Kq

and into the setting of Definition 1.3 by putting A = KT .

A system according to Definition 1.1 can be transformed to Definition 1.3 only
if W = Kq. However, this is not a serious restriction, because it is true for most
systems of interest.

In that case, Definition 1.3 is indeed the most general one, because it encompasses
distributions.

Example 1.6 The motion of two planets around the sun according to Kepler’s
laws. The time set is certainly continuous. Whether you choose R or R+ as your
time model, depends on your religious and/or scientific beliefs. Let’s not touch
these delicate issues and choose T = R for simplicity. The position of a planet
in space is determined by its three real coordinates, therefore K = R and q = 6,
or W = R

6. If we let A be the set of all functions from R to R, then Aq = W T .
Being inhabitants of the Earth, we may suspect that A = Ck(R) for some k which
is large enough for comfort. Anyhow, we put

B = {w ∈ A6 | w satisfies Kepler’s laws}.
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Example 1.7 Suppose we have two signals x and b which are linked via

ẋ(t) = A(t)x(t) + b(t)

where A : R → R
n×n, t 7→ A(t) is a smooth map. From the theory of ordinary

differential equations, we know that if b : R → R
n, t 7→ b(t) is continuous, then

the initial value problem (where t0 ∈ R and x0 ∈ R
n are arbitrary)

ẋ(t) = A(t)x(t) + b(t)

x(t0) = x0

has a unique solution x : R → R
n, t 7→ x(t) which is in C1(R)n. Therefore, we

may put T = R, W = R
2n and

B = {(x, b) ∈ W T | (x, b) ∈ C1(R)n × C0(R)n and ẋ(t) = A(t)x(t) + b(t)}.

This behavior has the remarkable property

∀b ∈ C0(R)n∃x ∈ C1(R)n : (x, b) ∈ B. (1.1)

Later on, we will call signals b with this property inputs.

In order to avoid having to specify how many times a function is differentiable,
it is convenient to work with distributions. We put A = D′(R), q = 2n, and

B = {(x, b) ∈ Aq | ẋ = A(t)x(t) + b(t)}.

This is more general because we may now have discontinuous b, such as, e.g., the
Heaviside function. Again, we have (compare with (1.1))

∀b ∈ An∃x ∈ An : (x, b) ∈ B.

Take the scalar example
ẋ(t) = x(t) + b(t).

The classical solutions are

x(t) = etx0 +

∫ t

0

et−τb(τ)dτ

where x0 ∈ R is arbitrary. If b is the Heaviside function

b(t) =

{
0 if t < 0
1 if t ≥ 0

then we obtain

x(t) = etx0 +

{
0 if t < 0

et − 1 if t ≥ 0

which is C0, but not C1, and hence not a classical solution.
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Example 1.8 Genetics/Gender-linked genes: An allele (a certain form of a gene)
is located on the X-chromosome. Females have two X-chromosomes, males have
one X- and one Y-chromosome. Let pf (i) be the frequency of the allele in the
female gene pool of the i-th generation and let pm(i) be the same for the male
gene pool. Since a son inherits his X-chromosome from the mother,

pm(i+ 1) = pf (i)

and since a daughter receives one X-chromosome from the father and one from
the mother,

pf (i+ 1) = 1
2
(pf (i) + pm(i)).

The time set is discrete. Both T = Z and T = N are suitable choices. We have
two signals pm and pf , taking their values in R, hence W = R

2 and

B =

{[
pm

pf

]

∈ W T |

[
pm(i+ 1)
pf (i+ 1)

]

=

[
0 1
1
2

1
2

] [
pm(i)
pf (i)

]

for all i ∈ T

}

.

Example 1.9 An electrical circuit.

�� �� ��

��
��

u u uu
C LR

U

i1, u1
i2, u2

i3, u3

i4, u4

This system involves 9 signals: U , i1, . . . , i4, and u1, . . . , u4. Kirchhoff’s current
law says that

i1 = i2 = i3 = i4 =: I

and Kirchhoff’s voltage law says that

u1 + u2 + u3 + u4 = 0.

We have a free voltage source, u4 = U . Moreover, we have the following con-
stituent equations for the resistor (R), capacitor (C), and inductor (L), respec-
tively:

u1 = Ri1 = RI, C du2

dt
= i2 = I, Ldi3

dt
= LdI

dt
= u3.

Let us describe the system in terms of the signals I, U, u1, u2, u3 (the other 4
signals are easily obtained from them.) We put A = D′(R) or D′(R+), q = 5 and

B = {(I, U, u1, u2, u3)
T ∈ A5|u1 + u2 + u3 + U = 0, u1 = RI,Cu̇2 = I, Lİ = u3}.



1.2. SYSTEM PROPERTIES: LTID SYSTEMS 17

1.2 System properties: LTID systems

For the definition of linearity, we need to fix an underlying number field K. We
will focus on K = R, and therefore we give the definition for that case only.

Definition 1.10 A dynamical system Σ = (A, q,B) is called linear if A is a real
vector space, and B is a subspace of Aq.

The first requirement means that linear combinations of signals are again signals,

a1, a2 ∈ A, λ1, λ2 ∈ R ⇒ λ1a1 + λ2a2 ∈ A

and the second requirement means that linear combinations of admissible signal
vectors are again admissible signal vectors,

w1, w2 ∈ B, λ1, λ2 ∈ R ⇒ λ1w1 + λ2w2 ∈ B.

We call this condition the superposition principle.

Remark 1.11 All signal spaces in 1.4 are real vector spaces.

Any A of the form A = R
T is a real vector space. For a1, a2 ∈ A, λ1, λ2 ∈ R, we

have
λ1a1 + λ2a2 : T → R, t 7→ λ1a1(t) + λ2a2(t).

More generally: If W is a real vector space, then so is W T .

Definition 1.12 A dynamical system Σ = (T,W,B) is called linear if W is a
real vector space and B is a subspace of W T .

Definition 1.13 Let T be such that

t1, t2 ∈ T ⇒ t1 + t2 ∈ T. (1.2)

For τ ∈ T , we define the shift operator στ by

στ : W T → W T , w 7→ στw

where
(στw)(t) = w(t+ τ).

A dynamical system Σ = (T,W,B) is called shift-invariant (or: time-invariant)
if for all τ ∈ T

w ∈ B ⇒ στw ∈ B.
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Remark 1.14 Note that the time sets T = R, T = R+, T = Z, and T = N all
satisfy (1.2). Recall that we always assume that T is one of these four sets. For
A = D′(R), the shift operator στ : A → A is defined by (στD)(ϕ) = D(σ−τϕ),
which is motivated by the requirement στDf = Dστf . Then shift-invariance can
be defined as above, that is, by requiring that στB ⊆ B for all τ ∈ R.

Definition 1.15 A dynamical system Σ = (T,W,B) is called a differential
(difference) system if its time set is continuous (discrete) and its system law
is given by differential (difference) equations.

This is the class of systems we will mainly study: linear, time-invariant (LTI)
differential (difference) systems. The system laws will have the following form:

Differential systems: Systems of linear differential equations with constant co-
efficients. These can be put in the form

(Rd

dd

dtd
+ . . .+R1

d

dt
+R0)w = 0 (1.3)

where Ri ∈ R
p×q are real matrices. We define

R := Rds
d + . . .+R1s+R0.

Then R is a polynomial p × q matrix, and we may rewrite (1.3) in the
concise form

R(
d

dt
)w = 0.

Difference systems: Systems of linear difference equations with constant coef-
ficients. These can be put in the form

Rdw(t+ d) + . . .+R1w(t+ 1) +R0w(t) = 0 for all t ∈ T

where Ri ∈ R
p×q are real matrices. Using the shift operator στ , we may

write
(Rdσd + . . .+R1σ1 +R0)w = 0. (1.4)

We define σ := σ1, then σk = σk (k-fold application of σ). If we put again

R := Rds
d + . . .+R1s+R0

then we can write (1.4) in the concise form

R(σ)w = 0.
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Remark 1.16 The examples discussed so far can be classified as follows.

Example 1.6: Kepler (1571-1630) formulated his laws in a non-differential way.
The differential calculus was developed by Newton (1642-1727) and Leibniz
(1646-1716). It was in fact Newton who came up with a differential equation
for the motion of planets around the sun (the law of gravity). However, it
is quite clear that Kepler’s laws describe a non-linear and time-invariant
system.

Example 1.7: The behavior given by ẋ(t) = A(t)x(t) + b(t) is differential and
linear. In general, it is not time-invariant. In fact, it is time-invariant if
and only if A is a constant function.

Example 1.8: The system given by

w(t+ 1) = Aw(t) for all t ∈ T

where

A =

[
0 1
1
2

1
2

]

is a linear time-invariant difference system. Using the shift operator, it
reads σw = Aw or

(σI − A)w = 0.

The polynomial matrix R takes the form

R = sI − A =

[
s −1

−1
2

s− 1
2

]

.

Example 1.9: The system of the electrical circuit is a linear, time-invariant and
differential. The system law reads







0 1 1 1 1
R 0 −1 0 0
−1 0 0 C d

dt
0

L d
dt

0 0 0 −1















I
U
u1
u2
u3









= 0.

We may rewrite this in the form R̂( d
dt
)w = 0 by putting

w =
[
I U u1 u2 u3

]T

and

R̂ =







0 1 1 1 1
R 0 −1 0 0
−1 0 0 Cs 0
Ls 0 0 0 −1






.
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1.3 LTI differential equations and their

distributional solutions

Consider P ( d
dt
)y = v, where P ∈ R[s]p×p is non-singular, and v ∈ D′(T )p for

T = R or T = R+. Let yp be one particular solution. Then any solution y
has the form y = yp + yh, where yh is a solution of the associated homogeneous
equation P ( d

dt
)yh = 0.

1.3.1 The homogeneous equation

Consider the homogeneous equation P ( d
dt
)y = 0. Assume that

P = Pds
d + . . .+ P1s+ P0

with coefficient matrices Pi ∈ R
p×p. After reduction to first order, we have

Kξ̇ = Lξ

where K,L ∈ R
n×n. Without loss of generality, we may put n = dp,

ξ=








y
d
dt
y
...

dd−1

dtd−1y







, K=








I
. . .

I
Pd








and L=








0 I
...

. . .

0 I
−P0 −P1 · · · −Pd−1







.

Note that then det(P )=det(sK−L), det(K)=det(Pd), and det(L)=± det(P0).

Case 1: K is invertible, that is, after putting A := K−1L, the system has the
explicit form ξ̇ = Aξ. We say that ξ is a classical solution if it is C1 and ξ̇ = Aξ.
It is well-known that

Φ(t) := eAt

is a fundamental matrix for this system, that is, its n columns are a basis of
the classical solution space. In other words, any classical solution ξ has the
form ξ(t) = eAtξ0 for some ξ0 ∈ R

n. Note that the entries of Φ are C∞. Hence
every classical solution is also C∞. It is known that the Wronski determinant
det(Φ(t)) = etrace(A)t 6= 0 for all t ∈ T , and thus also the entries of Φ−1 are in C∞,
in fact, Φ−1(t) = e−At.

Theorem 1.17 The equation ξ̇ = Aξ has no distributional solutions apart from
the classical solutions, that is, ξ(t) = eAtξ0, where ξ0 ∈ R

n.
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Proof: Let ξ ∈ D′(T )n be a distributional solution. Set η := Φ−1ξ, then Φη = ξ.
Differentiation yields

ξ̇ = Φ̇η + Φη̇ = AΦη + Φη̇.

On the other hand, we have ξ̇ = Aξ = AΦη by assumption. Therefore Φη̇ = 0
and thus η̇ = 0. According to Lemma A.1, this implies η = η0, where η0 is a
constant vector. Thus

ξ = Φη = Φη0

showing that the distributional solution ξ is indeed a classical solution. 2

Case 2: K is not invertible. Recall that det(sK−L) = det(P ) which is non-zero
by assumption.

Theorem 1.18 (Kronecker-Weierstraß form) LetK,L ∈ R
n×n be such that

det(sK − L) 6= 0. Then there exist non-singular matrices U, V ∈ R
n×n such that

UKV =

[
Iν 0
0 N

]

and ULV =

[
A1 0
0 In−ν

]

where N is a nilpotent matrix, that is, Nk = 0 for some k ∈ N. The number ν,
and the nilpotency index of N , that is, the smallest integer κ such that Nκ = 0,
are uniquely determined by K,L.

Since Kξ̇ = Lξ is equivalent to UKV V −1ξ̇ = ULV V −1ξ, we set x := V −1ξ and
obtain

ẋ1 = A1x1

Nẋ2 = x2.

The second equation implies (by repeated differentiation and multiplication byN)
that x2 = 0. Therefore, Case 2 can be reduced to Case 1.

Corollary 1.19 The equation Kξ̇ = Lξ has no distributional solutions apart
from the classical solutions, that is, ξ(t) = V x(t), where x1(t) = eA1tx10 for some
x10 ∈ R

ν and x2(t) = 0 for all t.

Summing up the two cases, we have the following result. We use that the entries
of Φ(t) = eAt have the form

Φij(t) =
∑

λ

aλ(t)e
λt
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where λ ∈ C are the eigenvalues of A and aλ ∈ C[t] are suitable polynomials.
Note that

det(P ) = det(sK − L) =
1

uv
det(sI − A1) det(sN − I),

where u = det(U) and v = det(V ) are non-zero constants. Since det(λN−I) 6= 0
for all λ ∈ C, the zeros of det(P ) are precisely the eigenvalues of A1.

Theorem 1.20 The system P ( d
dt
)y = 0 has no distributional solutions apart

from the classical solutions, that is, functions of the form

y(t) =
∑

λ

aλ(t)e
λt

where λ ∈ C are the zeros of det(P ), and aλ ∈ C[t]p are suitable polynomial
vectors.

1.3.2 The inhomogeneous equation

Let A = D′(T ). Consider P ( d
dt
)y = v, where v ∈ Ap is given. After reduction to

first order, we obtain

Kξ̇ = Lξ +Mv

where K,L ∈ R
n×n and M ∈ R

n×p.

Case 1: K is invertible, that is, after putting A := K−1L, B := K−1M , the
system has the explicit form

ξ̇ = Aξ + Bv.

One uses the well-known “variation of constants” trick and sets

ξ = Φψ

where Φ(t) = eAt is the fundamental matrix for the homogeneous equation, to
obtain

ψ̇ = Φ−1Bv.

According to Theorem A.2, there exists a distribution ψ which satisfies this equa-
tion. Then ξ = Φψ is a particular solution of the inhomogeneous equation. Note
that if v is C0, that is, continuous, then ξ is C1 and hence it is a classical solution.
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Case 2: K is not invertible. Without loss of generality, rewrite Kξ̇ = Lξ +Mv
as UKV V −1ξ̇ = ULV V −1ξ + UMv, where U and V are as in Theorem 1.18.
Then, putting ξ = V x and B = UM , the equations read

ẋ1 = A1x1 + B1v

Nẋ2 = x2 + B2v.

Since Nκ = 0, this implies that

x2 = −(B2v +NB2v̇ + . . .+Nκ−1B2v
(κ−1)).

The equation for x1 is again as in Case 1.

Theorem 1.21 Let P ∈ R[s]p×p be non-singular. For every v ∈ Ap, there exists
y ∈ Ap such that P ( d

dt
)y = v.

This theorem is a special case of the so-called fundamental principle, which
we will discuss later.

1.4 LTI difference equations

Consider P (σ)y = v, where P ∈ R[s]p×p is non-singular, and v ∈ (RT )p for
T = N or T = Z. Let yp be one particular solution. Then any solution y has the
form y = yp + yh, where yh is a solution of the associated homogeneous equation
P (σ)yh = 0.

1.4.1 The homogeneous equation

Consider the homogeneous equation P (σ)y = 0. Assume that

P = Pds
d + . . .+ P1s+ P0

with coefficient matrices Pi ∈ R
p×p. After reduction to first order, we have

Kσξ = Lξ,

that is
Kξ(t+ 1) = Lξ(t) for all t ∈ T
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where K,L ∈ R
n×n. We may choose K,L as in Section 1.3 if we set

ξ =








y
σy
...

σd−1y







.

Time set T = N

Case 1: K is invertible, that is, after putting A := K−1L, the system has the
explicit form σξ = Aξ. It is well-known that

Φ(t) := At

is a fundamental matrix for this system, that is, its n columns are a basis of the
solution space. In other words, any solution ξ has the form ξ(t) = Atξ0 for some
ξ0 ∈ R

n.

Case 2: K is not invertible. Using Theorem 1.18, the system can be rewritten
as

σx1 = A1x1

Nσx2 = x2.

The second equation implies that x2 = 0, because Nκ = 0 and thus x2(t) =
Nx2(t + 1) = . . . = Nκx2(t + k) = 0 for all t. Therefore, Case 2 can be reduced
to Case 1.

Lemma 1.22 The equation Kσξ = Lξ has the solutions ξ(t) = V x(t), where
x1(t) = At

1x10 for some x10 ∈ R
ν and x2(t) = 0 for all t.

Summing up the two cases, we have the following result. We use that the entries
of Φ(t) = At, A invertible, have the form

Φij(t) =
∑

λ

aλ(t)λ
t

where λ ∈ C are the eigenvalues of A and aλ ∈ C[t] are suitable polynomials. (If
A is singular, the formula is still valid for all t ≥ n.) Note that

det(P ) = det(sK − L) =
1

uv
det(sI − A1) det(sN − I),

where u = det(U) and v = det(V ) are non-zero constants. Since det(λN−I) 6= 0
for all λ ∈ C, the zeros of det(P ) are precisely the eigenvalues of A1.
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Theorem 1.23 The solutions of the system P (σ)y = 0 have the form

y(t) =
∑

λ

aλ(t)λ
t

for large enough t, where λ ∈ C are the zeros of det(P ), and aλ ∈ C[t]p are
suitable polynomial vectors.

Time set T = Z

Case 1: K,L are both invertible. Then A := K−1L is also invertible, and thus
Φ(t) = At is again a fundamental matrix (note that we need invertibility of A for
Φ(t) to be defined also for negative values of t).

Case 2: L is invertible, but not K. As usual, we may transform the system into
Kronecker-Weierstraß form

U1KV1 =

[
I 0
0 N1

]

and U1LV1 =

[
A1 0
0 I

]

to obtain, for x = V −1
1 ξ,

σx1 = A1x1

N1σx2 = x2

where A1 is invertible. Again, the second equation implies that x2 = 0. Thus we
have reduced Case 2 to Case 1.

Case 3: K is invertible, but not L. We rewrite

Kξ(t+ 1) = Lξ(t) for all t ∈ Z

as
Lξ(τ − 1) = Kξ(τ) for all τ ∈ Z

and compute the Kronecker-Weierstraß form

U2LV2 =

[
I 0
0 N2

]

and U2KV2 =

[
A2 0
0 I

]

where A2 is invertible. Then we obtain the new system, for y = V −1
2 ξ,

y1(τ − 1) = A2y1(τ)

N2y2(τ − 1) = y2(τ).
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Then y2 = 0 and y1(τ) = A−τ
2 y10 for some y10. Note that

det(P ) = det(sK − L) =
1

u2v2
det(sA2 − I) det(sI −N2)

and thus, since zero is the only eigenvalue of the nilpotent matrix N2,

det(P )(λ) = 0 ⇔ λ = 0 or det(λA2 − I) = 0.

Thus the non-zero zeros of det(P ) coincide with the eigenvalues of A−1
2 .

Case 4: K,L both singular. Then one uses the Kronecker-Weierstraß form as
in Case 2 to obtain the values ξ(t) for t > 0 and the Kronecker-Weierstraß form
from Case 3 to determine the values ξ(t) for t < 0. We omit the details.

Theorem 1.24 The solutions of P (σ)y = 0 have the form

y(t) =
∑

λ

aλ(t)λ
t

where λ ∈ C are the non-zero zeros of det(P ) and aλ ∈ C[t]p are suitable poly-
nomial vectors.

1.4.2 The inhomogeneous equation

For simplicity, we treat only the case T = N, that is, A = R
N. Consider P (σ)y =

v, where v ∈ Ap is given. After reduction to first order, we obtain

Kσξ = Lξ +Mv

where K,L ∈ R
n×n and M ∈ R

n×p.

Case 1: K is invertible, that is, after putting A := K−1L, B := K−1M , the
system has the form

σξ = Aξ + Bv.

Then

ξ(t) =
t−1∑

i=0

At−i−1Bv(i)

is a particular solution of the inhomogeneous equation.



1.4. LTI DIFFERENCE EQUATIONS 27

Case 2: K is not invertible. Without loss of generality, rewrite Kσξ = Lξ+Mv
as UKV V −1σξ = ULV V −1ξ + UMv, where U and V are as in Theorem 1.18.
Then, putting ξ = V x and B = UM , the equations read

σx1 = A1x1 + B1v

Nσx2 = x2 + B2v.

Since Nκ = 0, this implies that

x2 = −(B2v +NB2σv + . . .+Nκ−1B2σ
κ−1v).

The equation for x1 is again as in Case 1.

Theorem 1.25 Let P ∈ R[s]p×p be non-singular. For every v ∈ Ap, there exists
y ∈ Ap such that P (σ)y = v.

This is a discrete version of the fundamental principle.
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Chapter 2

LTID systems: Basic facts

In the following, let R be a p× q polynomial matrix in the variable s, with real
coefficients. We write

R ∈ R[s]p×q.

From now on, we will restrict our discussion to the following standard models:

• The continuous standard model is

B = {w ∈ Aq | R( d
dt
)w = 0}

where A = D′(T ) with T = R or T = R+.

• The discrete standard model is

B = {w ∈ Aq | R(σ)w = 0}

where A = R
T with T = N or T = Z.

2.1 Representations

The polynomial matrix R is called a representation of B. Note that once A
and q are fixed, the behavior B is uniquely determined by R. Conversely, there
are many polynomial matrices which represent the same behavior. To see this,
we introduce the concept of a unimodular matrix.

29
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Definition 2.1 A square polynomial matrix U is called unimodular if its de-
terminant is a non-zero constant, that is, det(U) ∈ R \ {0}. This is equivalent to
the existence of a polynomial matrix V such that

UV = V U = I.

Clearly, V is the inverse of U , which exists because U is non-singular, i.e.,
det(U) 6= 0. Unimodularity is much stronger than non-singularity, the crucial
point is that U possesses a polynomial (rather than a rational) inverse.

We observe that pre-multiplication by a unimodular matrix U does not change
the behavior represented by R. More precisely, R and R̂ = UR represent the
same behavior, because

R( d
dt
)w = 0 ⇒ U( d

dt
)R( d

dt
)w = R̂( d

dt
)w = 0

and
R̂( d

dt
)w = 0 ⇒ V ( d

dt
)R̂( d

dt
)w = R( d

dt
)w = 0

where V is the polynomial inverse of U . The same holds if we replace d
dt

by σ.

Definition 2.2 A polynomial matrix R is called a minimal representation of B
if there exists no polynomial matrix which represents the same behavior and has
a smaller number of rows.

The most important fact about polynomial matrices is stated next.

Theorem 2.3 (Smith form) For every polynomial matrix R ∈ R[s]p×q there
exist unimodular matrices U ∈ R[s]p×p and V ∈ R[s]q×q such that

URV =

[
D 0
0 0

]

(2.1)

where D ∈ R[s]r×r is a non-singular diagonal matrix

D =






d1
. . .

dr






with d1|d2| . . . |dr. This notation means that for i = 1, . . . , r − 1, the polynomial
di divides di+1, that is, di+1 = diei for some polynomial ei. Clearly, the integer r
is precisely the rank of the matrix R (over the quotient field R(s) of R[s]). The
matrix on the right hand side of (2.1) is called Smith form of R.
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Corollary 2.4 For every polynomial matrix R ∈ R[s]p×q there exists a unimod-
ular matrix U ∈ R[s]p×p such that

UR =

[
R1

0

]

where R1 ∈ R[s]r×q has full row rank, that is, rank(R1) = r.

Proof: Let U and V be as in Theorem 2.3, and set W := V −1. Then we have

UR =

[
D 0
0 0

] [
W1

W2

]

and we set R1 := DW1, which has full row rank, by construction. 2

Since R and R1 represent the same behavior, we have the following conclusion.

Lemma 2.5 Any B possesses a representation matrix with full row rank. If R
is a minimal representation of B, then R has full row rank.

Proof: The first statement follows directly from our considerations above. If
R ∈ R[s]p×q is a representation with rank(R) < p, then there exists a represen-
tation with less than p rows, according to Corollary 2.4 (noting that rank(R) =
rank(R1)), and thus R cannot be minimal. 2

We will see later on that in fact, a representation R of B is minimal if and only
if R has full row rank.

2.2 The fundamental principle

We restate the fundamental principle for convenience.

Theorem 2.6 (Fundamental principle, square matrix version) Let P ∈
R[s]p×p be a non-singular polynomial matrix. Then

P ( d
dt
)y = v or P (σ)y = v

possesses a solution y ∈ Ap for every choice of the right hand side signal v ∈ Ap.
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The following variant for rectangular matrices with full row rank is an easy con-
sequence.

Corollary 2.7 (Fundamental principle, non-square matrix version) Let
R ∈ R[s]p×q be a full row rank polynomial matrix, that is, rank(R) = p. Then

R( d
dt
)w = v or R(σ)w = v

possesses a solution w ∈ Aq for every choice of the right hand side signal v ∈ Ap.

Proof: It suffices to do the continuous case. Since R has full row rank, its
Smith form takes the form URV = [D, 0]. Thus we have RV = [P, 0], where V is
unimodular, and P is square and non-singular. Given v, we rewrite R( d

dt
)w = v

as (RV V −1)( d
dt
)w = v or P ( d

dt
)w̃1 = v, where w̃ := V −1( d

dt
)w is partitioned

accordingly. From the square case, we know that there exists such a w̃1. The
vector w̃2 can be chosen arbitrarily, and we get w via w = V ( d

dt
)w̃. 2

The most important consequence of the fundamental principle is stated next.

2.3 Elimination of latent variables

Often, the components of a signal vector can be divided into two classes: a set
of components we are truly interested in (called manifest variables), and a set
of components that were introduced as auxiliary variables during the modelling
process (called latent variables).

Remark 2.8 For instance, in the electrical circuit of Example 1.9, one is usu-
ally interested in the signals U and I because they represent the overall voltage
and current that are relevant for this network. On the other hand, the voltages
u1, u2, u3 were introduced for determining the network equations, and those quan-
tities are not really interesting by themselves. In fact, one would like to get rid
of them in order to describe the relation between I and U alone. This process is
called elimination of latent variables.

Consider

B =

{[
w
l

]

∈ Aq+r | R( d
dt
)w =M( d

dt
)l

}

,
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where R ∈ R[s]p×q and M ∈ R[s]p×r (we restrict to continuous time; the discrete
case is analogous). Let’s say that the components of w are the manifest variables,
and l represents the latent variables. Then we are actually interested in the
projection of B onto the first q variables, that is, in the system with latent
variables given by

Bl = {w ∈ Aq | ∃l ∈ Ar : R( d
dt
)w =M( d

dt
)l}.

In other words, we do not care about the precise form of the latent variables l,
only about their existence. The question arises whether we can write Bl as a
standard model, that is, whether we can find a polynomial matrix R̂ such that

Bl = B̂ = {w ∈ Aq | R̂( d
dt
)w = 0}.

The answer is yes, and moreover, there is an easy way to obtain the desired R̂
from the given R and M .

One solves the linear system of equations ξM = 0, where ξ ∈ R[s]1×p. In other
words, we compute the left kernel of M , over the polynomial ring. Using the
Smith form, one can show that there exist p − rank(M) linearly independent
solutions that span this kernel. Thus, let ξ1, . . . , ξp−rank(M) be a generating system
for the left kernel of M . Collecting these row vectors in a matrix X, we have
constructed a matrix X which satisfies the following three conditions:

1. XM = 0;

2. any polynomial row vector ξ with ξM = 0 can be written as a polynomial
linear combination of the rows of X, that is, ξ = ηX for some polynomial
row vector η;

3. X has full row rank.

Lemma 2.9 Let X1, X2 be two matrices with the three properties from above.
Then we must have X1 = UX2 for some unimodular matrix U .

Proof: Condition 1 implies X1M = 0 and X2M = 0. By Condition 2, each row
of X1 can be written as a polynomial linear combination of the rows of X2 (and
vice versa). This means that there exist polynomial matrices U and V such that

X1 = UX2 and X2 = V X1.

Then
(I − UV )X1 = 0 and (I − V U)X2 = 0.
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Finally, Condition 3 implies that UV = V U = I, that is, U has a polynomial
inverse, namely V , and thus U is unimodular. 2

Theorem 2.10 Let R,M be given polynomial matrices, with the same number
of rows. Let X be as described above, and define R̂ := XR. Then

∃l ∈ Ar : R( d
dt
)w =M( d

dt
)l ⇔ R̂( d

dt
)w = 0

(analogously if d
dt
is replaced by σ), that is, using the notation from above, B̂ = Bl.

Proof: By Corollary 2.4, there exists a unimodular matrix V such that

VM =

[
M1

0

]

where M1 has full row rank. Then

∃l : R( d
dt
)w =M( d

dt
)l ⇔

∃l : V ( d
dt
)R( d

dt
)w = V ( d

dt
)M( d

dt
)l ⇔

∃l :

[
R1

R2

]

( d
dt
)w =

[
M1

0

]

( d
dt
)l.

Using Corollary 2.7, we obtain

∃l : R( d
dt
)w =M( d

dt
)l ⇔ R2(

d
dt
)w = 0.

It remains to establish a relation between R2 and R̂. Note that X̂ := [0, I]V
has the three properties given above. According to Lemma 2.9, there exists a
unimodular matrix U such that

X = UX̂.

Thus R̂ = XR = UX̂R = U [0, I]V R = UR2, which shows that

R̂( d
dt
)w = 0 ⇔ R2(

d
dt
)w = 0

which completes the proof. 2

2.4 Inputs, outputs, and autonomous systems

Definition 2.11 Let the signal vector w be partitioned as

w =

[
w1

w2

]

,
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where wi ∈ Aqi , where q1 and q2 are positive integers with q1+q2 = q. The subvec-
tor w1 is called a vector of free variables (or: inputs) of B if it is unconstrained
by the system law, that is,

∀w1 ∈ Aq1∃w2 ∈ Aq2 :

[
w1

w2

]

∈ B.

Free variables can be found as follows: We may assume that R ∈ R[s]p×q has
full row rank, that is, rank(R) = p ≤ q. Then there exists a p × p non-singular
submatrix of R. Assume that p < q. We can always permute the columns of R
(this just corresponds to renumbering our signal components) such that

R =
[
−Q P

]

where P is such a non-singular p× p matrix. Writing

w =

[
u
y

]

correspondingly, our system law R( d
dt
)w = 0 takes the form

P ( d
dt
)y = Q( d

dt
)u. (2.2)

From Theorem 2.6, we obtain that this equation has a solution y ∈ Ap for every
choice of u ∈ Am, where m := q − p. Therefore, u is a vector of free variables
of B.

