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Preface to the Second
Edition

The most significant differences between this edition and the first are as follows:

• Additional chapters and sections have been written, dealing with:

– nonlinear controllability via Lie-algebraic methods,

– variational and numerical approaches to nonlinear control, including
a brief introduction to the Calculus of Variations and the Minimum
Principle,

– time-optimal control of linear systems,

– feedback linearization (single-input case),

– nonlinear optimal feedback,

– controllability of recurrent nets, and

– controllability of linear systems with bounded controls.

• The discussion on nonlinear stabilization has been expanded, introducing
the basic ideas of control-Lyapunov functions, backstepping, and damping
control.

• The chapter on dynamic programming and linear-quadratic problems has
been substantially edited, so that the material on linear systems can be
read in a fully independent manner from the nonlinear preliminaries.

• A fairly large number of errors and typos have been corrected.

• A list of symbols has been added.

I would like to strongly encourage readers to send me suggestions and com-
ments by e-mail (sontag@control.rutgers.edu), and also to visit the following
Web site:

http://www.math.rutgers.edu/˜sontag/
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where I expect to post updates, additional material and references, links, and
errata.

The current contents of the text far exceed what can be done in a year,
if all material is covered and complete proofs are given in lectures. However,
there are several ways to structure a year-long course, or two such courses,
based on parts of the book. For example, one may cover only the linear theory,
skipping the optional sections as well as the chapters on nonlinear controllability
and multiplier (variational) methods. A separate course, fairly independent,
could cover the more advanced nonlinear material. Ultimately, the topics should
reflect student and faculty background and interests, and I’ll be happy to discuss
syllabi with potential instructors.

I wish to thank all those colleagues, students, and readers who have sent
me suggestions and comments, including in particular Brian Ingalls, Gerardo
Lafferriere, Michael Malisoff, and Konrad Reif. A most special acknowledgment
goes to Jose Luis Mancilla Aguilar and Sarah Koskie, who pointed out a very
large number of typos and errors, and proposed appropriate corrections. Of
course, many mistakes surely remain, and I am solely responsible for them. I
also reiterate my acknowledgment and thanks for the continued support from
the Air Force Office of Scientific Research, and to my family for their infinite
patience.

Eduardo D. Sontag

Piscataway, NJ
May, 1998.



Preface to the First Edition

This textbook introduces the basic concepts and results of mathematical control
and system theory. Based on courses that I have taught during the last 15
years, it presents its subject in a self-contained and elementary fashion. It is
geared primarily to an audience consisting of mathematically mature advanced
undergraduate or beginning graduate students. In addition, it can be used by
engineering students interested in a rigorous, proof-oriented systems course that
goes beyond the classical frequency-domain material and more applied courses.

The minimal mathematical background that is required of the reader is a
working knowledge of linear algebra and differential equations. Elements of
the theory of functions of a real variable, as well as elementary notions from
other areas of mathematics, are used at various points and are reviewed in the
appendixes. However, the book was written in such a manner that readers not
comfortable with these techniques should still be able to understand all concepts
and to follow most arguments, at the cost of skipping a few technical details
and making some simplifying assumptions in a few places —such as dealing only
with piecewise continuous functions where arbitrary measurable functions are
allowed. In this dual mode, I have used the book in courses at Rutgers University
with mixed audiences consisting of mathematics, computer science, electrical
engineering, and mechanical and aerospace engineering students. Depending
on the detail covered in class, it can be used for a one-, two-, or three-semester
course. By omitting the chapter on optimal control and the proofs of the results
in the appendixes, a one-year course can be structured with no difficulty.

The book covers what constitutes the common core of control theory: The al-
gebraic theory of linear systems, including controllability, observability, feedback
equivalence, and minimality; stability via Lyapunov, as well as input/output
methods; ideas of optimal control; observers and dynamic feedback; parameter-
ization of stabilizing controllers (in the scalar case only); and some very basic
facts about frequency domain such as the Nyquist criterion. Kalman filtering
is introduced briefly through a deterministic version of “optimal observation;”
this avoids having to develop the theory of stochastic processes and represents
a natural application of optimal control and observer techniques. In general, no
stochastic or infinite dimensional results are covered, nor is a detailed treatment
given of nonlinear differential-geometric control; for these more advanced areas,
there are many suitable texts.
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The introductory chapter describes the main contents of the book in an in-
tuitive and informal manner, and the reader would be well advised to read this
in detail. I suggest spending at least a week of the course covering this mate-
rial. Sections marked with asterisks can be left out without loss of continuity. I
have only omitted the proofs of what are labeled “Lemma/Exercises,” with the
intention that these proofs must be worked out by the reader in detail. Typi-
cally, Lemma/Exercises ask the reader to prove that some elementary property
holds, or to prove a difference equation analogue of a differential equation re-
sult just shown. Only a trivial to moderate effort is required, but filling in the
details forces one to read the definitions and proofs carefully. “Exercises” are
for the most part also quite simple; those that are harder are marked with the
symbol 3 .

Control and system theory shares with some other areas of “modern” ap-
plied mathematics (such as quantum field theory, geometric mechanics, and
computational complexity), the characteristic of employing a broad range of
mathematical tools, providing many challenges and possibilities for interactions
with established areas of “pure” mathematics. Papers often use techniques
from algebraic and differential geometry, functional analysis, Lie algebras, com-
binatorics, and other areas, in addition to tools from complex variables, linear
algebra, and ordinary and partial differential equations. While staying within
the bounds of an introductory presentation, I have tried to provide pointers
toward some of these exciting directions of research, particularly through the
remarks at the ends of chapters and through references to the literature. (At
a couple of points I include further details, such as when I discuss Lie group
actions and families of systems, or degree theory and nonlinear stabilization,
or ideal theory and finite-experiment observability, but these are restricted to
small sections that can be skipped with no loss of continuity.)

This book should be useful too as a research reference source, since I have
included complete proofs of various technical results often used in papers but
for which precise citations are hard to find. I have also compiled a rather long
bibliography covering extensions of the results given and other areas not treated,
as well as a detailed index facilitating access to these.

Although there are hundreds of books dealing with various aspects of control
and system theory, including several extremely good ones, this text is unique in
its emphasis on foundational aspects. I know of no other book that, while cov-
ering the range of topics treated here and written in a standard theorem/proof
style, also develops the necessary techniques from scratch and does not assume
any background other than basic mathematics. In fact, much effort was spent
trying to find consistent notations and terminology across these various areas.
On the other hand, this book does not provide realistic engineering examples, as
there are already many books that do this well. (The bibliography is preceded
by a discussion of such other texts.)

I made an effort to highlight the distinctions as well as the similarities be-
tween continuous- and discrete-time systems, and the process (sampling) that
is used in practice for computer control. In this connection, I find it highly
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probable that future developments in control theory will continue the move-
ment toward a more “computer-oriented” and “digital/logical” view of systems,
as opposed to the more classical continuous-time smooth paradigm motivated
by analogue devices. Because of this, it is imperative that a certain minimal
amount of the ‘abstract nonsense’ of systems (abstract definitions of systems as
actions over general time sets, and so forth) be covered: It is impossible to pose,
much less solve, systems design problems unless one first understands what a
system is. This is analogous to understanding the definition of function as a set
of ordered pairs, instead of just thinking of functions as only those that can be
expressed by explicit formulas.

A few words about notation and numbering conventions. Except for theo-
rems, which are numbered consecutively, all other environments (lemmas, def-
initions, and so forth) are numbered by section, while equations are numbered
by chapter. In formal statements, I use roman characters such as x to denote
states at a given instant, reserving Greek letters such as ξ for state trajectories,
and a similar convention is used for control values versus control functions, and
output values versus output functions; however, in informal discussions and ex-
amples, I use roman notation for both points and functions, the meaning being
clear from the context. The symbol marks an end of proof, while 2 indicates
the end of a remark, example, etc., as well as the end of a statement whose
proof has been given earlier.

This volume represents one attempt to address two concerns raised in the
report “Future Directions in Control Theory: A Mathematical Perspective,”
which was prepared by an international panel under the auspices of various
American funding agencies (National Science Foundation, Air Force Office of
Scientific Research, Army Research Office, and Office of Naval Research) and
was published in 1988 by the Society for Industrial and Applied Mathematics.
Two of the main recommendations of the report were that further efforts be
made to achieve conceptual unity in the field, as well as to develop better train-
ing for students and faculty in mathematics departments interested in being
exposed to the area. Hopefully, this book will be useful in helping achieve these
goals.

It is hard to even begin to acknowledge all those who influenced me pro-
fessionally and from whom I learned so much, starting with Enzo Gentile and
other faculty at the Mathematics Department of the University of Buenos Aires.
Without doubt, my years at the Center for Mathematical System Theory as a
student of Rudolf Kalman were the central part of my education, and the stim-
ulating environment of the center was unequaled in its possibilities for learn-
ing. To Professor Kalman and his long-range view of the area, originality of
thought, and emphasis on critical thinking, I will always owe major gratitude.
Others who spent considerable time at the Center, and from whose knowledge
I also benefited immensely at that time and ever since, include Roger Brockett,
Samuel Eilenberg, Michel Fliess, Malo Hautus, Michiel Hazewinkel, Hank Her-
mes, Michel Heymann, Bruce Lee, Alberto Isidori, Ed Kamen, Sanjoy Mitter,
Yves Rouchaleau, Yutaka Yamamoto, Jan Willems, and Bostwick Wyman. In
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latter years I learned much from many people, but I am especially indebted to
my Rutgers colleague Héctor Sussmann, who introduced me to the continuous-
time nonlinear theory. While writing this book, I received constant and very
useful feedback from graduate students at Rutgers, including Francesca Alber-
tini, Yuandan Lin, Wen-Sheng Liu, Guoqing Tang, Yuan Wang, and Yudi Yang.
I wish to especially thank Renee Schwarzschild, who continuously provided me
with extensive lists of misprints, errors, and comments. Both Pramod Khar-
gonekar and Jack Rugh also gave me useful suggestions at various points.

The continued and generous research support that the Air Force Office of
Scientific Research provided to me during most of my career was instrumental in
my having the possibility of really understanding much of the material treated
in this book as well as related areas. I wish to express my sincere gratitude for
AFOSR support of such basic research.

Finally, my special thanks go to my wife Fran and to my children Laura
and David, for their patience and understanding during the long time that this
project took.

Eduardo D. Sontag

Piscataway, NJ
June, 1990.
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Chapter 1

Introduction

1.1 What Is Mathematical Control Theory?

Mathematical control theory is the area of application-oriented mathematics
that deals with the basic principles underlying the analysis and design of control
systems. To control an object means to influence its behavior so as to achieve a
desired goal. In order to implement this influence, engineers build devices that
incorporate various mathematical techniques. These devices range from Watt’s
steam engine governor, designed during the English Industrial Revolution, to
the sophisticated microprocessor controllers found in consumer items —such as
CD players and automobiles— or in industrial robots and airplane autopilots.

The study of these devices and their interaction with the object being con-
trolled is the subject of this book. While on the one hand one wants to un-
derstand the fundamental limitations that mathematics imposes on what is
achievable, irrespective of the precise technology being used, it is also true that
technology may well influence the type of question to be asked and the choice
of mathematical model. An example of this is the use of difference rather than
differential equations when one is interested in digital control.

Roughly speaking, there have been two main lines of work in control the-
ory, which sometimes have seemed to proceed in very different directions but
which are in fact complementary. One of these is based on the idea that a good
model of the object to be controlled is available and that one wants to some-
how optimize its behavior. For instance, physical principles and engineering
specifications can be —and are— used in order to calculate that trajectory of
a spacecraft which minimizes total travel time or fuel consumption. The tech-
niques here are closely related to the classical calculus of variations and to other
areas of optimization theory; the end result is typically a preprogrammed flight
plan. The other main line of work is that based on the constraints imposed
by uncertainty about the model or about the environment in which the object
operates. The central tool here is the use of feedback in order to correct for
deviations from the desired behavior. For instance, various feedback control

1



2 1. Introduction

systems are used during actual space flight in order to compensate for errors
from the precomputed trajectory. Mathematically, stability theory, dynamical
systems, and especially the theory of functions of a complex variable, have had
a strong influence on this approach. It is widely recognized today that these
two broad lines of work deal just with different aspects of the same problems,
and we do not make an artificial distinction between them in this book.

Later on we shall give an axiomatic definition of what we mean by a “system”
or “machine.” Its role will be somewhat analogous to that played in mathematics
by the definition of “function” as a set of ordered pairs: not itself the object of
study, but a necessary foundation upon which the entire theoretical development
will rest. In this Chapter, however, we dispense with precise definitions and will
use a very simple physical example in order to give an intuitive presentation of
some of the goals, terminology, and methodology of control theory.

The discussion here will be informal and not rigorous, but the reader is
encouraged to follow it in detail, since the ideas to be given underlie everything
else in the book. Without them, many problems may look artificial. Later, we
often refer back to this Chapter for motivation.

1.2 Proportional-Derivative Control

One of the simplest problems in robotics is that of controlling the position of a
single-link rotational joint using a motor placed at the pivot. Mathematically,
this is just a pendulum to which one can apply a torque as an external force
(see Figure 1.1).

mg

u

mg sin θ

θ

Figure 1.1: Pendulum.

We assume that friction is negligible, that all of the mass is concentrated
at the end, and that the rod has unit length. From Newton’s law for rotating
objects, there results, in terms of the variable θ that describes the counterclock-
wise angle with respect to the vertical, the second-order nonlinear differential
equation

mθ̈(t) +mg sin θ(t) = u(t), (1.1)
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where m is the mass, g the acceleration due to gravity, and u(t) the value of
the external torque at time t (counterclockwise being positive). We call u(·)
the input or control function. To avoid having to keep track of constants, let us
assume that units of time and distance have been chosen so that m = g = 1.

The vertical stationary position (θ = π, θ̇ = 0) is an equilibrium when no
control is being applied (u ≡ 0), but a small deviation from this will result in
an unstable motion. Let us assume that our objective is to apply torques as
needed to correct for such deviations. For small θ − π,

sin θ = −(θ − π) + o(θ − π) .

Here we use the standard “little-o” notation: o(x) stands for some function g(x)
for which

lim
x→0

g(x)
x

= 0 .

Since only small deviations are of interest, we drop the nonlinear part repre-
sented by the term o(θ−π). Thus, with ϕ := θ−π as a new variable, we replace
equation (1.1) by the linear differential equation

ϕ̈(t)− ϕ(t) = u(t) (1.2)

as our object of study. (See Figure 1.2.) Later we will analyze the effect of the
ignored nonlinearity.

u

φ

Figure 1.2: Inverted pendulum.

Our objective then is to bring ϕ and ϕ̇ to zero, for any small nonzero initial
values ϕ(0), ϕ̇(0) in equation (1.2), and preferably to do so as fast as possible,
with few oscillations, and without ever letting the angle and velocity become
too large. Although this is a highly simplified system, this kind of “servo”
problem illustrates what is done in engineering practice. One typically wants
to achieve a desired value for certain variables, such as the correct idling speed
in an automobile’s electronic ignition system or the position of the read/write
head in a disk drive controller.

A naive first attempt at solving this control problem would be as follows: If
we are to the left of the vertical, that is, if ϕ = θ−π > 0, then we wish to move
to the right, and therefore, we apply a negative torque. If instead we are to
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the right, we apply a positive, that is to say counterclockwise, torque. In other
words, we apply proportional feedback

u(t) = −αϕ(t) , (1.3)

where α is some positive real number, the feedback gain.
Let us analyze the resulting closed-loop equation obtained when the value

of the control given by (1.3) is substituted into the open-loop original equation
(1.2), that is

ϕ̈(t)− ϕ(t) + αϕ(t) = 0 . (1.4)

If α > 1, the solutions of this differential equation are all oscillatory, since the
roots of the associated characteristic equation

z2 + α− 1 = 0 (1.5)

are purely imaginary, z = ±i
√
α− 1. If instead α < 1, then all of the solutions

except for those with
ϕ̇(0) = −ϕ(0)

√
1− α

diverge to ±∞. Finally, if α = 1, then each set of initial values with ϕ̇(0) = 0 is
an equilibrium point of the closed-loop system. Therefore, in none of the cases
is the system guaranteed to approach the desired configuration.

We have seen that proportional control does not work. We proved this for
the linearized model, and an exercise below will show it directly for the original
nonlinear equation (1.1). Intuitively, the problem can be understood as follows.
Take first the case α < 1. For any initial condition for which ϕ(0) is small
but positive and ϕ̇(0) = 0, there results from equation (1.4) that ϕ̈(0) > 0.
Therefore, also ϕ̇ and hence ϕ increase, and the pendulum moves away, rather
than toward, the vertical position. When α > 1 the problem is more subtle:
The torque is being applied in the correct direction to counteract the natural
instability of the pendulum, but this feedback helps build too much inertia.
In particular, when already close to ϕ(0) = 0 but moving at a relatively large
speed, the controller (1.3) keeps pushing toward the vertical, and overshoot and
eventual oscillation result.

The obvious solution is to keep α > 1 but to modify the proportional feed-
back (1.3) through the addition of a term that acts as a brake, penalizing ve-
locities. In other words, one needs to add damping to the system. We arrive
then at a PD, or proportional-derivative feedback law,

u(t) = −αϕ(t)− βϕ̇(t) , (1.6)

with α > 1 and β > 0. In practice, implementing such a controller involves
measurement of both the angular position and the velocity. If only the former
is easily available, then one must estimate the velocity as part of the control
algorithm; this will lead later to the idea of observers, which are techniques for
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reliably performing such an estimation. We assume here that ϕ̇ can indeed be
measured. Consider then the resulting closed-loop system,

ϕ̈(t) + βϕ̇(t) + (α− 1)ϕ(t) = 0 . (1.7)

The roots of its associated characteristic equation

z2 + βz + α− 1 = 0 (1.8)

are
−β ±

√
β2 − 4(α− 1)

2
,

both of which have negative real parts. Thus all the solutions of (1.2) converge
to zero. The system has been stabilized under feedback. This convergence may
be oscillatory, but if we design the controller in such a way that in addition to
the above conditions on α and β it is true that

β2 > 4(α− 1) , (1.9)

then all of the solutions are combinations of decaying exponentials and no os-
cillation results.

We conclude from the above discussion that through a suitable choice of
the gains α and β it is possible to attain the desired behavior, at least for the
linearized model. That this same design will still work for the original nonlinear
model, and, hence, assuming that this model was accurate, for a real pendulum,
is due to what is perhaps the most important fact in control theory —and for
that matter in much of mathematics— namely that first-order approximations
are sufficient to characterize local behavior. Informally, we have the following
linearization principle:

Designs based on linearizations work locally for the original system

The term “local” refers to the fact that satisfactory behavior only can be ex-
pected for those initial conditions that are close to the point about which the
linearization was made. Of course, as with any “principle,” this is not a theorem.
It can only become so when precise meanings are assigned to the various terms
and proper technical assumptions are made. Indeed, we will invest some effort
in this text to isolate cases where this principle may be made rigorous. One of
these cases will be that of stabilization, and the theorem there will imply that
if we can stabilize the linearized system (1.2) for a certain choice of parameters
α, β in the law (1.6), then the same control law does bring initial conditions of
(1.1) that start close to θ = π, θ̇ = 0 to the vertical equilibrium.

Basically because of the linearization principle, a great deal of the literature
in control theory deals exclusively with linear systems. From an engineering
point of view, local solutions to control problems are often enough; when they
are not, ad hoc methods sometimes may be used in order to “patch” together
such local solutions, a procedure called gain scheduling. Sometimes, one may
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even be lucky and find a way to transform the problem of interest into one that
is globally linear; we explain this later using again the pendulum as an example.
In many other cases, however, a genuinely nonlinear approach is needed, and
much research effort during the past few years has been directed toward that
goal. In this text, when we develop the basic definitions and results for the
linear theory we will always do so with an eye toward extensions to nonlinear,
global, results.

An Exercise

As remarked earlier, proportional control (1.3) by itself is inadequate for the
original nonlinear model. Using again ϕ = θ − π, the closed-loop equation
becomes

ϕ̈(t)− sinϕ(t) + αϕ(t) = 0 . (1.10)

The next exercise claims that solutions of this equation typically will not ap-
proach zero, no matter how the feedback gain α is picked.

Exercise 1.2.1 Assume that α is any fixed real number, and consider the (“en-
ergy”) function of two real variables

V (x, y) := cosx− 1 +
1
2
(αx2 + y2) . (1.11)

Show that V (ϕ(t), ϕ̇(t)) is constant along the solutions of (1.10). Using that
V (x, 0) is an analytic function and therefore that its zero at x = 0 is isolated,
conclude that there are initial conditions of the type ϕ(0) = ε, ϕ̇(0) = 0, with ε
arbitrarily small, for which the corresponding solution of (1.10) does not satisfy
that ϕ(t) → 0 and ϕ̇(t) → 0 as t→∞. 2

1.3 Digital Control

The actual physical implementation of (1.6) need not concern us here, but some
remarks are in order. Assuming again that the values ϕ(t) and ϕ̇(t), or equiva-
lently θ(t) and θ̇(t), can be measured, it is necessary to take a linear combina-
tion of these in order to determine the torque u(t) that the motor must apply.
Such combinations are readily carried out by circuits built out of devices called
operational amplifiers. Alternatively, the damping term can be separately im-
plemented directly through the use of an appropriate device (a “dashpot”), and
the torque is then made proportional to ϕ(t).

A more modern alternative, attractive especially for larger systems, is to
convert position and velocity to digital form and to use a computer to calcu-
late the necessary controls. Still using the linearized inverted pendulum as an
illustration, we now describe some of the mathematical problems that this leads
to.
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A typical approach to computer control is based on the sample-and-hold
technique, which can be described as follows. The values ϕ(t) and ϕ̇(t) are
measured only at discrete instants or sampling times

0, δ, 2δ, 3δ, . . . , kδ, . . .

The control law is updated by a program at each time t = kδ on the basis of
the sampled values ϕ(kδ) and ϕ̇(kδ). The output of this program, a value vk,
is then fed into the system as a control (held constant at that value) during the
interval [kδ, kδ + δ].

v

v

v
v

v

0

1
2

3

4

u(t)

t

u

δ δ δ δ δ2 3 4 5

Figure 1.3: Sampled control.

For simplicity we assume here that the computation of vk can be done quickly
relative to the length δ of the sampling intervals; otherwise, the model must be
modified to account for the extra delay. To calculate the effect of applying the
constant control

u(t) ≡ vk if t ∈ [kδ, kδ + δ] (1.12)

we solve the differential equation (1.2) with this function u. By differentiation
one can verify that the general solution is, for t ∈ [kδ, kδ + δ],

ϕ(t) =
ϕ(kδ) + ϕ̇(kδ) + vk

2
et−kδ +

ϕ(kδ)− ϕ̇(kδ) + vk
2

e−t+kδ − vk , (1.13)

so

ϕ̇(t) =
ϕ(kδ) + ϕ̇(kδ) + vk

2
et−kδ − ϕ(kδ)− ϕ̇(kδ) + vk

2
e−t+kδ . (1.14)

Thus, applying the constant control u gives rise to new values for ϕ(kδ+ δ) and
ϕ̇(kδ + δ) at the end of the interval via the formula(

ϕ(kδ + δ)
ϕ̇(kδ + δ)

)
= A

(
ϕ(kδ)
ϕ̇(kδ)

)
+Bvk , (1.15)
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where

A =
(

cosh δ sinh δ
sinh δ cosh δ

)
(1.16)

and

B =
(

cosh δ − 1
sinh δ

)
. (1.17)

In other words, if we let x0, x1, . . . denote the sequence of two dimensional
vectors

xk :=
(
ϕ(kδ)
ϕ̇(kδ)

)
,

then {xk} satisfies the recursion

xk+1 = Axk +Bvk . (1.18)

Assume now that we wish to program our computer to calculate the constant
control values vk to be applied during any interval via a linear transformation

vk := Fxk (1.19)

of the measured values of position and velocity at the start of the interval. Here
F is just a row vector (f1, f2) that gives the coefficients of a linear combination
of these measured values. Formally we are in a situation analogous to the PD
control (1.6), except that we now assume that the measurements are being
made only at discrete times and that a constant control will be applied on each
interval. Substituting (1.19) into the difference equation (1.18), there results
the new difference equation

xk+1 = (A+BF )xk . (1.20)

Since for any k
xk+2 = (A+BF )2xk , (1.21)

it follows that, if one finds gains f1 and f2 with the property that the matrix
A+BF is nilpotent, that is,

(A+BF )2 = 0 , (1.22)

then we would have a controller with the property that after two sampling steps
necessarily xk+2 = 0. That is, both ϕ and ϕ̇ vanish after these two steps, and
the system remains at rest after that. This is the objective that we wanted to
achieve all along. We now show that this choice of gains is always possible.
Consider the characteristic polynomial

det(zI −A−BF ) = z2 + (−2 cosh δ − f2 sinh δ − f1 cosh δ + f1)z
− f1 cosh δ + 1 + f1 + f2 sinh δ . (1.23)

It follows from the Cayley-Hamilton Theorem that condition (1.22) will hold
provided that this polynomial reduces to just z2. So we need to solve for the
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fi the system of equations resulting from setting the coefficient of z and the
constant term to zero. This gives

f1 = −1/2
2 cosh δ − 1
cosh δ − 1

and f2 = −1/2
2 cosh δ + 1

sinh δ
. (1.24)

We conclude that it is always possible to find a matrix F as desired. In
other words, using sampled control we have been able to achieve stabilization
of the system. Moreover, this stability is of a very strong type, in that, at least
theoretically, it is possible to bring the position and velocity exactly to zero in fi-
nite time, rather than only asymptotically as with a continuous-time controller.
This strong type of stabilization is often called deadbeat control; its possibility
(together with ease of implementation and maintenance, and reliability) consti-
tutes a major advantage of digital techniques.

1.4 Feedback Versus Precomputed Control

Note that the first solution that we provided to the pendulum control problem
was in the form of a feedback law (1.6), where u(t) could be calculated in terms of
the current position and velocity, which are “fed back” after suitable weighings.
This is in contrast to “open-loop” design, where the expression of the entire
control function u(·) is given in terms of the initial conditions ϕ(0), ϕ̇(0), and
one applies this function u(·) blindly thereafter, with no further observation of
positions and velocities. In real systems there will be random perturbations that
are not accounted for in the mathematical model. While a feedback law will
tend to correct automatically for these, a precomputed control takes no account
of them. This can be illustrated by the following simple examples.

Assume that we are only interested in the problem of controlling (1.2) when
starting from the initial position ϕ(0) = 1 and velocity ϕ̇(0) = −2. Some trial
and error gives us that the control function

u(t) = 3e−2t (1.25)

is adequate for this purpose, since the solution when applying this forcing term
is

ϕ(t) = e−2t .

It is certainly true that ϕ(t) and its derivative approach zero, actually rather
quickly. So (1.25) solves the original problem. If we made any mistakes in
estimating the initial velocity, however, the control (1.25) is no longer very
useful:

Exercise 1.4.1 Show that if the differential equation (1.2) is again solved with
the right-hand side equal to (1.25) but now using instead the initial conditions

ϕ(0) = 1, ϕ̇(0) = −2 + ε ,
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where ε is any positive number (no matter how small), then the solution satisfies

lim
t→+∞

ϕ(t) = +∞ .

If ε < 0, show that then the limit is −∞. 2

A variation of this is as follows. Suppose that we measured correctly the ini-
tial conditions but that a momentary power surge affects the motor controlling
the pendulum. To model this, we assume that the differential equation is now

ϕ̈(t)− ϕ(t) = u(t) + d(t), (1.26)

and that the disturbance d(·) is the function

d(t) =
{
ε if t ∈ [1, 2]
0 otherwise.

Here ε is some positive real number.

Exercise 1.4.2 Show that the solution of (1.26) with initial conditions ϕ(0) =
1, ϕ̇(0) = −2, and u chosen according to (1.25) diverges, but that the solution
of

ϕ̈(t)− ϕ(t) = −αϕ(t)− βϕ̇(t) + d(t) (1.27)

still satisfies the condition that ϕ and ϕ̇ approach zero. 2

One can prove in fact that the solution of equation (1.27) approaches zero
even if d(·) is an arbitrary decaying function; this is an easy consequence of
results on the input/output stability of linear systems.

Not only is it more robust to errors, but the feedback solution is also in this
case simpler than the open-loop one, in that the explicit form of the control as
a function of time need not be calculated. Of course, the cost of implementing
the feedback controller is that the position and velocity must be continuously
monitored.

There are various manners in which to make the advantages of feedback
mathematically precise. One may include in the model some characterization
of the uncertainty, for instance, by means of specifying a probability law for a
disturbance input such as the above d(·). In any case, one can always pose a
control problem directly as one of finding feedback solutions, and we shall often
do so.

The second solution (1.12)-(1.19) that we gave to the pendulum problem,
via digital control, is in a sense a combination of feedback and precomputed
control. But in terms of the sampled model (1.18), which ignores the behavior
of the system in between sampling times, digital control can be thought of as
a purely feedback law. For the times of interest, (1.19) expresses the control in
terms of the “current” state variables.
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1.5 State-Space and Spectrum Assignment

We now have seen two fundamentally different ways in which to control the
linearized inverted pendulum (1.2). They both involve calculating certain gains:
α and β in the case of the continuously acting PD controller (1.6), or the entries
f1 and f2 of F for sampled feedback. In both cases we found that appropriate
choices can be made of these coefficients that result, for instance, in decaying
exponential behavior if (1.9) holds, or deadbeat control if (1.24) is used.

That such choices are possible is no coincidence. For very general linear
systems, it is possible to obtain essentially arbitrary asymptotic behavior. One
of the basic results in control theory is the Pole-Shifting Theorem, also called
the “Pole-Assignment” or the “Spectrum Assignment” Theorem, which makes
this fact precise.

In order to discuss this Theorem, it is convenient to use the state-space for-
malism. In essence, this means that, instead of studying a high-order differential
equation such as (1.1) or (1.2), we replace it by a system of first-order differen-
tial equations. For instance, instead of (1.2) we introduce the first-order vector
equation

ẋ(t) = Ax(t) +Bu(t) , (1.28)

where x(t) is the column vector (ϕ(t), ϕ̇(t))′ (prime indicates transpose), and
where A and B are the matrices

A =
(

0 1
1 0

)
, B =

(
0
1

)
. (1.29)

An equation such as (1.28) is an example of what is called a linear, continuous-
time, time-invariant, finite dimensional control system.

The term “continuous-time” refers to the fact that the time variable t is
continuous, in contrast to a system defined by a difference equation such as
(1.18). The terminology “time-invariant” is used to indicate that the time t does
not appear as an independent variable in the right-hand side of the equation.
If the mass of the pendulum were to change in time, for instance, one might
model this instead through a time-varying equation. “Finite dimensional” refers
to the fact that the state x(t) can be characterized completely at each instant
by a finite number of parameters (in the above case, two). For an example
of a system that is not finite dimensional, consider the problem of controlling
the temperature of an object by heating its boundary; the description in that
case incorporates a partial differential equation, and the characterization of the
state of the system at any given time requires an infinite amount of data (the
temperatures at all points).

If instead of the linearized model we had started with the nonlinear differ-
ential equation (1.1), then in terms of the same vector x we would obtain a set
of first-order equations

ẋ(t) = f(x(t), u(t)) , (1.30)
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where now the right-hand side f is not necessarily a linear function of x and
u. This is an example of what we will later call a nonlinear continuous-time
system.

Of course, we are interested in systems described by more than just two
state variables; in general x(t) will be an n-dimensional vector. Moreover, often
there is more than one independent control acting on a system. For instance,
in a three-link robotic arm there may be one motor acting at each of its joints
(the “shoulder,” “elbow,” and “wrist”). In such cases the control u(t) at each
instant is not a scalar quantity but an m-dimensional vector that indicates the
magnitude of the external forces being applied at each input channel. Mathe-
matically, one just lets f in (1.30) be a function of n+m variables. For linear
systems (1.28) or (1.18), one allows A to be an n × n matrix and B to be a
rectangular matrix of size n×m.

The transformation from a high-order single equation to a system of first-
order equations is exactly the same as that often carried out when establishing
existence results for, or studying numerical methods for solving, ordinary dif-
ferential equations. For any σ, the vector x(σ) contains precisely the amount of
data needed in order to solve the equation for τ > σ, assuming that the control
u(·) is specified for τ > σ. The state x(σ) thus summarizes all the information
about the past of the system needed in order to understand its future behavior,
except for the purely external effects due to the input.

Later we reverse things and define systems through the concept of state. We
will think of (1.28) not as a differential equation but rather, for each pair of
times τ > σ, as a rule for obtaining any value x(τ) from the specifications of
x(σ) and of the restriction ω of the control u(·) to the interval between σ and
τ . We will use the notation

x(τ) = φ(τ, σ, x, ω) (1.31)

for this rule. We may read the right-hand side as “the state at time τ resulting
from starting at time σ in state x and applying the input function ω.” Because
solutions of differential equations do not exist in general for all pairs of initial
and final times σ < τ , typically φ may be defined only on a subset of the set of
possible quadruples (τ, σ, x, ω).

An advantage of doing things at this level of abstraction is that many ob-
jects other than those described by ordinary differential equations also are rep-
resentable by a rule such as (1.31). For example, discrete-time equations (1.18)
also give rise to systems in this sense, since xk+i depends only on

xk, vk, vk+1, . . . , vk+i−1

for all k and i. The idea of using an abstract transition mapping φ originates
with the mathematical theory of dynamical systems. The difference with that
theory is that here we are interested centrally in understanding the effect of
controls.
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Returning to the issue of feedback, note that using the matrix formalism
(1.28) and denoting by F the vector of gains

F = (−α −β )

we may write the PD feedback law (1.6) as

u(t) = Fx(t) . (1.32)

When we substitute this into (1.28), we obtain precisely the closed-loop equa-
tions (1.7). So the characteristic equation (1.8) of the closed-loop system is the
determinant of the matrix (

z −1
α− 1 z + β

)
,

that is, the characteristic polynomial of A+BF . The zeros of the characteristic
equation are the eigenvalues of A+BF .

We conclude from the above discussion that the problems of finding gains
α, β for the PD controller with the properties that all solutions of (1.7) converge
to zero, or that all solutions converge with no oscillation, are particular cases
of the problem of finding a row vector F so that A+ BF has eigenvalues with
certain desired properties. This is precisely the same problem that we solved
for the discrete-time system (1.18) in order to obtain deadbeat control, where
we needed A+BF to have a double eigenvalue at zero. Note that in the second
case the matrices A and B are different from the corresponding ones for the
first problem. Note also that when dealing with vector-input systems, for which
u(t) is not a scalar, the F in equation (1.32) must be a matrix instead of a row
vector.

Thus one arrives at the following purely algebraic question suggested by both
the PD and the deadbeat digital control problems:

Given a pair of real matrices (A,B), where A is square of size n×n
and B is of size n×m, characterize the set of all possible eigenvalues
of A + BF as F ranges over the set of all possible real matrices of
size m× n.