Next, we are interested in the maximal number of free variables of a system B.
For this, we define the input-dimension of B by

idim(B) := max{k ∈ N | ∃Π such that B → Ak, w 7→ [Ik, 0]Πw is surjective},

where Π is a permutation matrix. Note that the mapping B → Ak is simply
the projection of w onto a subvector consisting of k components. Thus, the
input-dimension is the largest integer k such that there exist k components of
w ∈ B that are free (i.e., unconstrained by the system law). We first observe that
surjectivity of B → Ak, w 7→ Sw, where S = [Ik, 0]Π, amounts to saying

∀ξ ∈ Ak∃w ∈ Aq :

[
I
0

]

ξ =

[
S
R

]

( d
dt
)w. (2.3)

As a by-product of introducing the concept of input-dimension, we can now prove
the characterization of minimality of representations that was announced earlier.

Theorem 2.12 Any two representations of B have the same rank. A represen-
tation of B is minimal if and only if it has full row rank.
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Proof: Let R ∈ R[s]p×q be a representation of B. By Lemma 2.5, we may
assume that R has full row rank p. If p < q, then without loss of generality,
let R = [−Q,P ], where P ∈ R[s]p×p is non-singular. We have seen above that
u ∈ Am is a vector of free variables of B. Thus idim(B) ≥ m = q − rank(R).
Clearly, this inequality holds also p = q, that is, for m = 0.

Conversely, using the elimination of latent variables, we find that

∃w ∈ Aq :

[
I
0

]

ξ =

[
S
R

]

( d
dt
)w ⇔ X1(

d
dt
)ξ = 0,

where X = [X1, X2] is a polynomial matrix whose rows generate the left kernel

of

[
S
R

]

. Thus

∀ξ ∈ Ak∃w ∈ Aq :

[
I
0

]

ξ =

[
S
R

]

( d
dt
)w ⇔ ∀ξ ∈ Ak : X1(

d
dt
)ξ = 0.

However, this is true if and only if X1 = 0. Thus, in view of (2.3), surjectivity of

B → Ak, w 7→ Sw is equivalent to saying that [X1, X2]

[
S
R

]

= 0 implies that

X1 = 0. Since we may assume, without loss of generality, that R has full row

rank, this is also equivalent to saying that

[
S
R

]

∈ R[s](k+p)×q has full row rank.

This implies that k + p ≤ q. Therefore we must have idim(B) ≤ q − rank(R).

Combining this with the inequality from above, we have idim(B) = q − rank(R),
showing that the rank of a representation matrix is an invariant of B, i.e., it
does not depend on the specific choice of R. From this, we get that a full row
rank representation must be minimal (the converse direction was already shown
in Lemma 2.5). 2

Thus, in spite of the seemingly complicated definition, we find that the input-
dimension is given by the simple formula idim(B) = q − rank(R), which is just
the “number of free variables” of a linear system of equations that one would
expect from linear algebra.

Definition 2.13 A system law in the form of equation (2.2), where P is square
and non-singular, is called an input-output representation of B. One calls
p = rank(R) the number of outputs (or output-dimension), and m = q − p the
number of inputs (or input-dimension). The signal subvector u is called input,
and the signal subvector y is called output.
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It is important to note that in general, one and the same behavior may have
several different input-output representations. This is due to the fact that there
may be more than one way to select a non-singular p× p submatrix of R, where
p = rank(R).

Example 2.14 The electrical circuit from Example 1.9 admits 5 different input-
output representations. The matrix

R̂ =







0 1 1 1 1
R 0 −1 0 0
−1 0 0 Cs 0
Ls 0 0 0 −1






.

has rank 4 and every 4× 4 submatrix is non-singular (the parameters R,C, L are
supposed to be positive). Each of the 5 signals I, U, u1, u2, u3 can take the role of
the input, and then the remaining 4 signals will be outputs. However, from the
physical point of view, one would usually consider U as the input and I, u1, u2, u3
as outputs.

Example 2.15 The system from Example 1.8 does not have any free variables.
If

R(σ)w =

[
σ −1

−1
2

σ − 1
2

] [
w1

w2

]

= 0

then
[
σ − 1

2
1

1
2

σ

] [
σ −1

−1
2

σ − 1
2

] [
w1

w2

]

=

[
σ2− 1

2
σ− 1

2
0

0 σ2− 1
2
σ− 1

2

] [
w1

w2

]

= 0

and thus for i = 1, 2:
(σ2 − 1

2
σ − 1

2
)wi = 0.

This implies that if wi(0) and wi(1) are given, all wi(t) for t ∈ T are uniquely
determined. In particular, wi is not free. In fact, considering the characteristic
equation

λ2 − 1
2
λ− 1

2
= 0

with its solutions λ1 = 1 and λ2 = −1
2
, we must have

wi(t) = a1λ
t
1 + a2λ

t
2 = a1 + a2(−

1
2
)t

where the constants a1, a2 can be computed from wi(0), wi(1). In fact, the
original equations show that it suffices to know wi(0) for i = 1, 2 to obtain a
unique solution.
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Systems without inputs are called autonomous (Greek: αυτoνoµoς; under its
own law/self-governed/independent).

Definition 2.16 A system which has no free variables is called autonomous.
In other words, B is autonomous if and only if idim(B) = 0.

Example 2.17 A system given by the scalar equation p( d
dt
)w = 0, where 0 6=

p ∈ R[s], is autonomous. Any w satisfying p( d
dt
)w = 0 must be of the form

w(t) =
∑

λ

aλ(t)e
λt

where λ ∈ C are the zeros of p, and aλ are polynomials. Thus w is certainly
constrained by the system law. Similarly, p(σ)w = 0 implies

w(t) =
∑

λ

aλ(t)λ
t

in the discrete case.

Lemma 2.18 B is autonomous if and only if it has a square non-singular repre-
sentation matrix.

Proof: If B is autonomous, then idim(B) = 0, that is, any representation ma-
trix has full column rank. On the other hand, we can always find a representation
with full row rank. Combining this, we get that there exists a square represen-
tation matrix with full rank, that is, a non-singular matrix. Conversely, let B be
represented by a square non-singular matrix, say, P ∈ R[s]q×q with rank(P ) = q.
Then idim(B) = q − q = 0, that is, B is autonomous. 2

2.5 Input-output representations

Let P ( d
dt
)y = Q( d

dt
)u be a system law in input-output form and assume that

u ∈ Am is given. From the fundamental principle, we know that there exist
outputs belonging to this input. What can be said about the set of these outputs?
Let yp be one particular output that belongs to u, that is, P (

d
dt
)yp = Q( d

dt
)u. Let

y be another output that belongs to u, then P ( d
dt
)(y−yp) = 0, that is, yh := y−yp
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is an element of the autonomous system defined by P ( d
dt
)yh = 0. Therefore, any

output y that belongs to u can be written in the form

y = yp + yh

where yp is one particular solution of the inhomogeneous equation P ( d
dt
)y =

Q( d
dt
)u and yh is an arbitrary solution of the corresponding homogeneous equa-

tion.

2.5.1 The continuous homogeneous equation

Consider P ( d
dt
)y = 0, where P ∈ R[s]p×p is non-singular. Let 0 6= det(P ) ∈ R[s]

be its determinant and let

Λ = {λ ∈ C | det(P )(λ) = 0}

denote the set of its zeros. Any solution y of P ( d
dt
)y = 0 has the form

y(t) =
∑

λ∈Λ

aλ(t)e
λt

where aλ ∈ C[t]p.

In the scalar case (p = 1), the degree of each polynomial aλ is at most µ(λ)− 1,
where µ(λ) is the multiplicity of λ as a zero of P , that is, according to the
fundamental theorem of algebra,

P = c
∏

λ∈Λ

(s− λ)µ(λ)

where c is the leading coefficient of P . Therefore, each y satisfying P ( d
dt
)y = 0 is

uniquely determined by the

∑

λ∈Λ

µ(λ) = deg(P )

coefficients of these polynomials. In particular, the dimension of the solution
space of the scalar equation P ( d

dt
)y = 0 is precisely the degree of P , that is, the

order of the differential equation P ( d
dt
)y = 0.

In the general case (p ≥ 1), we use the Smith form UPV = D = diag(d1, . . . , dp).
Since P ( d

dt
)y = 0 is equivalent to D( d

dt
)ỹ = 0, where y = V ( d

dt
)ỹ, we consider

B = {y ∈ Ap | P ( d
dt
)y = 0} and B̃ = {ỹ ∈ Ap | D( d

dt
)ỹ = 0}
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and we conclude from the scalar case that

dim B̃ =

p
∑

i=1

deg(di) = deg

p
∏

i=1

di = deg det(D) = deg det(P ).

The map ỹ 7→ y = V ( d
dt
)ỹ provides a vector space isomorphism between B̃ and B

and thus, their dimensions coincide.

Theorem 2.19 B is autonomous if and only if it is finite-dimensional as a real
vector space. More precisely, if B is represented by the square non-singular matrix
P , then dimB = deg det(P ).

Remark 2.20 Note that our signals are supposed to be real-valued (recall that
although we work with distributional solutions in the continuous case, the solu-
tions of an autonomous system are classical functions). Then B is always a real
vector space. However, we still have to admit complex coefficients in the poly-
nomials aλ, because λ ∈ Λ and hence eλt will be complex, in general. However,
since the coefficients of P are supposed to be real, we have

λ ∈ Λ ⇒ λ ∈ Λ,

that is, the zeros of det(P ) come in pairs of complex conjugate numbers. For our
signals to have real values, we must have

aλ = aλ

and thus deg det(P ) is really the vector space dimension of B over R and not C.

2.5.2 The continuous inhomogeneous equation

Suppose that P ( d
dt
)h(i) = Q( d

dt
)δ(i), where δ(i) ∈ Am has δ in the i-th position and

zeros everywhere else. Here, δ ∈ A = D′(T ) denotes the Dirac delta distribution.
Define

h =
[
h(1) · · · h(m)

]
∈ Ap×m.

Then h is called impulse response (or: fundamental solution), because its
columns can be seen as the system’s response (output) to an input which is an
impulse (delta distribution).

Then a particular output y belonging to the input u is given by the distributional
convolution (if it exists)

y = h ∗ u
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that is, in the classical case (u, h locally integrable functions, i.e., regular distri-
butions)

y(t) =

∫ ∞

−∞

h(t− τ)u(τ)dτ.

The existence of the convolution is guaranteed by any of the following conditions:

• Both h and u have their support in [0,∞). This means that they assign zero
to every test function whose support is in (−∞, 0). If h, u are continuous
functions, this means that h(t) = 0 and u(t) = 0 for all t < 0. Then we
have

y(t) =

∫ t

0

h(t− τ)u(τ)dτ,

which is an integral over a compact interval, which exists due to the as-
sumption of continuity. Similarly, the convolution is always well-defined if
T = R+.

• If h or u has compact support, then h ∗ u exists.

• Let u be a bounded function, and let h be a (globally) integrable function.
Then

‖y‖∞ ≤ ‖h‖1 · ‖u‖∞

and thus, a bounded input u ∈ L∞ leads to a bounded output y ∈ L∞

provided that h ∈ L1. This is known as “bounded input, bounded output
(BIBO) stability”.

Example: Consider ẋ(t) = Ax(t) + b(t). We take b as the input, and x as the
output. Then P = sI − A and Q = I. An impulse response is given by

h(t) =

{
eAt if t ≥ 0
0 if t < 0

for both T = R and T = R+. If T = R, assume that u is a continuous function
with u(t) = 0 for t < 0. Then we have

y(t) = (h ∗ u)(t) =

∫ t

0

eA(t−τ)u(τ)dτ =

∫ t

0

eAτu(t− τ)dτ

as a particular output y = x belonging to the input u = b.
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2.5.3 The discrete homogeneous equation (T = N)

Consider P (σ)y = 0, where P ∈ R[s]p×p is non-singular. Let 0 6= det(P ) ∈ R[s]
be its determinant and let

Λ = {λ ∈ C | det(P )(λ) = 0}

denote the set of its zeros. Any solution y of P (σ)y = 0 has the form

y(t) =
∑

λ∈Λ

aλ(t)λ
t

where aλ ∈ C[t]p, for all t that are large enough (recall that this restriction is due
to the possible presence of 0 in Λ). Therefore, it does not suffice, in the discrete
case, to count the possible choices of the coefficients of the aλ. Nevertheless, we
can argue as follows.

In the scalar case (p = 1), we have P (σ)y = 0, where P = pds
d + . . .+ p1s+ p0

for some d ≥ 0, pi ∈ R, pd 6= 0. Thus the difference equation reads

pdy(t+ d) + . . .+ p1y(t+ 1) + p0y(t) = 0 for all t ∈ N.

The first d values y(0), . . . , y(d − 1) of y are unconstrained by the system law,
whereas y(t) for t ≥ d is uniquely determined by the previous values. Therefore,
each y satisfying P (σ)y = 0 is uniquely determined by choosing d = deg(P ) real
parameters (namely, the values y(0), . . . , y(d− 1) ∈ R).

In the general case (p ≥ 1), we use again the Smith form UPV = D =
diag(d1, . . . , dp), to obtain the following result which is completely analogous
to its continuous counterpart.

Theorem 2.21 B is autonomous if and only if it is a finite-dimensional vector
space. More precisely, if B is represented by the square non-singular matrix P ,
then dimB = deg det(P ).

2.5.4 The discrete inhomogeneous equation

Suppose that P (σ)h(i) = Q(σ)δ(i), where δ(i) ∈ Am has δ in the i-th position and
zeros everywhere else. Here, δ ∈ A = R

T denotes the sequence that takes the
value 1 at time zero, and the value zero everywhere else. Define

h =
[
h(1) · · · h(m)

]
∈ Ap×m.
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Then h is called impulse response (or: fundamental solution), because its
columns can be seen as the system’s response (output) to an input which is an
impulse (discrete version of delta function).

Then a particular output y belonging to the input u is given by the discrete
convolution (if it exists)

y = h ∗ u

that is,

y(t) =
∞∑

i=−∞

h(t− i)u(i).

We identify R
N with the set of sequences a ∈ R

Z with a(t) = 0 for all t < 0. The
existence of the convolution is guaranteed by any of the following conditions:

• Let h(t) = 0 and u(t) = 0 for all t < 0. Then

y(t) =
t∑

i=0

h(t− i)u(i),

a finite sum. Thus the convolution always exists for T = N.

• At least one of h, u has compact support.

• u is bounded, and h is summable (“BIBO stability”).

Example: Consider x(t + 1) = Ax(t) + b(t). We take b as the input, and x
as the output. Then P = sI − A and Q = I. An impulse response is given by
h(t) = At−1 for t ≥ 1 and h(t) = 0 for all t ≤ 0. If T = N, or T = Z and u(t) = 0
for t < 0, we have

y(t) = (h ∗ u)(t) =
t∑

i=0

h(t− i)u(i) =
t−1∑

i=0

h(t− i)u(i) =
t−1∑

i=0

At−i−1u(i)

as a particular output y = x belonging to the input u = b.

2.6 Reduction to first order

A polynomial matrix R ∈ R[s]p×q can be written in the form

R = Rds
d + . . .+R1s+R0
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where Ri ∈ R
p×q. We may assume that Rd is not the zero matrix. Our system

law takes the form
(Rd

dd

dtd
+ . . .+R1

d
dt
+R0)w = 0

or
(Rdσ

d + . . .+R1σ +R0)w = 0

see (1.3) and (1.4). If we put

ξ =








w
d
dt
w
...

dd−1

dtd−1w








or ξ =








w
σw
...

σd−1w








in the continuous or discrete case, respectively, then we can rewrite the system
law as

K d
dt
ξ = Lξ or Kσξ = Lξ

where

K =








Iq
. . .

Iq
Rd








and L =








0 Iq
...

. . .

0 Iq
−R0 −R1 · · · −Rd−1







.

Putting n = dq and k = (d− 1)q + p, we have K,L ∈ R
k×n and

R( d
dt
)w = 0 ⇔ ∃ξ ∈ An :

{
K d

dt
ξ = Lξ
w = [Iq, 0, · · · , 0]ξ

(2.4)

and similarly in the discrete case. This shows that reduction to first order is
nothing but a special way of introducing latent variables. Another way of doing
this is discussed in the next section.

2.7 State

Theorem 2.22 Let R ∈ R[s]p×q. There exists an integer n ∈ N and real matrices
K ∈ R

n×n, L ∈ R
n×q,M ∈ R

p×n, N ∈ R
p×q such that the system law R( d

dt
)w = 0

has a first order latent variable representation of the form

R( d
dt
)w = 0 ⇔ ∃x ∈ An :

{
d
dt
x = Kx+ Lw
0 = Mx+Nw

(2.5)

and similarly for σ instead of d
dt
.
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Proof: Let R = Rds
d + . . .+R1s+R0 with Ri ∈ R

p×q. We put n = dp and

K =








0 · · · · · · 0

Ip
. . .

...
. . . . . .

...
Ip 0







∈ R

n×n L =








R0
...
...

Rd−1







∈ R

n×q

M =
[
0 · · · 0 Ip

]
∈ R

p×n N = Rd ∈ R
p×q.

Then [
d
dt
In −K
−M

]

x =

[
L
N

]

w

can be pre-multiplied by U( d
dt
), where U is the unimodular matrix of size n+p =

(d+ 1)p

U =








Ip sIp · · · sdIp
. . . . . .

...
. . . sIp

Ip








to obtain the equivalent equation
[

0
−In

]

x =

[
R
∗

]

( d
dt
)w

where the ∗ denotes a polynomial matrix whose precise form is not important
here, because we only need that such an x exists if and only if R( d

dt
)w = 0. 2

Remark 2.23 Comparing (2.4) and (2.5), we note that in (2.4), we have to
deal with an implicit equation Kξ̇ = Lξ, and moreover, K,L are not square, in
general. Thus we cannot use the Kronecker-Weierstraß form from Theorem 1.18,
which works only for square matrices. The non-square Kronecker form is much
more complicated, and not treated here. On the other hand, we have an explicit
equation ẋ = Kx + Lw in (2.5). Together with 0 = Mx + Nw, this yields
a so-called semi-explicit system. Another difference is the size n of the latent
variable ξ or x, respectively: ξ has n1 = dq components, whereas x has n2 = dp
components. Recall that we may assume, without loss of generality, that R has
full row rank p ≤ q, and thus n2 ≤ n1. Finally, the construction of (2.5) can easily
be modified by first applying it to each row of R separately, and then combining
the results. This may lead to even “smaller” (with respect to the number n of
latent variables xi) representations. In fact, if di ∈ N is the highest power of s
appearing in the i-th row of R (assuming that R contains no zero row), we will
get a representation of size

∑p

i=1 di instead of pd = pmaxi{di}. Summing up, we
see that (2.5) is usually preferable to the “naive” reduction to first order from
(2.4).
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For every input-output representation P ( d
dt
)y = Q( d

dt
)u, we can find, according

to Theorem 2.22, a first order representation of the form

P ( d
dt
)y = Q( d

dt
)u ⇔ ∃x ∈ An :

{
d
dt
x = Kx+ L1u+ L2y
0 = Mx+N1u+N2y

(2.6)

and similarly for σ instead of d
dt
.

A particularly important case arises when N2 is non-singular. We will see later
on (in Chapter 8) that it is always possible to choose a representation and an
input-output decomposition such that this is true. Then we can solve the second
equation for y to obtain

y = −N−1
2 (Mx+N1u)

and plug that into the first equation. We get

d
dt
x = (K − L2N

−1
2 M)x+ (L1 − L2N

−1
2 N1)u.

Setting

A = K − L2N
−1
2 M

B = L1 − L2N
−1
2 N1

C = −N−1
2 M

D = −N−1
2 N1

we have

P ( d
dt
)y = Q( d

dt
)u ⇔ ∃x ∈ An :

{
d
dt
x = Ax+Bu
y = Cx+Du.

The explicit equations

ẋ = Ax+ Bu or σx = Ax+ Bu
y = Cx+Du y = Cx+Du

are called state space representations. We call u the input, y the output, and
x the state of this system law. This notion comes from the following observation
in the classical case, where u is a continuous function (for the continuous time
sets T = R or T = R+): If x(t0) is known for some t0 ∈ T , and if u is known on
some interval T01 := [t0, t1] ∩ T , where t1 > t0, then x, and thus y, are uniquely
determined everywhere in T01. This is due to the solution formulas

x(t) = eA(t−t0)x(t0) +

∫ t

t0

eA(t−τ)Bu(τ)dτ

or

x(t) = At−t0x(t0) +
t−1∑

i=t0

At−1−iBu(i)
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respectively. Thus x represents the system’s memory in the sense that x(t0)
contains all the information about the “past” needed for determining the “future”
(provided that the future input is given). Roughly speaking, the “history” of the
system up to time t0 is stored in x(t0), which is therefore called the system’s
“state” at time t0.

Let us write ϕ(t1, t0, x0, u) for the state of the system at time t1 provided that the
state at time t0 was x0 and that the input function is u. Then the state transi-
tion map ϕ has the following properties for all t2 > t1 > t0 ∈ T , x0, x1, x2 ∈ R

n,
u, u1, u2 ∈ Am:

Consistency: ϕ(t0, t0, x0, u) = x0.

Causality: If u1(t) = u2(t) for all t ∈ T01, then ϕ(t1, t0, x0, u1) = ϕ(t1, t0, x0, u2).

Semigroup property: If

ϕ(t1, t0, x0, u) = x1 and ϕ(t2, t1, x1, u) = x2

then
ϕ(t2, t0, x0, u) = x2.
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Chapter 3

Stability

Stability is concerned with the behavior of signals on the non-negative time set

T+ := [0,∞) ∩ T

in particular, in the limit as time tends to infinity. In the continuous case,
T+ = R+, and in the discrete case, T+ = N.

Let P ( d
dt
)y = Q( d

dt
)u or P (σ)y = Q(σ)u be input-output representations of the

system law. Let y1, y2 be two outputs belonging to the same input. What can
be said about the size of their difference y1 − y2? Recall that y1 − y2 satisfies
the homogeneous equation P ( d

dt
)yh = 0 or P (σ)yh = 0. Therefore, it is a smooth

function of time in the continuous case, and yh(t) ∈ R
p is well-defined (in general,

this makes no sense for distributions). For the following definition, let ‖·‖ denote
a norm on R

p, e.g., the Euclidean norm.

Definition 3.1 Let B be represented by P ( d
dt
)y = Q( d

dt
)u or P (σ)y = Q(σ)u,

respectively. The input-output representation is called stable if any two outputs
y1, y2 belonging to the same input u satisfy

‖y1(t)− y2(t)‖ ≤M for all t ∈ T+

for some constant M which is independent of t (but may depend on the specific
choice of y1, y2). It is called asymptotically stable if we have additionally

lim
t→∞

‖y1(t)− y2(t)‖ = 0.

Stability means: P ( d
dt
)y = 0 implies that y is bounded on T+. Asymptotic

stability means: Moreover, P ( d
dt
)y = 0 implies that limt→∞ ‖y(t)‖ = 0. Since

49



50 CHAPTER 3. STABILITY

these notions depend only on P and not on Q, we have the following modified
definition.

Definition 3.2 An autonomous system is stable if all its signals are bounded
on T+; and asymptotically stable if additionally, all its signals tend to zero as
time tends to infinity.

Let P ∈ R[s]p×p be non-singular. In the scalar case (p = 1), the solutions to
P ( d

dt
)y = 0 or P (σ)y = 0 have the form (for large enough t, in the discrete case)

y(t) =
∑

λ

aλ(t)e
λt or y(t) =

∑

λ

aλ(t)λ
t,

where λ ∈ C are the zeros of P , and aλ ∈ C[t]. Moreover, deg(aλ) ≤ µ(λ) − 1.
Thus we can see that stability depends on the location of the zeros λ in the
complex plane, and on their multiplicities µ(λ).

Remark 3.3 Let λ ∈ C. Consider the function f : R+ → R, t 7→ |a(t)eλt| =
|a(t)|eRe(λ)t, where a is a non-zero polynomial. It grows without bound if and
only if we have either Re(λ) > 0, or Re(λ) = 0 and deg(a) ≥ 1. It is constant if
and only if Re(λ) = 0 and deg(a) = 0. It tends to zero if and only if Re(λ) < 0.

Consider the function f : N → R, t 7→ |a(t)λt| = |a(t)||λ|t, where a is a non-zero
polynomial. It grows without bound if and only if either |λ| > 1, or |λ| = 1 and
deg(a) ≥ 1. It is constant if and only if |λ| = 1 and deg(a) = 0. It tends to zero
if and only if |λ| < 1.

Thus we can characterize (asymptotic) stability in the scalar case as follows: The
system given by the scalar equation P ( d

dt
)y = 0 or P (σ)y = 0, where 0 6= P ∈ R[s]

and Λ = {λ ∈ C | P (λ) = 0}, is

continuous-time asymptotically stable if and only if Re(λ)<0 for all λ∈Λ;

continuous-time stable if and only if Re(λ) ≤ 0 for all λ ∈ Λ, and if Re(λ) = 0,
then λ is simple, that is, µ(λ) = 1;

discrete-time asymptotically stable if and only if |λ| < 1 for all λ ∈ Λ;

discrete-time stable if and only if |λ| ≤ 1 for all λ ∈ Λ, and if |λ| = 1, then λ
is simple, that is, µ(λ) = 1.
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Now we generalize this to the matrix case (p ≥ 1). For this, we need the notion
of semi-simple zeros.

Definition 3.4 Let P be a square and non-singular polynomial matrix. A zero
λ of det(P ) is called a semi-simple zero of P if the multiplicity of λ as a zero of
det(P ) (called the algebraic multiplicity µ(λ) of λ) equals the dimension of the
kernel of P (λ) (called the geometric multiplicity ν(λ) of λ).

Note that in the scalar case (p = 1), the geometric multiplicity is always one, and
thus, a zero is semi-simple if and only if it is simple. In the general case, however,
we only have that simple zeros are semi-simple (this follows from 1 ≤ ν(λ) ≤ µ(λ)
which holds for all zeros due to the Smith form). The converse is not necessarily
true, as can be seen from the following example.

Example 3.5 Consider

P =

[
s 0
0 s

]

and P̂ =

[
s 1
0 s

]

.

Then det(P ) = det(P̂ ) = s2. The only zero of s2 is λ = 0, and its algebraic
multiplicity equals 2 in both cases. However,

P (0) =

[
0 0
0 0

]

and P̂ (0) =

[
0 1
0 0

]

,

and hence, the geometric multiplicity of λ = 0 as a zero of P is 2, and its geometric
multiplicity as a zero of P̂ equals 1. Thus λ = 0 is a semi-simple (but not simple)
zero of P . On the other hand, λ = 0 is not a semi-simple zero of P̂ .

Theorem 3.6 Let P be a square and non-singular polynomial matrix. The
autonomous system represented by P is

continuous-time asymptotically stable if and only if the zeros of det(P )
have a negative real part;

continuous-time stable if and only if the zeros of det(P ) have a non-positive
real part and moreover, each zero λ with Re(λ) = 0 is semi-simple;

discrete-time asymptotically stable if and only if the zeros of det(P ) have
modulus less than one;

discrete-time stable if and only if the zeros of det(P ) have modulus less than
or equal to one, and moreover, each zero λ with |λ| = 1 is semi-simple.
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Proof: We do only the continuous case; the discrete case is completely analo-
gous. Let UPV = D = diag(d1, . . . , dp) be the Smith form of P . Consider

B̃ = {ỹ ∈ Ap | D( d
dt
)ỹ = 0}.

Then P and D have (up to a non-zero constant) the same determinant and hence
the same determinantal zeros, with the same algebraic multiplicities. Moreover,
since U(λ)P (λ)V (λ) = D(λ), where U(λ) and V (λ) are non-singular complex
matrices, also the geometric multiplicities coincide. Therefore it suffices to prove
the statement for B̃, which is (asymptotically) stable if and only if B is.

Asymptotic stability of B̃ clearly amounts to the requirement that all zeros of the
polynomials di have a negative real part.

For stability, let λ be a zero of one of the di with Re(λ) = 0. We may assume,
without loss of generality, that d1| . . . |dp. Then we have

D =

[
D1 0
0 D2

]

with D1(λ) non-singular, and D2(λ) = 0k (the k × k zero matrix). Moreover,

D2 =






(s− λ)l1p1
. . .

(s− λ)lkpk






where 1 ≤ l1 ≤ . . . ≤ lk, and pi are polynomials with pi(λ) 6= 0. Then the
algebraic multiplicity of λ equals l1+ . . .+ lk, and the geometric multiplicity of λ
equals k. The two multiplicities coincide if and only if li = 1 for all i, that is,
if s − λ enters linearly in each diagonal entry of D2. This means that λ is a
semi-simple zero of D if and only if it is a simple zero of all diagonal entries of
D2. Equivalently, the polynomial coefficient vector aλ of eλt in the representation
ỹ(t) =

∑
aλ̃e

λ̃t can only be a constant vector. 2

Example 3.7 The Smith forms of the matrices in Example 3.5 are

D =

[
s 0
0 s

]

and D̂ =

[
1 0
0 s2

]

respectively. The system given by P ( d
dt
)y = 0 is stable (its solutions are precisely

the constant vectors y(t) = y(0)), whereas the system given by P̂ ( d
dt
)y = 0 admits

the solution

y(t) =

[
y1(0)− ty2(0)

y2(0)

]

which is unbounded whenever y2(0) 6= 0.
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3.1 Stability of state space representations

Consider the state space equations

ẋ = Ax+ Bu or σx = Ax+ Bu
y = Cx+Du y = Cx+Du.

(3.1)

We call them stable if two states x1, x2 belonging to the same input u satisfy

‖x1(t)− x2(t)‖ ≤M for all t ∈ T+

for some constant M . Then

‖y1(t)− y2(t)‖ = ‖C(x1(t)− x2(t))‖ ≤M1 for all t ∈ T+.

We call the state space equations asymptotically stable if additionally

lim
t→∞

‖x1(t)− x2(t)‖ = 0.

Then
lim
t→∞

‖y1(t)− y2(t)‖ = 0.

Note that here, ‖ ·‖ is used to denote both a norm on R
n and a norm on R

p. One
may think of the respective Euclidean norms, for instance.

Stability means that ẋ = Ax or σx = Ax imply that x is bounded on T+.
Asymptotic stability means that additionally, limt→∞ ‖x(t)‖ = 0.

Note that (asymptotic) stability of a state-space system implies (asymptotic) sta-
bility of the associated input-output system {[uT , yT ]T | ∃x with (3.1)}. However,
the converse is not true in general.

The equations ẋ = Ax and σx = Ax are special cases of autonomous systems,
namely with

P = sI − A.

Then the zeros of det(P ) are precisely the eigenvalues of A. An eigenvalue λ of
A is called semi-simple if it is a semi-simple zero of sI − A.