The Spectrum Assignment Theorem says in essence that for almost any pair
of matrices A and B it is possible to obtain arbitrary eigenvalues for A + BF
using suitable feedback laws F , subject only to the obvious constraint (since
A + BF is a real matrix) that complex eigenvalues must appear in conjugate
pairs. “Almost any” means that this will be true for all pairs that describe what
we will call controllable systems, those systems for which it is possible to steer
any state to any other state. We will see later that controllability corresponds
to a simple nondegeneracy condition relating A and B; when there is just one
control (m=1) the condition is simply that B, seen as a column vector, must
be cyclic for A.
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This Theorem is most often referred to as the Pole-Shifting Theorem, a
terminology that is due to the fact that the eigenvalues of A+BF are also the
poles of the resolvent operator

(zI −A−BF )−1 ,

or equivalently, of the rational function 1/det(zI−A−BF ); this rational func-
tion appears often in classical control design.

As a consequence of the Pole-Shifting Theorem we know that, save for very
exceptional cases, given any system

ẋ(t) = Ax(t) +Bu(t)

it will be possible to find a feedback law u(t) = Fx(t) such that all solutions of
the closed-loop equation

ẋ(t) = (A+BF )x(t)

decay exponentially. To conclude this, one uses the Pole-Shifting Theorem to
obtain a matrix F so that all eigenvalues of A+BF are negative real numbers.
Another illustration is the general deadbeat control problem: Given any dis-
crete-time system (1.18), one can in general find an F so that (A+BF )n = 0,
simply by assigning zero eigenvalues. Again, a nondegeneracy restriction will
be needed, as illustrated by the counterexample A = I,B = 0 for which no such
F exists.

The Pole-Shifting Theorem is central to linear systems theory and is itself the
starting point for more interesting analysis. Once we know that arbitrary sets of
eigenvalues can be assigned, it becomes of interest to compare the performance
of different such sets. Among those that provide stability, some may be more
useful than others because they have desirable transient characteristics such as
lack of “overshoot.” Also, one may ask what happens when certain entries of
F are restricted to vanish, which corresponds to constraints on what can be
implemented.

Yet another possibility is to consider a cost criterion to be optimized, as
we do when we discuss optimal control theory. For example, it is possible to
make trajectories approach the origin arbitrarily fast under the PD controller
(1.6), but this requires large gains α, β, which means that the controls u(t) to
be applied will have large magnitudes. Thus, there is a trade-off between the
cost of controlling and the speed at which this may be achieved.

In a different direction, one may investigate to what extent the dynamics of
nonlinear and/or infinite dimensional systems are modifiable by feedback, and
this constitutes one of the main areas of current research in control theory.

Classical Design

The next exercise on elementary ordinary differential equations is intended to
convey the flavor of some of the simpler performance questions that might be
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asked when assigning eigenvalues and to mention some standard terminology.
Techniques from the theory of functions of a complex variable are often used in
this type of study, which is typically the subject of undergraduate engineering
courses in the “classical design” or “frequency design” of control systems. We
include this discussion as an illustration but will not treat frequency design in
this text.

Exercise 1.5.1 Consider again the pendulum linearized about its unstable up-
per position, given by the equation ϕ̈(t)− ϕ(t) = u(t), and assume that we use
the PD control law u(t) = −αϕ(t) − βϕ̇(t) to obtain an asymptotically stable
closed-loop system ϕ̈(t)+ bϕ̇(t)+aϕ(t) = 0 (with a = α−1 > 0 and b = β > 0).
Introduce the natural frequency ω :=

√
a and the damping factor ζ := b/(2

√
a),

so that the equation now reads

ϕ̈(t) + 2ζωϕ̇(t) + ω2ϕ(t) = 0 . (1.33)

(A) Prove the following facts:

1. If ζ < 1 (the “underdamped” case), all solutions are decaying oscillations.

2. If ζ = 1 (the “critically damped” case) or if ζ > 1 (“overdamped”), then
all solutions for which ϕ(0) 6= 0 are such that ϕ(t) = 0 for at most one
t > 0.

3. If ζ ≥ 1, then every solution that starts from rest at a displaced position,
that is, ϕ(0) 6= 0 and ϕ̇(0) = 0, approaches zero monotonically. (In this
case, we say that there is no “overshoot.”)

4. Show rough plots of typical solutions under the three cases ζ < 1, ζ = 1,
and ζ > 1.

(B) Consider again the underdamped case. Using rough plots of the solutions
of the equation with ϕ(0) = −1, ϕ̇(0) = 0 both in the case when ζ is near zero
and in the case when ζ is near 1, illustrate the fact that there is a trade-off
between the speed of response (how fast one gets to, and stays near, the desired
value 0 for ϕ) and the proportion of overshoot (the maximum of ϕ(t) given the
initial magnitude 1). Show that for ζ =

√
2/2 this overshoot is e−π < 0.05.

(C) Assume now that the objective is not to stabilize the system (1.2) about
ϕ = ϕ̇ = 0, but to make it assume some other desired value ϕ = ϕd, still with
velocity ϕ̇ approaching zero. If we were already at rest at this position ϕ = ϕd,
then the constant control u ≡ −ϕd would keep us there. Otherwise, we must
add to this a correcting term. We then modify the PD controller to measure
instead the deviation from the desired value ϕd:

u(t) = −α(ϕ(t)− ϕd)− βϕ̇(t)− ϕd .

Show that with this control, and still assuming α > 1, β > 0, the solutions of the
closed-loop system indeed approach ϕ = ϕd, ϕ̇ = 0. One says that the solution
has been made to track the desired reference value ϕd. 2
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The value ζ =
√

2/2 appears often in engineering practice, because this
results in an overshoot of less than 5%, a figure considered acceptable. If we
write θ for the angle between the negative real axis and the vector z, where z
is either root of the characteristic equation

z2 + 2ζωz + ω2 = 0 ,

then ζ = cos θ. Thus, a value θ = 45◦ or less is often sought. If in addition one
wants the magnitude of solutions to decay at a given exponential rate, say, as
e−λt, then one looks at placing eigenvalues in a region that forces the desired
stability degree, such as that illustrated in Figure 1.4, which exhibits a “damping
margin” of 45◦ and a “stability margin” of λ.

θ
−λ

Figure 1.4: Typical desired eigenvalue locations.

Because solutions of more general linear equations can be written as sums
of those corresponding to complex pairs and real roots, designers often apply
these same rules to systems of order higher than two.

1.6 Outputs and Dynamic Feedback

We introduce now another major component of control theory, the idea of mea-
surements and outputs.

In some situations all of the variables needed in order to implement a feed-
back control are readily available, but other times this is not the case. For
instance, the speed of a car can be obtained easily via a speedometer, but the
ground speed of an aircraft may be difficult to estimate. To model mathemati-
cally such a constraint, one adds to the description of a system the specification
of a measurement function. This is a function of the states, with scalar or vector
values, which summarizes all of the information that is available to the control
algorithm.

Returning once more to the inverted pendulum example, let us assume that
in designing the PD controller (1.6) we are restricted to measuring directly only
the angular position ϕ(t). We model this by adding to the state space equation
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(1.28), where A and B are given by (1.29), the mapping

C : R2 → R : x 7→ x1 , (1.34)

or equivalently its matrix in the canonical basis, C = (1, 0), that picks the
variable ϕ. We write y(t) for the allowed measurement at time t, that is,

y(t) = Cx(t) . (1.35)

More generally, we define a linear system with output by giving triples of matrices
(A,B,C), where for some integers n,m, p, A is n×n, B is n×m, and C is p×n.
The integer p can be thought of as the number of independent measurements
that can be taken at each instant. One also defines nonlinear and discrete-time
systems with output in an analogous way, or more abstractly by adding an
output map to the axiomatic definition of system via transitions (1.31).

A linear feedback law that depends only on the allowed measurements is
then, in terms of this notation, of the form

u(t) = KCx(t) . (1.36)

In other words, F is restricted to factor as F = KC, where C is given. As dis-
cussed when dealing with proportional-only control, such static output feedback
is in general inadequate for control purposes. The set of eigenvalues achievable
for matrices A+BKC by varying K is severely restricted.

Of course, there is no theoretical reason for restricting attention to static
feedback laws. A controller that would incorporate a device for differentiating
the observed position x1(t) = ϕ(t) could then use this derivative.

However, differentiation tends to be an undesirable operation, because it is
very sensitive to noise. To illustrate this sensitivity, consider the problem of
finding the derivative c of the function

ξ(t) = ct ,

where c is an unknown constant. Assume that the data available consists of ξ(t)
measured under additive noise,

y(t) = ξ(t) + n(t) ,

where n(t) is of the form
n(t) = d sinωt ,

and d and ω are unknown constants, ω being large. (This is realistic in that
noise effects tend to be of “high frequency” compared to signals, but of course in
real applications the noise cannot be modeled by a deterministic signal of con-
stant frequency, and a probabilistic description of n(t) is needed for an accurate
analysis.) If we simply differentiate, the result

ẏ(t) = c+ dω cosωt
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can be very far from the desired value c since ω is large. An alternative is to
use the fact that the noise n(t) averages to zero over long intervals; thus, we
can cancel its effect by integration. That is, if we compute∫ t

0

y(τ) dτ

and we then multiply this by 2/t2, we obtain

c− 2d
ωt2

(1− cosωt) , (1.37)

which converges to c as t→∞ and hence provides an accurate estimate, asymp-
totically, of the desired derivative.

The topic of observers deals with obtaining estimates of all the state vari-
ables from the measured ones, using only integration —or, in discrete-time,
summations. It is an easy consequence of general theorems on the existence of
observers that one can achieve also stabilization of the inverted pendulum, as
well as of most other continuous-time linear systems, using a controller that is
itself a continuous-time linear system. Such a controller is said to incorporate
integral or dynamic feedback, and it includes a differential equation, driven by
the observations, that calculates the necessary estimate. Analogously, for dis-
crete-time systems with partial observations, the theorems result in the existence
of observers that are themselves discrete-time linear systems.

In particular, there exist for the pendulum coefficients α, β, µ, ν, so that

ż(t) = νz(t) + µx1(t) (1.38)

together with a feedback law

u(t) = −αx1(t)− βz(t) (1.39)

stabilizes the system. The controller solves the differential equation (1.38) with
an arbitrary initial condition z(0) and feeds the linear combination (1.39) of
the measured variable x1 and the estimated variable z back into the system.
Later we develop in detail a systematic approach to the construction of such
dynamic controllers, but in this simple example it is easy to find the necessary
parameters by analyzing the equations.

Exercise 1.6.1 Consider the system of three differential equations obtained
from (1.28) together with (1.38), where u(t) is given by (1.39). Find numbers
α, β, µ, ν, such that all solutions of this system approach zero. 2

When observations are subject to noise, the speed at which one can estimate
the unmeasured variables —and hence how fast one can control— is limited by
the magnitude of this noise. For instance, the convergence of the expression in
equation (1.37) is slower when d is large (noise has high intensity) or ω is small
(noise has large bandwidth). The resulting trade-offs give rise to problems of
stochastic filtering or stochastic state estimation, and the Kalman Filter is a
technique for the analysis of such problems.
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PID Control

Dynamic control is also useful in order to cancel unwanted disturbances even if
all state variables are available for feedback. We illustrate this using again the
inverted pendulum model. Assume that an unknown but constant disturbance
d(t) ≡ e can act on the system, which is therefore described by

ϕ̈(t)− ϕ(t) = u(t) + e. (1.40)

One might still try to use the PD controller (1.6) to stabilize this system inde-
pendently of e. Since stability should hold in particular when e = 0, one should
have α > 1 and β > 0 as before. But the PD controller is not sufficient:

Exercise 1.6.2 Show that if e 6= 0 and α > 1, β > 0, then no solution of

ϕ̈(t) + βϕ̇(t) + (α− 1)ϕ(t) = e

is such that ϕ(t) → 0 as t→∞. 2

Since e is a constant, it can be thought of as the solution of the differential
equation

ẋ0(t) = 0 . (1.41)

If we think of x0 as a quantity that cannot be measured, then the previous
discussion about observers suggests that there may exist a dynamic controller:

Exercise 1.6.3 Find numbers α, β, µ with the following property: For each
e ∈ R, all of the solutions of the system of equations

ẋ0(t) = x1(t)
ẋ1(t) = x2(t)
ẋ2(t) = −µx0(t) + (1− α)x1(t)− βx2(t) + e

converge to (e/µ, 0, 0). (Hint: First solve this problem for the homogeneous
system that results if e = 0 by finding parameters that make the matrix associ-
ated to the equations have all eigenvalues with negative real parts. Then show
that the same parameters work in the general case.) 2

Thus, using a controller that integrates x1(t) = ϕ(t) and feeds back the
combination

u(t) = −αϕ(t)− βϕ̇(t)− µ

∫ t

0

ϕ(τ)dτ (1.42)

one can ensure that both ϕ and ϕ̇ converge to zero. Another way of think-
ing of this controller is as follows: If the integral term is not used, the value
ϕ(t) approaches a constant steady-state error; the effect of the integral is to
offset a nonzero error. The controller (1.42) is a PID, or proportional-integral-
derivative feedback, the control mechanism most widely used in linear systems
applications.
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More generally, the problem of canceling the effect of disturbances that are
not necessarily constant gives rise to the study of disturbance rejection or dis-
turbance decoupling problems. The resulting dynamic controllers typically in-
corporate an “internal model” of the possible mechanism generating such dis-
turbances, as with the simple case (1.41).

Observability, Duality, Realization, and Identification

A basic system theoretic property that arises naturally when studying observers
and dynamic feedback is that of observability. Roughly speaking, this means
that all information about the state x should in principle be recoverable from
knowledge of the measurements y that result; in a sense it is a counterpart to the
concept of controllability —mentioned earlier— which has to do with finding
controls u that allow one to attain a desired state x. In the case of linear
systems, this analogy can be made precise through the idea of duality, and it
permits obtaining most results for observers as immediate corollaries of those
for controllability. This duality extends to a precise correspondence between
optimal control problems —in which one studies the trade-off between cost of
control and speed of control— and filtering problems —which are based on the
trade-off between magnitude of noise and speed of estimation.

Once outputs or measurements are incorporated into the basic definition of a
system, one can pose questions that involve the relationship between controls u
and observations y. It is then of interest to characterize the class of input/output
(i/o) behaviors that can be obtained and conversely to study the realization
problem: “Given an observed i/o behavior, what possible systems could give
rise to it?” In other words, if we start with a “black box” model that provides
only information about how u affects y, how does one deduce the differential —
or, in discrete-time, difference— equation that is responsible for this behavior?

Besides obvious philosophical interest, such questions are closely related to
identification problems, where one wishes to estimate the i/o behavior itself
from partial and possibly noisy data, because state-space descriptions serve to
parametrize such possible i/o behaviors. Conversely, from a synthesis viewpoint,
realization techniques allow us to compute a state representation, and hence also
construct a physical system, that satisfies given i/o specifications.

The main results on the realization problem show that realizations essen-
tially are unique provided that they satisfy certain minimality or irredundancy
requirements. We will provide the main theorems of realization theory for lin-
ear systems. The underlying properties turn out to be closely related to other
system theoretic notions such as controllability and observability.

1.7 Dealing with Nonlinearity

Ultimately, linear techniques are limited by the fact that real systems are more
often than not nonlinear. As discussed above, local analysis and control design
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in general can be carried out satisfactorily using just first-order information,
but global analysis requires more powerful methods.

One case in which global control can be achieved with ideas from linear
system theory is that in which the system can be reduced, after some trans-
formation, to a linear one. For instance, a change of coordinates in the space
of the x variable might result in such a simplification. A situation that has
appeared many times in applications is that in which a particular feedback con-
trol linearizes the system. Consider again the pendulum, but now the original
nonlinear model.

If we first subtract the effect of the term sin θ by using u, we are left with a
simple linear system

θ̈(t) = u(t) , (1.43)

which can be controlled easily. For instance, the PD feedback law

u(t) = −θ(t)− θ̇(t) (1.44)

stabilizes (1.43). In order to stabilize the original system, we now add the
subtracted term. That is, we use

u(t) = sin θ(t)− θ(t)− θ̇(t) . (1.45)

Passing from the original model to (1.43) can be thought of as the effect of
applying the feedback law

u(t) = f(x(t)) + u′(t) ,

where f(x) = sinx1 and u′ is a new control; the study of such feedback trans-
formations and the characterization of conditions under which they simplify the
system is an active area of research.

The above example illustrates another issue that is important when dealing
with the global analysis of nonlinear control problems. This is the fact that the
mathematical structure of the state space might impose severe restrictions on
what is achievable. The proposed feedback law (1.45) will stabilize

θ̈(t) + sin θ(t) = u(t)

provided we can think of θ as taking arbitrary real values. However, in the
physical system θ+2π describes the same state as θ. Thus, the natural space to
describe θ is a unit circle. When applying the control u as defined by the formula
(1.45), which of the infinitely many possible values of θ should one use? It turns
out that everything will behave as desired as long as one chooses u continuously
in time —as the pendulum finishes one complete counterclockwise revolution,
start using an angle measured in the next 2π-interval. But this choice is not
unambiguous in terms of the physical coordinate θ. In other words, (1.45) is not
a feedback law when the “correct” state space is used, since it is not a function
of states.
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The correct state space for this example is in fact the Cartesian product
of a circle and the real line, since pairs (θ(t), θ̇(t)) belong naturally to such a
space. It can be proved that in such a space —mathematically the tangent
bundle to the unit circle— there cannot exist any continuous feedback law that
stabilizes the system, because the latter would imply that the space is diffeomor-
phic (smoothly equivalent) to a Euclidean space. In general, techniques from
differential geometry —or, for systems described by polynomial nonlinearities,
algebraic geometry— appear when studying global behavior.

When dealing with the problems posed by infinite dimensionality as opposed
to nonlinearity, similar considerations force the use of techniques from functional
analysis.

1.8 A Brief Historical Background

Control mechanisms are widespread in nature and are used by living organisms
in order to maintain essential variables such as body temperature and blood
sugar levels at desired setpoints. In engineering too, feedback control has a long
history: As far back as the early Romans, one finds water levels in aqueducts
being kept constant through the use of various combinations of valves.

Modern developments started during the seventeenth century. The Dutch
mathematician and astronomer Christiaan Huygens designed pendulum clocks
and in doing so analyzed the problem of speed control; in this work he competed
with his contemporary Robert Hooke. The needs of navigation had a strong
influence on scientific and technological research at that time, and accurate
clocks —to allow determinations of solar time— were in great demand. The
attention turned to windmills during the eighteenth century, and speed controls
based on Hooke’s and Huygens’ ideas were built. A central idea here is the use
of flyballs: Two balls attached to an axis turn together with the windmill, in
such a manner that centrifugal force due to angular velocity causes them to rise;
in turn this upward movement is made to affect the positions of the mill’s sails.
Thus, feedback was implemented by the linkages from the flyballs to the sails.

But it was the Industrial Revolution, and the adaptation by James Watt in
1769 of flyball governors to steam engines, that made control mechanisms very
popular; the problem there was to regulate engine speed despite a variable load.
Steady-state error could appear, and various inventors introduced variations of
the integral feedback idea in order to deal with this problem.

The mathematician and astronomer George Airy was the first to attempt,
around 1840, an analysis of the governor and similar devices. By 1868, there
were about 75,000 Watt governors in use; that year, the Scottish physicist James
Clerk Maxwell published the first complete mathematical treatment of their
properties and was able to explain the sometimes erratic behavior that had been
observed as well as the effect of integral control. His work gave rise to the first
wave of theoretical research in control, and characterizations of stability were
independently obtained for linear systems by the mathematicians A. Hurwitz
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and E.J. Routh. This theory was applied in a variety of different areas, such as
the study of ship steering systems.

During the 1930s, researchers at Bell Telephone Laboratories developed the
theory of feedback amplifiers, based on assuring stability and appropriate re-
sponse for electrical circuits. This work, by H. Nyquist, H.W. Bode, and others,
constitutes even today the foundation of much of frequency design. Analog
computers appeared also around that time and formed the basis for implement-
ing controllers in the chemical and petroleum industries. During the Second
World War, these techniques were used in the design of anti-aircraft batteries
and fire-control systems, applications that continue to be developed today. The
mathematician Norbert Wiener, who developed a theory of estimation for ran-
dom processes used in these applications, coined at the end of the war the term
“cybernetics” to refer to control theory and related areas.

These so-called classical approaches were for the most part limited by their
restriction to linear time-invariant systems with scalar inputs and outputs. Only
during the 1950s did control theory begin to develop powerful general techniques
that allowed treating multivariable, time-varying systems, as well as many non-
linear problems. Contributions by Richard Bellman (dynamic programming)
and Rudolf Kalman (filtering, linear/quadratic optimal control, and algebraic
analysis) in the United States, and by L. Pontryagin (nonlinear optimal control)
in the Soviet Union, formed the basis for a very large research effort during the
1960s, which continues to this day. Present day theoretical research in control
theory involves a variety of areas of pure mathematics, as illustrated for instance
by the remarks in Section 1.7. Concepts and results from these areas find appli-
cations in control theory; conversely, questions about control systems give rise
to new open problems in mathematics.

Excellent references for the early historical background are the papers [149],
which contain a large number of literature citations, and the book [299]. See
also the introductory article [226]. Other references, which in addition contain
overviews of current research and open problems, are the reports [275] and [135].

1.9 Some Topics Not Covered

In an area as wide as control theory, it is impossible to cover all topics in a single
text, even briefly. For instance, we concentrate exclusively on deterministic
systems. Incorporating models for uncertainty leads to stochastic models, which
are the subject of much research activity, when this uncertainty is expressed
in probabilistic or statistical terms; references to the literature on stochastic
aspects of many of the problems considered are given at various points in the
text. Mathematically different but closely related is the area of robust control,
which deals with the design of control laws that are guaranteed to perform even
if the assumed model of the system to be controlled is incorrect —with the
allowed deviations quantified in appropriate norms— or under the possibility
of imperfect controller design. See the collection of papers [123] for pointers to



24 1. Introduction

a large literature. The area of adaptive control deals also with the control of
partially unknown systems, but differs from robust control in the mathematics
employed. Adaptive controllers typically make use of identification techniques,
which produce estimates of the system parameters for use by controllers; see
e.g. [282].

When using computers one should consider the effect of quantization errors
on the implementation of control laws, which arise due to limited precision
when real-valued signals are translated into fixed-point representations (A/D
or analog to digital conversion); see e.g. [304]. Other questions relate to the
interface between higher-level controllers implemented in software and lower-
level servos of an analog and physical character; this gives rise to the area of
hybrid systems; see the volume [15].

The notes at the end of the various chapters give further bibliographical
references to many of the other areas that have been omitted.



Chapter 2

Systems

This Chapter introduces concepts and terminology associated with discrete-
and continuous-time systems, linearization, and input/output expansions, and
establishes some of their elementary properties.

2.1 Basic Definitions

As seen in the previous Chapter, it is of interest to study both discrete-time
and continuous-time systems. In the first case, the underlying time set is dis-
crete, and it can be thought of as the set of integers Z; in the second case the
time variable is a real number. To treat both simultaneously, we introduce the
following notion. In most of our results it will be the case that either T = Z or
R.

Definition 2.1.1 A time set T is a subgroup of (R,+). 2

For any such set, T+ is the set of nonnegative elements {t ∈ T |t ≥ 0}. By
notational convention, when the time set T is understood from the context, all
intervals are assumed to be restricted to T . Thus, for instance,

[a, b) = {t ∈ T , a ≤ t < b}

and similarly for open, closed, or infinite intervals.
For each set U and interval I, the set of all maps from I into U is denoted

by
UI = {ω | ω : I → U} . (2.1)

If T = Z and k is a nonnegative integer, the set U[0,k) can be identified naturally
with the set of all sequences

ω(0), . . . , ω(k − 1)

25
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of length k consisting of elements of U, i.e. the Cartesian product Uk. In
the particular case in which I is an empty interval, the set in (2.1) consists of
just one element, which we denote as �; this can be thought of as the “empty
sequence” of zero length.

Assume that σ, τ, µ, are any three elements of T that satisfy σ ≤ τ ≤ µ. If
ω1 ∈ U[σ,τ) and ω2 ∈ U[τ,µ), their concatenation, denoted simply as ω1ω2, is the
function ω ∈ U[σ,µ) defined by

ω(t) :=
{
ω1(t) if t ∈ [σ, τ),
ω2(t) if t ∈ [τ, µ).

Note that ω� = �ω = ω.
The next definition provides the abstraction of the concept of system that

was discussed on page 12.

Definition 2.1.2 A system or machine Σ = (T ,X,U, φ) consists of:

• A time set T ;

• A nonempty set X called the state space of Σ;

• A nonempty set U called the control-value or input-value space of Σ;
and

• A map φ : Dφ → X called the transition map of Σ, which is defined on
a subset Dφ of

{(τ, σ, x, ω) | σ, τ ∈ T , σ ≤ τ, x ∈ X, ω ∈ U[σ,τ)} , (2.2)

such that the following properties hold:

nontriviality For each state x ∈ X, there is at least one pair σ < τ in T
and some ω ∈ U[σ,τ) such that ω is admissible for x, that is, so that
(τ, σ, x, ω) ∈ Dφ;

restriction If ω ∈ U[σ,µ) is admissible for x, then for each τ ∈ [σ, µ) the
restriction ω1 := ω|[σ,τ) of ω to the subinterval [σ, τ) is also admissible for
x and the restriction ω2 := ω|[τ,µ) is admissible for φ(τ, σ, x, ω1);

semigroup If σ, τ, µ are any three elements of T so that σ < τ < µ, if
ω1 ∈ U[σ,τ) and ω2 ∈ U[τ,µ), and if x is a state so that

φ(τ, σ, x, ω1) = x1 and φ(µ, τ, x1, ω2) = x2 ,

then ω = ω1ω2 is also admissible for x and φ(µ, σ, x, ω) = x2 ;

identity For each σ ∈ T and each x ∈ X, the empty sequence � ∈ U[σ,σ) is
admissible for x and φ(σ, σ, x, �) = x. 2
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As discussed in Chapter 1, Section 1.6, one often needs to model explicitly
the fact that limited measurements are available. The following concept is then
natural.

Definition 2.1.3 A system or machine with outputs is given by a system Σ
together with

• A set Y called the measurement-value or output-value space; and

• A map h : T × X → Y called the readout or measurement map. 2

We use the same symbol for the system with outputs (T ,X,U, φ,Y, h) and
its underlying system (T ,X,U, φ). Thus Σ could denote either the first or
the second of these, depending on the context. Unless otherwise stated, every
definition given for systems will apply to systems with outputs by reference
to its underlying system. For instance, we define in a later section the notion
of a controllable system; a controllable system with outputs will then be, by
definition, one whose underlying system is controllable.

Elements of X are called states, elements of U are control values or input
values, and those of Y are output values or measurement values. The
functions ω ∈ U[σ,τ) are called controls or inputs. If ω is like this, with σ and
τ in T , one denotes by

|ω| = τ − σ

the length of ω. If ω is admissible for x, we also say that (x, ω) forms an
admissible pair.

The definition of system is intended to capture the intuitive notion of a
machine that evolves in time according to the transition rules specified by φ.
At each instant, the state x summarizes all of the information needed in order
to know the future evolution of the system. For instance, in the case of the
pendulum we took as the state the pair (angular position, angular velocity).
We read φ(τ, σ, x, ω) as “the state at time τ resulting from starting at time σ in
state x and applying the input function ω.” The definition allows the possibility
of undefined transitions, when the input ω is not admissible for the given state,
which correspond for differential equations to the phenomenon of “explosion
times” at which the solution ceases to be defined.

A few simplifying conventions are useful. When σ and τ are clear from the
context, we write φ(τ, σ, x, ω) simply as φ(x, ω). Often, a formula such as

z = φ(x, ω) (2.3)

will implicitly mean “ω is admissible for x and z = φ(x, ω).” When more
than one system is being studied, we sometimes add a subscript and write
XΣ, UΣ, φΣ to emphasize that we are considering the set X, U, or the map
φ, corresponding to the particular system Σ. Sometimes we refer simply to
“the system (X,U, φ),” or even just (X, φ), when the time set T , or U, is clear
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from the context, and similarly for systems with outputs. A particularly useful
notation is the following: We write

x;
ω
z (2.4)

instead of equation (2.3). Then the semigroup axiom is simply

x;
ω1
x1 and x1 ;

ω2
x2 ⇒ x ;

ω1ω2
x2 (2.5)

and the identity axiom is
x;
� x (2.6)

for all x.
It is also convenient to introduce a notation for the mapping ψ that assigns

to each admissible pair (x, ω) the complete state trajectory on [σ, τ ] rather than
just the final state at time τ . That is,

ψ : Dφ →
⋃
σ≤τ

X[σ,τ ], (τ, σ, x, ω) 7→ ξ ,

where
ξ(t) := φ(t, σ, x, ω|[σ,t)) (2.7)

for each t ∈ [σ, τ ]. Note that the right-hand side of (2.7) is well defined because of
the restriction axiom. As with φ, we write simply ψ(x, ω) instead of ψ(τ, σ, x, ω)
when σ and τ are clear from the context.

It is useful to define also admissibility for infinite-length controls.

Definition 2.1.4 Given a system Σ and a state x ∈ X, the function ω ∈ U[σ,∞)

is admissible for x provided that every restriction ω|[σ,τ) is admissible for x,
for each τ > σ. 2

We also use the term “control” to refer to such an infinite length ω, and write
ψ(∞, σ, x, ω) for the function ξ ∈ X[σ,∞) which satisfies (2.7) for all t ∈ [σ,∞).
Note that the expression φ(∞, σ, x, ω) has not been defined; a natural definition,
however, would be as

lim
t→∞

ψ(∞, σ, x, ω)(t) ,

and this is basically what will be done later when dealing with asymptotic
notions, for those systems for which X has a topological structure.

Definition 2.1.5 A trajectory Γ for the system Σ on the interval I ⊆ T is a
pair of functions (ξ, ω), ξ ∈ XI , ω ∈ UI such that

ξ(τ) = φ(τ, σ, ξ(σ), ω|[σ,τ))

holds for each pair σ, τ ∈ I, σ < τ . 2

Definition 2.1.6 A path of the system Σ on the interval I ⊆ T is a function
ξ : I → X for which there exists some ω ∈ UI such that (ξ, ω) is a trajectory on
I for Σ. If ξ is a path and I has the form [σ, τ) or [σ, τ ] (σ finite), then ξ(σ) is
the initial state of the path. If I has the form (σ, τ ] or [σ, τ ] (τ finite), then
ξ(τ) is the terminal state of the path. 2
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Some Taxonomy

Various general properties serve to classify systems into broad classes, as dis-
cussed in the introductory chapter. We introduce next some of these classes.
Discrete- and continuous-time systems will be defined in the next section.

Definition 2.1.7 The system Σ is complete if every input is admissible for
every state:

Dφ = {(τ, σ, x, ω) | σ ≤ τ, x ∈ X, ω ∈ U[σ,τ)} .
More generally, for any family of controls V ⊆

⋃
σ≤τ U[σ,τ), V-completeness

means that (τ, σ, x, ω) is in Dφ whenever σ ≤ τ, x ∈ X, ω ∈ V. 2

For continuous-time systems (see below) completeness will always mean V-
completeness, where V is the class of all essentially bounded measurable controls.

The nontriviality and restriction axioms in the definition of system are auto-
matically true if the system is complete. In that case, a system is precisely the
same as an action of U∗ on the set X, where U∗ is the union of the sets U[σ,τ),
thought of as a semigroup with a partially defined binary operation (concate-
nation). Many of the concepts that we study are direct analogues of those
studied for semigroup or group actions; for instance, “controllability” will be
the analogue of “transitivity.”

Systems defined by classical differential or difference equations become “sys-
tems” in our sense when they are reinterpreted as having a one-element control-
value set. The closed-loop system that we obtained after designing a feedback
law for the pendulum was such a system, as would be the unforced pendulum
that results when setting the control to zero.

Definition 2.1.8 The system Σ has no controls if U is a one-element set. 2

We also say then that Σ is a classical dynamical system. The often-used
terminology autonomous has the disadvantage of appearing in the theory of
differential equations to refer to what we call below time-invariance. For systems
with no controls, there is for each σ, τ only one possible element in U[σ,τ), so
φ(τ, σ, x, ω) is independent of the last coordinate; we then write simply φ(τ, σ, x).

The most important general subclass of systems is that of time-invariant
systems, for which the structure is independent of time, that is, φ(τ, σ, x, ω)
depends only on τ − σ, x, ω:

Definition 2.1.9 The system Σ is time-invariant if for each ω ∈ U[σ,τ), each
x ∈ X, and each µ ∈ T , if ω is admissible for x then the translation

ωµ ∈ U[σ+µ,τ+µ), ωµ(t) := ω(t− µ) (2.8)

is admissible for x, and

φ(τ, σ, x, ω) = φ(τ + µ, σ + µ, x, ωµ).

For systems with outputs, it is also required that h(τ, x) be independent of τ . 2
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When dealing with time-invariant systems, it is customary to identify con-
trols with their translations. Thus, for instance, given ω1 ∈ U[0,σ) and ω2 ∈
U[0,τ), one thinks of their concatenation ω1ω2 as an element of U[0,σ+τ), mean-
ing the concatenation ω1ν, where ν is the translation of ω2 to [σ, σ + τ). A
system that is not necessarily time-invariant is sometimes called, to emphasize
that fact, a time-varying system.

2.2 I/O Behaviors

Frequently physical systems are specified not by means of their state-space de-
scriptions but rather through their input/output behavior, that is to say, the
effect that inputs have on observed outputs. In this section we introduce i/o
behaviors and show how these are induced by systems with outputs in the sense
of Definition 2.1.3.

Technically, there are at least two possible ways of specifying i/o behavior.
The first, the one to be followed here, is to give a rule that tells us what is
the output value that results right after an input has been applied. The second
possibility is to specify the entire output, as a function of time, that is generated
by this input.

Definition 2.2.1 An i/o behavior Λ = (T ,U,Y, λ) consists of:

• A time set T ;

• A nonempty set U called the control-value or input-value space of Λ;

• A nonempty set Y called the output-value or measurement-value
space of Λ; and

• A map
λ : Dλ → Y

called the response map of Λ, which is defined on a nonempty subset Dλ
of

{(τ, σ, ω) | σ, τ ∈ T , σ ≤ τ, ω ∈ U[σ,τ)} ,

such that the following property holds:

restriction If (τ, σ, ω) is in Dλ, then also (µ, σ, ω|[σ,µ)) ∈ Dλ for each µ ∈
[σ, τ ]. 2

For each fixed σ, τ , we often denote

λσ,τ (ω) := λ(τ, σ, ω)

or simply λ(ω) if σ and τ are clear from the context.
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Remark 2.2.2 Given an i/o behavior Λ, one may define also the i/o map
associated to Λ, as follows: This is the map that gives the entire output function
when a control has been applied, that is,

λ̄ : Dλ →
⋃
σ≤τ

Y[σ,τ ] ,

where
λ̄(τ, σ, ω)(t) := λ(t, σ, ω|[σ,t))

for each t ∈ [σ, τ ]. Note that the following property holds:

strict causality If (τ, σ, ω) is in Dλ, then for each µ ∈ [σ, τ ],

λ̄(µ, σ, ω|[σ,µ)) = λ̄(τ, σ, ω)|[σ,µ] .