Corollary 3.8 Let A be a square real matrix. The autonomous system repre-
sented by ẋ = Ax or σx = Ax, respectively, is

continuous-time asymptotically stable if and only if the eigenvalues of A
have a negative real part;
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continuous-time stable if and only if the eigenvalues of A have a non-positive
real part and moreover, each eigenvalue λ with Re(λ) = 0 is semi-simple;

discrete-time asymptotically stable if and only if the eigenvalues of A have
modulus less than one;

discrete-time stable if and only if the eigenvalues of A have modulus less than
or equal to one, and moreover, each eigenvalue λ with |λ| = 1 is semi-simple.

Note that the solution of ẋ = Ax or σx = Ax is

x(t) = eAtx0 or x(t) = Atx0

respectively, where x(0) = x0. Using these solutions formulas, we can sharpen
the notion of stability as follows.

Corollary 3.9 Consider the autonomous state space system ẋ = Ax or σx = Ax.
For t ∈ T+ and x0 ∈ R

n, set Φ(t) = eAt in the continuous case, and Φ(t) = At in
the discrete case. The following are equivalent:

1. The system is stable, that is,

∀x0 ∃M(x0) ∀t : ‖Φ(t)x0‖ ≤M(x0).

2.

∃N ∀x0, t : ‖Φ(t)x0‖ ≤ N‖x0‖.

3. The system is stable in the sense of Lyapunov, that is,

∀ε > 0 ∃δ > 0 ∀x0, t : ‖x0‖ ≤ δ ⇒ ‖Φ(t)x0‖ ≤ ε.

Proof: “1 ⇒ 2”: By assumption, there exist M1, . . . ,Mn such that ‖Φ(t)ei‖ ≤
Mi, where ei denotes the i-th standard basis vector. For an arbitrary x0 =

∑
aiei,

this implies

‖Φ(t)x0‖ = ‖
∑
aiΦ(t)ei‖ ≤

∑
|ai|‖Φ(t)ei‖ ≤

∑
|ai|Mi ≤ max{Mi}‖x0‖1,

from which the result follows, since all norms on R
n are equivalent.

“2 ⇒ 1”: Set M(x0) := N‖x0‖.
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“2 ⇒ 3”: Let ε > 0 be given. Choose δ := ε
N
. If ‖x0‖ ≤ δ, then

‖Φ(t)x0‖ ≤ N‖x0‖ ≤ Nδ = ε.

“3 ⇒ 2”: There exists δ1 > 0 such that

‖x0‖ ≤ δ1 ⇒ ‖Φ(t)x0‖ ≤ 1.

Then we have for all x0 6= 0

‖Φ(t)x0‖ = ‖x0‖
δ1

‖Φ(t) δ1x0

‖x0‖
‖ ≤ 1

δ1
‖x0‖,

and thus we set N = 1
δ1
. For x0 = 0, the statement is anyhow obvious. 2

The crucial point is that the constant N in Condition 2 is not only independent
of t, but also independent of the choice of the solution x of ẋ = Ax or σx = Ax,
respectively. In other words, Condition 2 amounts to the uniform boundedness
of the matrix norms ‖eAt‖ or ‖At‖ on T+. Note that Conditions 1 and 3 are both
trivially implied by Condition 2, whereas for the respective converse directions,
we have heavily relied on the crucial fact that the mapping from x(0) = x0 to
x(t) = Φ(t)x0 is linear.

Lyapunov stability can also be defined as follows: For all ε > 0, there exists δ > 0
such that ‖x1(0)− x2(0)‖ ≤ δ implies

‖x1(t)− x2(t)‖ ≤ ε for all t ∈ T+,

where xi(t) for i = 1, 2 is the solution at time t when starting in xi(0). (For
the system class under consideration, this definition is equivalent to the one from
above due to linearity.) Roughly speaking: If the initial values are close to each
other, then the solutions will remain close to each other for all t > 0.

3.2 Test for asymptotic stability

Let A ∈ R
n×n be given. We wish to test whether A is (discrete- or continuous-

time) asymptotically stable. The naive way to do this is to compute all the
eigenvalues λ of A and to check whether they satisfy |λ| < 1 or Re(λ) < 0, re-
spectively. However, when n is large, this is quite a difficult and computationally
expensive task. Moreover, it seems to be a waste of time and effort to determine
the precise location of the eigenvalues in the complex plane, when all we want to
know is whether they are contained in a specific region (the open unit disc, or
the open left half plane, respectively).
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One way out is to compute the characteristic polynomial

χA(s) := det(sI − A) = sn + an−1s
n−1 + . . .+ a1s+ a0.

Then there are certain criteria, in terms of the coefficients ai of χA, which make
it possible to determine whether A is asymptotically stable or not. The best
known of these criteria is the Routh-Hurwitz test for continuous time, and the
Schur-Cohn test for discrete time.

For instance, if n = 2, we have χA(s) = s2 + a1s + a0, where a1 = −trace(A)
and a0 = det(A). The matrix A ∈ R

2×2 is continuous-time asymptotically stable
if and only if a1 > 0 and a0 > 0. In the general case (n ≥ 3), however, the
Routh-Hurwitz criterion is much more complex.

Here, we will adopt another approach, based on Lyapunov equations. Recall
that a symmetric matrix P ∈ R

n×n is called positive semi-definite (written
P ≥ 0) if we have xTPx ≥ 0 for all x ∈ R

n. Note that then also for x ∈ C
n, the

number x∗Px is real and non-negative. Here, x∗ denotes the Hermitian transpose
of x. This is due to the fact that if x = a+ ib for some a, b ∈ R

n, then

x∗Px = (a+ ib)∗P (a+ ib) = (aT − ibT )P (a+ ib) = aTPa+ bTPb,

because aTPb = (aTPb)T = bTP Ta = bTPa.

Theorem 3.10 The following are equivalent:

1. The matrix A is continuous-time asymptotically stable.

2. For every Q ≥ 0, there exists P ≥ 0 such that

ATP + PA+Q = 0. (3.2)

3. There exists P ≥ 0 such that

ATP + PA+ I = 0.

Equation (3.2) is called continuous-time Lyapunov equation.

Proof: “1 ⇒ 2”: If A is asymptotically stable, it makes sense to define

P :=

∫ ∞

0

eA
T tQeAtdt.
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This is clearly positive semi-definite ifQ is, and it satisfies the Lyapunov equation,
because

ATP + PA =

∫ ∞

0

d
dt
(eA

T tQeAt)dt = eA
T tQeAt

∣
∣
∣

∞

0
= −Q.

“2 ⇒ 3” is a special case (Q = I).

“3 ⇒ 1”: Let λ be an eigenvalue of A and let 0 6= x ∈ C
n be an associated

eigenvector, that is, Ax = λx. Pre-multiply ATP + PA + I = 0 by x∗ and
post-multiply by x to get

x∗ATPx+ x∗PAx+ x∗x = (λ+ λ)x∗Px+ x∗x = 0.

Thus

2Re(λ)x∗Px = −x∗x.

The right hand side of this equation is negative, and x∗Px ≥ 0. This can only
be true if Re(λ) < 0. 2

For the sake of completeness, we give also the discrete version of this theorem.

Theorem 3.11 The following are equivalent:

1. The matrix A is discrete-time asymptotically stable.

2. For every Q ≥ 0, there exists P ≥ 0 such that

ATPA− P +Q = 0. (3.3)

3. There exists P ≥ 0 such that

ATPA− P + I = 0.

Equation (3.3) is called discrete-time Lyapunov equation.

Proof: “1 ⇒ 2”: If A is asymptotically stable, it makes sense to define

P :=
∞∑

i=0

(AT )iQAi.
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This is clearly positive semi-definite ifQ is, and it satisfies the Lyapunov equation,
because

ATPA− P =
∞∑

i=0

(AT )i+1QAi+1 −
∞∑

i=0

(AT )iQAi = −Q.

“2 ⇒ 3” is a special case (Q = I).

“3 ⇒ 1”: Let λ be an eigenvalue of A and let 0 6= x ∈ C
n be an associated

eigenvector, that is, Ax = λx. Pre-multiply ATPA − P + I = 0 by x∗ and
post-multiply by x to get

x∗ATPAx− x∗Px+ x∗x = (λλ− 1)x∗Px+ x∗x = 0.

Thus
(|λ|2 − 1)x∗Px = −x∗x.

The right hand side of this equation is negative, and x∗Px ≥ 0. This can only
be true if |λ|2 − 1 < 0, that is, |λ| < 1. 2

Remark 3.12 If A is (continuous- or discrete-time) asymptotically stable, then
the solutions of (3.2) or (3.3), respectively, are uniquely determined. In the
continuous case, this can be seen as follows (the discrete case is analogous): Let
P1, P2 be two solutions of (3.2), and let P := P1 − P2. Then ATP + PA = 0.
Now consider the matrix-valued function f(t) := eA

T tPeAt. Since

d
dt
f(t) = eA

T t(ATP + PA)eAt = 0

for all t, the function f is actually constant, that is, f(t) = f(0) = P for all t. Now
letting t tend to infinity, we see that P must be zero, because limt→∞ f(t) = 0.

The solution formulas P =
∫∞

0
eA

T tQeAtdt and P =
∑∞

i=0(A
T )iQAi are only of

theoretical interest. In practice, one solves the linear matrix equations

ATP + PA+Q = 0 or ATPA− P +Q = 0

(these are n2 linear equations for n2 unknowns; exploiting symmetry, this reduces
to 1

2
n(n + 1) unknowns), and then tests whether P ≥ 0. The solution formulas

show that we have a positive definite solution P provided that Q is positive
definite (to test a symmetric matrix for positive definiteness is easier than to test
it for positive semi-definiteness).



Chapter 4

Reachability and controllability

4.1 Basic notions for state space systems

Consider the state space equations

ẋ = Ax+ Bu or σx = Ax+ Bu
y = Cx+Du y = Cx+Du,

where A ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n and D ∈ R

p×m.

Let U denote the space of admissible input functions (until now, we had
U = D′(T )m in the continuous and U = (RT )m in the discrete case, where T = R,
R+ and T = N,Z are our usual time sets). In this section, we restrict to piecewise
continuous input functions u in the continuous case, then the state function x is
piecewise C1 (in particular, it is a classical function). One calls X = R

n the state
space of these systems. Its elements are called states. The state transition map

ϕ : {(t, t0) ∈ T 2 | t ≥ t0} ×X × U → X, (t, t0, x0, u) 7→ ϕ(t, t0, x0, u)

yields the state at time t if the state at time t0 was x0, and the input function
was u. More concretely, we have

ϕ(t, t0, x0, u) = eA(t−t0)x0 +

∫ t

t0

eA(t−τ)Bu(τ)dτ (4.1)

and

ϕ(t, t0, x0, u) = At−t0x0 +
t−1∑

i=t0

At−i−1Bu(i). (4.2)

59
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The state transition maps are consistent, i.e.,

ϕ(t, t, x, u) = x (4.3)

for all t ∈ T , x ∈ X, u ∈ U ; and they are strictly causal, that is, if u1(t) = u2(t)
for all t0 ≤ t < t1 (note the strict inequality!), then

ϕ(t1, t0, x, u1) = ϕ(t1, t0, x, u2) (4.4)

for all x ∈ X. Moreover, we have the semigroup property:

ϕ(t2, t1, ϕ(t1, t0, x, u), u) = ϕ(t2, t0, x, u) (4.5)

for all t0 ≤ t1 ≤ t2 ∈ T , x ∈ X, u ∈ U . As a consequence, we get the following
concatenation property: Let t1 ∈ T , and let u1, u2 ∈ U be two admissible
inputs. Define their concatenation at time t1 by

u(t) =

{
u1(t) if t < t1
u2(t) if t1 ≤ t

which is again an admissible input. Then

ϕ(t2, t0, x, u) = ϕ(t2, t1, ϕ(t1, t0, x, u1), u2)

for all x ∈ X, and all t0 ≤ t1 ≤ t2 ∈ T .

Due to linearity, we have

ϕ(t, t0, λ1x1 + λ2x2, λ1u1 + λ2u2) = λ1ϕ(t, t0, x1, u1) + λ2ϕ(t, t0, x2, u2) (4.6)

for all t ≥ t0 ∈ T , λ1, λ2 ∈ R, x1, x2 ∈ X, u1, u2 ∈ U . In particular,

ϕ(t, t0, 0, 0) = 0

for all t ≥ t0 ∈ T . One says that the zero state is an equilibrium of the system
when the zero input function is applied.

Due to time-invariance, we have

ϕ(t, t0, x0, u) = ϕ(t− τ, t0 − τ, x0, στu) (4.7)

for all x0 ∈ X, u ∈ U , and all t ≥ t0 ∈ T and all τ ∈ T with the property that
t− τ, t0 − τ ∈ T . Here, στ is the shift operator defined by στu(s) = u(s+ τ) for
all s. In particular,

ϕ(t, t0, x0, u) = ϕ(t− t0, 0, x0, σt0u).
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Reachability and controllability are concerned with the following questions: Is it
possible to steer the system, by a suitable choice of the input function, from one
particular state x0 (which is determined by the past of the system and may be
thought of as “unwanted”) to another particular state x1 (which is prescribed by
us and thus “desired”)? How long does the transition from x0 to x1 take? Can
we find a concrete formula for an input function that forces the system to go from
x0 to x1? To formulate and answer these questions, some new concepts need to
be introduced.

Definition 4.1 Let t0 ∈ T be fixed. One says that the state x1 ∈ X

can be reached from x0 ∈ X in time τ ∈ T (τ ≥ 0) if there exists u ∈ U
such that

ϕ(t0 + τ, t0, x0, u) = x1.

Equivalently, we say that x0 can be controlled to x1 in time τ .

can be reached from x0 ∈ X if this holds for at least one τ ≥ 0. Equiva-
lently, x0 can be controlled to x1.

We say that the system is

completely reachable from x0 ∈ X if any x1 ∈ X is reachable from x0.

completely controllable to x1 ∈ X if any x0 ∈ X can be controlled to x1.

completely reachable (controllable) if x1 can be reached from x0 (or: x0 can
be controlled to x1) for all x0, x1 ∈ X.

The choice of the starting time t0 plays no role since we are dealing with time-
invariant systems: We have

ϕ(t0 + τ, t0, x0, u) = ϕ(τ, 0, x0, σt0u).

Therefore, if there exists a t0 ∈ T such that x1 is reachable from x0 (when starting
at time t0) then this is true for any other starting time, e.g., for t0 = 0. Thus we
can often choose t0 = 0 for simplicity.

Let τ ∈ T , τ ≥ 0, and x0, x1 ∈ X. Define the following sets:

R(τ, x0) := {x ∈ X | x is reachable from x0 in time τ}

C(τ, x1) := {x ∈ X | x is controllable to x1 in time τ}.
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Moreover, we let R(τ) := R(τ, 0) denote the set of states that are reachable from
x0 = 0 in time τ , and C(τ) := C(τ, 0) is the set of states that are controllable to
x1 = 0 in time τ . Finally,

R :=
⋃

τ≥0

R(τ) and C :=
⋃

τ≥0

C(τ)

are the set of states that are reachable from zero, and the set of states that are
controllable to zero, respectively. The system is completely reachable from zero if
and only if R = X, and it is completely controllable to zero if and only if C = X.

Theorem 4.2 Let s, t ∈ T , 0 ≤ s ≤ t. We have

1. R(s) ⊆ R(t) and C(s) ⊆ C(t);

2. R(t), C(t),R, C are subspaces of X = R
n;

3. There exists τ ∗ ∈ T , τ ∗ ≥ 0 such that

R = R(τ) and C = C(τ) for all τ ≥ τ ∗.

Proof:

1. Let x ∈ R(s). Then there exists a input function u such that

ϕ(t, t− s, 0, u) = x.

On the other hand,

ϕ(t− s, 0, 0, 0) = 0.

Let ũ be the input function defined by

ũ(τ) =

{
0 if τ < t− s

u(τ) if t− s ≤ τ.

We have

ϕ(t, 0, 0, ũ) = ϕ(t, t− s, ϕ(t− s, 0, 0, 0), u) = ϕ(t, t− s, 0, u) = x

which shows that x ∈ R(t). The statement for C is analogous.
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2. We show that R(t) is a vector space, the statement for R, C(t), C is analo-
gous. We have 0 ∈ R(t), because

ϕ(t, 0, 0, 0) = 0.

Let x1, x2 ∈ R(t), and λ1, λ2 ∈ R. We need to show that λ1x1+λ2x2 ∈ R(t).
By assumption, there exist input functions ui such that

ϕ(t, 0, 0, ui) = xi

for i = 1, 2. Then

ϕ(t, 0, 0, λ1u1 + λ2u2) = λ1x1 + λ2x2

and hence λ1x1 + λ2x2 ∈ R(t).

3. Consider a strictly increasing sequence

0 = τ0 < τ1 < τ2 < . . .

in T with limi→∞ τi = ∞. By part 1,

R(τ0) ⊆ R(τ1) ⊆ R(τ2) ⊆ . . .

By part 2, this is a sequence of subspaces of X = R
n, with

dimR(τ0) ≤ dimR(τ1) ≤ dimR(τ2) ≤ . . . ≤ n.

This is an increasing sequence of integers less than or equal to n. Such a
sequence must become stationary, that is, there exists i0 such that

dimR(τi) = dimR(τi0) for all i ≥ i0.

We use the following fact from linear algebra: If a vector space is contained
in another vector space of the same finite dimension, then the two vector
spaces must be the same. Thus

R(τi) = R(τi0) for all i ≥ i0.

For any τ ∈ T , τ ≥ τi0 , there exists j ≥ i0 such that τ ≤ τj. Then
R(τi0) ⊆ R(τ) ⊆ R(τj) = R(τi0). We conclude that

R(τ) = R(τi0) for all τ ≥ τi0

and thus
R =

⋃

τ≥0

R(τ) =
⋃

τ≥τi0

R(τ) = R(τi0).

Put τ ∗ := τi0 , then for τ ≥ τ ∗, we have

R ⊇ R(τ) ⊇ R(τ ∗) = R

and thus R(τ) = R for all τ ≥ τ ∗. 2
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Corollary 4.3 In discrete time,

R(n) = R and C(n) = C,

where n is the dimension of the state space. In continuous time,

R(ε) = R and C(ε) = C

for every ε > 0.

Remark 4.4 This is probably the first time we encounter a significant differ-
ence between the continuous and discrete cases. In a discrete system, if x can
be reached from x0 at all, then it can also be reached in time n, where n is the
dimension of the state space. In a continuous system, if x can be reached from x0
at all, then it can also be reached in an arbitrarily small time ε. This is counter-
intuitive at first sight: In a “real world” system, it certainly takes “some time”
to change from one state to another. The reason is that we admit arbitrarily
large input values here, i.e., we make the optimistic assumption that we can put
as much “energy” as we like into the system. In a real world system, there are
constraints which limit the size of the admissible inputs, and this has the conse-
quence that the transition from one state to another cannot be done arbitrarily
fast in practice.

Proof: For discrete time, we use that we know from the previous proof that

R(0) ⊆ R(1) ⊆ R(2) ⊆ . . . (4.8)

becomes stationary, that is, there exists i0 such that R(i) = R(i0) for all i ≥ i0
and then R(i0) = R. We have to show that this happens for some i0 ≤ n.
Then we are finished, because R = R(i0) ⊆ R(n) ⊆ R yields the desired result.
Considering the dimensions di := dimR(i) ≤ n, we have

0 = d0 ≤ d1 ≤ d2 ≤ . . . ≤ dn ≤ dn+1.

These inequalities cannot all be strict, i.e., we must have di = di+1 and hence

R(i) = R(i+ 1) (4.9)

for some i ≤ n. The claim is that then we may put i0 = i, that is, the first
equality in (4.8) will already yield stationarity. Thus we have to show that (4.9)
implies

R(i) = R(i+ k) for all k ≥ 0.
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We do this by induction on k. The statement is trivial for k = 0. Let’s assume
that the statement is true for k. We need to show it for k + 1. The inclusion

R(i) ⊆ R(i+ k + 1)

is clear. For the converse, let x ∈ R(i+ k + 1). This means that there exists an
input function u such that

ϕ(i+ k + 1, 0, 0, u) = x.

Set

x1 := ϕ(i+ k, 0, 0, u).

Then

x = ϕ(i+ k + 1, i+ k, x1, u) = ϕ(i+ 1, i, x1, σ
ku)

and x1 ∈ R(i + k), which equals R(i) by the inductive assumption. Thus there
exists an input function u1 with

ϕ(i, 0, 0, u1) = x1.

Let u2 be defined by

u2(τ) =

{
u1(τ) if τ < i

(σku)(τ) if i ≤ τ.

Then

ϕ(i+ 1, 0, 0, u2) = ϕ(i+ 1, i, ϕ(i, 0, 0, u1), σ
ku) = ϕ(i+ 1, i, x1, σ

ku) = x

which shows that x ∈ R(i + 1). Finally, (4.9) implies that x ∈ R(i) as desired.
For continuous time, let ε > 0 be given. Consider

R(0) ⊆ R(
ε

n
) ⊆ R(

2ε

n
) ⊆ . . .

and apply the same argument as for discrete time. 2

Corollary 4.5 The following are equivalent: The system is

1. completely reachable (controllable);

2. completely reachable from zero, that is, R = X.
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Proof: It is clear that statement 1 implies 2. For the converse direction, let
x0, x1 ∈ X be given. We wish to show that x1 can be reached from x0.

In continuous time, pick any τ ∗ = ε > 0. In discrete time, choose τ ∗ = n,
where n is the dimension of X. Define x := x1 − ϕ(τ ∗, 0, x0, 0). By assumption,
x ∈ R = R(τ ∗), that is, there exists an input function u ∈ U with

x = ϕ(τ ∗, 0, 0, u).

This can be rewritten as

x1 = ϕ(τ ∗, 0, x0, 0) + ϕ(τ ∗, 0, 0, u) = ϕ(τ ∗, 0, x0, u)

showing that x1 can be reached from x0. 2

Until now, we have not used the specific form of the state transition maps from
(4.1) and (4.2), but only their properties (4.3)–(4.7). This will change now.

Corollary 4.6 Consider ẋ = Ax + Bu or σx = Ax + Bu. In the discrete case,
assume that A is invertible. Then the following are equivalent: The system is

1. completely reachable (controllable);

2. completely reachable from zero, that is, R = X;

3. completely controllable to zero, that is, C = X.

Proof: We only need to prove “3 ⇒ 1”. Let x0, x1 ∈ X be given. We wish to
show that x1 can be reached from x0.

In continuous time, pick ε > 0 and define x := x0 − e−Aεx1. By assumption,
x ∈ C = C(ε), that is, there exists an input function u ∈ U with

0 = ϕ(ε, 0, x, u) = eAεx+

∫ ε

0

eA(ε−τ)Bu(τ)dτ.

Plugging in for x, this can be rewritten as

x1 = eAεx0 +

∫ ε

0

eA(ε−τ)Bu(τ)dτ = ϕ(ε, 0, x0, u)

showing that x1 can be reached from x0.

If A is invertible, an analogous argument can be applied in the discrete case. 2
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Remark 4.7 Here we have another difference between continuous and discrete
systems. The reason is that eAt is always an invertible matrix, whereas its discrete
counterpart At is invertible if and only if A is. Therefore, we have to make this
additional assumption in the discrete case. Without it, complete controllability
to zero may be strictly weaker than complete controllability. Take for instance
σx = Ax+ Bu with

A =

[
1 0
1 0

]

and B =

[
1
1

]

.

Let x0 = x(0) ∈ R
2 be any given initial state. Put u(0) = −x1(0), then

x1(1) = x1(0) + u(0) = 0 and x2(1) = x1(0) + u(0) = 0,

that is, x(1) = 0. This shows that any x0 can be controlled to zero (in time 1).
Hence the system is completely controllable to zero, or C = C(1) = R

2. However,
it is not completely controllable. If we start in x0 = 0, then every state x(t) will
satisfy x1(t) = x2(t). This shows that R 6= R

2, i.e., the system is not completely
reachable from zero, and thus it is not completely reachable (controllable).

The next goal is to determine conditions for (complete) reachability/control-
lability in terms of the matrices A,B. For this, we define the controllability
Gramians (named after the Danish mathematician J. P. Gram, 1850–1916)

W (t) =

∫ t

0

eAτBBT eA
T τdτ or W (t) =

t−1∑

i=0

AiBBT (AT )i ∈ R
n×n (4.10)

and the Kalman reachability/controllability matrix (named after the Hun-
garian control scientist R. E. Kalman, 1930–)

K =
[
B AB A2B · · · An−1B

]
∈ R

n×nm. (4.11)

Remark 4.8 The definitions (4.10) and (4.11) are motivated by the following
observations: Consider σx = Ax + Bu. We know that R = R(n). Moreover,
x ∈ R if and only if there exists u ∈ U , that is, a sequence of input vectors
u(0), . . . , u(n− 1) ∈ R

m such that

x =
n−1∑

i=0

An−1−iBu(i) = An−1Bu(0) + . . .+ ABu(n− 2) + Bu(n− 1)

=
[
B AB · · · An−1B

]








u(n− 1)
u(n− 2)

...
u(0)








=: Kv.
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Therefore, x is reachable from zero if and only if the equation x = Kv possesses
a solution v ∈ R

nm. This is the case if and only if x ∈ im(K). So we have
R = im(K). Moreover, note that W (n) = KKT . Since im(K) = im(KKT )
holds for any real matrix K, we also have R = im(W (n)).

If x ∈ R, we therefore have x = W (n)z = KKT z for some z ∈ R
n. Then

v∗ := KT z is a special solution of Kv = x. This corresponds to







u(n− 1)
u(n− 2)

...
u(0)







=








BT

BTAT

...
BT (AT )n−1







z.

In other words, u(t) = BT (AT )n−t−1z is a special input function that steers the
system from state 0 to state x in time n.

Interestingly, the analogous statement is also valid for continuous systems, al-
though the proof is a bit more involved. This is the content of the main theorem
of this section, which is stated next.

Theorem 4.9 Consider ẋ = Ax+Bu or σx = Ax+Bu. In continuous time, let
τ ∗ = ε > 0 be arbitrary. In discrete time, let τ ∗ = n, where n is the dimension of
the state space. We have

R = R(τ ∗) = im(W (τ ∗)) = im(K).

Therefore, the following are equivalent:

1. ẋ = Ax+Bu or σx = Ax+ Bu is (completely) reachable/controllable;

2. W (τ ∗) is non-singular;

3. K has full row rank.

Moreover in that case, an input function which steers the system from state 0 to
state x in time τ ∗ is given by

u(t) = BT eA
T (τ∗−t)W (τ ∗)−1x or u(t) = BT (AT )τ

∗−t−1W (τ ∗)−1x.

Note that this special input function is smooth in the continuous case (although
only piecewise continuity has been required at the beginning).

Since W (τ ∗) is always positive semi-definite due to its form, condition 2 from
above is also equivalent to: W (τ ∗) is positive definite, that is, xTW (τ ∗)x > 0 for
all 0 6= x ∈ R

n. Then we write W (τ ∗) > 0.
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Remark 4.10 It is worth noting that we obtain the same, purely algebraic con-
dition for reachability/controllability both in continuous and in discrete time,
namely, rank(K) = n, where n is the dimension of the state space. In that
case, it is not ambiguous to simply say that the matrix pair (A,B) is reach-
able/controllable (this notion is independent of the time set).

The well-known Hamilton-Cayley theorem, i.e.,

χA(A) = An + an−1A
n−1 + . . .+ a1A+ a0I = 0

implies the n-th power (and hence all higher powers) of an n × n matrix A is a
linear combination of the first n powers of A, that is, A0 = I, A1 = A, . . . , An−1.
Therefore we have

im(K) = KR
nm = span{Aibj | i = 0, . . . , n− 1, j = 1, . . . ,m}

= span{Aibj | i ∈ N, j = 1, . . . ,m}

where bj ∈ R
n are the columns of B, that is, B = [b1, . . . , bm]. This will be used

in the proof of Theorem 4.9.

The result

R = im(K) = im(B) + A im(B) + . . .+ An−1 im(B)

can also be formulated as follows: R is the smallest A-invariant (that is, AR ⊆ R)
subspace of the state space X that contains im(B).

Proof: Due to Remark 4.8, we only need to do the continuous case. Then
τ ∗ = ε > 0 is arbitrary. We start with showing that R(ε) ⊆ im(K): If x ∈ R(ε),
then there exists u ∈ U such that

x =

∫ ε

0

eAτBu(ε− τ)dτ =

∫ ε

0

∞∑

i=0

τ i

i!
AiBu(ε− τ)dτ ∈ im(K).

Secondly, we wish to show that im(K) = im(W (ε)). From linear algebra, we
know that it is equivalent to prove that im(K)⊥ = im(W (ε))⊥. Let x ∈ im(K)⊥,
that is, 〈x, y〉 = 0 for all y ∈ im(K). Then xTKz = 0 for all z ∈ R

nm, which
means that xTK = 0 and hence xTAiB = 0 for all i. Then also xT eAtB =
xT

∑∞
i=0

ti

i!
AiB = 0 and thus xTW (ε) = 0. This shows that x ∈ im(W (ε))⊥.

Conversely, let x ∈ im(W (ε))⊥, then

xTW (ε) =

∫ ε

0

xT eAτBBT eA
T τdτ = 0.
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Post-multiplying this by x, we obtain
∫ ε

0

‖BT eA
T τx‖2dτ = 0.

We conclude that the smooth function f(τ) = BT eA
T τx is the constant zero

function. Then also all its derivatives are zero. Evaluating them at τ = 0, we
obtain

BTx = 0, BTATx = 0, BT (AT )2x = 0, . . .

that is, xTK = 0 and hence x ∈ im(K)⊥.

Finally, we need to show that im(W (ε)) ⊆ R(ε). Let x ∈ im(W (ε)), then there
exists z ∈ R

n such that
x = W (ε)z.

Set u(t) = BT eA
T (ε−t)z. Then

ϕ(ε, 0, 0, u) =

∫ ε

0

eA(ε−τ)Bu(τ)dτ

=

∫ ε

0

eA(ε−τ)BBT eA
T (ε−τ)zdτ

=

∫ ε

0

eAτBBT eA
T τzdτ = W (ε)z = x

which shows that x ∈ R(ε). 2

Remark 4.11 One can show that the special input functions given in Theo-
rem 4.9 are optimal in the sense that the energy associated with them, that
is

E(u) =

∫ τ∗

0

‖u(τ)‖2dτ or E(u) =
τ∗−1∑

i=0

‖u(i)‖2

is minimal among the energies of all u with ϕ(τ ∗, 0, 0, u) = x. This minimal
energy (for controlling the system from 0 to x in time τ ∗) is given by Emin(τ

∗, x) =
xTW (τ ∗)−1x. This shows that the smaller t is, the more energy is needed to do
the transition from 0 to x in time t (compare this with Remark 4.4). More
precisely, in continuous time, if 0 < s < t, then W (t)−W (s) > 0, which implies
W (s)−1 −W (t)−1 > 0, and hence

Emin(s, x) = xTW (s)−1x > xTW (t)−1x = Emin(t, x) for all x 6= 0.