Note also that the response can be recovered from the i/o map, since

λ(τ, σ, ω) = λ̄(τ, σ, ω)(τ) . 2

Our interest will be mainly in those behaviors that arise from systems after
choosing an initial state.

Definition 2.2.3 An initialized system is a pair (Σ, x0), where x0 is a state,
the initial state. Similarly for systems with outputs. 2

Definition 2.2.4 Let (Σ, x0) be an initialized system. The input to state
(i/s) behavior of the system (Σ, x0) is the behavior with the same sets T
and U as Σ, and with output value space X, whose response map is defined on
the projection

{(τ, σ, ω) | (τ, σ, x0, ω) ∈ Dφ} (2.9)

by the formula
λ(τ, σ, ω) := φ(τ, σ, x0, ω) .

If (Σ, x0) is an initialized system with output, then the i/o behavior of (Σ, x0)
has the same T , U, and Y as Σ, domain again equal to (2.9), and

λ(τ, σ, ω) := h(τ, φ(τ, σ, x0, ω)) .

This map is the response map of (Σ, x0). 2

Subscripts such as in ΛΣ or ΛΣ,x0 may be used to indicate that one is referring
to the behavior or the response map associated to a given system.

It is clear from the definitions that both the i/s and the i/o behaviors of a
system are indeed i/o behaviors. Observe that the i/o map associated to the i/s
response in the sense of Remark 2.2.2 is precisely the same as ψ(·, ·, x0, ·) (cf.
formula (2.7)). Note also that from the definitions and the identity axiom,

λΣ,x0(σ, σ, �) = h(σ, x0)
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for all σ ∈ T .
In general there will be infinitely many systems that induce a given i/o

behavior, the situation being entirely analogous to that which arises if we take
the composition of two maps γ = αβ: Even though γ is uniquely defined from
α and β, the latter are far from being determined just from the knowledge of γ,
unless stringent hypotheses are made as to their form. This converse issue, that
of passing from a given i/o behavior to a system with outputs that gives rise to
the behavior, and the classification of the possible solutions, is the realization
problem, to be studied in detail later (Sections 6.5 and 6.8).

The next definition introduces some standard families of behaviors.

Definition 2.2.5 The i/o behavior Λ is

complete if Dλ = {(τ, σ, ω) | σ, τ ∈ T , σ ≤ τ, ω ∈ U[σ,τ)};

time-invariant if for each (τ, σ, ω) in Dλ and for each µ ∈ T it holds that
(τ + µ, σ + µ, ωµ) is again in Dλ, where ωµ is the shift of ω defined in
equation (2.8), and

λ(τ + µ, σ + µ, ωµ) = λ(τ, σ, ω)

for each t ∈ [σ, τ). 2

As for systems, one also defines V-completeness of behaviors, with respect to
any family of controls (for continuous-time systems, these will be the measurable
essentially bounded ones).

Intuitively, complete behaviors are those with the property that the output
is defined for every possible input, and time-invariant ones are those for which
the same input but applied at a different time will still produce the same output.

Exercise 2.2.6 Prove the following facts, for initialized systems:

1. If Σ is (V-)complete, then ΛΣ also is.

2. If Σ is time-invariant, then ΛΣ also is.

Give counterexamples to the converse implications. 2

2.3 Discrete-Time

Definition 2.3.1 A discrete-time system or i/o behavior is one for which
T = Z. 2

Assume that Σ is a discrete-time system. For each t ∈ Z, x ∈ X, and u ∈ U

for which the right-hand side is defined, let

P(t, x, u) := φ(t+ 1, t, x, ω), (2.10)
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where ω is that control of length 1 in U{t} that has the value ω(t) = u. This
defines a next-state or transition mapping

P : E → X ,

where
E = E(φ) = {(t, x, u) ∈ Z× X× U | (t+ 1, t, x, u) ∈ Dφ} .

In the particular case of complete systems, E = Z× X× U. In general, the fol-
lowing property is an immediate consequence of the nontriviality and restriction
axioms:

(*) For each x ∈ X, there exist some u ∈ U and some t ∈ Z such that (t, x, u) ∈
E .

It is possible to recover the system description from the knowledge of P. For
instance, if ω ∈ U[t,t+2), then

φ(t+ 2, t, x, ω) = P(t+ 1,P(t, x, ω(t)), ω(t+ 1))

provided that both applications of P on the right-hand side are defined, and
φ is undefined at (t + 2, t, x, ω) otherwise. By induction one can establish the
following fact:

Lemma/Exercise 2.3.2 If E is a subset of Z × X × U that satisfies (*) and
P : E → X is any mapping, then there exists a unique discrete-time system
Σ = (Z,X,U, φ) such that E = E(φ) and property (2.10) holds on E . 2

The triple (X,U,P) provides a local-in-time description of the discrete-time
system Σ. One often refers to “the discrete-time system Σ = (X,U,P)” when
in fact meaning the system induced through Lemma 2.3.2. Alternatively, one
may introduce such a system through its associated evolution equation

x(t+ 1) = P(t, x(t), ω(t)) , t ∈ Z

together with, for systems with outputs, the measurement equation

y(t) = h(t, x(t)) .

We often drop the t-arguments and simply write

x+ = P(t, x, u), y = h(t, x) .

Note that if Σ is time-invariant then P and h are independent of t, and vice
versa.

In the special case in which X and U are finite sets, discrete-time systems
are called automata in computer science. For systems with outputs, and Y also
finite, the terminology there is sequential machines.

In order to develop some intuition with the formalism, we analyze a typical
sequential machine problem. Later we concentrate on systems for which all
of the sets appearing are infinite —in fact, real or complex vector spaces—
but automata and sequential machine theory did provide much of the original
motivation for the development of the basic system theory concepts.
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Example 2.3.3 In digital data communications, one is interested in reliably
transmitting a sequence of bits (zeros and ones) over a noisy channel. In order
to detect errors, one extra bit often is added to each block of, say, k bits. This
parity check bit is made to be a 0 or a 1 as needed so that the resulting sequence
of k+1 elements has an even (or odd, depending on the conventions) number of
1’s. Assume that we are interested in designing a system that will detect errors.
That is, after each k + 1 inputs, the output will be “0” if the parity is even,
and “1,” indicating that an error occurred, otherwise. While scanning a block,
no error should be signaled. For simplicity, we take the case k = 2. (A more
typical value is k = 7.)

The desired i/o behavior can be modeled as follows. We chose an initial
time, say, t = 0, and assume that the inputs will be presented starting at this
time. Thus we chose

U = Y = {0, 1}

and the following domain for λ:

Dλ = {(τ, 0, ω) | τ ≥ 0, ω ∈ U[0,τ)} .

The response map is λ(τ, 0, ω) ={
1 if ω(τ − 3) + ω(τ − 2) + ω(τ − 1) is odd and 3 divides τ > 0,
0 otherwise.

We formalize the problem as that of finding an initialized discrete-time system
(Σ, x0) with outputs whose i/o behavior matches λ for τ ≥ 1, that is,

λ0,τ
Σ,x0 = λ0,τ (2.11)

for all τ ≥ 1. Here we will just guess a solution. One possibility is as follows:
Consider the complete system with

X = {0, 1}3

having the following local description:

x1(t+ 1) = ω(t)
x2(t+ 1) = x1(t) (2.12)
x3(t+ 1) = x2(t)

y(t) = α(t).{[x1(t) + x2(t) + x3(t)] mod 2}

and initial state x0 arbitrary, where

α :=
{

1 if 3 divides t,
0 otherwise.

We are using xi to denote the ith coordinate of x ∈ X. It is easy to see that
this system has the desired input/output behavior.
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The system is time-varying. Alternatively, we could also use the time-invar-
iant system which has

X = {0, 1}3 × {0, 1, 2} ,

and equations

x1(t+ 1) = ω(t)
x2(t+ 1) = x1(t)
x3(t+ 1) = x2(t)
x4(t+ 1) = x4(t) + 1 (mod 3)

y(t) = β(x4(t)).{[x1(t) + x2(t) + x3(t)] mod 2}

where β(1) = β(2) = 0, β(0) = 1. As initial state we may take for instance
(0, 0, 0, 0). One can always include a “clock” in order to pass from a given system
to a time-invariant system that behaves as the original one. Mathematically,
however, this associated time-invariant system is a different object; for instance,
the set X has changed. Moreover, many desirable properties may be lost in the
reformulation; for example, the first system that we gave is linear over the field
GF (2) (that is, Z2 under mod-2 operations) in the sense to be defined below,
but the corresponding time-invariant system is not. 2

Of course, there are infinitely many different systems Σ that solve the above
problem. For instance, we change X to {0, 1}4 and add an equation such as

x4(t+ 1) = 0

to the equations (2.12), and this will still produce the desired behavior. Note
that the value of x4 is not in any way observable from the output data.

Exercise 2.3.4 The first system given above has a state set of cardinality 8,
while for the second (time-invariant one) this cardinality is 24. Find:

1. A system (and initial state) with state space of just two elements {0, 1}
for which (2.11) still holds.

2. A time-invariant system with a 6-element state set for which this also
holds.

3. Prove that it is impossible to solve the problem using a time-invariant
system with less than 6 states. 2

Example 2.3.3 serves to illustrate the fact that measurement maps are useful
not only in modeling constraints imposed by what can be observed in a physical
system but also the fact that only certain functions of the states may be of
interest in a given problem.
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2.4 Linear Discrete-Time Systems

In this section we let K be any field, such as R, C, or the field of two elements
GF (2) that appeared in Example 2.3.3. The terms vector space and linear will
always be interpreted with respect to this fixed field K.

The Cartesian product of any two vector spaces X and U is endowed naturally
with a vector space structure (the direct sum) under coordinatewise operations:

(x, u) + k(z, v) = (x+ kz, u+ kv) .

Similarly, for any σ < τ we may also consider U[σ,τ) as a vector space, with
pointwise operations:

(kω + ν)(t) := kω(t) + ν(t) .

If a space is finite dimensional and a basis has been chosen, we use column
vectors to list the coordinates; if this space is Kn, we always assume that the
standard basis has been chosen, and we identify linear maps Km → Kn with
their matrices in the respective standard bases. When T = Z and U = Km, we
identify U[σ,τ) with Uk, where k = m(τ − σ), and write coordinates of elements
in this space by listing those of ω(σ), . . . , ω(τ − 1) in that order.

Definition 2.4.1 The discrete-time system Σ is linear (over the field K) if:

• It is complete;

• X and U are vector spaces; and

• P(t, ·, ·) is linear for each t ∈ Z .

The system with outputs Σ is linear if in addition:

• Y is a vector space; and

• h(t, ·) is linear for each t ∈ Z .

The system is finite dimensional if both U and X, as well as Y for a system
with outputs, are finite dimensional; the dimension of Σ is in that case the
dimension of X. 2

Recall that completeness means simply that P(t, x, u) is defined for every
triple (t, x, u). Linearity is equivalent to the existence of linear maps

A(t) : X → X and B(t) : U → X, t ∈ Z ,

(namely, P(t, ·, 0) and P(t, 0, ·), respectively) such that

P(t, x, u) = A(t)x+B(t)u (2.13)
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For systems with outputs also

h(t, x) = C(t)x (2.14)

for some linear
C(t) : X → Y, t ∈ Z .

The time-invariant case results precisely when all of these maps are independent
of t.

For finite dimensional systems, the integers n, m, and p are conventionally
used for denoting the dimensions of X, U, and Y, respectively. Thus, in a basis
each A(t) is of size n× n, B(t) is n×m, and C(t) is p× n.

One typically specifies discrete-time linear systems simply by giving the fami-
lies of maps {A(t)}, {B(t)}, and {C(t)}, or, in the finite dimensional case, their
matrices in some basis. For instance, equations (2.12) correspond using the
standard basis for GF (2)3 to

A(t) ≡

 0 0 0
1 0 0
0 1 0

 , B(t) ≡

 1
0
0

 , C(t) = (α(t) α(t) α(t) )

and α is the function defined before.
Note that, given any linear difference equation

x(t+ 1) = A(t)x(t) ,

we can think of this as a discrete-time linear system with no controls, simply
by letting U be the trivial vector space {0} and B(t) ≡ 0.

Linearity of the local-in-time transitions gives linearity of the transition map,
by an easy induction:

Lemma/Exercise 2.4.2 Prove that, for any linear discrete-time system and
any pair of integers σ < τ , φ(τ, σ, ·, ·) is linear. 2

Linear Discrete-Time Behaviors

We now define linear behaviors. We choose a definition that incorporates the
fact that an input identically equal to zero should not affect the system.

Definition 2.4.3 The discrete-time i/o behavior Λ is linear (over the field K)
if:

• It is complete;

• U and Y are vector spaces;

• For every σ ≤ τ in Z, λ(σ, σ, �) = 0 and the mapping λσ,τ is linear; and
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• For each σ < µ < τ in Z and each input ω ∈ U[µ,τ), it holds that

λ(τ, σ,0ω) = λ(τ, µ, ω) ,

where 0 is the input identically equal to 0 on [σ, µ). 2

A number of elementary facts hold for linear i/o behaviors and about their
relation with linear systems initialized at x0 = 0. We leave them as (easy)
exercises. All systems and i/o behaviors are assumed to be discrete-time here.

Lemma/Exercise 2.4.4 If Σ is linear, then ΛΣ,0 is linear. 2

Lemma/Exercise 2.4.5 If Λ is linear, then there exists a unique family of
linear maps

Ãij , i, j ∈ Z, i > j

such that for each σ < τ

λσ,τ (ω) =
τ−1∑
j=σ

Ãτjω(j) (2.15)

for all ω ∈ U[σ,τ). 2

Lemma/Exercise 2.4.6 If Σ and Λ are linear, then

ΛΣ,0 = Λ

if and only if

Ãij =
{
C(i)B(j) if i = j + 1,
C(i)A(i− 1)A(i− 2) . . . A(j + 1)B(j) otherwise (2.16)

in terms of the linear maps introduced in Lemma 2.4.5. 2

Lemma/Exercise 2.4.7 Let Λ be a linear i/o behavior. Consider the family
of linear maps

{
Ãij
}
i>j

introduced in Lemma 2.4.5. Then, Λ is time-invariant

if and only if there exists a sequence of linear maps {Ai, i = 1, 2, 3, . . .} such
that

Ãij = Ai−j
for each i > j. 2

The sequence {Ai} is called the impulse response of Λ (or of a system
realizing Λ), since its columns result from the application of an “impulse” in
one input coordinate, i.e., an input that is equal to zero everywhere except at a
single instant, and at that instant the value equals 1. Another common name
for the elements of this sequence is Markov parameters.
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In the time-invariant case, an input ω ∈ U[σ,τ) produces the final output
value

y(τ) =
τ−1∑
j=σ

Aτ−jω(j) . (2.17)

In other words, the output is the (discrete) convolution of the input with the
impulse response.

We conclude from Lemmas 2.4.6 and 2.4.7 that a discrete-time linear time-
invariant system realizes a discrete-time linear time-invariant behavior precisely
when the following factorization condition holds among their associated linear
operators:

Ai = CAi−1B for all i > 0 (2.18)

2.5 Smooth Discrete-Time Systems

In this section K = R or C. The first part of Appendix B on Jacobians and
differentials should be consulted for terminology regarding smoothness and Ja-
cobians.

For any discrete-time system Σ and each t ∈ Z, let

Et := {(x, u) | (t, x, u) ∈ E} ⊆ X× U

be the domain of P(t, ·, ·).

Definition 2.5.1 Let k = 0, 1, 2, . . . ,∞. A Ck discrete-time system (over
K) is one that satisfies, for some nonnegative integers n,m:

1. X is an open subset of Kn;

2. U is an open subset of Km; and

3. For each t ∈ Z, the set Et is open and the map P(t, ·, ·) is of class Ck there.

If Σ is a system with outputs, it is required in addition that Y be an open subset
of some Euclidean space Kp, and that h(t, ·) be of class Ck. 2

When k = 1 or ∞, one also says that Σ is differentiable or smooth, respec-
tively.

We define linearization only for real systems. In the complex case, differ-
entiability is understood in the sense that the real and complex parts must be
differentiable, as discussed in the Appendix on differentials, and linearizations
could be computed for the real system of twice the dimension associated to any
given system over C.

Definition 2.5.2 Let Σ be a C1 discrete-time system over R, and assume that
Γ = (ξ̄, ω̄) is a trajectory for Σ on an interval I. The linearization of Σ
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along Γ is the discrete-time linear system Σ∗[Γ] with local-in-time description
(Rn,Rm,P∗), where

P∗(t, ·, ·) :=
{
P(t, ·, ·)∗[ξ̄(t), ω̄(t)] if t ∈ I,
0 if t /∈ I. (2.19)

If Σ is a system with outputs, then Σ∗[Γ] is the discrete-time linear system with
outputs having the above P, Y = Rp, and the readout map

h∗(t, ·) :=
{
h(t, ·)∗[ξ̄(t)] if t ∈ I,
0 if t /∈ I. (2.20)

When I = Z and ξ̄ and ω̄ are both constant, ξ̄(t) ≡ x and ω̄(t) ≡ u, then Σ∗[Γ]
is the linearization of Σ at (x, u). 2

When Γ is clear from the context, we write simply Σ∗.
Note that a pair (x, u) gives rise to a constant trajectory for Σ, as in the

last part of the above definition, if and only if P(t, x, u) = x holds for all t. We
call such a pair (x, u) ∈ X × U an equilibrium pair and the corresponding x
an equilibrium state. If (x, u) is like this and Σ is time-invariant, then Σ∗ is
again time-invariant.