Again, the statement is easy to prove in discrete time (then we put τ ∗ = n): Let v
be defined as in Remark 4.8, then E(u) = ‖v‖2. We need to find the solution v
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of Kv = x which makes ‖v‖2 minimal. The special input from Theorem 4.9
corresponds to v∗ = KT (KKT )−1x. Let v be another solution of Kv = x, then
v = v∗ + v0, where v0 solves the homogeneous equation Kv0 = 0. Then

‖v‖2 = ‖v∗ + v0‖
2 = ‖v∗‖2 + 2〈v∗, v0〉+ ‖v0‖

2.

However, 〈v∗, v0〉 = 〈KT (KKT )−1x, v0〉 = 〈(KKT )−1x,Kv0〉 = 0. Hence

‖v‖2 = ‖v∗‖2 + ‖v0‖
2 ≥ ‖v∗‖2

which shows that v∗ is indeed the solution of Kv = x that has minimum norm.
Finally,

Emin(n, x) = ‖v∗‖2 = ‖KT (KKT )−1x‖2 = xT (KKT )−1x = xTW (n)−1x.

For continuous time, see Appendix F.

Corollary 4.12 Consider ẋ = Ax+Bu or σx = Ax+Bu. In the discrete case,
assume that A is invertible. Then C = R.

In general, we only have R ⊆ C, see for example Remark 4.7.

Proof: Let τ ∗ be as usual. We have x ∈ C = C(τ ∗) if and only if there exists
u ∈ U such that

ϕ(τ ∗, 0, x, u) = ϕ(τ ∗, 0, x, 0) + ϕ(τ ∗, 0, 0, u) = 0,

that is, ϕ(τ ∗, 0, x, 0) = ϕ(τ ∗, 0, 0,−u). Thus x ∈ C if and only if ϕ(τ ∗, 0, x, 0) ∈ R.
In continuous time, this means

x ∈ C ⇔ eAτ∗x ∈ R. (4.12)

Since eAτ∗ is invertible, this shows that eAτ∗C = R and hence dim(C) = dim(R).
In discrete time,

x ∈ C ⇔ Aτ∗x ∈ R. (4.13)

If A is invertible, we can argue as in the continuous case to see that R and C have
the same dimension. Thus it suffices to show that R ⊆ C. If x ∈ R = R(τ ∗), then
Aτ∗x and eAτ∗x are also in R (this is due to the A-invariance of R). According
to (4.12) and (4.13), this implies x ∈ C. 2
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4.2 Controllable matrix pairs

Let A ∈ R
n×n and B ∈ R

n×m. We say that the matrix pair (A,B) is controllable
if the associated Kalman controllability matrix

K =
[
B AB · · · An−1B

]

has full row rank, that is, rank(K) = n.

If a state space system ẋ = Ax+Bu is subject to a coordinate transform x = Tz,
where T ∈ R

n×n is invertible, then we get

ż = T−1ATz + T−1Bu.

Discrete systems behave analogously. We say that the matrix pair (T−1AT, T−1B)
is similar to the matrix pair (A,B). Of course, a coordinate transform should
not change structural system properties such as stability and controllability. In-
deed, similar matrices have the same eigenvalues, and the ranks of the Kalman
controllability matrices of similar matrix pairs coincide.

The following result is limited to the single-input case, that is, m = 1. Then
B is a single column vector. In that case, we simply write b instead of B. The
associated Kalman controllability matrix

K =
[
b Ab · · · An−1b

]

is then a square matrix.

Theorem 4.13 Let A ∈ R
n×n and b ∈ R

n, and let (A, b) be a controllable matrix
pair. Then there exists an invertible matrix T ∈ R

n×n such that

Ã := T−1AT =








0 · · · 0 −a0
1 −a1

. . .
...

1 −an−1








and b̃ := T−1b =








1
0
...
0







.

The numbers ai are precisely the coefficients of the characteristic polynomial,
that is,

χA(s) = χT−1AT (s) = sn + an−1s
n−1 + . . .+ a1s+ a0.

This is called the controllability form of (A, b). Moreover, there exists an
invertible matrix T1 ∈ R

n×n such that

T−1
1 AT1 =








0 1
...

. . .

0 1
−a0 −a1 · · · −an−1








and T−1
1 b =








0
...
0
1







.
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This is called the controller form of (A, b). The coefficients ai are the same as
with the controllability form.

Proof: According to the Hamilton-Cayley theorem,

An = −an−1A
n−1 − . . .− a1A− a0I.

Thus we have

AK =
[
Ab A2b · · · Anb

]

=
[
b Ab · · · An−1b

]








0 · · · 0 −a0
1 −a1

. . .
...

1 −an−1








= KÃ.

Moreover, we have

b =
[
b Ab · · · An−1b

]








1
0
...
0







= Kb̃.

Since (A, b) is controllable, K is invertible. Thus we simply put T = K. This
completes the proof for the controllability form. For the controller form, the
construction is a bit more involved, and it is omitted here. 2

A matrix pair (A, b) is in controllability form if and only if its Kalman matrix is
the identity matrix. If a scalar input-output representation

y(n) + an−1y
(n−1) + . . .+ a1ẏ + a0y = u

is reduced to first order in the usual way, i.e., via putting x = [y, ẏ, . . . , y(n−1)]T ,
then the resulting state space system is precisely in controller form.

We return to the general multi-input case, and we give another result about
transforming a given matrix pair into some special form via a similarity transform
(this corresponds to a coordinate transform in the state space).

Theorem 4.14 (Kalman controllability decomposition) Let A∈R
n×n and

B ∈ R
n×m. Let K be the associated Kalman controllability matrix and let

r := rank(K). Then there exists an invertible matrix T ∈ R
n×n such that

Ã := T−1AT =

[
A1 A2

0 A3

]

and B̃ := T−1B =

[
B1

0

]

where A1 ∈ R
r×r, B1 ∈ R

r×m is a controllable matrix pair.
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Remark 4.15 The theorem says that by a suitable coordinate transform, namely
x = Tz, the given system ẋ = Ax+ Bu can be put into the form

ż1 = A1z1 + A2z2 +B1u (4.14)

ż2 = A3z2 (4.15)

where (A1, B1) is controllable. The second equation is certainly not controllable
(it is completely decoupled from the input, hence we cannot influence z2 by the
choice of the input u). In fact, it is an autonomous equation. If we start in
z2(0) = 0, then we have z2(t) = 0 for all t. Then the first equation becomes

ż1 = A1z1 + B1u

which is controllable. Thus the states that are reachable from zero in the system
(4.14), (4.15) are precisely those of the form

(
ζ

0

)
, where ζ ∈ R

r is arbitrary. In
other words, the reachable space of (4.14), (4.15) takes the simple form

{z ∈ R
n | z can be reached from 0} = R

r × {0}.

This can be used to determine the reachable space of the original system, because

{x ∈ R
n | x can be reached from 0} = T (Rr × {0}).

Note that if the original (A,B) is controllable, then r = n, and the Kalman
controllability decomposition becomes trivial. Thus the interesting case arises
when (A,B) itself is not controllable.

Proof: Let v1, . . . , vr ∈ R
n be a basis of R. Let w1, . . . , wn−r ∈ R

n be such that
v1, . . . , vr, w1, . . . , wn−r is a basis of Rn. Then

T :=
[
V W

]
:=

[
v1 · · · vr w1 · · · wn−r

]
∈ R

n×n

is an invertible matrix. Due to the A-invariance of R, the columns of AV are
again in R. Thus they can be written as linear combinations of the vectors vi,
that is,

AV = V A1

for some matrix A1 ∈ R
r×r. On the other hand, the columns of AW are in R

n

and thus they can be written as linear combinations of vi, wj, that is,

AW = V A2 +WA3

for some matrices A2, A3 of appropriate sizes. Summing up, we have

AT =
[
AV AW

]
=

[
V A1 V A2 +WA3

]
=

[
V W

]
[
A1 A2

0 A3

]

= TÃ.
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Since im(B) ⊆ R, the columns of B are linear combinations of the vectors vi,
that is,

B = V B1 =
[
V W

]
[
B1

0

]

= TB̃

for some matrix B1 ∈ R
r×m. It remains to show that (A1, B1) is a controllable

matrix pair. The Kalman controllability matrix associated to (Ã, B̃) is

K̃ =
[

B̃ ÃB̃ · · · Ãn−1B̃
]
=

[
B1 A1B1 · · · An−1

1 B1

0 0 · · · 0

]

and this has rank r, just like the Kalman controllability matrix of the original
matrix pair. Therefore,

r = rank
[
B1 A1B1 · · · An−1

1 B1

]
.

Due to the Hamilton-Cayley theorem, this implies that

r = rank
[
B1 A1B1 · · · Ar−1

1 B1

]

which shows that (A1, B1) is controllable. 2

Remark 4.16 Let χA and spec(A) denote the characteristic polynomial and
the spectrum of A, respectively. In a Kalman controllability decomposition, we
clearly have

χA = χA1
· χA3

and thus

spec(A) = spec(A1) ∪ spec(A3).

One calls χA3
the uncontrollable part of the characteristic polynomial of A with

respect to B, and λ ∈ spec(A3) an uncontrollable mode of (A,B). Of course,
it has to be verified that these notions do not depend on the specific choice of the
Kalman decomposition (which is non-unique, in general, since its construction
involves several choices): In fact, the matrix A1 is the matrix representation of
A|R : R → R with respect to the chosen basis of R. Thus, A1 depends on the
choice of the basis, but χA1

does not. Therefore, this holds also for χA3
= χA/χA1

.

Example 4.17 Consider the matrices from Remark 4.7,

A =

[
1 0
1 0

]

and B =

[
1
1

]

.
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The Kalman controllability matrix is

K =

[
1 1
1 1

]

which has rank r = 1. We choose the vector v1 := B as a basis of R = im(K). If
we choose

T :=

[
1 0
1 1

]

then

T−1AT =

[
1 0
0 0

]

and T−1B =

[
1
0

]

.

Thus we see that χA(s) = (s− 1)s with uncontrollable part s, and hence 0 is an
uncontrollable mode of (A,B).

There is also a direct way to characterize the uncontrollable modes of a matrix
pair.

Theorem 4.18 Let A ∈ R
n×n, B ∈ R

n×m, and λ ∈ C. The following are
equivalent:

1. λ is an uncontrollable mode of (A,B);

2. rank
[
λI − A B

]
< n.

Proof: Both conditions are invariant under similarity transforms. For the first
condition, this follows from the argument given in Remark 4.16, and for the
second condition, let Ã = T−1AT and B̃ = T−1B. Since

[

λI − Ã B̃
]
= T−1

[
λI − A B

]
[
T 0
0 I

]

,

we have

rank
[

λI − Ã B̃
]
= rank

[
λI − A B

]
.

Thus we may assume, without loss of generality, that a Kalman controllability
decomposition has already been performed, i.e.,

A =

[
A1 A2

0 A3

]

and B =

[
B1

0

]
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where (A1, B1) is controllable. Then we have

H(λ) :=
[
λI − A B

]
=

[
λI − A1 −A2 B1

0 λI − A3 0

]

.

If λ is an uncontrollable mode, then it is an eigenvalue of A3. Thus it makes
λI − A3 singular, showing that the rank of H(λ) cannot be full, that is, it must
be less than n. Conversely, assume that the rank of H(λ) is not full. Then there
exists a vector x 6= 0 such that xH(λ) = 0, that is,

x1(λI − A1) = 0

−x1A2 + x2(λI − A3) = 0

x1B1 = 0.

The first and third equations imply that

x1B1 = 0, x1A1B1 = 0, x1A
2
1B1 = 0, . . .

The controllability of (A1, B1) yields that x1 = 0. Then x2 6= 0 and

x2(λI − A3) = 0

which implies that λ is an eigenvalue of A3, that is, an uncontrollable mode. 2

Example 4.19 Consider the matrix pair from Example 4.17. Then

H(λ) =

[
λ− 1 0 1
−1 λ 1

]

which has rank 2 for all λ 6= 0. However, rank(H(0)) = 1, showing again that 0
is an uncontrollable mode of this system.

As a direct consequence of this, we obtain another characterization of controllable
matrix pairs.

Corollary 4.20 (Hautus test for controllability) The following are equiva-
lent:

1. (A,B) is controllable.

2. The matrix H(λ) =
[
λI − A B

]
has full row rank for all λ ∈ C.
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The polynomial matrix H =
[
sI − A B

]
∈ R[s]n×(n+m) is called Hautus

controllability matrix. Since λI − A is non-singular whenever λ is not an
eigenvalue of A, it suffices to check condition 2 from above for λ ∈ spec(A).

Remark 4.21 Controllability is a generic property, that is, if a matrix pair
(A,B) is chosen “at random”, then it is very likely to be a controllable one.
More precisely, the set of controllable matrix pairs (A,B) is open and dense in
the set Rn×n ×R

n×m. This is due to the fact that (A,B) is uncontrollable if and
only if all n× n subdeterminants of the associated Kalman matrix vanish. This
defines a set of polynomial equations to be satisfied by the entries Aij, Bij of
A,B. Thus the set of uncontrollable matrix pairs is a proper algebraic variety in
R

n×n × R
n×m.

4.3 Asymptotic controllability

Sometimes, it is not required that a system should go from one state to another in
finite time τ . Instead, one is satisfied if this happens asymptotically as τ → ∞.

Definition 4.22 We say that a state space system ẋ = Ax+Bu or σx = Ax+Bu
is asymptotically controllable (to zero) if for any x0 ∈ X = R

n, there exists
an input function u ∈ U such that

lim
t→∞

ϕ(t, 0, x0, u) = 0.

Clearly, controllability implies asymptotic controllability. The proof of the fol-
lowing theorem will be done in the next chapter.

Theorem 4.23 A state space system is asymptotically controllable if and only
if its uncontrollable modes λ are asymptotically stable, that is, Re(λ) < 0 in
continuous time, and |λ| < 1 in discrete time.

Let us convince ourselves at least of the simple direction of the proof. We may
assume, without loss of generality, that

A =

[
A1 A2

0 A3

]

and B =

[
B1

0

]

.

Then x2(t) = eA3tx2(0) or x2(t) = At
3x2(0), respectively. If the system is asymp-

totically controllable, we must have limt→∞ x2(t) = 0 for all x2(0), which implies
that A3 must be asymptotically stable.
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4.4 Controllable behaviors

The Hautus test gives us an idea about how to generalize the notion of control-
lability from state space systems ẋ = Ax + Bu to general systems R( d

dt
)w = 0

where R ∈ R[s]p×q, and w ∈ Aq. In a state space system,

R =
[
sI − A −B

]
∈ R[s]n×(n+m) and w =

[
x
u

]

∈ An+m.

The polynomial matrix R is recognized as the Hautus controllability matrix (up
to the sign of B, which does not influence the rank).

In this section, we restrict to continuous systems, and we return to our original
signal spaces, that is, A = D′(T ), where T = R,R+.

Definition 4.24 Let t0 ∈ T be fixed. Let R ∈ R[s]p×q and

B = {w ∈ Aq | R( d
dt
)w = 0}

where A is as described above. Let w(1), w(2) ∈ B be two trajectories. We say
that w(2) is reachable from w(1) in time τ ≥ 0 (or: w(1) is controllable to w(2) in
time τ) if there exists a trajectory w ∈ B which coincides with w(1) on (−∞, t0)∩T
and with w(2) on (t0 + τ,∞) ∩ T . If there is any such τ ≥ 0, then we say that
w(2) is reachable from w(1) (or: w(1) is controllable to w(2)). One says that B is
controllable if any w(1) ∈ B can be controlled to any w(2) ∈ B.

To say that two distributions coincide on an open set U ⊆ R means that they
assign the same value to each test function whose support lies in U . In the
situation described above, one calls w a connecting trajectory for w(1), w(2).
For classical functions, this means

w(t) =

{
w(1)(t) if t < t0
w(2)(t) if t > t0 + τ.

The choice of the starting time t0 makes no difference, because we consider only
time-invariant systems. Similarly as with state space systems, the transition
time τ can be made arbitrarily small, independently of the choice of the two
trajectories to be connected.

Theorem 4.25 (Generalized Hautus test) Let A = D′(T ) for T = R or R+

and let R ∈ R[s]p×q. Without loss of generality, let R have full row rank. Then
the behavior

B = {w ∈ Aq | R( d
dt
)w = 0}

is controllable if and only if rank(R(λ)) = p for all λ ∈ C.
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Proof: Let R have full row rank and let

URV =
[
D 0

]

be the Smith form of R, with D = diag(d1, . . . , dp). Since U, V are unimodular,
we have, for all λ ∈ C,

rank(R(λ)) = rank(U(λ)R(λ)V (λ)) = rank(D(λ)).

Thus, rank(R(λ)) = p for all λ ∈ C if and only if det(D(λ)) 6= 0 for all λ ∈ C,
that is, if no di has a zero in C. This is true if and only if all di are constants.
Since we may always assume that the di are monic polynomials (i.e., their leading
coefficients are equal to one), we have

rank(R(λ)) = p for all λ ∈ C ⇔ D = I.

Consider as usual
B̃ = {w̃ ∈ Aq |

[
D 0

]
w̃ = 0}

which is related to B via the isomorphism B̃ → B, w̃ 7→ w = V ( d
dt
)w̃. This B̃ is

controllable if and only if B is controllable. However, if D = I, then

B̃ = {0} × Aq−p ⊂ Aq

which is clearly controllable. Conversely, if D 6= I, there exists at least one di,
say d1, which is not constant. Then the equation for the first component w̃1 of w̃
reads

d1(
d
dt
)w̃1 = 0

which has precisely the solutions

w̃1(t) =
∑

λ

aλ(t)e
λt (4.16)

where λ ∈ C are the zeros of d1 (since d1 is not a constant, there exists at least
one such λ). Now consider t0 ∈ T and two trajectories w̃(1), w̃(2) in B̃, where the
first component of w̃(1) is not identically zero on (−∞, t0) ∩ T , and w(2) is the
zero trajectory. Then w̃(2) is not reachable from w̃(1): A connecting trajectory
w̃ would have to satisfy w̃1 = 0 on (t0 + τ,∞), which implies that w̃1 = 0
everywhere because (4.16) shows that w̃1 must be an analytic function. Thus w̃
cannot coincide with w̃(1) on (−∞, t0) ∩ T . This shows that the system is not
controllable. 2

For instance, a scalar input-output representation

y(n) + an−1y
(n−1) + . . .+ a1ẏ + a0y = u



4.4. CONTROLLABLE BEHAVIORS 81

is controllable, because putting

R =
[
−1 sn + an−1s

n−1 + . . .+ a1s+ a0
]

and w =

[
u
y

]

,

we see that rank(R(λ)) = 1 for all λ ∈ C.

Polynomial matrices that represent controllable behaviors are characterized by
the following theorem.

Theorem 4.26 Let R ∈ R[s]p×q be a polynomial matrix with full row rank. The
following are equivalent:

1. rank(R(λ)) = p for all λ ∈ C;

2. The Smith form of R is
[
I 0

]
;

3. There exists a matrix T ∈ R[s](q−p)×q such that

[
R
T

]

is unimodular;

4. There exists a matrix S ∈ R[s]q×p such that RS = I;

5. If R = UR1 for some U ∈ R[s]p×p, R1 ∈ R[s]p×q, then U must be unimodu-
lar.

If the equivalent conditions are satisfied, we say that R is left prime (or: left
irreducible).

Proof: We have already seen in the previous proof that “1 ⇒ 2”. The converse
is obvious.

For “2 ⇒ 3”, assume that

R = U
[
I 0

]
V = U

[
I 0

]
[
V1
V2

]

= UV1

where U and V are unimodular. Define T := V2, then

[
R
T

]

=

[
UV1
V2

]

=

[
U 0
0 I

] [
V1
V2

]

which shows that the matrix is unimodular.
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For “3 ⇒ 4”, let T be a matrix according to assertion 3. Then there exist matrices
S1, S2 such that [

R
T

]
[
S1 S2

]
=

[
I 0
0 I

]

In particular, RS1 = I.

For “4 ⇒ 5”, let S be such that RS = I and R = UR1. Then UR1S = I, which
shows that U is unimodular.

Finally, we show “5 ⇒ 2” by negation. Assume that the Smith form is
[
D 0

]

with D = diag(d1, . . . , dp) and at least one of the di is not a constant, say d1 /∈ R.
Then

R = U
[
D 0

]
V = U1R1

with

U1 = U








d1
1

. . .

1








and R1 =








1
d2

. . . 0
dp







V .

We have det(U1) = det(U)d1 and thus we have found a factorization R = U1R1

in which U1 is not unimodular. 2

A polynomial matrix R ∈ R[s]p×q with full row rank is left prime if and only if its
p×p subdeterminants have no common zeros in C (since we have rank(R(λ)) < p
if and only if λ ∈ C is a common zero of all p× p minors). By the fundamental
theorem of algebra, it is also equivalent to say that the p × p subdeterminants
of R are devoid of common factors, i.e., they are coprime polynomials in R[s].

4.5 Non-linear systems and accessibility

Consider
ẋ(t) = F (x(t), u(t)), (4.17)

where t ∈ T for some open interval T ⊆ R, and x(t) ∈ R
n, u(t) ∈ R

m denote the
state and the input at time t, respectively. The map F : X × U → R

n, where
X ⊆ R

n, U ⊆ R
m are open sets, is supposed to be continuously differentiable.

Let U denote the set of all piecewise continuous functions from T to U ⊆ R
m. It

follows from classical ODE theory that for all u ∈ U , t0 ∈ T , and x0 ∈ X there
exists a unique solution

x : J → X, t 7→ x(t)
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to (4.17) with x(t0) = x0, which is continuous and piecewise continuously differ-
entiable. Here, J is the so-called maximal existence interval, which is an open
subinterval of T with t0 ∈ J . In general, J depends on t0, x0 and u, that is, we
should actually write J = J(t0, x0, u) to be precise. We will use the notation
ϕ(t, t0, x0, u) for the solution of the initial value problem

ẋ(t) = F (x(t), u(t))

x(t0) = x0

at time t. When we write ϕ(t, t0, x0, u), we tacitly assume that t ∈ J(t0, x0, u),
otherwise the notation would not make sense. In the following, we put t0 = 0
without loss of generality (since the right hand side of the differential equation
does not explicitly depend on t, we have time-invariance as in (4.7)).

Just as in the linear case, we call x1 ∈ X reachable from x0 ∈ X in time
τ ≥ 0 if x1 = ϕ(τ, 0, x0, u) for some u ∈ U . Equivalently, we say that x0 is
controllable to x1 in time τ . Define

R(τ, x0) := {x ∈ X | x is reachable from x0 in time τ}

C(τ, x1) := {x ∈ X | x is controllable to x1 in time τ}.

Unlike the linear case, these sets will not have an affine structure, in general.
Also, there is no reason why x0 = 0 should play a special role here. Nevertheless,
we will also use

R(x0) =
⋃

τ≥0

R(τ, x0) and C(x1) =
⋃

τ≥0

C(τ, x1),

which are the sets of states that are reachable from x0 or controllable to x1,
respectively (in any finite time).

The system (4.17) is called globally reachable from x0 if R(x0) = X. If this
holds for any x0, we call the system globally reachable. It turns out that global
reachability is usually a too strong requirement for non-linear systems. Therefore,
one studies the following weaker version: The system is said to be locally reach-
able from x0 if R(x0) contains an open neighborhood of x0. Intuitively, this
means that starting from x0, the system can be steered into “any direction”, or
to any desired terminal state that is close enough to x0. The following examples
show some reachability phenomena that can occur in the non-linear setting.

Example 4.27 1. Consider ẋ = xu, x(0) = x0 ∈ X = R. The unique solution
of this initial value problem is given by

x(t) = x0e
∫ t

0
u(τ)dτ .
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If x0 = 0, then x ≡ 0 and thus R(t1, 0) = {0} for all t1. In particular, the
system is not locally reachable from x0 = 0. If x0 > 0, then x(t) > 0 for all
t ∈ T . Thus we cannot steer the system to any x1 ≤ 0. On the other hand,
if x1 > 0, then the constant function u ≡ 1

t1
ln(x1

x0

) yields x(t1) = x1. We
conclude that R(t1, x0) = (0,∞) for all x0 > 0 and all t1 > 0. Similarly,
one can show that R(t1, x0) = (−∞, 0) for all x0 < 0 and all t1 > 0. Thus
the system is locally reachable from any x0 6= 0.

2. Consider ẋ1 = x2, ẋ2 = sin(x1) + u, x(0) = x0 ∈ X = R
2. Setting

v := sin(x1) + u, the problem becomes ẋ1 = x2, ẋ2 = v, x(0) = x0 which
can be solved in closed form. One can show that for any t1 > 0 and any
x1 ∈ R

2, there exists a, b ∈ R such that v(t) = a+ bt steers the transformed
system to x(t1) = x1. From this v, one can compute a suitable input u for
the original system. Thus R(t1, x0) = X for all t1 > 0 and all x0 ∈ X. In
particular, the system is globally reachable.

3. Consider ẋ1 = x22, ẋ2 = u, x(0) = x0 ∈ X = R
2. Then x1(t) ≥ x01 for all t,

which implies that R(x0) is contained in the half-plane {x ∈ R
2 | x1 ≥ x01}.

Thus the system is not locally reachable from any x0.

Similarly to the notion of local reachability, (4.17) will be called locally control-
lable to x1 if C(x1) contains an open neighborhood of x1, which says, roughly
speaking, that any state that is sufficiently close to x1 can be controlled to x1.
The latter notion is particularly interesting when x1 is an equilibrium of the
system, because it means that small perturbations of the equilibrium can be cor-
rected, i.e., there exists an input function such that the system returns to the
equilibrium in finite time.

A state x0 ∈ X is called an equilibrium of (4.17) for the zero input function if
F (x0, 0) = 0. This is true if and only if x ≡ x0 is a solution to the initial value
problem from above, or equivalently, ϕ(t, 0, x0, 0) = x0 for all t ∈ T . The linear
approximation of F at x = x0, u = 0 is given by

F (x, u) ≈ F (x0, 0)
︸ ︷︷ ︸

=0

+
∂F

∂x
(x0, 0)

︸ ︷︷ ︸

=:A∈Rn×n

(x− x0) +
∂F

∂u
(x0, 0)

︸ ︷︷ ︸

=:B∈Rn×m

u.

Setting x̃ := x−x0, we obtain the linearization of (4.17) at x0, which is the linear
system

˙̃x = Ax̃+ Bu.

Our main goal in this section is the following result giving a sufficient condition
for local reachability from x0 in terms of the linearization at x0.
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Theorem 4.28 Consider ẋ(t) = F (x(t), u(t)) with F (x0, 0) = 0. Set

A =
∂F

∂x
(x0, 0) and B =

∂F

∂u
(x0, 0).

If (A,B) is a controllable matrix pair, then the reachability set R(t1, x0) of the
non-linear system contains an open neighborhood of x0 for all t1 > 0.

In other words, if the linearization of (4.17) at an equilibrium point x0 is com-
pletely reachable, then the underlying non-linear system is locally reachable from
x0. Moreover, R(t, x0) contains an open neighborhood for any arbitrarily small
t > 0 (compare this with Remark 4.4).

For the proof, we need two auxiliary facts.

Fact 1: Parameter-dependent ODE. Consider

ẋ(t) = f(t, x(t), ξ)

x(0) = x0,

where ξ ∈ R
n is a parameter vector. If f is continuous, and even continuously

differentiable with respect to x and ξ, then there exists a unique solution to this
initial value problem, which we denote by φ(t, x0, ξ). Then φ is also continuously
differentiable (with respect to all three variables). Let ξ0 be given and consider

G(t) :=
∂φ

∂ξ
(t, x0, ξ0).

This matrix-valued function is again continuously differerentiable and satisfies

Ġ(t) =
∂f

∂x
(t, φ(t, x0, ξ0), ξ0)G(t) +

∂f

∂ξ
(t, φ(t, x0, ξ0), ξ0)

and G(0) = 0.

This fact will be used in the proof as follows: We will have n continuous input
functions u(i) for 1 ≤ i ≤ n and we will consider a linear combination

uξ(t) = ξ1u
(1)(t) + . . .+ ξnu

(n)(t),

where ξ ∈ R
n. Plugging this into ẋ = F (x, u), we get a parameter-dependent

ODE by putting f(t, x, ξ) := F (x, uξ(t)). Then ϕ(t, 0, x0, uξ) = φ(t, x0, ξ). Sup-
pose that x0 is an equilibrium and set ξ0 = 0. Then

G(t) =
∂φ

∂ξ
(t, x0, 0)
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satisfies

Ġ(t) =
∂F

∂x
(φ(t, x0, 0), 0)G(t) +

∂F

∂u
(φ(t, x0, 0), 0)

∂uξ
∂ξ

(t).

Since φ(t, x0, 0) = ϕ(t, 0, x0, 0) = x0 for all t by assumption, we get

Ġ(t) = AG(t) + B[u(1)(t), . . . , u(n)(t)]

G(0) = 0.

Fact 2: Inverse function theorem. Let Ψ : Rn → R
n, ξ 7→ Ψ(ξ) be a continuously

differentiable function, and let ξ0 ∈ R
n be such that det(∂Ψ

∂ξ
(ξ0)) 6= 0. Then there

exists an open neighborhood U of ξ0 and an open neighborhood V of Ψ(ξ0) such
that U → V , ξ 7→ Ψ(ξ) is a diffeomorphism (i.e., continuously differentiable and
bijective, with a continuously differentiable inverse).

Proof: Let t1 > 0 be given. Since (A,B) is a controllable matrix pair, there
exists, for all 1 ≤ i ≤ n, a continuous input function u(i) such that the solution
of

˙̃x(t) = Ax̃(t) + Bu(i)(t)

x̃(0) = 0

satisfies x̃(t1) = ei, where ei is the i-th standard basis vector of Rn. Set

uξ(t) = ξ1u
(1)(t) + . . .+ ξnu

(n)(t)

for ξ ∈ R
n. Consider

ẋ(t) = F (x(t), uξ(t))

x(0) = x0

and let φ(t, x0, ξ) denote its solution at time t. Then the function

G(t) =
∂φ

∂ξ
(t, x0, 0)

satisfies G(0) = 0 and

Ġ(t) = AG(t) + B[u(1)(t), . . . , u(n)(t)].

By the construction of the input functions u(i), we have

G(t1) = [e1, . . . , en] = In.
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On the other hand,

G(t1) =
∂φ

∂ξ
(t1, x0, 0).

Define

Ψ : Rn → R
n, ξ 7→ φ(t1, x0, ξ).

Then Ψ(0) = x0, since x0 is an equilibrium, and

∂Ψ

∂ξ
(0) = G(t1) = In.

The inverse function theorem implies that there exists an open neighborhood U
of ξ0 = 0 and an open neighborhood V of Ψ(0) = x0 such that U → V , ξ 7→ Ψ(ξ)
is a diffeomorphism. Thus

V = Ψ(U) = {φ(t1, x0, ξ) | ξ ∈ U} ⊆ R(t1, x0),

that is, R(t1, x0) contains an open neighborhood of x0. 2

Example 4.29 1. For ẋ = xu, any x0 is an equilibrium for u = 0. The
linearization at x0 is given by A = 0, B = x0. Thus the linearization is
controllable if and only if x0 6= 0. Therefore, the system is locally reachable
from any x0 6= 0.

2. For ẋ1 = x2, ẋ2 = sin(x1) + u, the equilibria are x0 = [kπ, 0]T for k ∈ Z.
The linearization is given by

A =

[
0 1

(−1)k 0

]

B =

[
0
1

]

whose Kalman matrix is

K =

[
0 1
1 0

]

showing that the linearization is controllable for all x0. Thus the theorem
says that the original system is locally reachable from the equilibria. In
fact, we know that the system is even globally reachable from any x0.

3. For ẋ1 = x22, ẋ2 = u, any x0 = [a, 0]T for a ∈ R is an equilibrium. The
linearization is

A =

[
0 0
0 0

]

B =

[
0
1

]

which is uncontrollable. Thus the theorem makes no statement for this
example.
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We have an analogous statement for controllability instead of reachability.

Corollary 4.30 In the situation of Theorem 4.28, if (A,B) is a controllable
matrix pair, then C(t1, x0) contains an open neighborhood of x0 for all t1 > 0.

Proof: Let t1 > 0 be given, consider

ẋ(t) = F (x(t), u(t)) (4.18)

and set x̃(t) := x(t1 − t). Then

˙̃x(t) = −ẋ(t1 − t) = −F (x(t1 − t), u(t1 − t)) =: −F (x̃(t), ũ(t)),

where ũ(t) := u(t1 − t). Set F̃ (x, u) = −F (x, u) and consider

˙̃x(t) = F̃ (x̃(t), ũ(t)) (4.19)

Let x0 be an equilibrium of (4.18), that is, F (x0, 0) = 0. Then x0 is also an
equilibrium of (4.19). Moreover, x1 can be controlled to x0 in time t1 in (4.18) if
and only if x1 is reachable in time t1 from x0 in (4.19). Thus C(t1, x0) = R̃(t1, x0).
If (A,B) is the linearization of (4.18) at x0, then (−A,−B) is the linearization of
(4.19) at x0. If (A,B) is a controllable matrix pair, then so is (−A,−B). Then
R̃(t1, x0) and hence C(t1, x0) contains an open neighborhood of x0. 2

Remark 4.31 The sufficient condition for local reachability is often not satisfy-
ing, in particular, with systems of the form ẋ(t) = g(x(t))u(t), where any x0 is
an equilibrium, but the linearization is A = 0 and B = g(x0) which is usually
not controllable (unless rank(g(x0)) = n). For instance, it can be shown that

ẋ1 = cos(x3)u1

ẋ2 = sin(x3)u1

ẋ3 = u2

which is a simplistic model of driving a car ((x1, x2) represents the position,
x3 the angle into which the car is heading, u1 is the speed, and u2 represents
the steering), is globally controllable (as would be expected from our everyday
experience with driving a car), but we cannot derive this using the linearization
criterion.

We state the following theorem without proof.
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Theorem 4.32 Consider

ẋ(t) = f(x(t)) + g(x(t))u(t),

where f : X → R
n and g : X → R

n×m are smooth for some open set X ⊆ R
n.

The accessibility algebra A is the smallest Lie algebra (with respect to the Lie
bracket

[h, f ] =
∂f

∂x
h−

∂h

∂x
f

for smooth f, h : X → R
n) that contains the columns of g and is invariant

under f . If dim(A(x0)) = n, then for all t1 > 0, the set R(t1, x0) has non-empty
interior.

Local accessibility from x0 (that is, R(x0) has non-empty interior) is weaker than
local reachability from x0. It means thatR(x0) contains some non-empty open set
(but not necessarily a neighborhood of x0). Thus, the notion of local accessibility
includes the case where x0 lies on the boundary of R(x0).

Example 4.33 1. For ẋ = xu, we have f ≡ 0 and g(x) = x. Therefore, the
accessibility algebra at x0 is generated by x0 and its dimension is n = 1 if
and only if x0 6= 0.

2. For ẋ1 = x2, ẋ2 = sin(x1) + u, we have

f(x1, x2) =

[
x2

sin(x1)

]

and g(x1, x2) =

[
0
1

]

.

The accessibility algebra is generated by g and

[g, f ] =
∂f

∂x
g −

∂g

∂x
f =

[
0 1

cos(x1) 0

] [
0
1

]

=

[
1
0

]

.

Thus its dimension is 2 at any point.

3. For ẋ1 = x22, ẋ2 = u, one can show similarly that the dimension is n = 2 at
every point.

4. For the simplistic model of driving a car from above, we obtain that the
dimension of the accessibility algebra equals n = 3 for any x0.

5. For ẋ = Ax + Bu, the smallest Lie algebra that contains the columns of
g(x) = B and is invariant under f(x) = Ax is nothing but the reachability
space R, and its dimension does not depend on the specific choice of x0.
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For driftless systems, i.e., systems with f ≡ 0, the theorem can be strengthened
as follows: If dim(A(x0)) = n, then R(t, x0) contains an open neighborhood of x0
for all t > 0, in particular, the system ẋ = g(x)u is locally reachable from x0.
Finally, if dim(A(x0)) = n holds for all x0 ∈ X, where X is connected, then
R(x0) = X for all x0 ∈ X. For instance, the simple model of driving a car is
globally reachable.

We conclude this chapter by studying what the unproven theorem from above
implies for linear but time-varying systems

ẋ(t) = A(t)x(t) + B(t)u(t),

where A : T → R
n×n and B : T → R

n×m are smooth. Introducing ξ = [xT , t]T ,
such a system can be rewritten as

ξ̇ =

[
A(t)x
1

]

+

[
B(t)
0

]

u

and thus we have brought the system into the form ξ̇ = f(ξ)+g(ξ)u. It turns out
that the accessibility algebra condition amounts to checking whether the infinite
matrix (there is no Hamilton-Cayley like stopping criterion here)

K(t) = [B, (A− d
dt
)B, (A− d

dt
)2B, . . .](t),

has rank n at t0 (the matrix does not depend on x0). Of course, we recognize
this as the time-varying generalization of the Kalman matrix (indeed, if A,B are
constant, then we obtain the usual Kalman matrix from the time-invariant case,
taking into account that it suffices to consider the powers of A up to An−1).

Theorem 4.34 Consider

ẋ(t) = A(t)x(t) +B(t)u(t)

where A : T → R
n×n and B : T → R

n×m are smooth. If the time-varying Kalman
matrix has rank n for some t0 ∈ T , then the system is completely reachable at
time t0, that is, for all x0, x1 ∈ R

n and all ε > 0 there exists u such that

ϕ(ε+ t0, t0, x0, u) = x1.

If A,B are even analytic functions, then the rank condition becomes necessary as
well as sufficient. Moreover in that case, there exists an open and dense subset
T0 of T such that for all t0 ∈ T0, it suffices to check the rank of the finite matrix

[B, (A− d
dt
)B, . . . , (A− d

dt
)n−1B](t0).
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Example 4.35 1. Consider ẋ(t) = t2u(t), which can easily be seen to be
completely reachable at any t0. We have A(t) = 0 and B(t) = t2 and hence

K(t) = [t2,−2t, 2, 0, . . .]

whose rank equals 1 for all t0. Note that for t0 = 0, one has to compute
K(t0) up to the third column (unlike the time-invariant case), but for almost
all t0, it suffices to consider only the first column (à la Hamilton-Cayley).

2. Let

A(t) =

[
0 1

−1 0

]

and B(t) =

[
cos(t)

− sin(t)

]

.

Here, we find that the system is not reachable at any time t0. Nevertheless,
the “snap shot” matrix pair (A(t0), B(t0)) is controllable for all t0.
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Chapter 5

Feedback control

5.1 Static state feedback

The problem with pre-computed control (“open loop control”) is that it may be
sensitive with respect to noisy data. For instance, let u be such that

ϕ(t, 0, x, u) = 0,

that is, the control function u steers the system from x to 0 in time t. If we start
in a slightly perturbed initial state, say x(0) = x+ξ with ‖ξ‖ small but non-zero,
we obtain, due to the linearity of ϕ,

ϕ(t, 0, x(0), u) = ϕ(t, 0, ξ, 0)

where ϕ(t, 0, ξ, 0) = eAtξ in continuous time, and ϕ(t, 0, ξ, 0) = Atξ in discrete
time. If A is not stable, this deviation from 0 (the desired state) can become
arbitrarily large. Thus pre-computed control will usually not work with unstable
systems, in practice.

Feedback control is an alternative approach. Its basic assumption is that we
can measure the state x, and that we can use this information for control. For a
state space system

ẋ = Ax+Bu or σx = Ax+ Bu (5.1)

where A ∈ R
n×n and B ∈ R

n×m, a static state feedback law reads

u = Fx+ v

93
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where F ∈ R
m×n. Combining the given system with the feedback law yields the

so-called closed loop system

ẋ = (A+ BF )x+Bv or σx = (A+ BF )x+ Bv. (5.2)

We say that the matrix pair (A + BF,B) results from (A,B) via static state
feedback with feedback matrix F . The goal of this chapter is to answer questions
like the stabilization problem: Given A,B, can we find F such that A+BF is
asymptotically stable? If yes, then all the trajectories of the closed loop system
with v = 0 will tend to zero as t → ∞. Thus the system is asymptotically
controllable to zero, and this will work even if the initial state is subject to
disturbance.

5.2 Feedback and controllability

Lemma 5.1 The reachable spaces of (5.1) and (5.2) coincide. In particular,
(A+ BF,B) is controllable if and only if (A,B) is controllable.

Proof: The reachable space of (A+BF,B) is

R = im(B) + (A+ BF )im(B) + . . .+ (A+ BF )n−1im(B).

Let

R1 = im(B) and Ri+1 = (A+ BF )Ri + im(B) for i = 1, . . . , n− 1.

Then Rn = R. Since

im(B) + (A+ BF )V = im(B) + AV

holds for any vector space V ⊆ R
n, we conclude that

R1 = im(B) and Ri+1 = ARi + im(B).

This shows that

R = Rn = im(B) + Aim(B) + . . .+ An−1im(B)

which is the reachable space of (A,B). 2

Lemma 5.2 (Heymann) Let (A,B) be controllable, and let 0 6= b ∈ R
m. Then

there exists a matrix F such that (A+ BF, b) is controllable.
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Proof: First, we claim that there exist vectors u(1), . . . , u(n−1) ∈ R
m such that

the vectors v(i) defined by

v(1) := b and v(i+1) := Av(i) + Bu(i) for i = 1, . . . , n− 1

are a basis of Rn. We prove this by induction. Since v(1) = b 6= 0, we have a
one-dimensional vector space

V (1) := span{v(1)}.

Now assume that v(1), . . . , v(k) have already been constructed and that

V (k) = span{v(1), . . . , v(k)}

has dimension k. We wish to choose u(k) such that

v(k+1) = Av(k) + Bu(k) /∈ V (k).

Then dim(V (k+1)) = k + 1 as desired. We need to show that such a choice is
always possible for k < n. Assume conversely that

Av(k) +Bu ∈ V (k) for all u ∈ R
m.

In particular,
Av(k) ∈ V (k) (5.3)

and thus
im(B) ⊆ V (k). (5.4)

On the other hand, V (k) is A-invariant, because

AV (k) = span{Av(1), . . . , Av(k)}.

To see that Av(i) ∈ V (k), we use (5.3) for the case i = k, and for 1 ≤ i ≤ k − 1,
we have Av(i) = v(i+1) − Bu(i) ∈ V (k) due to (5.4). Thus V (k) is an A-invariant
subspace of Rn that contains the image of B. Thus V (k) contains the reachable
space of (A,B) which is the smallest such space. Since (A,B) is controllable, this
reachable space is all of Rn, and hence V (k) = R

n which implies that k = n. Thus
the construction works whenever k < n, and V (n) = span{v(1), . . . , v(n)} = R

n.

Now let F : Rn → R
m be such that Fv(i) = u(i) for i = 1, . . . , n− 1. Then

(A+ BF )v(i) = Av(i) +Bu(i) = v(i+1).

Since v(1) = b, this implies

v(i) = (A+ BF )i−1b for i = 1, . . . , n.

Thus the Kalman matrix of (A + BF, b) is K = [v(1), . . . , v(n)] which has rank n
by construction. 2
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5.3 Pole placement

In this section, we investigate the characteristic polynomial and the spectrum
of A + BF , where A,B are given, and F may be chosen. The goal is to place
the eigenvalues of A + BF in some desirable region of the complex plane (e.g.,
for obtaining asymptotic stability). This is known as pole placement (or: pole
shifting, pole assignment).

Definition 5.3 Let A ∈ R
n×n and B ∈ R

n×m be given. Let p ∈ R[s] be a monic
polynomial of degree n. We say that p is assignable to (A,B) if there exists a
matrix F ∈ R

m×n such that

χA+BF = p,

that is, the characteristic polynomial of A+ BF equals p.

Theorem 5.4 Let A ∈ R
n×n and B ∈ R

n×m. The matrix pair (A,B) is con-
trollable if and only if every monic polynomial of degree n can be assigned to
(A,B).

Remark 5.5 This means that if (A,B) is controllable, then the eigenvalues of
A+BF can be shifted, by choice of the feedback matrix F , to any desired location
in the complex plane. More precisely, let Λ ⊂ C be a non-empty set, with

λ ∈ Λ ⇒ λ ∈ Λ.

For λ ∈ Λ, let µ(λ) be a positive integer with
∑

λ∈Λ µ(λ) = n and µ(λ) = µ(λ).
Then there exists a matrix F such that

χA+BF (s) =
∏

λ∈Λ

(s− λ)µ(λ).

In particular, spec(A+ BF ) = Λ.

Recall that the Kalman controllability decomposition yields a factorization χA =
χA1

· χA3
, where χu := χA3

is the uncontrollable part of χA with respect to B. If
(A,B) is controllable, one puts A1 := A and χu := 1. Thus (A,B) is uncontrol-
lable if and only if the degree of χu is at least one.
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Proof: Since a similarity transform does not change the set of assignable poly-
nomials, we may assume, without loss of generality, that a Kalman controllability
decomposition has already been performed. Then

A+BF =

[
A1 A2

0 A3

]

+

[
B1

0

]
[
F1 F2

]
=

[
A1+B1F1 A2+B1F2

0 A3

]

(5.5)

and thus χA+BF = χA1+B1F1
· χA3

. This shows that χA+BF will always be a
multiple of the polynomial χu = χA3

. If (A,B) is not controllable, then χu is not
a constant, and thus not every polynomial can be assigned to (A,B).

Conversely, let (A,B) be controllable. Let p = sn + pn−1s
n−1 + . . . + p1s + p0

be given. We wish to construct F such that χA+BF = p. If we choose any
0 6= b ∈ im(B), then there exists F̃ such that (A+BF̃ , b) is controllable, according
to Heymann’s Lemma. Thus we can transform this matrix pair into controller
form, that is, there exists a non-singular matrix T such that

T−1(A+ BF̃ )T =








0 1
...

. . .

0 1
−a0 −a1 · · · −an−1








and T−1b =








0
...
0
1








where ai are the coefficients of χA+BF̃ . Now let

f =
[
a0 − p0 . . . an−1 − pn−1

]
∈ R

1×n.

Then

T−1(A+ BF̃ )T + T−1bf =








0 1
...

. . .

0 1
−p0 −p1 · · · −pn−1








and therefore

χA+BF̃+bfT−1 = sn + pn−1s
n−1 + . . .+ p1s+ p0 = p.

Finally, we use that b ∈ im(B), that is, b = Bv for some v ∈ R
m. Thus

A+ BF̃ + bfT−1 = A+ B(F̃ + vfT−1)

which yields the desired result putting F := F̃ + vfT−1. 2

As a direct consequence, we obtain the main theorem of this chapter.
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Theorem 5.6 (Pole shifting theorem) The polynomials that can be assigned
to (A,B) are precisely the ones of the form

p = p1 · χu

where χu is the uncontrollable part of χA with respect to B, and p1 is an arbitrary
monic polynomial of degree r = n− deg(χu).

Proof: It follows from (5.5) that

χA+BF = χA1+B1F1
· χu,

where A1 ∈ R
r×r and B1 ∈ R

r×m are the usual matrices from the Kalman control-
lability decomposition, and F = [F1, F2]. Thus any assignable polynomial must
be a multiple of χu. The first factor can be any monic polynomial of degree r,
because (A1, B1) is a controllable matrix pair. 2

Remark 5.7 The pole shifting theorem says that the uncontrollable modes of
(A,B) cannot be influenced by static state feedback, whereas the other eigenval-
ues of the system can be moved to any desired location in the complex plane.

5.4 Stabilization

For stabilization, we don’t require that the spectrum of A+BF should coincide
with some specific set of eigenvalues; we just want the eigenvalues to be contained
in some given region of the complex plane. We put

Cg = {λ ∈ C | Re(λ) < 0} or Cg = {λ ∈ C | |λ| < 1}

in the continuous or discrete case, respectively.

Definition 5.8 A matrix pair (A,B) is called stabilizable if there exists F such
that A+ BF is asymptotically stable, that is, spec(A+ BF ) ⊂ Cg.

Theorem 5.9 The following are equivalent:

1. (A,B) is stabilizable;
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2. (A,B) is asymptotically controllable to zero;

3. All uncontrollable modes of (A,B) lie in Cg;

4. Any eigenvalue λ of A which is not in Cg satisfies rank
[
λI − A B

]
= n.

Remark 5.10 Part of this theorem was already stated (without proof) in Sec-
tion 4.3.

Proof: Conditions 3 and 4 are logically equivalent.

For “1 ⇒ 2”, let F be such that A + BF is asymptotically stable. Put u = Fx,
then the closed loop system reads

ẋ = (A+ BF )x or σx = (A+ BF )x

respectively, and thus limt→∞ x(t) = 0 for all x(0) = x0. An explicit formula for
u is

u(t) = Fe(A+BF )tx0 or u(t) = F (A+ BF )tx0.

For “2 ⇒ 3”, we assume, without loss of generality, that a Kalman controllability
decomposition has already been performed. Then the system law reads

ẋ1 = A1x1 + A2x2 + B1u or σx1 = A1x1 + A2x2 + B1u
ẋ2 = A3x2 σx2 = A3x2.

By assumption, there exists, for any x(0) = x0, an input function u such that
limt→∞ x(t) = 0. Since x2(t) = eA3tx02 or x2(t) = At

3x02, this can only be true
if A3 is asymptotically stable, which means that all the uncontrollable modes of
(A,B) are asymptotically stable.

For “3 ⇒ 1”, choose a monic polynomial p1 of degree r = n − deg(χu) whose
zeros are all in Cg. By the pole shifting theorem, there exists F such that

χA+BF = p1 · χu.

By assumption, all zeros of χu lie in Cg. Hence, all eigenvalues of A + BF are
contained in Cg, that is, A+ BF is asymptotically stable. 2
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5.5 Feedback equivalence

Consider A ∈ R
n×n and B ∈ R

n×m, where (A,B) is a controllable matrix pair
and rank(B) = m ≤ n. Define the reachability spaces

R1 = im(B)

R2 = im[B,AB] = im(B) + Aim(B)
...

Rk = im[B,AB, . . . , Ak−1B] = im(B) + Aim(B) + . . .+ Ak−1im(B).

Clearly, we have R1 ⊆ R2 ⊆ . . . ⊆ R
n and, due to Hamilton-Cayley, Rn = Rn+l

for all l ≥ 0. Moreover, because of the assumption of controllability, we have
Rn = R

n. Define
di := dim(Ri)

for 1 ≤ i ≤ n. Then d1 ≤ d2 ≤ . . . ≤ dn and, according to our assumptions,

d1 = m and dn = n.

Next, we define a sequence of non-negative integers αi for 1 ≤ i ≤ n by setting

α1 := d1 and αi := di − di−1 for i > 1.

Lemma 5.11 We have m = α1 ≥ α2 ≥ . . . ≥ αn and
∑n

i=1 αi = dn = n.

Proof: Set R0 := {0} and d0 := 0. Then we have

αi = di − di−1 = dim(Ri)− dim(Ri−1) = dim(Ri/Ri−1)

for all 1 ≤ i ≤ n. Since Ri+1 = ARi + im(B), we obtain

αi+1 = dim(Ri+1/Ri) = dim( ARi+im(B)
ARi−1+im(B)

) ≤ dim( ARi

ARi−1

),

where we have used the dimension formula

dim(U+W
V+W

) = dim(U +W )− dim(V +W )

= dim(U)− dim(U ∩W )− dim(V ) + dim(V ∩W )

≤ dim(U)− dim(V ) = dim(U/V ),

which holds for any subspaces V ⊆ U and W of Rn. Thus

αi+1 ≤ dim( ARi

ARi−1

) ≤ dim(Ri/Ri−1) = αi,
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since

dim(AU
AV

) = dim(AU)− dim(AV )

= dim(U)− dim(U ∩ ker(A))− dim(V ) + dim(V ∩ ker(A))

≤ dim(U)− dim(V ) = dim(U/V )

holds for any subspaces V ⊆ U ⊆ R
n. Finally,

n∑

i=1

αi =
n∑

i=1

(di − di−1) = dn − d0 = dn = n.

2

Definition 5.12 The controllability indices κ1, . . . , κm of (A,B) are defined
by

κj := |{i | αi ≥ j}|.

Remark 5.13 The controllability index κ1 is characterized by

κ1 = |{i | αi ≥ 1}|.

Thus we have αi = 0 for all i > κ1. In other words, we have di = di−1 for all
i > κ1 and thus dκ1

= dκ1+l for all l ≥ 0. This shows that κ1 is the index at
which

{0} = R0 ⊆ R1 ⊆ R2 ⊆ . . . ⊆ R
n

becomes stationary, that is, Rκ1
= Rκ1+l for all l ≥ 0. Due to the assump-

tion of controllability, κ1 is therefore the smallest integer with Rκ1
= R

n. Still
equivalently, we have

κ1 = min{k | rank[B, . . . , Ak−1B] = n}.

Sometimes, κ1 is called “the” controllability index of (A,B).

Example 5.14 Let n = 5 and m = 3. Then there are two possibilities for
α = (α1, . . . , α5), d = (d1, . . . , d5), and κ = (κ1, κ2, κ3).

Case 1: α = (3, 2, 0, 0, 0), that is, d = (3, 5, 5, 5, 5). Then κ = (2, 2, 1).

Case 2: α = (3, 1, 1, 0, 0), that is, d = (3, 4, 5, 5, 5). Then κ = (3, 1, 1).

We note that the two outcomes for κ correspond to the two ways in which 5 can
be written as a sum of 3 positive integers (disregarding the order). This is due
to the following fact.

Lemma 5.15 We have κ1 ≥ . . . ≥ κm ≥ 1 and
∑m

j=1 κj = n.
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Proof: Since αi ≥ j implies αi ≥ j − 1, we clearly have κj ≤ κj−1. More
precisely,

κj−1 = κj + |{i | αi = j − 1}|.

By assumption, α1 = m. Hence κm ≥ 1. We have

m∑

j=1

κj =
m∑

j=1

|{i | αi ≥ j}| =
m∑

j=1

j · |{i | αi = j}| =
n∑

i=1

αi = n.

2

The importance of the controllability indices lies in the fact that they form a
complete set of invariants under an equivalence relation of state space systems
with the properties mentioned at the beginning of this section. This equivalence
relation will be introduced next. For this, let

S = {(A,B) ∈ R
n×n × R

n×m | (A,B) controllable and rank(B) = m}.

Definition 5.16 Two elements (A,B), (Ã, B̃) of S are called feedback equiv-
alent if there exist non-singular matrices T ∈ R

n×n and G ∈ R
m×m, and a matrix

F ∈ R
m×n such that

(Ã, B̃) = (T−1(A+ BF )T, T−1BG).

The obvious interpretation of feedback equivalence is that a state space system
ẋ = Ax + Bu is combined with a feedback law u = Fx + Gv, yielding ẋ =
(A+ BF )x+BGv, and transformed into

˙̃x = T−1(A+BF )T x̃+ T−1BGv = Ãx̃+ B̃v

via a similiarity transform (corresponding to the coordinate change x̃ = T−1x
in the state space). It is easy to check that feedback equivalence is indeed an
equivalence relation on S.

Now consider the columns of the Kalman controllability matrix from left to right:

K = [B,AB, . . . , An−1B].

When adding the block Ai−1B, the dimension of the column space of K increases
by αi. The number κm tells us how many times the dimension goes up by m.
Thus, the columns

b1, . . . , bm, . . . , A
κm−1b1, . . . , A

κm−1bm
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are all linearly independent. When adding the next κm−1−κm blocks, the dimen-
sion increases by m− 1. Thus, in AκmB, one column is superfluous (for spanning
the column space of K). Without loss of generality, assume that it is the column
Aκmbm (otherwise, permute the columns of B correspondingly). This means that
also this holds also in the remaining blocks, that is, the columns

b1, . . . , bm, . . . , A
κm−1b1, . . . , A

κm−1bm,
Aκmb1, . . . , A

κmbm−1, . . . , A
κm−1−1b1, . . . , A

κm−1−1bm−1

are linearly independent. Proceeding like this, we find that the following columns
of K must be linearly independent:

b1, . . . , bm, . . . , A
κm−1b1, . . . , A

κm−1bm,
Aκmb1, . . . , A

κmbm−1, . . . , A
κm−1−1b1, . . . , A

κm−1−1bm−1,
...

Aκ3b1, A
κ3b2, . . . , A

κ2−1b1, A
κ2−1b2,

Aκ2b1, . . . , A
κ1−1b1.

(5.6)

These are

mκm+(m−1)(κm−1−κm)+ . . .+2(κ2−κ3)+(κ1−κ2) =
m∑

j=1

j · |{i | αi = j}| = n

columns, in accordance with the assumption that K has rank n.

We conclude that we have (after a suitable permutation of the columns of B) for
all 1 ≤ j ≤ m

κj = min{k | Akbj ∈ im[B, . . . , Ak−1B,Akb1, . . . , A
kbj−1]}.

In particular, there exist coefficients λjk ∈ R such that

Aκj(bj −

j−1
∑

k=1

λjkbk) ∈ im[B, . . . , Aκj−1B].

Define b̃j := bj −
∑j−1

k=1 λjkbk. Due to the structure of this transformation of the
basis of im(B), the column vectors listed in (5.6) remain linearly independent if
each bj is replaced by b̃j. Thus we can drop the tildes, without loss of generality.

Lemma 5.17 Let b ∈ im(B) and let k ≥ 1 be the smallest integer such that

Akb ∈ im[B,AB, . . . , Ak−1B].

Then there exists F such that (A+BF )ib for 0 ≤ i ≤ k−1 are linearly independent
and (A+ BF )kb = 0.
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The proof uses an argument similar to Heymann’s Lemma and will be done as
an exercise.

Definition 5.18 A subspace V ⊆ R
n is called a controllability subspace of

(A,B) if there exist F and G (not necessarily invertible) such that

V = R(A+ BF,BG),

where R(A,B) := im[B,AB, . . . , An−1B].

Theorem 5.19 Let (A,B) ∈ S and let κj be the controllability indices of (A,B).
Then

R
n =

m⊕

j=1

Vj

where each Vj is a controllability subspace of (A,B) of dimension κj.

Proof: As we have seen, there exist bj ∈ im(B) such that

κj = min{k | Akbj ∈ im[B,AB, . . . , Ak−1B]}. (5.7)

Thus there exist Fj such that (A + BFj)
ibj for 0 ≤ i ≤ κj − 1 are linearly

independent and (A+ BFj)
κjbj = 0. Define

Vj := R(A+ BFj, bj).

Then Vj is a controllability subspace of (A,B) of dimension κj. We have

∑m

j=1 Vj = span{b1, . . . , (A+ BF1)
κ1−1b1, . . . , bm, . . . , (A+ BFm)

κm−1bm}

⊇ span{b1, . . . , A
κ1−1b1, . . . , bm, . . . , A

κm−1bm}.

However, the space on the right hand side is all of Rn due to (5.6). Thus a
dimensional argument shows that the sum must be direct. 2

Corollary 5.20 Let (A,B) ∈ S and let κj be its controllability indices. Then
(A,B) is feedback equivalent to a system of the form Ã = diag(A1, . . . , Am),
B̃ = diag(B1, . . . , Bm) with

Aj =








0 . . . . . . 0

1
. . .

...
. . . . . .

...
1 0







∈ R

κj×κj and Bj =








1
0
...
0







∈ R

κj .
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This is called the Brunovsky form of (A,B). Two matrix pairs (A,B), (Ã, B̃)
are feedback equivalent if and only if they have the same Brunovsky form, i.e.,
the same controllability indices.

Remark 5.21 The Brunovsky form generalizes the controllability form from
single- to multi-input systems, incorporating the effect of a feedback. There
exists also an alternative version with

Aj =








0 1
...

. . . . . .
...

. . . 1
0 . . . . . . 0







∈ R

κj×κj and Bj =








0
...
0
1







∈ R

κj

which corresponds to the controller form.

Proof: There exists an invertible matrix G such that the columns bj of BG
satisfy (5.7). Thus there exist Fj such that

R
n =

m⊕

j=1

Vj with Vj = R(A+ BFj, bj),

where (A+BFj)
ibj for 0 ≤ i ≤ κj−1 are linearly independent and (A+BFj)

κjbj =
0. Thus there exists F : Rn → R

m with F |Vj
= Fj|Vj

. Then

Vj = R(A+ BFj, bj) = R(A+BF, bj).

Let x
(j)
1 , . . . , x

(j)
κj be a basis of Vj, set Tj := [x

(j)
1 , . . . , x

(j)
κj ] ∈ R

n×κj , and T :=
[T1, . . . , Tm] ∈ R

n×n, which is clearly non-singular. Then

(A+ BF )T = (A+ BF )[T1, . . . , Tm] = [(A+ BF1)T1, . . . , (A+ BFm)Tm]

Since each Vj is (A+ BFj)-invariant, there exist matrices Aj such that

(A+ BF )T = [T1A1, . . . , TmAm] = Tdiag(A1, . . . , Am).

Since bj ∈ Vj, we have bj = TjBj for some Bj and thus

BG = Tdiag(B1, . . . , Bm).

Finally, using the special basis x
(j)
1 = bj, x

(j)
2 = (A + BFj)bj etc. of Vj, we find

that each bj is the first column of the corresponding Tj, that is,

bj = Tj








1
0
...
0
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and that (A + BF )x
(j)
k = (A + BFj)x

(j)
k = x

(j)
k+1 for 1 ≤ k ≤ κj − 1, whereas

(A+ BF )x
(j)
κj = 0, that is,

Aj =








0 . . . . . . 0

1
. . .

...
. . . . . .

...
1 0







.