In terms of the matrices appearing in equations (2.13) and (2.14), the system
Σ∗ has

A(t) = Px(t, ξ̄(t), ω̄(t))
B(t) = Pu(t, ξ̄(t), ω̄(t))

whenever t ∈ I and A(t) = B(t) = 0 for t /∈ I, and

C(t) = hx(t, ξ̄(t))

for t ∈ I and C(t) = 0 otherwise. (Subscripts indicate partial derivatives.)
As an example take the system Σ:

x+ = (2x+ u)2

and its equilibrium pair (x = 1, u = −1). In terms of perturbations of these
values

x = 1 + x̃, u = −1 + ũ ,

the equations are

x̃+ = x+ − 1 = (2x+ u)2 − 1
= (2[1 + x̃]− 1 + ũ)2 − 1
= 4x̃+ 2ũ+ 4x̃2 + ũ2 + 4x̃ũ
= 4x̃+ 2ũ+ o(x̃, ũ) .
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Thus, Σ∗ has matrices A = (4) and B = (2). Alternatively, one could of course
obtain these matrices by evaluation of

Px = 4(2x+ u), Pu = 2(2x+ u)

at the equilibrium pair. Thus, Σ∗ is

x+ = 4x+ 2u ,

which is a time-invariant system since the trajectory was a constant one (equi-
librium pair). A variation of this example is provided by the same system Σ
but along the following trajectory on I = [0,+∞):

ω(0) = 1, ω(t) ≡ 0 for all t ≥ 1

(that is, ω is an impulsive input) and

ξ(0) = 0, ξ(t) = 22t−2 for all t ≥ 1 ,

which results in the time-varying linearization

x+ = atx+ btu ,

where at = bt ≡ 0 for t < 0, a0 = 4, b0 = 2, and

at = 22t+1, bt = 22t

for each t ≥ 1.
Abusing terminology, one often simply says that (A,B), or (A,B,C) for sys-

tems with outputs, is the linearization of the system along the given trajectory.
Note that for systems with no controls, that is, classical dynamical systems,
the linearization of x+ = P(x) along a trajectory is just the linear recursion
x+ = A(t)x, with A(t) being the Jacobian of P computed at each step.

2.6 Continuous-Time

In this Section we define continuous-time systems as those that are described
by finite dimensional differential equations with sufficiently regular right-hand
sides. More generally, one could also consider systems whose evolution is de-
scribed by partial or functional differential equations, or systems with a discon-
tinuous right-hand side, but these more general concepts will not be treated in
the present volume.

Motivational Discussion

Essentially, we wish to define continuous-time systems as those that are de-
scribed by differential equations

ẋ = f(t, x, u)
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where the right-hand side may depend on t. For a well-defined system to arise,
we need the solutions of this equation for arbitrary initial conditions and mea-
surable locally essentially bounded controls to exist at least for small times.
Weaker regularity hypotheses can be made, but as far as x and u are concerned,
we shall settle essentially on continuity on both x and u and differentiability on
x. This still leaves to be settled the issue of what regularity must be assumed in
t, when dealing with time-varying systems. In order to decide what is reasonable
in that regard, consider one of the main ways in which time-varying systems
arise. Typically, there is a trajectory (ζ, ν) that has been given for the above
equation, and one wants to compare ζ with a trajectory (ξ, ω) corresponding
to a different control. In other words, one is interested in the dynamics of the
deviations

ξ′ := ξ − ζ, ω′ := ω − ν

from (ζ, ν). Note that, omitting the “t” arguments where clear,

ξ̇′ = g(t, ξ′, ω′) ,

where
g(t, x, u) := f(t, x+ ζ(t), u+ ν(t))− f(t, ζ(t), ν(t)) .

Even if f is independent of t, the function g will in general depend on t. But
this dependence of g on t, assuming that f = f(x, u), is at most through a
measurable essentially bounded function —ν or the continuous function ξ—
substituted into f . Motivated by this, we will define systems asking that the
time variation appear in precisely that way (substitution of a measurable func-
tion into a continuous one). Differentiable and smooth systems will be defined
by substitutions into differentiable or smooth functions. An advantage of do-
ing things in this manner is that deviations such as those above remain in the
class, and many results can be proved just for time-invariant systems, with the
generalizations to the time-varying case being immediate.

The Definition

One important technical point is the introduction of concepts from Lebesgue
integration theory. Appendix C on ordinary differential equations, which should
be consulted before covering this section, reviews the basic notions. However,
readers who have not seen measure theory before should still be able
to follow the rest of this book. Most results still will be correct if one
substitutes piecewise continuous functions instead of “measurable.”

In this section, K = R or C. At the beginning we wish to allow control
values to belong to an arbitrary metric space U; but for most results we later
assume that U is an open subset of a Euclidean space Rm or Cm. The use of
more general metric spaces permits including discrete control-value sets, which
appear in optimal control theory as well as in other areas.
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Definition 2.6.1 Let X be an open subset of Kn and let U be a metric space.
A right-hand side (rhs) with respect to X and U is a function

f : R× X× U → Kn

which can be obtained in the following way: There must exist another metric
space S as well as maps

f̃ : S × X× U → Kn

and
π : R → S

so that
f(t, x, u) = f̃(π(t), x, u) (2.21)

and the following properties hold:

1. f̃(s, ·, u) is of class C1 for each fixed s, u ;

2. both f̃ and the partial derivative f̃x are continuous on S × X× U ;

3. π is a measurable locally essentially bounded function. 2

As discussed above, this definition is somewhat complicated by the need to
deal with rather general time variations. For f independent of t, the definition
reduces to the requirement that U be a metric space and

f : X× U → Kn

is so that
f(·, u) is of class C1 for each fixed u (2.22)

and
f and fx are continuous on X× U . (2.23)

Also, of course, if U is any open subset of Km and

f : R× X× U → Kn

is continuously differentiable, then f is a rhs.

Lemma 2.6.2 Any rhs in the sense of Definition 2.6.1 satisfies the following
property: For any real numbers σ < τ , any measurable essentially bounded
ω ∈ U[σ,τ), and any x0 ∈ X, there is some nonempty subinterval J ⊆ I := [σ, τ ]
open relative to I and containing σ, and there exists a solution of

ξ̇(t) = f(t, ξ(t), ω(t)) (2.24)
ξ(σ) = x0

on J . Furthermore, this solution is maximal and unique: that is, if

ζ : J ′ → X
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is any other solution of (2.24) defined on a subinterval J ′ ⊆ I, then necessarily

J ′ ⊆ J and ξ = ζ on J ′ .

If J = I, then ω is said to be admissible for x0.

Proof. Consider

g(t, x) := f(t, x, ω(t)) = f̃(π(t), x, ω(t))

as a function on I × X. Note that this is continuous on x, so hypothesis (H2)
in Appendix C is satisfied for g. Since the mapping

I → U× S, t 7→ (ω(t), π(t))

is measurable, g(·, x) is the composition of a measurable and a continuous func-
tion and is therefore measurable in its first coordinate. Thus, (H1) holds too. We
claim that the conditions in the existence and uniqueness Theorem 54 (p. 476)
in the Appendix hold. Because of Proposition C.3.4, we need to verify that
for each compact subset K ⊆ X and each x0 ∈ X there exist locally bounded
measurable maps α and β so that

|g(t, x0)| ≤ β(t)

for all t ∈ I, and
|gx(t, x)| ≤ α(t)

for all x ∈ K and all t ∈ I.
Since ω is bounded and π is locally bounded, there exist compact sets K1,K2

such that ω(t) ∈ K1 and π(t) ∈ K2 for almost all t ∈ I. By continuity of f̃ and
f̃x, there are upper bounds M1,M2 for the values of |f̃ | and |f̃x|, respectively,
on

K2 ×K ×K1 ,

so the functions α ≡M2 and β ≡M1 are as desired.

Lemma/Exercise 2.6.3 Let f be a rhs, and consider

D := {(τ, σ, x, ω) | σ < τ, x ∈ X, ω ∈ U[σ,τ) is admissible for x0} .

(Note that, in particular, admissibility means that such ω’s are measurable.)
On this set define

φ(τ, σ, x, ω) := ξ(τ) ,

where ξ(τ) is the (unique) solution of (2.24) on [σ, τ ]. Then, Σf := (R,X,U, φ)
is a system. 2

Definition 2.6.4 A continuous-time system (over K = R or C) is a system
of the type Σf , where f is a rhs. 2
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Note that this system will be time-invariant when f is independent of t. We
often refer to Σf simply as “the system ẋ = f(t, x, u),” and call f the “rhs of
Σ.” The map f is also said to provide a local in time description of Σ.

Definition 2.6.5 A continuous-time system with outputs is a system Σ
with outputs whose underlying system is a continuous-time system, Y is a metric
space, and for which h : T × X → Y is continuous. 2

Definition 2.6.6 Let k = 1, 2, . . . ,∞. A continuous-time system of class
Ck is one for which U is an open subset of Km, for some nonnegative integer
m, and for which S and f̃ in (2.21) can be chosen so that S is an open subset
of a Euclidean space and f̃ is of class Ck.

If Σ is a system with outputs, it is required in addition that Y be an open
subset of some Euclidean space Kp, and that h(t, ·) be of class Ck for each t. 2

Every continuous-time system is of “class C0” since f̃ is continuous by def-
inition. When k = 1 or ∞, one also says that Σ is differentiable or smooth,
respectively. Note that, in particular, f(t, ·, ·) is of class Ck when the system is.

Note that a time-invariant continuous-time system Σ is of class Ck precisely
if U is an open subset of Kn and f is k-times continuously differentiable.

It is useful sometimes to consider also the “time reversal” of a system. As-
sume that Σ is a continuous-time system, and pick any µ ∈ R. Then

g(t, x, u) := −f(µ− t, x, u)

is also a rhs, since
g(t, x, u) = g̃(β(t), x, u)

under the definition

g̃ : S × X× U → Kn, g̃(s, x, u) := −f̃(s, x, u)

and β(t) := −π(µ− t), where f , f̃ , S, and π are as in the definition of rhs.

Definition 2.6.7 If Σ and µ are as above, the continuous-time system with rhs

−f(µ− t, x, u)

is the reversal of Σ at µ, and is denoted Σ−µ . If f is independent of t, then
Σ−µ is time-invariant and independent of the particular µ taken, and is denoted
just as Σ−. 2

Lemma 2.6.8 Assume that σ, τ ∈ R, σ < τ , let Σ be as above, and let φ−

denote the transition map of Σ−σ+τ . Then, for any x, z ∈ X, and any ω ∈ U[σ,τ),

φ(τ, σ, x, ω) = z iff φ−(τ, σ, z, ν) = x ,

where ν(t) := ω(σ + τ − t).
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Proof. Consider the trajectory (ξ, ω) with ξ(σ) = x, ξ(τ) = z. Then, the
function

ζ(t) := ξ(σ + τ − t)

satisfies the differential equation with control ν and rhs

−f(σ + τ − t, x, u)

and has initial state z and final state x. Uniqueness of solutions gives the desired
conclusion.

Definition 2.6.9 A continuous-time behavior is one for which

• T = R;

• U is a metric space;

• Y is a metric space;

and for each σ < τ it holds that the domain of each λσ,τ is an open subset of
L∞U (σ, τ) and λσ,τ is continuous. 2

For any continuous-time system Σ and each initial state x0, the i/s response
map

ω 7→ φ(τ, σ, x0, ω)

will be shown to be continuous in Theorem 1 (p. 57) (see also Remark 2.8.1 for
the non-time-invariant case) for each fixed σ, τ . By composition, the following
result then holds:

Proposition 2.6.10 If (Σ, x0) is an initialized continuous-time system, then
its behavior Λ is a continuous-time behavior. 2

Remark 2.6.11 It is also true that the complete i/o map ω 7→ λ̄Σ(τ, σ, ω) is
continuous as a mapping into C0([σ, τ ],Y), the space of continuous functions from
[σ, τ ] to Y with the uniform metric. This is because the map ψ that sends initial
states and controls into the complete path ξ(·) is also shown to be continuous
as a map into C0([σ, τ ],X) in the same Theorem. 2

2.7 Linear Continuous-Time Systems

In this section, K = R or C. Appendix C.4 on linear differential equations
summarizes needed background material.

Lemma/Exercise 2.7.1 Let m,n be nonnegative integers, X := Kn,U := Km.
Assume that

f(t, x, u) = A(t)x+B(t)u, (2.25)
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where A(t) is an n×n matrix and B(t) is an n×m matrix, each of whose entries
is a locally essentially bounded (measurable) function R → K. Equivalently,

f : R× X× U → X

is linear in (x, u) for each fixed t, and is locally bounded in t for each fixed
(x, u). Conclude that f is a rhs. 2

Thus, the following definition is justified:

Definition 2.7.2 The continuous-time system Σ is linear (and finite dimen-
sional) (over K = R or C) if it is of class C1 and:

• X = Kn and U = Km; and

• Its local-in-time description satisfies that f(t, ·, ·) is linear for each t ∈ R.

The system with outputs Σ is linear if in addition:

• Y = Kp; and

• h(t, ·) is linear for each t ∈ R .

The dimension of Σ is the dimension of X. 2

Thus, there exist matrix representations as in (2.13) and (2.14). As in the
discrete-time case, we just say “the system (A(t), B(t))” (or (A(t), B(t), C(t)))
in order to refer to this system. By definition, we are considering only finite
dimensional systems; to define the general infinite dimensional case would re-
quire notions of semigroup theory. We are allowing the degenerate cases n = 0
(system of dimension 0) and, more interestingly, m = 0; in the latter case, we
interpret Σ as a system with no controls and rhs f(t, x) = A(t)x.

A linear system is by definition one that is either a discrete-time or a con-
tinuous-time linear system.

Lemma/Exercise 2.7.3 Prove that every linear continuous-time system is
complete (with respect to the class of all measurable essentially bounded con-
trols). (Hint: Use the result given in the Appendix which assumes a global
Lipschitz condition on the rhs.) 2

Lemma 2.7.4 Let Σ be a linear continuous-time system, and let σ < τ be in
R. Then, φ(τ, σ, ·, ·) is linear as a map X× L∞m → X.

Proof. Note first that φ is indeed defined on all of X× L∞m , by completeness.
Now assume that x, z ∈ X and ω, ν ∈ U[σ,τ), and pick any r ∈ K. Let ξ, ζ satisfy

ξ̇(t) = A(t)ξ(t) +B(t)ω(t)
ζ̇(t) = A(t)ζ(t) +B(t)ν(t),
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with ξ(σ) = x, ζ(σ) = z. Then, ξ + rζ satisfies a similar equation, with control
ω + rν, and

ξ(σ) + rζ(σ) = x+ rz .

It follows by uniqueness of solutions that

φ(τ, σ, x+ rz, ω + rν) = ξ(τ) + rζ(τ) = φ(τ, σ, x, ω) + rφ(τ, σ, z, ν)

and hence φ is linear.

This result is also an immediate consequence of the variation of parameters
formula, which here becomes

ξ(t) = Φ(t, σ0)x0 +
∫ t

σ0
Φ(t, s)B(s)ω(s) ds . (2.26)

Exercise 2.7.5 This problem illustrates that one may be able to consider larger
classes of controls than just bounded ones, provided that the system has a special
structure (for instance, if it is linear).

(a) Prove that if f is as in equation (2.25) then also arbitrary integrable inputs
may be applied. More precisely, show that in this case equation (2.24) has
a solution, at least for small δ > σ, for any σ < τ, x ∈ Kn, and any
integrable ω ∈ U[σ,τ).

(b) Give an example of a (necessarily nonlinear) rhs (with U = X = R), an
x ∈ R, and an integrable ω ∈ U[σ,τ), for some σ and τ , such that (2.24)
has no possible solution on any nontrivial interval [σ, δ], no matter how
small δ − σ is. (Hint: by definition of absolute continuity, f(t, ξ(t), ω(t))
must be integrable as a function of t if ξ is a solution. Find an example
with ω(t) = t−1/2 ∈ U(0,1] and ω(0) arbitrary.) 2

Remark 2.7.6 The above exercise justifies the definition, for any given con-
tinuous-time linear system Σ, of a “different” system Σ1

f for which integrable
controls are allowed, or for that matter, say, the system Σ2

f corresponding to
using only L2 controls. The systems Σ1

f and Σ2
f are basically the same as Σf ,

since φ1 and φ2 are just extensions of φ. In such cases one uses the expression
“Σf with integrable (or, square integrable, etc.) controls” to refer to such an
extended system. The L2 case is especially important, since a Hilbert space
of controls is useful in order to understand quadratic linear optimal control
problems. In other contexts, for instance when defining the impulse response of
a system, often it is useful also to introduce even more general controls, such as
distributional inputs. 2

Linear Continuous-Time Behaviors

Definition 2.7.7 The continuous-time i/o behavior Λ is linear (over the field
K) if:



2.7. Linear Continuous-Time Systems 49

• It is complete (with respect to essentially bounded controls);

• U = Km and Y = Kp;

• For every σ ≤ τ in R, λ(σ, σ, �) = 0 and the mapping λσ,τ is a linear
(bounded) operator; and

• For each σ < µ < τ in R and each measurable bounded input ω ∈ U[µ,τ) it
holds that

λ(τ, σ,0ω) = λ(τ, µ, ω) ,

where 0 is the input identically equal to 0 on [σ, µ). 2

Linear continuous-time behaviors can be characterized in terms of integral
operators with respect to finitely additive measures. We do not pursue such a
characterization here, and concentrate instead on a subclass that corresponds to
those operators for which the complete i/o maps λ̄ are continuous with respect
to the L1 topology on controls. This subclass will be general enough for our
intended applications. The next definition should be compared to the conclusion
of Lemma 2.4.5; of course, one could just as well start with an abstract notion
of integral operator and then make the following a conclusion, as in the dis-
crete-time case.