2

5.6 Stabilization and feedback equivalence for

non-linear systems

Consider
ẋ(t) = F (x(t), u(t))

as in Section 4.5. Let x0 be an equilibrium of the system for the zero input
function, that is, F (x0, 0) = 0. One calls x0 a stable equilibrium (compare with
the end of Section 3.1) if

∀ε > 0∃δ > 0 : ‖x0 − x̃0‖ ≤ δ ⇒ ‖x(t)− x̃(t)‖ ≤ ε for all t > 0,

where x(t) = ϕ(t, 0, x0, 0) is the solution at time t of ẋ = F (x, u) with x(0) = x0
and u ≡ 0 (and thus x(t) = x0 for all t, since x0 is an equilibrium), and x̃(t) =
ϕ(t, 0, x̃0, 0). One calls x0 asymptotically stable if additionally, we have

∃γ > 0 : lim
t→∞

‖x(t)− x̃(t)‖ = 0 for all x̃0 with ‖x0 − x̃0‖ ≤ γ.

Let

A :=
∂F

∂x
(x0, 0) ∈ R

n×n.

An important stability criterion from classical ODE theory says that: If A is
asymptotically stable (i.e., all its eigenvalues have a negative real part), then
x0 is an asymptotically stable equilibrium (of the underlying non-linear system
ẋ = F (x, 0)). If A has an eigenvalue with positive real part, then x0 is an unstable
equilibrium.

The non-linear stabilization problem can be posed as follows: Find a C1-function
α : X → U such that with the feedback law u(t) = α(x(t)), the resulting closed
loop system

ẋ(t) = F (x(t), α(x(t)))

has x0 as an asymptotically stable equilibrium.
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Remark 5.22 To guarantee that x0, which is an equilibrium of ẋ = F (x, 0) by
assumption, becomes an equilibrium of ẋ = F (x, α(x)) as well, we admit only
feedback functions α with α(x0) = 0. Then F (x0, α(x0)) = F (x0, 0) = 0.

Definition 5.23 The non-linear system ẋ = F (x, u) is called stabilizable at
x0 if the stabilization problem is solvable.

Theorem 5.24 Consider ẋ = F (x, u) with F (x0, 0) = 0. Set

A =
∂F

∂x
(x0, 0) and B =

∂F

∂u
(x0, 0).

If (A,B) is a stabilizable matrix pair, then ẋ = F (x, u) is stabilizable at x0. If
(A,B) has an uncontrollable mode with positive real part, then ẋ = F (x, u) is
not stabilizable at x0.

Proof: Consider the closed loop system

ẋ = F (x, α(x))

with its equilibrium x0. Computing its linearization at x0, we get

Ã =
∂F

∂x
(x0, α(x0)) +

∂F

∂u
(x0, α(x0))

∂α

∂x
(x0) = A+ B

∂α

∂x
(x0).

If (A,B) is stabilizable, then there exists F1 such that A+BF1 is asymptotically
stable. Let α be such that

∂α

∂x
(x0) = F1

and α(x0) = 0. Such an α exists always, e.g., α(x) = F1(x− x0). Then α solves
the stabilization problem. On the other hand, if (A,B) has an uncontrollable
mode λ with positive real part, then this λ belongs to the spectrum of every
matrix of the form A+BF1, that is, Ã has an eigenvalue with positive real part
for every choice of F1 = ∂α

∂x
(x0). This shows that x0 is an unstable equilibrium

of ẋ = F (x, α(x)) for all admissible α, and thus the stabilization problem is not
solvable. 2

Remark 5.25 We have just seen that if the linearization at x0 is stabilizable,
then the non-linear system can be stabilized at x0. Moreover, the proof shows
that this can be done using an affine feedback law u(t) = F1(x(t)−x0), where F1

is chosen such that it stabilizes the linearization.
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Note that the theorem makes no statement in the case where all uncontrollable
modes of (A,B) have non-positive real part, but some of them lie on the imaginary
axis. This is due to the fact that the mentioned criterion from ODE theory does
also not work in this case.

Example 5.26 Consider the pendulum equations ẋ1 = x2, ẋ2 = sin(x1)+u with
its equilibrium x0 = [0, 0]T . The linearization is given by

A =

[
0 1
1 0

]

B =

[
0
1

]

.

Since spec(A) = {±1}, the equilibrium is unstable. However, the linearization is
controllable and thus stabilizable. Any F1 = [f1, f2] with f1 < −1 and f2 < 0
stabilizes (A,B). Thus any such u = F1x stabilizes also the non-linear pendulum.

Now consider a non-linear system of the form

ẋ(t) = f(x(t)) + g(x(t))u(t)

as in Theorem 4.32. Consider a feedback law

u = α(x) + β(x)v,

where α : X → R
m and β : X → R

m×m are smooth. Then the closed loop system
is

ẋ(t) = (f + gα)(x(t)) + (gβ)(x(t))v(t).

Of course, one would want the new input v to be recomputable from u, at least
locally, near some point x0 of interest, that is,

det(β(x0)) 6= 0.

(This corresponds to “G invertible” with linear feedback equivalence.) The role
of the linear transformation matrix T−1 is taken over by a non-linear state trans-
formation Φ : X → R

n that is smooth and locally invertible near x0, that is,
using the inverse function theorem,

det(∂Φ
∂x
(x0)) 6= 0.

The systems
ẋ = f(x) + g(x)u

and
ξ̇ = f̃(ξ) + g̃(ξ)v
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are called feedback equivalent at x0 if there exist maps α, β,Φ as described
above such that

f̃(ξ) =
∂Φ

∂x
(Φ−1(ξ))(f + gα)(Φ−1(ξ))

and

g̃(ξ) =
∂Φ

∂x
(Φ−1(ξ))(gβ)(Φ−1(ξ)).

Example 5.27 Consider

ẋ1 = cos(x3)x4

ẋ2 = sin(x3)x4

ẋ3 = u2

ẋ4 = u1

which is a variant of the model for driving a car discussed in Remark 4.31, with
the modification that u2 is the acceleration here, and not the velocity. Putting
ξ1 = x1, ξ2 = cos(x3)x4, ξ3 = x2, ξ4 = sin(x3)x4 (which is an admissible state
transformation at every x0 ∈ R

4 with x04 6= 0) and v1 = cos(x3)u1−x4 sin(x3)u2,
v2 = sin(x3)u1 + x4 cos(x3)u2 (which is also admissible at every x0 ∈ R

4 with
x04 6= 0), this system is feedback equivalent to

ξ̇1 = ξ2

ξ̇2 = v1

ξ̇3 = ξ4

ξ̇4 = v2

at every x0 ∈ R
4 with x04 6= 0. We notice that the new system is linear and in

Brunovsky form with controllability indices (2, 2).

Remark 5.28 The question under which conditions a non-linear control system
is (locally) feedback equivalent to a linear system is of fundamental importance in
non-linear control theory. It is well studied, and there is also a non-linear theory
of controllability indices etc.

5.7 Control as interconnection

Feedback control is based on the interconnection of systems: Given a dynamical
system (the “plant”), the goal of feedback control is to design another system (a
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“controller”), in a way that the interconnection of the two systems has certain
desired properties. As an example, consider a plant given in classical state space
form

ẋ = Ax+ Bu

and let the controller be specified by the feedback law u = Fx + v. Then the
interconnection (the “closed loop” system) is

ẋ = (A+ BF )x+ Bv. (5.8)

A typical aim of the controller design in this setting is spectral assignment, that
is, a condition is given on the desired location of the eigenvalues of A+BF . Note
that interconnection means nothing but combining the equations that determine
plant and controller, respectively, and to look at their common solutions. For
instance, combining the plant given by

[
d
dt
I − A −B 0

]





x
u
v



 = 0

with the controller given by

[
F −I I

]





x
u
v



 = 0

yields the interconnected system





d
dt
I − A −B 0

F −I I









x
u
v



 =

[
0
0

]

from which we may eliminate u to get (5.8). It is worth noting that this inter-
connection is regular in a sense to be defined below.

The behavioral approach to systems theory provides an elegant framework for
dealing with such, and more general, interconnection problems. Suppose that
the plant is given by R1(

d
dt
)w = 0. Similarly, let the controller be determined by

R2(
d
dt
)w = 0. Then the interconnection is determined by the system law

[
R1

R2

]

( d
dt
)w = 0.

Let Bi be the plant and the controller,

Bi = {w ∈ Aq | Ri(
d
dt
)w = 0}
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respectively (i = 1, 2). Then their interconnection is defined as

B = B1 ∩ B2 = {w ∈ Aq | R( d
dt
)w = 0},

where

R =

[
R1

R2

]

.

The interconnection is said to be regular if

rank(R1) + rank(R2) = rank(R).

This means that the system laws of plant and controller are independent of each
other. Equivalently, the interconnection is regular if B1 + B2 = Aq.

Let B1 be a given plant, and let B be some desired behavior. The goal is to find
a controller B2 such that the interconnection of plant and controller equals this
desired behavior, i.e.,

B1 ∩ B2 = B.

Obviously, B ⊆ B1 is a necessary condition. If it is satisfied, we say that B is
a subsystem of B1. Then the problem is always solvable, because there is the
trivial solution B2 = B. The question becomes more interesting if we require the
interconnection to be regular. Then we say that B can be achieved from B1

by regular interconnection.

Theorem 5.29 Let B1 be controllable. Then every subsystem of B1 can be
achieved from B1 by regular interconnection.

Proof: We have seen in the proof of Theorem 4.25 that a controllable behavior
B1 is isomorphic to {0}×Am, where m is the number of inputs of B1. Therefore,
there exists a behavior B′

1 such that B1 ⊕ B′
1 = Aq. Now let B ⊆ B1 be given.

We set B2 := B + B′
1. Then

B1 ∩ B2 = B1 ∩ (B + B′
1) = B.

To see the last equality, note that the inclusion “⊇” is obvious, since B is con-
tained both in B1 and in B + B′

1. For the converse inclusion, let w1 ∈ B1

have a decomposition w1 = w + w′
1 with w ∈ B ⊆ B1 and w′

1 ∈ B′
1. Then

w′
1 = w1 −w ∈ B1 ∩B′

1 = {0}. Thus w′
1 = 0 and w1 = w ∈ B as desired. Finally,

B1 + B2 = B1 + B + B′
1 = Aq

from which it follows that the interconnection is regular. 2
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Series connection: Let Pi(
d
dt
)yi = Qi(

d
dt
)ui, where i = 1, 2, be two input-

output representations. The series connection is defined by taking the output of
the first system as the input of the second system. Of course, this is only possible
if the dimensions match, that is, p1 = m2, which we assume. We set u = u1,
y1 = u2, and y = y2. The interconnection is therefore described by

[
−Q1 P1 0
0 −Q2 P2

]




u
y1
y



 = 0.

Since Pi are both square and non-singular, this is a regular interconnection.

Parallel connection: Let Pi(
d
dt
)yi = Qi(

d
dt
)ui, where i = 1, 2, be two input-

output representations. The parallel connection is defined by giving the same
input to both systems, and by summing the outputs. This is only possible if
m := m1 = m2 and p := p1 = p2. We put u = u1 = u2 and y = y1 + y2. The
interconnection is given by





−Q1 P1 0 0
−Q2 0 P2 0
0 I I −I











u
y1
y2
y






= 0,

which is actually a regular interconnection of three systems (the two given systems
and the summing system).

Feedback connection: Let Pi(
d
dt
)yi = Qi(

d
dt
)ui, where i = 1, 2, be two input-

output representations. The feedback connection is defined by taking the output
of the first system as the input of the second, and vice versa, that is, y1 = u2 and
y2 = u1. The connection is given by

[
P1 −Q1

−Q2 P2

] [
y1
y2

]

= 0.

This interconnection is not necessarily regular. It becomes regular if we modify
the equation u1 = y2, using a new input v, say u1 = y2 + v.

The three standard interconnections are illustrated in the following figure.

e
e

- - - -

-

-

-

-

-

- -

��

- -

u yy1=u2 u y

y1

y2

u1=u

u2=u

u1 y1

y2

v y1

u2



Chapter 6

Observability

6.1 Basic notions for state space systems

Consider the state space equations

ẋ = Ax+ Bu or σx = Ax+ Bu
y = Cx+Du y = Cx+Du,

where A ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n and D ∈ R

p×m. Let X = R
n and Y = R

p.

The state transition map

ϕ : {(t, t0) ∈ T 2 | t ≥ t0} ×X × U → X, (t, t0, x0, u) 7→ ϕ(t, t0, x0, u)

gives the state at time t if the state at time t0 was x0 and the control function u
was applied. We define the state-to-output map

η : {(t, t0) ∈ T 2 | t ≥ t0} ×X × U → Y, (t, t0, x0, u) 7→ η(t, t0, x0, u)

as the map which gives the output at time t if the state at time t0 was x0 and
the control function was u. For state space systems, we have η(t, t0, x0, u) =
Cϕ(t, t0, x0, u) +Du(t), and thus

η(t, t0, x0, u) = CeA(t−t0)x0 +

∫ t

t0

CeA(t−τ)Bu(τ)dτ +Du(t) (6.1)

and

η(t, t0, x0, u) = CAt−t0x0 +
t−1∑

i=t0

CAt−i−1Bu(i) +Du(t). (6.2)

113
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The state-to-output map is causal, i.e., if u1 and u2 coincide for all t0 ≤ t ≤ t1,
then

η(t1, t0, x, u1) = η(t1, t0, x, u2)

for all x. We say that it is strictly causal if this is already implied by u1(t) =
u2(t) for t0 ≤ t < t1. In a state space system, strict causality holds if and only if
D = 0. Due to linearity, we have

η(t, t0, λ1x1 + λ2x2, λ1u1 + λ2u2) = λ1η(t, t0, x1, u1) + λ2η(t, t0, x2, u2)

for all t ≥ t0, λi ∈ R, xi ∈ X, ui ∈ U .

Observability is concerned with the following problem. Usually, we only know
the system’s manifest variables (in a state space system, the manifest variables
are input and output): The input is free and can be chosen by the control en-
gineer, and the output is the system’s response which can be measured. The
latent variables (in a state space system, the latent variable is the state) are not
directly measurable, in general. Remember that they are usually auxiliary vari-
ables introduced during modelling, or simply for mathematical convenience, e.g.,
for reducing a system to first order. Hence the physical meaning of the latent
variables may be obscure. The following question arises: If we know the mani-
fest variables of a system, what can we conclude about the latent variables? An
observable system is one in which the latent variables can be reconstructed from
the manifest variables. Due to the property of state, we only need to reconstruct
the state at a specific time t0, then we know it everywhere in the “future”, i.e.,
for t ≥ t0.

Definition 6.1 Let t0 ∈ T be fixed. One says that the state x ∈ X

can be distinguished from state x
′ ∈ X in time τ ∈ T (τ ≥ 0) if there

exists u ∈ U and t0 ≤ t ≤ t0 + τ such that

η(t, t0, x, u) 6= η(t, t0, x
′, u);

then we also say that u distinguishes between x and x
′ in time τ .

can be distinguished from x
′ ∈ X if this holds for at least one τ ≥ 0.

We say that the system is

observable if for any x 6= x′ ∈ X, the state x can be distinguished from the
state x′.
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As usual, the starting time t0 is not important as long as we deal only with
time-invariant systems, and thus we put t0 = 0. Define the set

J (τ, x) := {x′ ∈ X | x′ is indistinguishable from x in time τ}

and let J (τ) := J (τ, 0) denote the set of states that are indistinguishable from
state 0 in time τ . We have

x ∈ J (τ) ⇔ η(t, 0, x, u) = η(t, 0, 0, u) for all 0 ≤ t ≤ τ, u ∈ U .

Because of linearity,

η(t, 0, x, u) = η(t, 0, x, 0) + η(t, 0, 0, u).

Therefore we have

x ∈ J (τ) ⇔ η(t, 0, x, 0) = 0 for all 0 ≤ t ≤ τ.

Finally,

J :=
⋂

τ≥0

J (τ)

is the set of states that are indistinguishable from state 0. We have

x ∈ J ⇔ η(t, 0, x, 0) = 0 for all t ≥ 0.

Since η(t, 0, 0, 0) = 0 for all t ≥ 0, this means that x cannot be distinguished
from zero if and only if the zero input function does not distinguish between x
and 0. In other words: If x can be distinguished from 0 at all, then it can also
be distinguished from 0 by the zero input function. This shows that the choice
of the input function plays no role for the question of observability, i.e., we may
put u = 0 without loss of generality in most of this chapter.

Theorem 6.2 Let s, t ∈ T , 0 ≤ s ≤ t. We have

1. J (t) ⊆ J (s);

2. J (t), J are subspaces of X = R
n;

3. There exists τ ∗ ∈ T , τ ∗ ≥ 0 such that

J = J (τ) for all τ ≥ τ ∗.
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Corollary 6.3 In discrete time,

J (n− 1) = J ,

where n is the dimension of the state space. In continuous time,

J (ε) = J

for every ε > 0.

Corollary 6.4 The following are equivalent:

1. The system is observable;

2. Any non-zero state can be distinguished from zero, that is, J = {0}.

We define the observability Gramians

W (t) =

∫ t

0

eA
T τCTCeAτdτ or W (t) =

t∑

i=0

(AT )iCTCAi ∈ R
n×n

and the Kalman observability matrix

O =










C
CA
CA2

...
CAn−1










∈ R
np×n.

Theorem 6.5 Consider ẋ = Ax or σx = Ax, y = Cx. In continuous time, let
τ ∗ = ε > 0 be arbitrary. In discrete time, let τ ∗ = n−1, where n is the dimension
of the state space. We have

J = J (τ ∗) = ker(W (τ ∗)) = ker(O).

Therefore, the following are equivalent:

1. ẋ = Ax or σx = Ax, y = Cx is observable;

2. W (τ ∗) is non-singular;

3. O has full column rank.
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Moreover in that case, we have the reconstruction formulas

x(0) = W (τ ∗)−1

∫ τ∗

0

eA
T tCTy(t)dt or x(0) = W (τ ∗)−1

τ∗∑

i=0

(AT )iCTy(i).

Since W (τ ∗) is always positive semi-definite due to its form, condition 2 from
above is also equivalent to: W (τ ∗) > 0.

6.2 Observable matrix pairs

Let A ∈ R
n×n and C ∈ R

p×n. We say that the matrix pair (A,C) is observable
if the associated Kalman observability matrix

O =








C
CA
...

CAn−1








has full column rank, that is, rank(O) = n.

If a state space system ẋ = Ax + Bu, y = Cx + Du is subject to a coordinate
transform x = Tz, where T ∈ R

n×n is invertible, then we get

ż = T−1ATz + T−1Bu

y = CTz +Du.

Discrete systems behave analogously. We say that the matrix pair (T−1AT,CT )
is similar to the matrix pair (A,C). A coordinate transform does not change
structural system properties such as stability and observability.

The following result is limited to the single-output case, that is, p = 1. Then C
is a single row vector. In that case, we simply write c instead of C. The associated
Kalman observability matrix is then a square matrix.

Theorem 6.6 Let A ∈ R
n×n and c ∈ R

1×n, and let (A, c) be an observable
matrix pair. Then there exists an invertible matrix T ∈ R

n×n such that

Ã := T−1AT =








0 · · · 0 −a0
1 −a1

. . .
...

1 −an−1








and c̃ := cT =
[
0 · · · 0 1

]
.
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The numbers ai are precisely the coefficients of the characteristic polynomial,
that is,

χA(s) = χT−1AT (s) = sn + an−1s
n−1 + . . .+ a1s+ a0.

This is called the observer form of (A, c). Moreover, there exists an invertible
matrix T1 ∈ R

n×n such that

T−1
1 AT1 =








0 1
...

. . .

0 1
−a0 −a1 · · · −an−1








and cT1 =
[
1 0 · · · 0

]
.

This is called the observability form of (A, c). The coefficients ai are the same
as with the observer form.

If a scalar input-output representation

y(n) + an−1y
(n−1) + . . .+ a1ẏ + a0y = u

is reduced to first order in the usual way, i.e., via putting x = [y, ẏ, . . . , y(n−1)]T

and y = [1, 0, . . . , 0]x, then the resulting state space system is precisely in ob-
servability form.

We return to the general multi-output case, and we give another result about
transforming a given matrix pair into some special form via a similarity transform.

Theorem 6.7 (Kalman observability decomposition) Let A ∈ R
n×n and

C ∈ R
p×n. Let O be the associated Kalman observability matrix and let r :=

rank(O). Then there exists an invertible matrix T ∈ R
n×n such that

Ã := T−1AT =

[
A1 0
A2 A3

]

and C̃ := CT =
[
C1 0

]

where A1 ∈ R
r×r, C1 ∈ R

p×r is an observable matrix pair.

Remark 6.8 The theorem says that via a suitable coordinate transform, namely
x = Tz, the given system ẋ = Ax, y = Cx can be put into the form

ż1 = A1z1

ż2 = A2z1 + A3z2

y = C1z1



6.2. OBSERVABLE MATRIX PAIRS 119

where (A1, C1) is observable. The state z2 is certainly not observable (the out-
put does not depend on z2 at all, hence there is no chance of reconstructing
z2 by measuring y). On the other hand, since (A1, C1) is observable, z1(0) is
reconstructible. Thus

{z ∈ R
n | z cannot be distinguished from 0} = {0} × R

n−r.

This can be used to determine the indistinguishable space of the original system,
because

{x ∈ R
n | x cannot be distinguished from 0} = T ({0} × R

n−r).

Note that if the original (A,C) is observable, then r = n, and the Kalman
observability decomposition becomes trivial. Thus the interesting case arises
when (A,C) itself is not observable.

Remark 6.9 In a Kalman observability decomposition, we clearly have

χA = χA1
· χA3

and thus
spec(A) = spec(A1) ∪ spec(A3).

One calls χA3
the unobservable part of the characteristic polynomial of A with

respect to C, and λ ∈ spec(A3) an unobservable mode of (A,C).

There is also a direct way to characterize the unobservable modes of a matrix
pair.

Theorem 6.10 Let A ∈ R
n×n, C ∈ R

p×n, and λ ∈ C. The following are equiva-
lent:

1. λ is an unobservable mode of (A,C);

2. rank

[
λI − A
C

]

< n.

As a direct consequence of this, we obtain another characterization of observable
matrix pairs.

Corollary 6.11 (Hautus test for observability) The following are equiva-
lent:
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1. (A,C) is observable.

2. The matrix H(λ) =

[
λI − A
C

]

has full column rank for all λ ∈ C.

The polynomial matrix H =

[
sI − A
C

]

∈ R[s](n+p)×n is called Hautus observ-

ability matrix. It suffices to check condition 2 from above for λ ∈ spec(A).

Remark 6.12 Observability is a generic property, that is, if a matrix pair
(A,C) is chosen “at random”, then it is very likely to be an observable one.
More precisely, the set of observable matrix pairs (A,C) is open and dense in the
set Rn×n × R

p×n.

6.3 Asymptotic observability

Observability means

x ∈ J ⇒ x = 0.

An alternative formulation is

η(t, 0, x, 0) = 0 for all t ≥ 0 ⇒ ϕ(t, 0, x, 0) = 0 for all t ≥ 0.

For asymptotic observability, one is satisfied if this is true in the limit as t→ ∞.

Definition 6.13 We say that a state space system ẋ = Ax or σx = Ax, y = Cx,
is asymptotically observable if η(t, 0, x, 0) = 0 for all t ≥ 0 implies that

lim
t→∞

ϕ(t, 0, x, 0) = 0.

Clearly, observability implies asymptotic observability.

Theorem 6.14 A state space system is asymptotically observable if and only
if its unobservable modes λ are asymptotically stable, that is, Re(λ) < 0 in
continuous time, and |λ| < 1 in discrete time.
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6.4 Observable latent variable descriptions

The Hautus test gives us an idea about how to generalize the notion of observ-
ability from state space systems ẋ = Ax+ Bu, y = Cx+Du to general systems
R( d

dt
)w = M( d

dt
)l where R ∈ R[s]p×q, M ∈ R[s]p×r and w ∈ Aq, l ∈ Ar. In a

state space system,

R =

[
B 0

−D I

]

, M =

[
sI − A
C

]

and w =

[
u
y

]

, l = x.

The polynomial matrix M is recognized as the Hautus observability matrix.

In this section, we restrict to continuous systems, and we return to our original
signal spaces, that is, A = D′(T ), where T = R,R+.

Definition 6.15 We say that the latent variables l can be observed from the
manifest variables w if l is uniquely determined by w, which means that w1 = w2

implies that l1 = l2.

Theorem 6.16 (Generalized Hautus test) Let A = D′(T ) for T = R or R+

and let M ∈ R[s]p×r. Without loss of generality, let M have full column rank.
Then the latent variable description of

B = {w ∈ Aq | ∃l ∈ Ar : R( d
dt
)w =M( d

dt
)l}

is observable if and only if rank(M(λ)) = r for all λ ∈ C. In this case, one calls
the matrix M right prime (or: right irreducible).

Remark 6.17 In Theorem 4.26, the notion of left primeness was characterized.
The connection with right primeness is easy: A matrix is right prime if and only
if its transpose is left prime.

If M does not have full column rank, we can write (up to a permutation of
columns) M = [M1,M2], where M1 has full column rank, and M2 = M1X for
some rational matrix X. Then X = N

d
for some polynomial matrix N and some

0 6= d ∈ R[s]. By the elimination of latent variables, we have ∀l2∃l̃2 : d(
d
dt
)l̃2 = l2.

Thus

M( d
dt
)l =M1(

d
dt
)l1+M2(

d
dt
)l2 =M1(

d
dt
)l1+M2(

d
dt
)d( d

dt
)l̃2 =M1(

d
dt
)(l1+N( d

dt
)l2).

This shows that we way assume w.l.o.g. that M has full column rank.
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Proof: We need to show that the right primeness of M is equivalent to

Bunobs := {l ∈ Ar | M( d
dt
)l = 0} = {0}.

If M is right prime, there exists a polynomial matrix S such that SM = I. Then

M( d
dt
)l = 0 ⇒ S( d

dt
)M( d

dt
)l = 0 ⇒ l = 0

and thus Bunobs = {0} as desired. Conversely, if M is not right prime, then
there exists λ ∈ C and 0 6= z ∈ C

r such that M(λ)z = 0. Set l(t) := Re(eλtz).
Then (M( d

dt
)l)(t) = Re(M(λ)eλtz) = 0. We have l ∈ C∞(T )r ⊂ Ar, and thus

0 6= l ∈ Bunobs. 2

6.5 Non-linear systems and zero-input observ-

ability

Consider a non-linear system

ẋ = F (x, u)

y = H(x)

where F : X × U → R
n and H : X → R

p are continuously differentiable, and
X,U are open subsets of Rn and R

m, respectively. As usual, let ϕ(t, t0, x0, u)
denote the state transition map. Additionally, let η(t, t0, x0, u) denote the output
at time t when the state at time t0 was x0 and the input function was u. Let t0
be fixed. Just like in the linear case, we say that x ∈ X can be distinguished
from x

′ ∈ X in time τ ≥ 0 if there exists an input function u and some
t0 ≤ t ≤ t0 + τ such that

η(t, t0, x, u) 6= η(t, t0, x
′, u).

Then we say that u distinguishes between x and x
′ in time τ . Also, we say

that x can be distinguished from x
′ if it can be distinguished in some finite

time. The definitions

J (τ, x) := {x′ ∈ X | x′ is indistinguishable from x in time τ}

and
J (x) :=

⋂

τ≥0

J (τ, x) = {x′ ∈ X | x′ is indistinguishable from x}

are just like in the linear setting (since there is no vector space structure, the
state x = 0 does not play any special role).
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The system is said to be globally observable if any x 6= x′ ∈ X can be dis-
tinguished, that is, J (x) = {x} for all x ∈ X. Just as with reachability, global
notions are typically too strong requirements for non-linear system. Therefore,
we say that the system is locally observable at x0 if there exists an open neigh-
borhood X0 of x0 such that any x, x′ ∈ X0 with x 6= x′ can be distinguished.

Unlike the linear case, it is restrictive to consider only the zero-input case. How-
ever, it suffices for our purposes, and thus we consider

ẋ = F (x)

y = H(x)

in the following. We will write ϕ(t, x) for the state at time t when starting in
x(0) = x and η(t, x) = H(ϕ(t, x)) for the output at time t when starting in
x(0) = x.

Let x0 be an equilibrium of the system, that is, F (x0) = 0. Setting

A :=
∂F

∂x
(x0) and C :=

∂H

∂x
(x0),

we get the linearization at x0, which is given by

˙̃x = Ax̃

ỹ = Cx̃,

where x̃ = x− x0 and ỹ = y − y0 for y0 := H(x0).

Theorem 6.18 Consider ẋ(t) = F (x(t)), y(t) = H(x(t)) with F (x0) = 0. Define
A and C as above. If (A,C) is an observable matrix pair, then for all t1 > 0,
there exists an open neighborhood X0 of x0 such that J (x, t1)∩X0 = {x} for all
x ∈ X0.

In words: If the linearization at x0 is observable, then the non-linear system is
locally observable at x0. Moreover, we have local observability in arbitrarily small
time.

Outline of proof: Let t1 > 0 be given. Consider

L : X → Y := C0([0, t1],R
p), ξ 7→ η(·, ξ),



124 CHAPTER 6. OBSERVABILITY

that is, L(ξ)(t) = η(t, ξ) = H(ϕ(t, ξ)). Then

∂L

∂ξ
(ξ)(t) =

∂H

∂x
(ϕ(t, ξ))

∂ϕ

∂ξ
(t, ξ).

Fact from ODE theory: the matrix-valued function

G(t) :=
∂ϕ

∂ξ
(t, ξ0)

satisfies

Ġ(t) =
∂F

∂x
(ϕ(t, ξ0))G(t)

and G(0) = I. If ξ0 = x0, this simplifies to (since x0 is an equilibrium)

Ġ(t) = AG(t)

and G(0) = I, which clearly implies that G(t) = eAt.

Thus (plugging in ξ0 = x0)

∂L

∂ξ
(x0) = CeA· ∈ Y1×n.

We can interpret this as the linearization of L at x0,

∂L

∂ξ
(x0) : X → Y , x 7→ CeA·x.

By assumption, this linear map is injective (observability of (A,C) says that
CeAtx = 0 for all 0 ≤ t ≤ t1 implies that x = 0). The application of an
appropriate infinite-dimensional variant of the inverse function theorem (Y is a
Banach space) yields that L is injective on some neighborhood X0 of x0. 2

Another approach to non-linear observability assumes that F and H are even
smooth. Then both x(·) and y(·) are also smooth. Set t0 = 0. When we observe
the output y|[0,t1] for some t1 > 0 in order to reconstruct the initial state x(0) = x0,
we get also information about the derivatives of y at zero, for instance

y(0) = H(x0), ẏ(0) =
∂H

∂x
(x0)F (x0)

etc. So we may ask ourselves: Can x0 be reconstructed from the knowledge of
y(0), ẏ(0), ÿ(0), . . . ? To express the higher order derivatives of y along the system
in terms of F and H, the concept of Lie derivative is useful:

LFH :=
∂H

∂x
F =

n∑

i=1

∂H

∂xi
Fi
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is called the Lie derivative of H along F . This corresponds to differentiating
y = H(x) according to ẏ = ∂H

∂x
ẋ and to replace ẋ by F (x) according to our

differential equation. Then ẏ = LFH and iteratively,

y(k) = Lk
FH.

By the inverse function theorem, we have the following result.

Theorem 6.19 If there exists k ∈ N such that

∂Ψ

∂x
(x0)

has full column rank, where Ψ is defined by

Ψ : X → R
kp, x 7→








H
LFH
...

Lk−1
F H







(x),

then for all t1 > 0, the non-linear system is locally observable at x0 in time t1.

In particular, for ẋ = Ax, y = Cx we get Lk
FH(x) = CAkx and thus for k = n,

∂Ψ
∂x
(x0) is precisely the Kalman observability matrix (independently of x0).

The second approach can also be applied to linear but time-varying systems

ẋ(t) = A(t)x(t)

y(t) = C(t)x(t),

where A : T → R
n×n and C : T → R

p×n are smooth. Considering y(0), ẏ(0), . . .,
we find the time-varying Kalman matrix

OT (t) = [CT , (AT + d
dt
)CT , (AT + d

dt
)2CT , . . .](t),

which coincides with
OT = [CT , ATCT , . . .]

in the case where A,C are constant (except for the fact that O(t) is an infinite
matrix, whereas the time-invariant O is finite due to Hamilton-Cayley).

Note that we use the transposed notation, since differential operators are tradi-
tionally written on the left of the function they are acting on.
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Theorem 6.20 Consider

ẋ(t) = A(t)x(t)

y(t) = C(t)x(t)

where A,C are smooth. If the time-varying Kalman observability matrix has
rank n for some t0 ∈ T , then the system is observable at time t0, that is, for all
x, x′ ∈ R

n and all ε > 0, we have

η(t, t0, x, 0) = η(t, t0, x
′, 0) for all t0 ≤ t ≤ t0 + ε ⇒ x = x′.

If A,C are even analytic, then the rank condition becomes necessary as well as
sufficient. Moreover in that case, there exists an open and dense subset T0 of T
such that for all t0 ∈ T0, it suffices to check the rank of the finite matrix

[CT , (AT + d
dt
)CT , . . . , (AT + d

dt
)n−1CT ](t0).

Of course, this theorem does also apply to

ẋ(t) = A(t)x(t) + B(t)u(t)

y(t) = C(t)x(t) +D(t)u(t),

because we only need linearity to reduce the observability problem (w.l.o.g.) to
the case where u = 0.



Chapter 7

Observers

7.1 State observers

Feedback control requires the knowledge of the state of the system. However,
the state is usually not directly measurable. In an observable system, it can
– in principle – be reconstructed from the inputs and outputs. However, the
reconstruction procedure is sensitive with respect to noisy data.

Observer design is an alternative approach. Its basic idea is to build another
system whose state converges to the state of the given system, independently of
the initial conditions. For a state space system (in this chapter, we put D = 0
for simplicity),

ẋ = Ax+Bu or σx = Ax+ Bu
y = Cx y = Cx

(7.1)

where A ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n, a state observer has the form (in

continuous time, the discrete case is analogous)

ż = Az + Bu+ Ld

ŷ = Cz

where L ∈ R
n×p. The signal d := ŷ − y is the difference between the observer

output ŷ and the output y of the original system. Thus, the observer is a state
space system with state z, inputs u and d, and output ŷ. Since A,B,C are the
same matrices as with the given system, the observer can be seen as a copy of
the original system, with the additional input d. The observer equations can be

127
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rewritten as
ż = (A+ LC)z + Bu− Ly
ŷ = Cz.

(7.2)

We say that the matrix pair (A + LC,C) results from (A,C) via the observer
gain matrix L. In this form, the observer has precisely the input and output
of the original system as its inputs. Thus it requires only the knowledge of the
manifest variables of the given system. One should think of an observer as a
signal processing algorithm rather than a physical system. Its goal is to produce
an estimate z of the unknown state x.

Consider the difference between the true state x and the observer state z. For
this, put e := z − x. Then (7.1) and (7.2) together imply that

ė = (A+ LC)e

and thus e(t) = e(A+LC)te(0). The goal of this chapter is to answer questions
like the detection problem: Given A,C, can we find L such that A + LC is
asymptotically stable? If yes, then the error signal e will tend to zero as t→ ∞,
for all e(0). Thus we have

lim
t→∞

‖z(t)− x(t)‖ = 0

for all z(0), x(0). This shows that the observer state z will asymptotically ap-
proach the true state x, and this will work even if the initial states are subject
to disturbance.

Lemma 7.1 The indistinguishable spaces of (7.1) and (7.2) coincide. In partic-
ular, (A+ LC,C) is observable if and only if (A,C) is observable.

7.2 Pole placement

In this section, we investigate the characteristic polynomial and the spectrum of
A + LC, where A,C are given, and L may be chosen. The goal is to place the
eigenvalues of A+ LC in some desirable region of the complex plane.

Definition 7.2 Let A ∈ R
n×n and C ∈ R

p×n be given. Let p be a monic
polynomial of degree n. We say that p is assignable to (A,C) if there exists a
matrix L ∈ R

n×p such that χA+LC = p.
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Theorem 7.3 Let A ∈ R
n×n and C ∈ R

p×n. The matrix pair (A,C) is ob-
servable if and only if every monic polynomial of degree n can be assigned to
(A,C).

Theorem 7.4 (Pole shifting theorem) The polynomials that can be assigned
to (A,C) are precisely the ones of the form

p = p1 · χu

where χu is the unobservable part of χA with respect to C, and p1 is an arbitrary
monic polynomial of degree r = n− deg(χu).

7.3 Detection

For detection, we don’t require that the spectrum of A+LC should coincide with
some specific set of eigenvalues; we just want the eigenvalues to be contained in
some given region of the complex plane. We put

Cg = {λ ∈ C | Re(λ) < 0} or Cg = {λ ∈ C | |λ| < 1}

in the continuous or discrete case, respectively.

Definition 7.5 A matrix pair (A,C) is called detectable if there exists L such
that A+ LC is asymptotically stable, that is, spec(A+ LC) ⊂ Cg.

Theorem 7.6 The following are equivalent:

1. (A,C) is detectable;

2. (A,C) is asymptotically observable;

3. All unobservable modes of (A,C) lie in Cg;

4. Any eigenvalue λ of A which is not in Cg satisfies rank

[
λI − A
C

]

= n.

Remark 7.7 Part of this theorem was already stated in Section 6.3.
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7.4 Compensators

Finally, we combine feedback control with state observation. Consider the state
space system

ẋ = Ax+ Bu

y = Cx.

We wish to stabilize the system via a feedback u = Fx + v. However, since we
do not know x, we build an observer

ż = (A+ LC)z +Bu− Ly.

We take the observer state z instead of x in the feedback law and put

u = Fz + v.

Then we obtain the closed loop system

d
dt

[
x
z

]

=

[
A BF

−LC A+ LC + BF

] [
x
z

]

+

[
B
B

]

v.

If we can make this system asymptotically stable, the combination of feedback
and observer outlined above will work nicely.

Definition 7.8 We call (F,L) a compensator for (A,B,C) if

K :=

[
A BF

−LC A+ LC + BF

]

is asymptotically stable.

Theorem 7.9 The matrix pair (F,L) is a compensator for (A,B,C) if and only if
A+BF and A+LC are both asymptotically stable. Therefore, (A,B,C) possesses
a compensator if and only if (A,B) is stabilizable and (A,C) is detectable. If
we even have that (A,B) is controllable and (A,C) is observable, then for any
monic polynomial p of degree 2n, there exists (F,L) such that χK = p.

Proof: Let

T =

[
I 0
I I

]

.

Then

T−1KT =

[
A+ BF BF

0 A+ LC

]

and thus χK = χA+BF · χA+LC and spec(K) = spec(A+BF )∪ spec(A+LC). 2



Chapter 8

Transfer matrices

An input-output representation has the form

P ( d
dt
)y = Q( d

dt
)u or P (σ)y = Q(σ)u

where P ∈ R[s]p×p is non-singular, and Q ∈ R[s]p×m. The rational matrix

H := P−1Q ∈ R(s)p×m

is called transfer matrix (or: transfer function) of the input-output represen-
tation.

Lemma 8.1 The transfer matrix of a state space system is

H = C(sI − A)−1B +D. (8.1)

Proof: We need to eliminate the state from

ẋ = Ax+ Bu

y = Cx+Du

where A ∈ R
n×n, . . . , D ∈ R

p×m (the discrete case is analogous). Let U be a
unimodular matrix such that

U

[
sI − A
C

]

=

[
R1

0

]

(8.2)

where R1 ∈ R[s]n×n is non-singular (see Corollary 2.4). Then

∃x :

{
ẋ = Ax+ Bu
y = Cx+Du

131
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is equivalent to

∃x : U( d
dt
)

[
sI − A
C

]

( d
dt
)x =

[
R1

0

]

( d
dt
)x = U( d

dt
)

[
B 0

−D I

] [
u
y

]

.

According to the fundamental principle, this is also equivalent to

(U3B − U4D)( d
dt
)u+ U4(

d
dt
)y = 0 where U =

[
U1 U2

U3 U4

]

. (8.3)

The matrix [U3, U4] has full row rank p, and it follows from (8.2) that

U3(sI − A) + U4C = 0,

that is, U3 = −U4C(sI −A)−1 which shows that the columns of U3 are (rational)
linear combinations of the columns of U4. Therefore p = rank[U3, U4] = rank(U4).
We conclude that U4 ∈ R[s]p×p is non-singular. Thus (8.3) is an input-output
representation with transfer function

H = −U−1
4 (U3B − U4D) = −U−1

4 U3B +D.

Using U−1
4 U3 = −C(sI − A)−1, we have the desired result. 2

8.1 Realization theory

By the previous lemma, it is easy to computeH if A,B,C,D are known. However,
one often faces the inverse problem: Given H, find matrices A,B,C,D such that
(8.1) holds. This is known as the realization problem. If (8.1) is satisfied,
the matrix quadruple (A,B,C,D) is called a realization of H, and H is called
realizable if it possesses a realization.

We first observe that any H according to (8.1) will be a proper rational matrix,
that is, if we write H = N

d
, where N ∈ R[s]p×m is a polynomial matrix, and

0 6= d ∈ R[s] is a scalar polynomial, then

deg(Nij) ≤ deg(d) for all i, j. (8.4)

This follows from (sI − A)−1 = adj(sI−A)
det(sI−A)

using Cramer’s rule. In (8.4), strict
inequality holds for all i, j if and only if D = 0. In this case, one says that H
is strictly proper. It turns out that properness is not only necessary but also
sufficient for realizability.

Theorem 8.2 A rational matrix is realizable if and only if it is proper.
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Proof: Let H ∈ R(s)p×m be proper, then we can write H = D + H1 with
D ∈ R

p×m and H1 strictly proper. Thus H1 =
N
d
with

d = sν + dν−1s
ν−1 + . . .+ d1s+ d0 and N = Nν−1s

ν−1 + . . .+N1s+N0

for some ν = deg(d), di ∈ R, Ni ∈ R
p×m. Put n = νm and

A =








0 I
...

. . .

0 I
−d0I −d1I · · · −dν−1I







B =








0
...
0
I







C =

[
N0 · · · Nν−1

]

then (A,B,C,D) is a realization of H. To see this, note that

(sI − A)








I
sI
...

sν−1I







=










sI −I
0 sI −I
...

. . . . . .

0 sI −I
d0I d1I · · · · · · sI+dν−1I

















I
sI
...

sν−1I







=








0
...
0
dI








and hence 






I
sI
...

sν−1I







= (sI − A)−1








0
...
0
dI







= (sI − A)−1Bd.

Pre-multiplying this by C, we obtain

C








I
sI
...

sν−1I







= N = C(sI − A)−1Bd

which yields the desired result, after division by d. 2

Thus, any proper rational matrixH is realizable. Let (A,B,C,D) be a realization
of H, with A ∈ R

n×n. We call the number n the size of the realization. Of
course, it is desirable to have small realizations. We say that a realization of H is
minimal if there exists no realization of H with a smaller size. The subsequent
lemma gives an important relation between two realizations of a transfer function.

Lemma 8.3 If (A,B,C,D) and (Ã, B̃, C̃, D̃) are two realizations of the same
transfer matrix, then D = D̃ and

CAiB = C̃ÃiB̃

for all i ∈ N.
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Proof: If H = C(sI − A)−1B +D, then

lim
s→∞

H(s) = D.

This shows that we must have D = D̃. Moreover, we can expand H −D into a
Laurent series

H −D = C(sI − A)−1B =
∞∑

i=0

CAiBs−i−1

and this is convergent on |s| > ρ(A), where ρ(A) is the spectral radius of A.
Therefore, by comparing coefficients, CAiB = C̃ÃiB̃ for all i. 2

Now we can give a sufficient condition for minimality which will soon turn out
to be also necessary.

Lemma 8.4 Let (A,B,C,D) be such that (A,B) is controllable and (A,C) is
observable. Then (A,B,C,D) is a minimal realization of H = C(sI−A)−1B+D.

Remark 8.5 The proof of Lemma 8.4 uses Sylvester’s inequality: If O is a
real matrix with n columns, and K is a real matrix with n rows, then

rank(OK) ≥ rank(O) + rank(K)− n.

Proof: Suppose that (A,B,C,D) is a realization of H, with size n, in which
(A,B) is controllable and (A,C) is observable. Let (Ã, B̃, C̃, D̃) be another real-
ization of H, with size ñ. We need to prove that n ≤ ñ. Define

O =








C
CA
...

CAn−1








K =
[
B AB · · · An−1B

]

and

Õ =








C̃

C̃Ã
...

C̃Ãn−1








K̃ =
[

B̃ ÃB̃ · · · Ãn−1B̃
]
.

Note that whereas O,K are precisely the Kalman matrices associated to (A,B)
and (A,C), this is not true for Õ, K̃ (we have n instead of ñ in the highest power
of A). Then, because CAiB = C̃ÃiB̃ for all i,

OK = ÕK̃.
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We have
rank(K) ≥ rank(OK) ≥ rank(O) + rank(K)− n.

By assumption, K and O both have rank n. Therefore,

n = rank(OK) = rank(ÕK̃) ≤ rank(Õ) ≤ ñ

as desired. 2

Theorem 8.6 (Reduction to minimality) Let (A,B,C,D) be a realization
of H.

1. Consider a Kalman controllability decomposition

T−1AT =

[
A1 A2

0 A3

]

T−1B =

[
B1

0

]

CT =
[
C1 C2

]
.

ThenH = C(sI−A)−1B+D = C1(sI−A1)
−1B1+D, that is, (A1, B1, C1, D)

is another realization of H, with size r = rank(K), where K is the Kalman
controllability matrix.

2. Consider a Kalman observability decomposition

T−1AT =

[
A1 0
A2 A3

]

T−1B =

[
B1

B2

]

CT =
[
C1 0

]
.

ThenH = C(sI−A)−1B+D = C1(sI−A1)
−1B1+D, that is, (A1, B1, C1, D)

is another realization of H, with size r = rank(O), where O is the Kalman
observability matrix.

3. If the two reduction steps are done successively, one ends up with a minimal
realization of H.

Proof: One can easily check that a similarity transform does not change the
transfer function. Therefore, assume that a Kalman controllability decomposition
has already been performed. Then

H =
[
C1 C2

]
[
sI − A1 −A2

0 sI − A3

]−1 [
B1

0

]

+D

=
[
C1 C2

]
[
(sI − A1)

−1 ∗
0 (sI − A3)

−1

] [
B1

0

]

+D

=
[
C1 C2

]
[
(sI − A1)

−1B1

0

]

+D = C1(sI − A1)
−1B1 +D.
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The second statement is analogous. Recall that after a Kalman controllabil-
ity decomposition, the matrix pair (A1, B1) is controllable. Now if one per-
forms a Kalman observability decomposition with the already reduced system
(A1, B1, C1, D), then one obtains

T−1
1 A1T1 =

[
A11 0
A12 A13

]

T−1
1 B1 =

[
B11

B12

]

C1T1 =
[
C11 0

]

in which (A11, C11) is observable. We only need to convince ourselves that the
controllability of (A1, B1) implies the controllability of (A11, B11) (i.e., the con-
trollability established in the first reduction step is not destroyed by the second
reduction step in which we achieve observability). Therefore, the resulting real-
ization (A11, B11, C11, D) is both controllable and observable, and hence minimal
according to Lemma 8.4. 2

In particular, this theorem shows that if in a realization (A,B) is not controllable
or (A,C) is not observable, then the realization can be reduced in size. Moreover,
this can be done constructively, using a Kalman decomposition. In other words, a
minimal realization will always be both controllable and observable. Combining
this result with Lemma 8.4, we obtain the following theorem as a summary.

Theorem 8.7 The matrix quadruple (A,B,C,D) is a minimal realization of
H = C(sI−A)−1B+D if and only if (A,B) is controllable and (A,C) is observ-
able.

The next theorem says that minimal realizations are essentially unique (up to
similarity transforms).

Theorem 8.8 Any two minimal realizations of a transfer matrix are similar,
that is, if (A,B,C,D) and (Ã, B̃, C̃, D̃) are two minimal realizations of H, then
there exists a non-singular matrix T such that

Ã = T−1AT, B̃ = T−1B, C̃ = CT, D̃ = D.

Proof: Since both realizations are minimal, their size must be the same, that
is, n = ñ. Moreover, D = D̃, and CAiB = C̃ÃiB̃ for all i. Let O,K, Õ, K̃
be the observability and controllability matrices of the two realizations. Then
OK = ÕK̃ and

OAK = ÕÃK̃, OB = ÕB̃, CK = C̃K̃.
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By assumption, K̃ has full row rank, and Õ has full column rank. Therefore,
there exist matrices L,N such that

K̃L = I and NÕ = I.

Put T := KL ∈ R
n×n, then T−1 = NO, because

NOKL = NÕK̃L = I.

We have

T−1AT = NOAKL = NÕÃK̃L = Ã

T−1B = NOB = NÕB̃ = B̃

CT = CKL = C̃K̃L = C̃

which completes the proof. 2

Starting with an arbitrary realization of H, one can determine the size of a
minimal realization of H by successively computing two Kalman decompositions,
as outlined in Theorem 8.6. However, there is also a direct way to determine the
size of a minimal realization. This will be discussed in the next section.

8.2 Matrix fraction descriptions

Let H ∈ R(s)p×m be given. If H = P−1Q for some Q ∈ R[s]p×m, P ∈ R[s]p×p

with det(P ) 6= 0, we call (P,Q) a left factorization (or: left matrix fraction
description) of H.

Similarly, if H = QP−1 for some polynomial matrices Q ∈ R[s]p×m , P ∈ R[s]m×m

with det(P ) 6= 0, we call (Q,P ) a right factorization of H.

For example, we have already used the representation H = N
d
several times. In

other words, (dIp, N) is a left and (N, dIm) is a right factorization of H.

In the scalar case, it is desirable to write a rational function h ∈ R(s) as the
ratio (“fraction”) of two coprime polynomials. We wish to do the same with
polynomial matrices.

We say that a left factorization (P,Q) is left coprime if the matrix
[
P Q

]

is left irreducible (see Theorem 4.26). Similarly, a right factorization (Q,P ) is

called right coprime if the matrix

[
Q
P

]

is right irreducible, which means, by

definition, that its transpose is left irreducible.
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Lemma 8.9 1. Let (P,Q) be a left coprime factorization of H. The degree
of the determinant of P is independent of the specific choice of the coprime
factorization and therefore

d(H) := deg det(P ) (8.5)

is well-defined. If (P,Q) is an arbitrary (not necessarily coprime) left fac-
torization of H, then

d(H) ≤ deg det(P ).

2. Let (Q,P ) be a right coprime factorization of H. The degree of the determi-
nant of P is independent of the specific choice of the coprime factorization
and moreover,

d(H) = deg det(P )

where d(H) is the number defined in (8.5). If (Q,P ) is an arbitrary (not
necessarily coprime) right factorization of H, then

d(H) ≤ deg det(P ).

Remark 8.10 The degree of the determinant of the “denominator” matrix P
is as small as possible if the factorization is coprime. This generalizes the well
known fact that the degree of d is minimal if we write a scalar rational function
h = n

d
∈ R(s) as the ratio of two coprime polynomials. The choice of the coprime

factorization does not influence this minimal degree, it does not even matter
whether we take a right or left matrix fraction description.

In the proof, we use the formula
[
A B
C D

]

=

[
I 0

CA−1 I

] [
A 0
0 D − CA−1B

] [
I A−1B
0 I

]

which holds provided that A is invertible. Thus

det

[
A B
C D

]

= det(A) det(D − CA−1B).

This shows that the block matrix is invertible if and only if D − CA−1B is
invertible, and we have

[
A B
C D

]−1

=

[
I −A−1B
0 I

] [
A−1 0
0 (D − CA−1B)−1

] [
I 0

−CA−1 I

]

=

[
∗ ∗
∗ (D − CA−1B)−1

]

.

The matrix D − CA−1B is called Schur complement of A.
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Proof: 1. Let (P,Q) and (P1, Q1) be two left factorizations of H, that is,

H = P−1Q = P−1
1 Q1

which implies that Q1 = UQ and P1 = UP , where U := P1P
−1. We show that U

is polynomial if (P,Q) is left coprime; and even unimodular if both factorizations
are coprime. If (P,Q) is left coprime, then there exist, according to Theorem 4.26,
polynomial matrices R, S such that

PR +QS = I.

Then
P−1 = R + P−1QS = R +HS = R + P−1

1 Q1S

and thus U = P1P
−1 = P1R +Q1S. This shows that U is polynomial. Then

det(P1) = det(UP ) = det(U) det(P )

means that det(P ) divides det(P1), in particular,

deg det(P1) ≥ deg det(P ).

Similarly, if also (P1, Q1) is coprime, there exist polynomial matrices R1, S1 such
that P1R1 +Q1S1 = I and then

P−1
1 = R1 + P−1

1 Q1S1 = R1 +HS1 = R1 + P−1QS1

and thus U−1 = PP−1
1 = PR1 + QS1 which shows that U−1 is polynomial and

hence, U is unimodular. Thus we have

det(P1) = det(U) det(P )

where det(U) is a non-zero constant, and hence

deg det(P1) = deg det(P ).

2. In view of part 1, it suffices to show that if (P,Q) is a left coprime, and (Q1, P1)
is a right coprime factorization of H, then deg det(P ) = deg det(P1). We have
H = P−1Q = Q1P

−1
1 and thus

QP1 = PQ1.

There exist polynomial matrices R, S,R1, S1 such that

PR +QS = I and R1P1 + S1Q1 = I.

Thus [
P −Q
S1 R1

] [
R Q1

−S P1

]

=

[
I 0
X I

]
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where X = S1R−R1S. Post-multiplying this by
[

I 0
−X I

]

yields
[
P −Q
S1 R1

] [
R̃ Q1

−S̃ P1

]

=

[
I 0
0 I

]

.

This shows that the matrices are unimodular, and inverse to each other,

[
P −Q
S1 R1

]−1

=

[
R̃ Q1

−S̃ P1

]

.

Thus P−1
1 is the Schur complement of P and

det(P ) det(P−1
1 ) = det

[
P −Q
S1 R1

]

= c

where 0 6= c ∈ R. Thus det(P ) = c det(P1), in particular, deg det(P ) =
deg det(P1). 2

It turns out below that the integer d(H) from (8.5) equals the size of a minimal
realization of a proper rational matrix H. For the proof, we need the concept of
a row-reduced polynomial matrix.

Definition 8.11 The degree of a non-zero polynomial row vector is defined to be
the highest power of s appearing in it with a non-zero coefficient, and the degree
of the zero row is set to −∞. For a non-singular polynomial matrix P ∈ R[s]p×p,
let δi(P ) be the degree of the i-th row of P , for i = 1, . . . , p. Then P has a unique
representation

P = SPhr + L

where S = diag(sδ1(P ), . . . , sδp(P )), Phr ∈ R
p×p, and L ∈ R[s]p×p is such that

δi(L) < δi(P ). One calls Phr the highest row coefficient matrix. If Phr is
non-singular, we say that P is row-reduced (or row-proper). For R ∈ R[s]p×q

with full row rank, the highest row coefficient matrix Rhr ∈ R
p×q is defined

analogously, and R is called row-reduced if Rhr has full row rank.

Lemma 8.12 Let P ∈ R[s]p×p be non-singular.

1. We have
p

∑

i=1

δi(P ) ≥ deg det(P ).
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The matrix P is row-reduced if and only if

p
∑

i=1

δi(P ) = deg det(P ).

2. If H = P−1Q is strictly proper, then δi(Q) < δi(P ) for i = 1, . . . , p; if H
is proper, then δi(Q) ≤ δi(P ) for all i. The converse is also true, provided
that P is row-proper.

3. For every non-singular P ∈ R[s]p×p there exists a unimodular matrix U ∈
R[s]p×p such that UP is row-proper.

4. For every R ∈ R[s]p×q with full row rank, there exists a unimodular matrix
U ∈ R[s]p×p such that UR is row-proper.

Proof:

1. Rewrite P = SPhr+L as Phr = S−1P−S−1L. Consider the limit as s→ ∞.
Then we have, since lims→∞ S−1L = 0,

Phr = lim
s→∞

S−1P

and, putting δ(P ) :=
∑p

i=1 δi(P ),

det(Phr) = lim
s→∞

det(P )

sδ(P )
.

This shows that deg det(P ) ≤ δ(P ) and

det(Phr) = 0 ⇔ deg det(P ) < δ(P ).

2. Let H = P−1Q, then

Qij =

p
∑

k=1

PikHkj

and
Qij

sδi(P )
=

p
∑

k=1

Pik

sδi(P )
Hkj.

Consider again the limit as s → ∞. If H is strictly proper, the right hand
side tends to zero, and hence all the powers of s appearing in Qij must be
strictly less than δi(P ). Since this holds for all j, we obtain δi(Q) < δi(P ).
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For the converse, write P = SPhr + L, and assume that Phr is invertible.
Then

P−1Q = (SPhr + L)−1Q = (I + P−1
hr S

−1L)−1P−1
hr S

−1Q

and thus, since lims→∞ S−1L = 0 and lims→∞ S−1Q = 0, we have

lim
s→∞

P−1Q = 0,

that is, P−1Q is strictly proper. The argument for “proper” is similar.

3. If P is row-proper, we are finished. Therefore, assume otherwise, that is,
let det(Phr) = 0. We show that there exists a unimodular matrix U such
that

deg det(P ) = deg det(UP ) ≤

p
∑

j=1

δj(UP ) <

p
∑

j=1

δj(P ).

Iteratively, this yields the result. We write δj := δj(P ) for simplicity. Since
det(Phr) = 0, there exists 0 6= α = (α1, . . . , αp) ∈ R

1×p with

p
∑

j=1

αjP
(j)
hr = 0

where P
(j)
hr denotes the j-th row of Phr. Among the j with αj 6= 0, select j∗

with
δj∗ ≥ δj for all j with αj 6= 0.

Without loss of generality, let αj∗ = 1. Then we have

P
(j∗)
hr +

∑

j 6=j∗

αjP
(j)
hr = 0.

Now perform the elementary operation: P (j∗) plus
∑

j 6=j∗ αjs
δj∗−δjP (j). The

new matrix P ′ = UP satisfies δj∗(P
′) < δj∗(P ) and δj(P

′) = δj(P ) for all
j 6= j∗. This establishes the claim.

4. The final statement is analogous to the previous one. 2

Given a full-row-rank representation R of B, we can thus assume without loss
of generality that R is row-proper. Then Rhr has full row rank, and thus it
contains a sub-matrix that is square and invertible. If we choose an input-output
decomposition of B such that the output corresponds to such a choice of the
columns of R, then one can show that in the resulting representation (2.6), the
matrix N2 is invertible (recall that this assumption was needed to transform (2.6)
into state space form). This shows that any B = {w ∈ Aq | R( d

dt
)w = 0} admits

a partition of its signal components into inputs and outputs such that it has a
state space representation, in particular, the resulting transfer matrix is proper.
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Theorem 8.13 Let H be a proper rational matrix. The size of a minimal real-
ization of H is given by the integer d(H) from (8.5).

Proof: There is no loss of generality in assuming that H is strictly proper. Let
(A,B,C, 0) be a realization of H, that is,

H = C(sIn − A)−1B.

Define G := (sIn − A)−1B. Then (sIn − A,B) is a left factorization of G. Thus

deg det(sIn − A) = n ≥ d(G).

On the other hand, if (Q,P ) is a right factorization of G, that is, G = QP−1,
then H = CG = CQP−1, that is, (CQ,P ) is a right factorization of H. We
conclude that

d(G) ≥ d(H).

This shows that n ≥ d(H), that is, the size of any realization of H must be at
least d(H). Conversely, we show that a strictly proper H possesses a realization
of size d(H). Let H = P−1Q be a left coprime factorization. Without loss of
generality, let P be row-proper. Now consider the i-th row of P and Q, and
denote them by Pi and Qi, respectively. According to Theorem 2.22, there exist
matrices Ki, Lij ,Mi, Nij (j = 1, 2) such that

Pi(
d
dt
)y = Qi(

d
dt
)u ⇔ ∃x :

{
d
dt
xi = Kixi + Li1u+ Li2y
0 = Mixi +Ni1u+Ni2y.

Here Ki can be chosen to be a δi(P )× δi(P ) matrix. Combining these represen-
tations via

x =






x1
...
xp




 K =






K1

. . .

Kp




 Lj =






L1j
...
Lpj






M =






M1

. . .

Mp




 Nj =






N1j
...
Npj






we obtain

P ( d
dt
)y = Q( d

dt
)u ⇔ ∃x :

{
d
dt
x = Kx+ L1u+ L2y
0 = Mx+N1u+N2y

where the size of K is
∑p

i=1 δi(P ) = deg det(P ) = d(H). Moreover, N1 = 0
(because P−1Q is strictly proper) and N2 = Phr, which is invertible. Thus we
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can find, as in Section 2.7, matrices A,B,C,D, with A of the same size as K,
such that

P ( d
dt
)y = Q( d

dt
)u ⇔ ∃x :

{
d
dt
x = Ax+ Bu
y = Cx.

Then H = P−1Q = C(sI − A)−1B which shows that H has a realization of size
d(H). 2

Remark 8.14 In the final step of the proof, we have used the fact that equivalent
representations have the same transfer function. This statement has not been
proven. Alternatively, one may give a direct proof of

H = P−1Q = C(sI − A)−1B

using the special form of A,B,C that results from Section 2.7. The details are
omitted.