Definition 2.7.8 The linear behavior Λ is an integral behavior if there exists
a measurable locally essentially bounded mapping

K̃ : {(τ, σ) ∈ R2 | σ ≤ τ} → Kp×m

such that
λσ,τ (ω) =

∫ τ

σ

K̃(τ, s)ω(s) ds

for any σ < τ and any ω ∈ U[σ,τ). 2

Lemma/Exercise 2.7.9 The kernel K̃ is uniquely determined (up to a set of
measure zero) by the behavior Λ. 2

Lemma/Exercise 2.7.10 If Σ is linear and Λ is an integral behavior, then

ΛΣ,0 = Λ

if and only if
K̃(t, τ) = C(t)Φ(t, τ)B(τ)

for almost all (t, τ). Thus, the integral behavior Λ is realizable by some linear
system if and only if there exist time-varying matrices

(A(t), B(t), C(t))

such that the above conditions hold. 2
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Lemma/Exercise 2.7.11 The linear integral behavior Λ is time-invariant if
and only if there exists a matrix of locally bounded maps

K ∈ L∞,loc
p×m (0,∞)

such that
K̃(t, τ) = K(t− τ)

for almost all τ ≤ t. 2

Thus, in the time-invariant case, a bounded input ω ∈ L∞m (σ, τ) produces
the final output value

y(τ) =
∫ τ

σ

K(τ − s)ω(s) ds . (2.27)

As with discrete-time systems, the output is a convolution of the input with the
impulse response.

The map K is once again called the impulse response, since just as in the
discrete-time case it is the output that results from an impulsive input at time
0, assuming that one interprets impulsive inputs as limits of step functions of
unit area and support tending to zero:

Exercise 2.7.12 Assume that K in formula (2.27) is continuous. Pick any
fixed i ∈ {1, . . . ,m} and any T > 0. For each ε > 0, let ωε be the control
defined on the interval [0, T ] by

ωε(t) :=
{

1
εei if 0 ≤ t < ε,
0 otherwise,

where ei = (0, . . . , 0, 1, 0, . . . , 0)′ is the ith canonical basis vector. Prove that

lim
ε→0

yε(T ) = Ki(T ) ,

where yε(T ) = λ0,T (ωε) and Ki is the ith column of K. 2

The condition ΛΣ,0 = Λ is equivalent in the time-invariant case to

K(t) = CetAB .

If K(·) is known to be analytic about t = 0, we can expand into a (matrix)
power series

K(t) =
∞∑
i=1

Ai
ti−1

(i− 1)!
(2.28)

and so we conclude:

Lemma 2.7.13 The integral behavior with analytic kernel K as in (2.28) is
realized by the linear system (A,B,C) if and only if the factorization conditions
(2.18) hold. 2

This means that the realization theories of (finite dimensional) linear contin-
uous-time and discrete-time time-invariant systems reduce to the same algebraic
problem.
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Linearization

The definition of linearization is entirely analogous to the one given for dis-
crete-time systems. Again, we only consider the linearization of systems over
R.

Definition 2.7.14 Let Σ be a C1 continuous-time system over R, and assume
that Γ = (ξ̄, ω̄) is a trajectory for Σ on an interval I. The linearization
of Σ along Γ is the continuous-time linear system Σ∗[Γ] with local-in-time
description f∗, where

f∗(t, ·, ·) :=
{
f(t, ·, ·)∗[ξ̄(t), ω̄(t)] if t ∈ I,
0 if t /∈ I. (2.29)

If Σ is a system with outputs, then Σ∗[Γ] is the continuous-time linear system
with outputs having the above f , Y = Rp, and the readout map

h∗(t, ·) :=
{
h(t, ·)∗[ξ̄(t)] if t ∈ I,
0 if t /∈ I. (2.30)

When I = R and ξ̄ and ω̄ are both constant, ξ̄(t) ≡ x and ω̄(t) ≡ u, then Σ∗[Γ]
is the linearization of Σ at (x, u). 2

As before, when Γ is clear from the context, we write simply Σ∗. Now for a
pair (x, u) to give rise to a constant trajectory for Σ is equivalent to the property

f(t, x, u) ≡ 0 for all t .

We again call such a pair (x, u) ∈ X × U an equilibrium pair and the corre-
sponding x an equilibrium state. As in discrete-time, if (x, u) is an equilibrium
pair, then Σ∗ is again time-invariant, provided that Σ was time-invariant.

The local description of the linearization can be given in terms of partial
derivatives of f and h with respect to x and u, just as in the discrete-time case.
Linearization was discussed in detail in the introductory Chapter.

As an example, consider again the controlled pendulum (with m = g = 1);
this is a time-invariant continuous-time system, with U = R, X = R2, and

f(x, u) =
(

x2

− sinx1 + u

)
.

If only positions could be measured, we could model that fact by using instead
the system with outputs having Y = R and h(x) = x1.

Given any fixed trajectory (ξ̄, ω̄) on an interval I, the linearization becomes
the system with matrices

A(t) =
(

0 1
− cos ξ̄1(t) 0

)
B(t) =

(
0
1

)
.
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In particular, we may consider the equilibrium pair (0, 0); then the linearization
becomes the time-invariant system (A,B), where

A(t) =
(

0 1
−1 0

)
B(t) =

(
0
1

)
. (2.31)

Or we may take the equilibrium pair ((π, 0)′, 0), and one gets the state space
model of the linearized pendulum for which we designed controllers in the In-
troduction.

u

θ mg

Figure 2.1: Stick-balancing example.

Exercise 2.7.15 Assume that we try to control a stick by applying a horizontal
force at one tip (see Figure 2.1). Under simplifying assumptions, and choosing
appropriate units and time scales, we have an equation

θ̈ = sin θ − u cos θ

for the orientation of the stick. (We are ignoring the position of the center of
gravity, and assume that the motion occurs in a plane.) With x1 = θ, x2 = θ̇,
this is a continuous-time, time-invariant system (X = R2,U = R).

(a) Give the form of the linearized system along a general trajectory.

(b) Consider now the same example but in a horizontal plane. After simplifi-
cation, we use as a model

θ̈ = u cos θ .

Find the linearization of this system at the equilibrium point x1 = x2 =
u = 0.

(c) Idem about x1 = π/2, x2 = u = 0.

(d) In what sense is the linear system that you obtained in (b) “nicer” than
the one in (c)? Intuitively, how should this relate to the behavior of the
original nonlinear system near the two different equilibrium pairs? 2

Exercise 2.7.16 Consider the (“bilinear”) system ẋ = xu, where X = U = R.

(a) Give the linearized system at x = 2, u = 0.

(b) Idem along the trajectory ξ(t) = et, t ≥ 0, ω ≡ 1. 2
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2.8 Linearizations Compute Differentials

For any system Σ, and any fixed pair of times σ < τ in T , we denote

Dσ,τ := {(x, ω) | (τ, σ, x, ω) ∈ Dφ} ⊆ X× U[σ,τ) ,

and for each x ∈ X we let

Dσ,τ,x := {ω|(τ, σ, x, ω) ∈ Dφ} ⊆ U[σ,τ) .

Note that for some σ, τ, x, these sets may of course be empty.
The main objective of this section is to establish conditions under which the

mapping
φ(τ, σ, ·, ·) ,

which has Dσ,τ as its domain, is continuous and/or differentiable in an appro-
priate sense. More importantly, we prove that its derivatives are computed by
linearizations along trajectories. This last fact underlies the mathematical im-
portance of linearizations, and is also the basis of gradient descent techniques
for numerical nonlinear control (cf. Section 9.4).

To develop some intuition, consider first the case of a time-invariant dis-
crete-time system of class C1 having X = Rn, U = Rm, and equations

x+ = P (x, u) , (2.32)

and for which (0, 0) is an equilibrium point, that is, P (0, 0) = 0. Assume for
simplicity that we are only interested in trajectories of length 2, and consider
the map

α = φ(2, 0, ·, ·) .

Writing elements of
U[0,2) = U2 = R2m

as pairs (u1, u2), the map

α : X× U2 → X : (x, (u1, u2)) 7→ P (P (x, u1), u2)

has as its Jacobian at x = u1 = u2 = 0 a matrix (of size n by n + 2m) which
can be partitioned as

J = (αx, αu1 , αu2) .

(The partial Jacobians are evaluated at x = u1 = u2 = 0.) By the chain rule,
this is the same as

(A2, AB,B)

where
A = Px(0, 0) and B = Pu(0, 0)
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in terms of the partial Jacobians of P with respect to x and u. Thus, the linear
mapping induced by J is

α∗[0, (0, 0)] : Rn+2m → Rn :

 x
u1

u2

 7→ J

 x
u1

u2

 = A2x+ABu1 +Bu2 .

(2.33)
This mapping is the differential, or Jacobian, of α at the point x = u1 = u2 = 0.

Alternatively, assume that we start again with the system Σ, and take its
linearization along the trajectory Γ = (ξ, ω) induced by the same initial state
x = 0 and control ω, that is, ξ(0) = ξ(1) = ω(0) = ω(1) = 0. By definition, this
is the linear system (time-invariant, because it corresponds to an equilibrium
pair,) with the same matrices A,B,

x+ = Ax+Bu .

The main observation is that the 2-step “α” map for this system is precisely the
same as the map in equation (2.33). That is, we have in informal terms,

linearization map of transition = transition map of linearization

To continue the intuitive discussion, consider next time-invariant continu-
ous-time systems ẋ = f(x, u) over K = R. Suppose given a state x0 ∈ X, an
input ω̃ ∈ L∞U (σ, τ) which is admissible for x0, and denote the corresponding
solution as x̃(t) = φ(t, σ, x0, ω̃). We will show in Theorem 1 that the same input
ω̃ is also admissible for all initial states x near enough x0, that is, the domain of
admissibility is open. Thus, we may consider the mapping Θ(x) := φ(τ, σ, x, ω̃),
which assigns the final state to each initial state, given this control ω̃, and the
mapping Θ is defined on some open subset of X and takes values in X. Theorem 1
will show that this map is continuously differentiable. For purposes only of
simplifying this preliminary discussion, we make the additional assumption that
φ(t, σ, x, ω̃) is twice continuously differentiable jointly as a function of (t, x); this
allows us to exchange orders of derivation. We now compute the Jacobian at
x = x0 of the map Θ. From the differential equation

∂φ

∂t
(t, σ, x, ω̃) = f(φ(t, σ, x, ω̃), ω̃) ,

we have, taking derivatives with respect to x,

∂

∂t

(
∂φ

∂x

)
=

∂

∂x

(
∂φ

∂t

)
= fx(φ, ω̃)

(
∂φ

∂x

)
(where fx indicates the Jacobian of f(x, u) with respect to x, and we omitted
the arguments (t, σ, x, ω̃) in order to not clutter the formula). In addition, from
the identity φ(σ, σ, x, ω̃) = x we also have that

∂φ

∂x
(σ, σ, x, ω̃) = I
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(n × n identity matrix) for all x near x0. Therefore ∂φ
∂x (t, σ, x0, ω̃) is the fun-

damental solution associated to the linearized (or “variational”) system along
the pair (x̃, ω̃) with zero input perturbation, that is, the solution of the matrix
equation

Λ̇(t) = A(t)Λ(t) , Λ(σ) = I ,

whereA(t) = fx(x̃(t), ω̃(t)) for all t ∈ [σ, τ ]. The Jacobian of Θ(x) = φ(τ, σ, x, ω̃)
evaluated at x0 is then the final value of this solution:

Θ∗(x0) = Λ(τ) .

An equivalent way to state this formula, which is in the form given in Theorem 1,
is to say that the directional derivative of Θ(x) at x = x0 in the direction of
an arbitrary vector λ0, that is, Θ∗(x0)(λ0), is given by the solution at final
time τ , λ(τ), of the variational equation λ̇(t) = A(t)λ(t) with initial condition
λ(σ) = λ0.

Moreover, if the control-value set is an open subset of Rm and f(x, u) is
differentiable in u, then the linearized system also provides a way to compute
the Jacobian with respect to input perturbations. To be precise, take any fixed
input µ ∈ L∞U (σ, τ), and consider φ(τ, σ, x0, ω̃ + hµ). If h is small enough,
the control ω̃+ hµ is admissible for x0, because the set of admissible controls is
open in the topology of uniform convergence. (This is also proved in Theorem 1;
observe that ω̃+hµ ∈ L∞U (σ, τ) for all sufficiently small h, because there is some
compact subset C of U so that ω̃(t) ∈ C for almost all t, and there is some h1 > 0
so that the h1-neighborhood of C is included in U.) Let us compute the partial
derivative of φ(t, σ, x0, ω̃ + hµ) with respect to h, evaluated at h = 0, making
again a simplifying assumption, in this case that this map is C2 in (t, h). From

∂φ

∂t
(t, σ, x, ω̃ + hµ) = f(φ(t, σ, x, ω̃ + hµ), ω̃ + hµ),

we get

∂

∂t

(
∂φ

∂h

)
=

∂

∂h

(
∂φ

∂t

)
= fx(φ, ω̃ + hµ)

(
∂φ

∂h

)
+ fu(φ, ω̃ + hµ)µ .

In particular, when evaluating at h = 0 we obtain the following formula:

∂

∂t

(
∂φ

∂h

∣∣∣∣
h=0

)
= A(t)

(
∂φ

∂h

∣∣∣∣
h=0

)
+ B(t)µ

where B(t) = fu(x̃(t), ω̃(t)) for all t ∈ [σ, τ ]. Also, φ(σ, σ, x0, ω̃ + hµ) ≡ x0

implies that ∂φ
∂h (t, σ, x0, ω̃ + hµ) = 0 when t = σ. In other words,

∂φ

∂h
(τ, σ, x0, ω̃ + hµ)

∣∣∣∣
h=0

equals the solution λ(τ) of the linearized equation λ̇ = A(t)λ+B(t)µ with initial
condition λ(σ) = 0.
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A stronger statement can be made if one considers the total, not merely
directional, derivative of φ(τ, σ, x0, ω) with respect to ω, or, more precisely,
since we are dealing with elements of an infinite dimensional space, the Fréchet
differential (cf. Appendix B) of α = αx0,σ,τ : ω → φ(τ, σ, x0, ω), seen as a map
from an open subset of L∞U (σ, τ) into Rn. This map is shown below to be
continuously differentiable. The differential evaluated at ω̃, α∗[ω̃], is the linear
map which, when applied to any perturbation µ, is computed as the solution of
the linearized system shown above.

In summary, also for continuous-time systems one has the principle:
linearization map of transition = transition map of linearization.

The main purpose of this section is to establish this fact as a general theorem.
We provide details only for continuous-time systems. A similar result holds for
differentiable discrete-time systems, but this is trivial to establish and will be
left as an exercise. Also, for simplicity, we deal first with time-invariant systems.
For such systems, properties (2.22) and (2.23) hold, and the system is of class Ck
if U is an open subset of Rm and f is k-times continuously differentiable. The
time-varying case is dealt with as a simple consequence of the time-invariant
case, in Remark 2.8.1.

From now on, Σ will always denote a fixed continuous-time time-invariant
system, σ < τ are in R, and T := τ − σ.

As in the Appendix on differential equations, we write L∞U (σ, τ) for the set
of all essentially bounded measurable controls

ω : [σ, τ ] → U

or just L∞U , since the interval will be fixed. We think of L∞U as a metric space
under uniform convergence, that is, with the metric

d∞(ω, ν) := ess.sup. {dU(ω(t), ν(t)) | t ∈ [σ, τ ]} .

When U = Rm, we write also L∞m ; this is the Banach space of essentially bounded
measurable functions [σ, τ ] → Rm endowed with the sup norm

‖ω‖∞ := ess.sup. {|ω(t)|, t ∈ [σ, τ ]} .

In this section, we use the notation |x| (rather than ‖x‖) for the Euclidean norm
in the state space X ⊆ Rn, or when U ⊆ Rm in the control-value space U, to
avoid confusion in arguments in which both Euclidean and function space norms
appear. For matrices A ∈ Rk×l (such as Jacobians), we use also |A| instead of
‖A‖, for the matrix norm corresponding to Euclidean norms in Rl and Rk.

The main result on continuity and differentiability is given below. We include
a weak convergence statement that is useful in optimal control theory. By weak
convergence of a sequence ωj → ω, with all ωj ’s as well as ω in L∞m (σ, τ), we
mean that ∫ τ

σ

ϕ(s)′ωj(s) ds →
∫ τ

σ

ϕ(s)′ω(s) ds
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for every integrable function ϕ : [σ, τ ] → Rm; see Chapter 10 for more discussion
of weak convergence.

By a system affine in controls (or control-affine) we mean a system over R
for which f is affine in u ∈ U = Rm, so that its equations take the form

ẋ = g0(x) +
m∑
i=1

uigi(x) . (2.34)

This includes in particular linear systems.

Theorem 1 Let Σ be a (time-invariant, continuous-time) system, and pick any
interval [σ, τ ]. Consider the map that gives the final state given an initial state
and control,

α : Dσ,τ → X : (x, ω) 7→ ξ(τ) ,

as well as the mapping into the entire path

ψ : Dσ,τ → C0
n : (x, ω) 7→ ξ ,

where ξ(t) = φ(t, σ, x, ω|[σ,t)). If the system is of class C1 and (ξ, ω) is any
trajectory, and if

λ0 ∈ Rn and µ ∈ L∞m ,

consider also the solution λ : [σ, τ ] → Rn of the variational equation

λ̇(t) = fx(ξ(t), ω(t))λ(t) + fu(ξ(t), ω(t))µ(t), (2.35)

with initial condition λ(σ) = λ0. The following conclusions then hold:

1. The set Dσ,τ is an open subset of X×L∞U , and both ψ and α are continuous.

2. Take any x and any ω admissible for x, and denote ξ := ψ(x, ω). Let
{ωj}∞j=1 be an equibounded sequence of controls (that is, there is some fixed
compact K ⊆ U such that ωj(t) ∈ K for all j and almost all t ∈ [σ, τ ])
and

lim
j→∞

xj = x .