Theorem 8.15 (McMillan form) For each rational matrix H∈R(s)p×m there
exist unimodular matrices U ∈ R[s]p×p and V ∈ R[s]m×m such that

UHV =

[
D 0
0 0

]

(8.6)

where D ∈ R(s)r×r is a diagonal matrix

D =






γ1
δ1

. . .
γr
δr






with polynomials γi, δi 6= 0 such that each pair (γi, δi) is coprime and γ1| . . . |γr
and δr| . . . |δ1. Clearly, r = rank(H). The matrix on the right hand side of (8.6)
is called McMillan form of H and the integer

n :=
r∑

i=1

deg(δi)

is called McMillan-degree of H.

Theorem 8.16 The size of a minimal realization of H equals the McMillan-
degree of H.
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Proof: We show that d(H) from (8.5) coincides with the McMillan-degree of H.
Let

UHV =

[
D 0
0 0

]

be the McMillan form of H, with D = diag(γ1
δ1
, . . . , γr

δr
). Define

Γ =

[
diag(γ1, . . . , γr) 0

0 0

]

and ∆ =

[
diag(δ1, . . . , δr) 0

0 I

]

.

Then UHV = Γ∆−1, that is, (Γ,∆) is a right factorization of UHV . Since each
pair (γi, δi) is coprime, it is even a right coprime factorization of UHV . Then
(U−1Γ, V∆) is a right coprime factorization of H. Therefore

d(H) = deg det(V∆) = deg det(∆) = deg
r∏

i=1

δi =
r∑

i=1

deg(δi)

which is precisely the McMillan-degree of H. 2

8.3 Poles

A complex number λ is called a pole of a rational matrix H if it is a pole of one
of its entries. Equivalently, the poles of H are the zeros of the polynomials δi in
the McMillan form of H. Still equivalently, they are the zeros of det(P ), where
P is the denominator matrix in a coprime factorization of H.

Theorem 8.17 Let (A,B,C,D) be a realization of H. Any pole of H is an
eigenvalue of A. Conversely, an eigenvalue of A which is not a pole of H must
be an uncontrollable mode of (A,B) or an unobservable mode of (A,C). In
particular, if (A,B,C,D) is a minimal realization of H, then the eigenvalues of A
are precisely the poles of H.

Remark 8.18 This theorem shows that there is a close relation between the
eigenvalues of A and the poles of H = C(sI − A)−1B + D. This is the reason
why one speaks of “pole shifting” in Section 5.3, although “eigenvalue shifting”
would probably be more appropriate.
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Proof: Without loss of generality, let H be strictly proper. Since

H = C(sI − A)−1B =
Cadj(sI − A)B

det(sI − A)

any pole of H must be a zero of det(sI − A), that is, it must be an eigenvalue
of A. Now let λ be an eigenvalue of A which is not a pole of H. Assume that λ
is not an unobservable mode, that is,

rank

[
λI − A
C

]

= n. (8.7)

We need to show that λ is an uncontrollable mode. LetG = (sI−A)−1B = QP−1,
where (Q,P ) is right coprime. Then we have

BP = (sI − A)Q (8.8)

and H = CG = CQP−1, with

rank

[
CQ(λ)
P (λ)

]

= m. (8.9)

To see this, let v be such that CQ(λ)v = 0 and P (λ)v = 0. We need to show
that this implies v = 0. From (8.8),

0 = BP (λ)v = (λI − A)Q(λ)v

and thus [
λI − A
C

]

Q(λ)v = 0

which implies that Q(λ)v = 0 because of (8.7). But then both P (λ)v = 0 and
Q(λ)v = 0, which implies that v = 0 due to the right coprimeness of (Q,P ).

Now we must have det(P (λ)) 6= 0. If conversely, det(P (λ)) = 0, then there would
exist a v 6= 0 such that P (λ)v = 0. Since λ is not a pole of H, the complex matrix
H(λ) is well-defined, and thus

0 = H(λ)P (λ)v = CQ(λ)v

and this would be a contradiction to (8.9).

Since λ is an eigenvalue of A, there exists 0 6= z ∈ C
1×n such that z(λI −A) = 0.

Then (8.8) implies zBP (λ) = 0 and hence, since P (λ) is non-singular, we must
have zB = 0. Then

z
[
λI − A B

]
= 0

which shows that
rank

[
λI − A B

]
< n

that is, λ is an uncontrollable mode of (A,B). 2
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8.4 Zeros

A complex number λ is called a zero of a rational matrix H if it is not a pole
of H and

rank(H(λ)) < rank(H).

Equivalently, the zeros of H are the zeros of the polynomials γi in the McMillan
form of H provided that they are not also zeros of the δi. Equivalently, they are
the λ with rank(Q(λ)) < rank(Q) and det(P (λ)) 6= 0 in a coprime factorization
of H.

Let (A,B,C,D) be a realization of H. A complex number λ is called a zero of
(A,B,C,D) if

rank

[
A− λI B
C D

]

< rank

[
A− sI B
C D

]

.

Theorem 8.19 Let (A,B,C,D) be a realization of H. Any zero of H must be
a zero of (A,B,C,D). Conversely, a zero of (A,B,C,D) which is not a zero of
H must be a pole of H or an uncontrollable mode of (A,B) or an unobservable
mode of (A,C). In particular, let (A,B,C,D) be a minimal realization of H and
let λ be not a pole of H. Then λ is a zero of H if and only if it is a zero of
(A,B,C,D).

Proof: Over R(s), we have the Schur complement formula

[
A− sI B
C D

]

=

[
I 0

C(A− sI)−1 I

] [
A− sI 0

0 H

] [
I (A− sI)−1B
0 I

]

.

Thus we get

rank

[
A− sI B
C D

]

= rank(A− sI) + rank(H).

Without loss of generality, let (A,B,C,D) be such that

[
A− sI B
C D

]

=





A1 − sI A2 B1

0 A3 − sI 0
C1 C2 D



 ∼





A1 − sI B1 A2

C1 D C2

0 0 A3 − sI



 ,

where the equality comes from a Kalman decomposition, and ∼ denotes unimod-
ular equivalence of matrices. By construction, we have H = C(sI−A)−1B+D =



148 CHAPTER 8. TRANSFER MATRICES

C1(sI −A1)
−1B1 +D, and (A1, B1) is controllable. Let G := (sI −A1)

−1B1 and
let G = QP−1 be a right coprime factorization. Then we have

B1P = (sI − A1)Q, RP + SQ = I, (A1 − sI)R1 + B1S1 = I

for some polynomial matrices R, S,R1, S1. In matrix notation,

[
A1 − sI B1

S R

] [
R1 Q
S1 P

]

=

[
I 0
∗ I

]

which yields
[
A1 − sI B1

S R

] [
R̃1 Q

S̃1 P

]

=

[
I 0
0 I

]

,

similarly as in an earlier proof. We may conclude that the matrices on the left
hand side are unimodular. Since

[
A1 − sI B1

C1 D

] [
R̃1 Q

S̃1 P

]

=

[
I 0
∗ C1Q+DP

]

,

we get
[
A1 − sI B1

C1 D

]

∼

[
I 0
0 C1Q+DP

]

.

Coming back to the original state space system, we obtain

[
A− sI B
C D

]

∼





I 0 0
0 C1Q+DP ∗
0 0 A3 − sI



 .

Recalling that G = QP−1, we have H = C1G + D = (C1Q + DP )P−1. Hence
the zeros of H are zeros of C1Q+DP , which implies that they are also zeros of
(A,B,C,D).

Now let λ be a zero of (A,B,C,D).

Case 1: λ is an eigenvalue of A and neither uncontrollable nor unobservable.
Then λ is a pole of H.

Case 2: λ is an eigenvalue of A and uncontrollable or unobservable.

Case 3: λ is not an eigenvalue of A. Then it is not a pole of H and we may use the
Schur complement formula from above with s = λ. Noting that rank(A− λI) =
n = rank(A− sI), we see that rank(H(λ)) < rank(H). Thus λ is a zero of H. 2
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Remark 8.20 Interpretation of zeros: Assume that rank(H) = m. Then
[
A− sI B
C D

]

has full column rank. Thus λ is a zero of (A,B,C,D) if and only if there exists
(x0, u0) 6= (0, 0) such that

[
A− λI B
C D

] [
x0
u0

]

=

[
0
0

]

.

Then the input u(t) = u0e
λt and the initial condition x(0) = x0 lead to x(t) =

x0e
λt, and the corresponding output y(t) = Cx(t)+Du(t) is identically zero. (We

admit complex-valued signals, for simplicity; but the same argument holds for the
real parts of u, x, y.) Thus the system “annihilates” the input u of frequency λ,
and this is why λ can be seen as a zero of the system. If u0 = 0, then x0 6= 0
is indistinguishable from zero. In particular, any unobservable eigenvalue of A
w.r.t. C is a zero of (A,B,C,D).

A similar interpretation is possible for rank(H) = p. Then any uncontrollable
eigenvalue of A w.r.t. B is a zero of (A,B,C,D).

Example 8.21 Let

A =





1
1

2



 , B =





1
0
0



 , C =
[
1 1 1

]
, D = 1.

Then H = s
s−1

, which has a pole at 1 and a zero at 0. We have spec(A) = {1, 2}.
The eigenvalue 2 is not a pole, and indeed one can check that it is uncontrollable
(but not unobservable). Note that the eigenvalue 1 is both uncontrollable and
unobservable, but still a pole of H. The zeros of (A,B,C,D) are 0, 1, 2: 0 is a
zero ofH, 1 is a pole, and 2 is an uncontrollable eigenvalue. A minimal realization
of H is given by A1 = B1 = C1 = D = 1. Then 1 is the only eigenvalue of A1

and 0 is the only zero of (A1, B1, C1, D).

If we modify this example by taking A,B as above and

C ′ =

[
1 1 1
0 0 1

]

, D′ =

[
1
0

]

,

then we have

H ′ =

[
s

s−1

0

]

and (A,B,C ′, D′) has zeros at 0 and 1, but not at 2. This shows that an uncon-
trollable mode is not necessarily a zero of the realization if rank(H) < p.
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Remark 8.22 In the tutorial, we have seen that the series interconnection of
two state space systems is controllable if both systems are controllable and addi-
tionally, for all λ ∈ spec(A2), we have that

[
A1 − λI B1

C1 D1

]

has full row rank. This requirement amounts (more or less) to saying that no
pole of H2 should be a zero of H1 (to avoid cancellation effects). In terms of
the system trajectories, this means that no characteristic frequency of the second
system should be blocked by the first system. A similar fact can be shown for
H = H2H1 with H1 = P−1

1 Q1 and H2 = P−1
2 Q2 where the requirement was that

for all λ with det(P2(λ)) = 0, the matrix Q1(λ) has full row rank. Again, this can
be interpreted (roughly) as meaning that no pole of H2 should be a zero of H1.



Appendix A

Background material from
distribution theory

Let D denote the set of all smooth functions ϕ : R → R which have compact
support. Recall that

supp(ϕ) = cl{t ∈ R | ϕ(t) 6= 0},

where cl(·) denotes the closure with respect to the standard topology of R (where
the term “compact” coincides with “closed and bounded”). The elements of D
are called test functions. A distribution D is a linear, continuous (in a sense
not to be specified here) functional defined on D, that is, it assigns to each test
function ϕ a real number D(ϕ) such that D(λ1ϕ1 + λ2ϕ2) = λ1D(ϕ1) + λ2D(ϕ2)
for all λ1, λ2 ∈ R and all ϕ1, ϕ2 ∈ D. The set of all distributions is denoted by D′.
(We restrict to real-valued test functions and distributions, although the complex
case is analogous.)

A function f : R → R is called locally integrable if
∫

I

|f(t)|dt

exists for any compact interval I ⊂ R. Each locally integrable function f defines
a distribution Df by

Df (ϕ) :=

∫ ∞

−∞

f(t)ϕ(t)dt

for all ϕ ∈ D. We say that f generates the distribution Df . The distributions
Df , where f is locally integrable, are called regular, and one often identifies f
with Df , that is, we can interpret L1

loc, the set of locally integrable functions, as a
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subset of D′. Note that every continuous function is locally integrable, and hence,
it can be seen as an element of D′. However, there are also many non-continuous
locally integrable functions, such as, for example, the Heaviside function. An
important non-regular distribution is the Dirac delta distribution δ defined by

δ(ϕ) := ϕ(0)

for all ϕ ∈ D.

Linear combinations of distributions are defined by

(λ1D1 + λ2D2)(ϕ) := λ1D1(ϕ) + λ2D2(ϕ)

for λ1, λ2 ∈ R, and thus D′ becomes a real vector space. One can multiply a
distribution D by a smooth function a : R → R via

(aD)(ϕ) := D(aϕ)

for all ϕ ∈ D. This definition is motivated by the requirement aDf
!
= Daf . Note

that we need the smoothness of a to guarantee that aϕ is again a test function.
Thus, D′ becomes a module over the ring C∞ of smooth functions from R to R.

The derivative of a distribution is defined by

Ḋ(ϕ) := −D(ϕ̇) (A.1)

for all ϕ ∈ D. For well-definedness, note that the derivative of a test function
is again a test function. This definition is motivated by the law of partial in-
tegration. Let Df be a regular distribution, and assume that f is continuously
differentiable. Then the distribution Dḟ is well-defined, and we certainly want

Ḋf
!
= Dḟ and thus we put

Ḋf (ϕ) = Dḟ (ϕ) =

∫ ∞

−∞

ḟ(t)ϕ(t)dt = fϕ
∣
∣
∣

∞

−∞
−

∫ ∞

−∞

f(t)ϕ̇(t)dt = −Df (ϕ̇).

For example, the derivative of the distribution Dh generated by the Heaviside
function h is the Dirac delta distribution, because

Ḋh(ϕ) = −Dh(ϕ̇) = −

∫ ∞

−∞

h(t)ϕ̇(t)dt = −

∫ ∞

0

ϕ̇(t)dt = −ϕ
∣
∣
∣

∞

0
= ϕ(0) = δ(ϕ)

for all ϕ ∈ D. Note that according to (A.1), distributions can be differentiated ar-
bitrarily often: by repeated application of (A.1), we get D(k)(ϕ) = (−1)kD(ϕ(k))
for all k ∈ N. The distributional derivative (A.1) provides a generalization of the
classical concept of differentiability. For instance, any continuous function can
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be differentiated in the distributional sense, but of course, not necessarily in the
classical sense.

We would like to use a similar trick for integration. However, a primitive function
of a test function ϕ ∈ D, for instance,

ψ(t) :=

∫ t

−∞

ϕ(τ)dτ

is not a test function, in general. This is because

ψ(∞) := lim
t→∞

ψ(t) =

∫ ∞

−∞

ϕ(τ)dτ

is non-zero in general, and thus, ψ may not have compact support.

Therefore, the set D0 is introduced as the set of all test functions which have
a primitive function that is again a test function. More precisely, let D0 ⊂ D
denote the space of all test functions ϕ0 which satisfy the following equivalent
conditions:

1. There exists ψ ∈ D such that ϕ0 = ψ̇.

2.
∫∞

−∞
ϕ0(t)dt = 0.

In that case, a primitive function ψ ∈ D of ϕ0 is given by ψ(t) =
∫ t

−∞
ϕ0(τ)dτ ,

in fact, this is the only primitive in D, because adding a non-zero constant will
destroy the compact support property.

Now let α be a fixed test function with
∫∞

−∞
α(t)dt = 1. Then for any ϕ ∈ D, let

λ =
∫∞

−∞
ϕ(t)dt and set

ϕ0 := ϕ− λα.

Then ϕ0 ∈ D0, because
∫∞

−∞
ϕ0(t)dt =

∫∞

−∞
ϕ(t)dt− λ

∫∞

−∞
α(t)dt = 0.

Lemma A.1 The equation ξ̇ = 0 has no distributional solutions apart from the
classical solutions, i.e., the constant functions ξ(t) = ξ0 for all t, where ξ0 is a real
number (more precisely, the distributional solutions are the regular distributions
generated by constant functions.)
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Proof: Let ξ ∈ D′ be such that ξ̇ = 0. Consider first a test function ϕ0 ∈ D0,
say, with ϕ0 = ψ̇, then

ξ(ϕ0) = ξ(ψ̇) = −ξ̇(ψ) = 0.

Now let ϕ ∈ D be arbitrary, and define ϕ0 = ϕ− λα as above. Then

0 = ξ(ϕ0) = ξ(ϕ)− λξ(α)

and thus

ξ(ϕ) = λξ(α) =

∫ ∞

−∞

cϕ(t)dt = Dc(ϕ),

where the constant c is given by c := ξ(α). Thus ξ = Dc, which is the distribution
generated by the constant function with value c. 2

Theorem A.2 Let g be a distribution. Then there exists a distribution G with
Ġ = g. We call G a primitive (distribution) of g.

Proof: Let g ∈ D′ be given. For ϕ ∈ D, we define ϕ0 ∈ D0 as above and we set

ψ(t) =

∫ t

−∞

ϕ0(τ)dτ.

Then ψ ∈ D. In particular, if ϕ = φ̇ for some φ ∈ D, then ϕ0 = ϕ and ψ = φ.
We define

G(ϕ) := −g(ψ)

for all ϕ ∈ D. This is linear and continuous, and for any φ ∈ D, we have

Ġ(φ) = −G(φ̇) = g(φ)

as desired. 2

According to Lemma A.1, primitives of distributions are unique up to additive
constants. If g = Df is regular, then a primitive of Df is given by DF , where

F (t) =

∫ t

0

f(τ)dτ

is a primitive function of f .

So far, we have only dealt with distributions in D′ = D′(R), corresponding to the
time set T = R. Similarly, one can define D′(U) for any open set U ⊆ R. This is
called the set of distributions on U (which actually means that the relevant test
functions are defined on U). For T = R+ = [0,∞), one constructs D′(R+) as the
set of all distributions on some (arbitrarily small) open neighborhood of [0,∞).



Appendix B

Jordan form

For every matrix A ∈ R
n×n, there exists an invertible matrix T ∈ C

n×n such that

T−1AT = J =






J1
. . .

Jk




 (B.1)

where each matrix Ji ∈ C
ni×ni has the form

Ji =








λi 1
. . . . . .

. . . 1
λi







.

The matrix on the right hand side of (B.1) is called Jordan form of A. The
complex numbers λ1, . . . , λk are the eigenvalues of A. The number of matrices
Ji having a particular eigenvalue λ on their main diagonal coincides with the
geometric multiplicity of that eigenvalue, and the sum of the sizes of these blocks
is precisely the algebraic multiplicity of λ.

We have

At = TJ tT−1 and eAt = TeJtT−1.

Using

J t =






J t
1

. . .

J t
k




 and eJt =






eJ1t

. . .

eJkt
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as well as

J t
i =








λti
(
t

1

)
λt−1
i · · ·

(
t

ni−1

)
λt−ni+1
i

. . . . . .
...

. . .
(
t

1

)
λt−1
i

λti








and

eJit =









eλit teλit · · · tni−1

(ni−1)!
eλit

. . . . . .
...

. . . teλit

eλit









we can see that the entries of At and eAt have the form

∑

λ

aλ(t)λ
t and

∑

λ

aλ(t)e
λt

respectively, where λ are the eigenvalues of A and aλ are polynomials in t.

Strictly speaking, the formula for the discrete case holds only if A is invertible.
The reason is that the eigenvalue zero (which is present if and only if A is not
invertible) plays a special role in the discrete case. Jordan blocks with zero on
the main diagonal are nilpotent, and thus they contribute nothing to At for large
enough t. Thus, if A is not invertible, the formula is still correct for t that are
large enough. However, this is quite sufficient, e.g., for stability analysis, because
this is anyhow concerned with the behavior of At for large t, and for t→ ∞.

If one restricts to real transformation matrices T ∈ R
n×n, the real Jordan form

can be achieved. Note that since A is real, the non-real eigenvalues come in pairs
of complex conjugate numbers. For an eigenvalue pair ai ± ibi, where ai, bi ∈ R,
the real Jordan blocks take the form

Ji =








Λi I2
. . . . . .

. . . I2
Λi







, where Λi =

[
ai bi

−bi ai

]

.
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Kronecker-Weierstraß form

LetK,L ∈ R
n×n be matrices with det(sK−L) 6= 0. Then there exist non-singular

real matrices U, V such that

UKV =

[
I 0
0 N

]

and ULV =

[
A 0
0 I

]

where N is a nilpotent matrix.

Proof: Let α ∈ R be such that det(αK − L) 6= 0. Define

K̂ = (αK − L)−1K and L̂ = (αK − L)−1L.

Then
αK̂ − L̂ = I. (C.1)

Using the real Jordan form, there exists a non-singular matrix T such that

T−1K̂T =

[
E1 0
0 E2

]

where E1 is non-singular and E2 is nilpotent. Then αE2 − I is non-singular
(because zero is the only eigenvalue of a nilpotent matrix). Define

U =

[
E−1

1 0
0 (αE2 − I)−1

]

T−1(αK − L)−1 and V = T.

These matrices are clearly non-singular and

UKV =

[
I 0
0 (αE2 − I)−1E2

]

and ULV =

[
E−1

1 0
0 (αE2 − I)−1

]

T−1L̂T.
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We set N := (αE2−I)
−1E2. Since (αE2−I)

−1 and E2 commute with each other,

Nk = (αE2 − I)−kEk
2

and thus N is nilpotent (since E2 is nilpotent). On the other hand, (C.1) implies
that

T−1L̂T = αT−1K̂T − I =

[
αE1 − I 0

0 αE2 − I

]

and thus

ULV =

[
E−1

1 (αE1 − I) 0
0 I

]

.

Thus we set A := E−1
1 (αE1 − I) and we are finished. 2

Note that the size of A ∈ R
ν×ν is uniquely determined by K,L, because

ν = deg(det(sK − L)).

Similarly, the nilpotency index of N is uniquely determined by K,L, because it
is equal to the degree of the polynomial part of the rational matrix (sK − L)−1

plus one.
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Smith form

The ring P = R[s] is a Euclidean domain. This means that for any a, b ∈ P ,
b 6= 0, there exist c, d ∈ P with

a = bc+ d (D.1)

where either d = 0 or deg(d) < deg(b). The representation (D.1) is obtained by
division with remainder.

By an elementary operation, we mean one of the following matrix transfor-
mations:

• interchanging two rows/columns of a matrix;

• multiplying a row/column by a unit (that is, a non-zero constant);

• adding a multiple of one row/column to another row/column.

It is easy to see that these operations correspond to multiplication by unimodular
matrices from the left/right.

Let R ∈ Pp×q be a matrix. Then there exist unimodular matrices U ∈ Pp×p and
V ∈ Pq×q such that

URV =

[
D 0
0 0

]

(D.2)

where D = diag(d1, . . . , dr) is a diagonal matrix, and d1|d2| . . . |dr. The matrix
on the right hand side of (D.2) is called the Smith form of R. The non-zero
polynomials d1, . . . , dr are uniquely determined by R (up to multiplication by a
non-zero constant).
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Proof: Without loss of generality, let R 6= 0. It is sufficient to show that by
elementary operations, R can be brought into the form

R′ =








a 0 · · · 0
0
... Q
0








(D.3)

where a divides all entries of Q. Then one applies the same procedure to Q, and
the result follows inductively.

Case 1: There exists i, j such that Rij divides all entries of R. By a suitable
interchange of rows and columns, this element can be brought into the (1,1)
position of the matrix. Therefore without loss of generality, R11 divides all entries
of R. Now perform the following elementary operations: for all i 6= 1, put ith
row minus Ri1/R11 times 1st row; for all j 6= 1, put jth column minus R1j/R11

times 1st column. Then we are finished.

Case 2: There is no i, j such that Rij divides all entries of R. Let

δ(R) := min{deg(Rij) | Rij 6= 0}.

Without loss of generality, deg(R11) = δ(R). We show that by elementary oper-
ations, we can transform R into R′ with δ(R′) < δ(R). Then we obtain a strictly
decreasing sequence δ(R) > δ(R′) > δ(R′′) > . . . ≥ 0. After finitely many steps,
we arrive at zero, i.e., we obtain a matrix which has a unit as an entry, and thus
we are in Case 1.

Case 2a: R11 does not divide all R1j , Ri1, say, it does not divide R1k. By the
Euclidean algorithm, we can write

R1k = R11c+ d

where d 6= 0 and deg(d) < deg(R11). Perform the elementary operation: kth
column minus c times 1st column. Then the new matrix R′ has d in the (1, k)
position and thus δ(R′) < δ(R) as desired.

Case 2b: R11 divides all R1j, Ri1. Similarly as in Case 1, we can transform,
by elementary operations, R into the form (D.3). If a divides all entries of Q,
then we are finished. If there exists i, j such that a does not divide Qij, then
we perform the elementary operation: 1st row plus (i+ 1)st row. (Note that the
(i+ 1)st row of R′ corresponds to the ith row of Q.) The new matrix has Qij in
the (1, j + 1) position and therefore we are in Case 2a. 2
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McMillan form

Let H ∈ R(s)p×m be a rational matrix. Then there exist unimodular polynomial
matrices U ∈ R[s]p×p and V ∈ R[s]m×m such that

UHV =

[
D 0
0 0

]

(E.1)

where

D =






γ1
δ1

. . .
γr
δr






for some non-zero polynomials γi, δi, where each pair (γi, δi) is coprime and
γ1|γ2| . . . |γr and δr| . . . |δ2|δ1. Clearly, r = rank(H). The right hand side of
(E.1) is called McMillan form of H. The number

n :=
r∑

i=1

deg(δi)

is called McMillan-degree of H. If λ ∈ C is a zero of δi+1, then it is also a zero
of δi, because δi+1|δi. Therefore, the poles of H are precisely the zeros of δ1.

Proof: Write H = N
d
, where N ∈ R[s]p×m and 0 6= d ∈ R[s]. Compute the

Smith form of N , say

UNV =

[
D̃ 0
0 0

]

(E.2)

where U, V are unimodular and D̃ = diag(d1, . . . , dr) for some non-zero polyno-

mials di. We divide (E.2) by d and put D := D̃
d
= diag(d1

d
, . . . , dr

d
). Let γi, δi be
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coprime polynomials with
di
d

=
γi
δi
.

Since d1|d2| . . . |dr, we have di+1 = diei for some polynomials ei, where i =
1, . . . , r − 1. This implies

γi+1δi = γiδi+1ei

for all i. Since δi and γi are coprime, γi+1 must be a multiple of γi. Since δi+1

and γi+1 are coprime, δi must be a multiple of δi+1. 2



Appendix F

An optimal control problem

Consider ẋ = Ax + Bu, where (A,B) is controllable. Let ε > 0 and x̄ ∈ R
n be

given. We wish to steer the system from state 0 to state x̄ in time ε. Moreover,
we would like to do this with the smallest possible amount of energy, that is,

E(u) =

∫ ε

0

‖u(τ)‖2dτ → min!

Define

V (t, x) := xTW (t)−1x

where

W (t) =

∫ t

0

eAτBBT eA
T τdτ

is the controllability Gramian. Let us look at the change of V (t, x(t)) along a
trajectory x of our system. We have

d
dt
V (t, x(t)) = d

dt
x(t)TW (t)−1x(t)

= ẋ(t)TW (t)−1x(t) + x(t)T ( d
dt
W (t)−1)x(t) + x(t)TW (t)−1ẋ(t).

Note that for any matrix-valued function W ,

d
dt
W−1 = −W−1ẆW−1.

Moreover, we plug in ẋ = Ax + Bu and we obtain (omitting the argument t
wherever possible)

d
dt
V (t, x) = (Ax+ Bu)TW−1x− xTW−1ẆW−1x+ xTW−1(Ax+ Bu)

= xT (ATW−1 +W−1A−W−1ẆW−1)x+ 2uTBTW−1x.
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Consider the matrix

X(t) := ATW (t)−1 +W (t)−1A−W (t)−1Ẇ (t)W (t)−1.

We have

W (t)X(t)W (t) = W (t)AT + AW (t)− Ẇ (t) (F.1)

=

∫ t

0

(eAτBBT eA
T τAT + AeAτBBT eA

T τ )dτ − Ẇ (t)

= eAτBBT eA
T τ
∣
∣
∣

t

0
− Ẇ (t)

= eAtBBT eA
T t − BBT − Ẇ (t).

Noting that by the definition of W ,

Ẇ (t) = eAtBBT eA
T t

we obtain
W (t)X(t)W (t) = −BBT (F.2)

and hence
X(t) = −W (t)−1BBTW (t)−1.

We use this to rewrite our expression for d
dt
V (t, x) and obtain

d
dt
V (t, x) = −xTW−1BBTW−1x+ 2uTBTW−1x

= −‖BTW−1x‖2 + 2〈u,BTW−1x〉

= ‖u‖2 − ‖u− BTW−1x‖2.

Let’s integrate this from 0 to ε, exploiting that x(0) = 0 and x(ε) = x̄. Then

V (ε, x̄)− V (0, 0) =

∫ ε

0

‖u(τ)‖2dτ −

∫ ε

0

‖u(τ)− BTW (τ)−1x(τ)‖2dτ

or

x̄TW (ε)−1x̄ = E(u)−

∫ ε

0

‖u(τ)−BTW (τ)−1x(τ)‖2dτ ≤ E(u). (F.3)

This shows that
E(u) ≥ Emin(ε, x̄) := x̄TW (ε)−1x̄.

Equality is achieved if and only if the integral in (F.3) vanishes, i.e., if

u(t) = BTW (t)−1x(t). (F.4)

Plugging that into ẋ = Ax+ Bu, we get

ẋ(t) = (A+ BBTW (t)−1)x(t).
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Since we know that x(ε) = x̄, the solution of this linear time-varying ordinary
differential equation is uniquely determined for all t > 0. I claim that this solution
is

ξ(t) = W (t)eA
T (ε−t)W (ε)−1x̄.

This can easily be checked: We have ξ(ε) = x̄ and

ξ̇(t) = (Ẇ (t)−W (t)AT )eA
T (ε−t)W (ε)−1x̄.

Combining (F.1) with (F.2), we see that

Ẇ (t) = W (t)AT + AW (t) + BBT .

This implies

ξ̇(t) = (AW (t) + BBT )eA
T (ε−t)W (ε)−1x̄

= (A+ BBTW (t)−1)W (t)eA
T (ε−t)W (ε)−1x̄

= (A+ BBTW (t)−1)ξ(t)

as desired. Thus x = ξ is the optimal state trajectory. Then, according to (F.4),

u(t) = BTW (t)−1ξ(t) = BT eA
T (ε−t)W (ε)−1x̄

is the minimum energy control function that steers the system from 0 to x̄ in
time ε.

Now let 0 < ε < δ. Then
W (ε) < W (δ)

(we write P < Q if Q− P is positive definite) which implies that

W (ε)−1 > W (δ)−1

and hence

Emin(ε, x̄) = x̄TW (ε)−1x̄ > x̄TW (δ)−1x̄ = Emin(δ, x̄)

for all x̄ 6= 0. Thus one needs more energy for doing the transition from 0 to x̄ in
time ε than in time δ. This explains the trade-off between the speed of control
on the one hand and the energy consumption of control on the other.
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