If either one of the following conditions hold:

(i) ωj → ω as j →∞ pointwise almost everywhere, or

(ii) ωj → ω as j →∞ weakly and Σ is affine in controls,

then ξj := ψ(xj , ωj) is defined for all large j and

lim
j→∞

‖ξj − ξ‖∞ = 0 .
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3. If Σ is of class C1, then α is of class C1 and

α∗[x, ω](λ0, µ) = λ(τ)

when λ is as in (2.35). That is, α∗[x, ω] is the same as the map α∗
corresponding to the linearization Σ∗[ξ, ω].

In particular, for systems of class C1,

α(x, ·) : Dσ,τ,x → X

has full rank at ω if and only if the linear map

L∞m → X : µ 7→
∫ τ

σ

Φ(τ, s)B(s)µ(s) ds

(the map α(0, ·) for the linearization Σ∗[Γ] along Γ = (ξ, ω), seen as a time-
varying linear system) is onto.

Proof. First note that conclusion 1 follows from statement 2(i); this is be-
cause uniform convergence ωj → ω in L∞U (σ, τ) implies in particular pointwise
convergence, as well as — cf. Remark C.1.3 in the Appendix on ODE’s — equi-
boundedness of the sequence {ωj}. We will show how the continuity statements
2(i) and 2(ii) are both easy consequences of Theorem 55 (p. 486) found in that
Appendix. Assume given any (x, ω) ∈ Dσ,τ and any sequence ωj → ω converg-
ing in either of the two senses, and let ξ = ψ(x, ω). Pick any ε > 0. We wish to
show that ‖ξj − ξ‖∞ < ε for all large j.

We start by choosing an open subset X0 of X whose closure is a compact
subset of X and such that ξ(t) ∈ X0 for all t ∈ I := [σ, τ ]. Let K ⊆ U be a
compact set so that ωj(t) ∈ K and ω(t) ∈ K for almost all t ∈ I. Introduce the
functions I × X → Rn given by

hj(t, z) := f(z, ωj(t))− f(z, ω(t))

for each j = 1, 2, . . ., and

f̃(t, z) := f(z, ω(t)) .

Note that all these functions satisfy the hypotheses of the existence Theorem 54
(namely (H1), (H2), and the local Lipschitz and integrability properties) found
in the Appendix on ODE’s. For each j let gj := f +hj , so gj(t, z) = f(z, ωj(t)).
Since the Jacobian ‖fx‖ is bounded on the compact set clos X0 ×K, there is a
constant a > 0 so that

‖gj(t, x1)− gj(t, x2)‖ ≤ a ‖x1 − x2‖

for all t ∈ I, all j, and all x1, x2 ∈ X0. Let

Hj(t) :=
∫ t

σ

hj(s, ξ(s)) ds , t ∈ I
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and Hj := supt∈I ‖Hj(t)‖.
Assume for now that we have already proved the following fact:

lim
j→∞

Hj = 0 (2.36)

(which amounts to saying that the functions Hj converge uniformly to zero).
We wish to apply Theorem 55 (p. 486), with “X” there being X0, “f” being f̃ ,
α(t) ≡ a, and z0 and h equal to xj and hj respectively, for all large enough j.
Take any 0 < D ≤ ε so that

{z | ‖z − ξ(t)‖ ≤ D for some t ∈ [σ, τ ]}

is included in X0, and choose an integer j0 so that, for each j ≥ j0, ‖x− xj‖
and Hj are both less than

ε

2
e−a(τ−σ) ≤ D

2
e−a(τ−σ) .

For any such j, using z0 = xj and h = hj in Theorem 55 (p. 486) implies that

‖ξ − ξj‖∞ ≤
(
‖x− xj‖+Hj

)
≤ ε

as desired.
We now show (2.36). Suppose first that ωj(t) → ω(t) a.e. as j → ∞. Then

hj(t, ξ(t)) → 0 a.e. as well. Moreover, letting c be an upper bound on the values
of ‖f‖ on the compact set clos X0 ×K,

‖hj(t, ξ(t))‖ ≤ 2c

for all t ∈ I. The Lebesgue Dominated Convergence Theorem ensures that∫ t

σ

‖hj(s, ξ(s))‖ ds → 0 ,

from which (2.36) follows.
Suppose now that Σ is affine in controls and convergence is in the weak

sense. We may write

hj(s, ξ(s)) = G(ξ(s)) [ωj(s)− ω(s)] ,

where G(z) is the matrix whose columns are g1(z), . . . , gm(z). Thus the ith
coordinate of hj(s, ξ(s)), i = 1, . . . , n, has the inner product form

ϕi(s)′ [wj(s)− ω(s)]

where ϕi(s), the transpose of the ith row of G(ξ(s)), is a continuous and hence
integrable function of s. By the weak convergence assumption,∫ t

σ

ϕi(s)′ [wj(s)− ω(s)] ds → 0 as j →∞
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for each fixed t ∈ I and each i = 1, . . . , n. Moreover, the functions Hj form an
equicontinuous family, because ‖Hj(t1)−Hj(t2)‖ ≤ 2c |t1 − t2| (recall that the
norm of hj is upper bounded by 2c). Pointwise convergence of an equicontinuous
function implies uniform convergence, so also in this case we have proved (2.36).

We next prove differentiability. (The proof is organized in such a manner as
to make a generalization in Section 2.9 very simple.) Let (x, ω) be given, and
ξ := ψ(x, ω). Note that now X = Rn and U = Rm. We first multiply f by a
smooth function Rn × Rm → R which is equal to one in a neighborhood of the
set of values (ξ(t), ω(t)) and has compact support. Since differentiability is a
local property, it is sufficient to prove the result for the new f obtained in this
manner. Thus from now on we assume that f is bounded and globally Lipschitz:

|f(x, u)− f(z, v)| ≤M (|x− z|+ |u− v|)

for all x, z in Rn and all u, v in Rm. In particular, solutions are globally defined.
As a consequence of the Mean Value Theorem, we can write

f(x+ a, u+ b)− f(x, u)− fx(x, u)a− fu(x, u)b = N(x, u, a, b) (2.37)

for all x, a ∈ Rn and u, b ∈ Rm, where N(x, u, a, b) =∫ 1

0

[(fx(x+ ta, u+ tb)− fx(x, u))a + (fu(x+ ta, u+ tb)− fu(x, u))b] dt

(2.38)
(see, for instance, the proof of [264], Chapter V.4, Corollary 2). In particular,
N is jointly continuous in its arguments and vanishes when a = b = 0. Observe
that, because N has compact support, it is uniformly continuous; thus, the
supremum C(a, b) over all x ∈ Rn, u ∈ Rm of∫ 1

0

|fx(x+ ta, u+ tb)− fx(x, u)| + |fu(x+ ta, u+ tb)− fu(x, u)| dt (2.39)

is continuous and it vanishes at a, b = 0.
Along the given trajectory (ξ, ω), consider the linearization matrices

A(t) = fx(ξ(t), ω(t))
B(t) = fu(ξ(t), ω(t)) .

For any other control ν ∈ L∞m (σ, τ) sufficiently near ω, and each z near x, we
consider the corresponding trajectory (ζ, ν), where ζ = ψ(z, ν). Introduce

δ(t) := ζ(t)− ξ(t)

and
µ(t) := ν(t)− ω(t) .

From (2.37) and (2.39) we conclude that

δ̇(t) = A(t)δ(t) +B(t)µ(t) + γ(t)
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with
|γ(t)| ≤ (|δ(t)|+ |µ(t)|) C(δ(t), µ(t)) .

Thus, if λ solves (2.35) with

λ(σ) = δ(σ) = λ0 = x− z ,

it follows that
δ(τ) = λ(τ) +

∫ τ

σ

Φ(τ, s)γ(s) ds ,

where Φ is the fundamental solution associated to A(·). So

|δ(τ)− λ(τ)| ≤ c1 (‖δ‖∞ + ‖µ‖∞) sup
t∈[σ,τ ]

C(δ(t), µ(t))

for some constant c1 (where “sup” means “essential sup”).
By a Bellman-Gronwall argument as in the proof of continuity, one has an

estimate
‖δ‖∞ ≤ c2 (|λ0|+ ‖µ‖∞) ,

so we can conclude finally an estimate of the type

|δ(τ)− λ(τ)| ≤ c (|λ0|+ ‖µ‖∞) sup
t∈[σ,τ ]

C(δ(t), µ(t))

for some constant c. Since the supremum is small for z near x and ν near ω,
this establishes differentiability.

Finally, we must prove that the map α is continuously differentiable. Let
(x, ω) be in the domain Dσ,τ . We must prove that, for each ε > 0 there is some
δ > 0, such that for each (x̃, ω̃) ∈ Dσ,τ for which

‖ω − ω̃‖+ |x− x̃| < δ , (2.40)

necessarily
‖α∗[x, ω]− α∗[x̃, w̃]‖ < ε .

By definition of the operator norm, and using the characterization of the deriva-
tive just obtained, this is the same as asking that for each ε there be a δ such
that, for each λ0 ∈ Rn and each µ ∈ Rm,∣∣∣(Φ(τ, σ)− Φ̃(τ, σ)

)
λ0 +

∫ τ

σ

(
Φ(τ, s)B(s)− Φ̃(τ, s)B̃(s)

)
µ(s) ds

∣∣∣∣
≤ ε (|λ0|+ ‖µ‖) (2.41)

when (2.40) holds, where Φ(τ, s) is the solution at time s of the matrix initial
value problem

Ẋ(t) = fx(ξ(t), ω(t))X(t), X(τ) = I (2.42)

and similarly with Φ̃, and where

B(t) := fu(ξ(t), ω(t))
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and similarly for B̃.
Note that the left-hand side of (2.41) is always bounded by

|Φ(τ, σ)− Φ̃(τ, σ)||λ0| +
∫ τ

σ

|Q(s)||µ(s)| ds , (2.43)

where
Q(s) := Φ(τ, s)B(s)− Φ̃(τ, s)B̃(s) , (2.44)

and also that |Q(s)| is bounded by

|Φ(τ, s)||B(s)− B̃(s)| + c |Φ(τ, s)− Φ̃(τ, s)| , (2.45)

where c is any constant bounding the values

fu(x, u)

whenever x is in a neighborhood of the set

{ξ(t), t ∈ [σ, τ ]}

and u is in a neighborhood of the set

{ω(t), t ∈ [σ, τ ]} .

This implies that (the essential supremum of) |Q(s)| is small when (x, ω) is near
(x̃, ω̃): Indeed, |Φ(τ, s) − Φ̃(τ, s)| is small (consider the variational equation
seen as a control system, and apply the continuity part of the proof), and
|B(s)− B̃(s)| is small, too, since it is obtained as an evaluation of a continuous
matrix function along nearby trajectories. This completes the proof.

The reader may wish to consult Corollary 9.1.1 for a (weaker) version of this
theorem which is stated in terms of directional derivatives, in the style of the
discussion that preceded the proof. Also, later, in Section 4.2 (page 147), we
establish several additional properties regarding joint continuity and differen-
tiability of φ(t, σ, x, ω) on (t, x). It should be noted that, in the last part of the
theorem, we actually established a more general fact on differentiability than
stated, namely, that the map ψ is differentiable.

Remark 2.8.1 The results can be generalized to time-varying systems in a
straightforward manner. Recalling that the definition of rhs involved the auxil-
iary function f̃ , it is only necessary to apply the Theorem to the system

ẋ = f̃(π, x, u)

with π thought of as a new control. Fixing the value of π at that of the given
function that provides the time variation, results on differentials of the original
dynamics provide results for ẋ = f(t, x, u). For instance, the mappings α and
ψ are still continuous, and are differentiable in the case of systems of class C1

with respect to the uniform convergence norm. 2
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A very useful Corollary is that piecewise constant inputs approximate the
effect of arbitrary controls. By a piecewise constant control

ω ∈ U[σ,τ)

we mean a control for which there exists an integer l > 0, a sequence of times

σ = t1, . . . , tl = τ ,

and a sequence of values
u1, . . . , ul

in U so that
ω(t) ≡ ui if t ∈ [ti, ti+1)

for each i = 1, . . . , l − 1.

Lemma 2.8.2 Assume that Σ is a time-invariant continuous-time system and
that U is separable. (This is the case, for instance, if U is a subset of a Euclidean
space, with the induced metric.) Suppose that

φ(τ, σ, x, ω) = z

for some x, z ∈ X and ω ∈ U[σ,τ). Then there exists a sequence of piecewise
constant controls

ω1, ω2, . . . , ωk, . . .

so that (x, ωj) ∈ Dσ,τ for all j and

zj := φ(τ, σ, x, ωj) → z as t → ∞ .

Further, there exists a sequence of states {xj} so that (xj , ωj) ∈ Dσ,τ for all j,

φ(τ, σ, xj , ωj) = z for all j ,

and
xj → x as t → ∞ .

Proof. The first conclusion is immediate from Remark C.1.2 in Appendix C,
plus Part 2(i) of Theorem 1. The second conclusion follows from the same
argument applied to the time-reversed system

ẋ = −f(x, u)

(cf. Lemma 2.6.8).

The following discrete-time result is easy to prove by induction on the length
of inputs:
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Lemma/Exercise 2.8.3 Let Σ be a time-invariant discrete-time system of
class C0, and denote

Dσ,τ := {(x, ω) | (τ, σ, x, ω) ∈ D} ⊆ X× U[σ,τ) .

Then the following conclusions hold, when U[σ,τ) is identified with an open
subset of a Euclidean space Km(τ−σ).

As a subset of X× U[σ,τ), the set Dσ,τ is open, and the mapping

α : Dσ,τ → X, α(x, ω) := φ(τ, σ, x, ω)

is continuous. If the system is of class C1, then α is differentiable; moreover,

α∗[x, ω](λ0, µ)

is the solution λ(τ) of the variational equation

λ(t+ 1) = fx(ξ(t), ω(t))λ(t) + fu(ξ(t), ω(t))µ(t), t ∈ [σ, τ) (2.46)

with initial condition λ(σ) = λ0, where fx and fu denote Jacobians of f with
respect to the first n variables and the last m variables, respectively, and where
λ(t) ∈ Rn and µ(t) ∈ Rm for each t. Here ξ denotes the path ψ(x, ω).

In particular,
α(x, ·) : Dσ,τ,x → X

has full rank at ω if and only if the linear map α(0, ·) for the linearization Σ∗[Γ]
along Γ = (ξ, ω), seen as a time-varying linear system, is onto. 2

2.9 More on Differentiability*

When U ⊆ Rm, we may consider for each p ≥ 1 and each σ < τ the space
of p-integrable functions on [σ, τ ]. Since the interval of definition is finite, this
contains L∞m . We shall be interested in the latter space, endowed with the norm
of the first:

Bpm

will denote L∞m with the norm

‖ω‖p :=
(∫ τ

σ

|ω(t)|p dt
) 1

p

for each p ∈ [1,∞). For simplicity in statements, we also let B∞m be the same
as L∞m (with the sup norm). The normed spaces Bpm, p < ∞, are not Banach,
being dense subspaces of the respective Banach space of p-integrable maps.

It is a standard real-variables fact that for each pair p, q so that

1 ≤ p < q ≤ ∞

* This section can be skipped with no loss of continuity.



2.9. More on Differentiability* 65

there exists a constant c1 so that

‖ω‖p ≤ c1 ‖ω‖q
for all ω ∈ L∞m . In fact, as a consequence of Hölder’s inequality this holds with

c1 = (τ − σ)
1
p−

1
q

(see, for instance, [190], Theorem 13.17). Conversely, if 1 ≤ p < q <∞ and if k
is any given constant, then there is another constant c2 such that

‖ω‖qq ≤ c2 ‖ω‖pp
whenever ‖ω‖∞ ≤ k. This is proved by writing

|ω(t)|q = |ω(t)|q−p|ω(t)|p ≤ kq−p|ω(t)|p

and integrating. In particular, all of the p-topologies (p <∞) are equivalent on
bounded subsets of L∞m (but not for p = ∞).

The results on continuity and differentiability will depend on the precise
value of p. To understand why, it is worth thinking about the most simple case
of a system with equation

ẋ = g(u)

and X = U = R. Here

φ(τ, σ, 0, ω) =
∫ τ

σ

g(ω(t)) dt .

If ωn converges uniformly to ω and g is continuous, then also

φ(τ, σ, 0, ωn) → φ(τ, σ, 0, ω) . (2.47)

But if the convergence ωn → ω is weaker, then (2.47) will in general fail to
follow, unless either one knows that the convergence is dominated or if some
other condition on g, such as linearity on u, is satisfied.

We introduce a technical condition that will be needed later.

Definition 2.9.1 Let the system Σ be of class C1. We will say that Σ has
linear growth on controls if U is a convex subset of Rm and it holds that,
for each compact subset K ⊆ X, there is some constant k so that the rhs of Σ
satisfies

‖fu(x, u)‖ ≤ k (2.48)

whenever x ∈ K and u ∈ U. If in addition Σ is of class C2 and it also holds
that the second partial derivative

fxu(x, u) (2.49)

is bounded in norm uniformly on K×U for each compact subset K ⊆ X, meaning
that the second mixed partials of f with respect to all variables (xi, uj) are all
bounded, then we will say that Σ has strongly linear growth in controls. 2
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There are two main cases of interest in control theory in which both of these
properties are satisfied. The first is that in which the system is of class C2 and
the control value set U is (convex and) bounded and f extends as a C2 function
in a neighborhood of clos U ⊆ Rm. The second is that of systems affine in
controls as described in Equation (2.34).

Lemma 2.9.2 Assume that Σ is of linear growth in controls, X = Rn, and
there exists some compact subset K1 of X such that f(x, u) = 0 for all x /∈ K1.
Let K2 be any compact subset of U. Then, there exists a constant M such that

|f(x0, u)− f(z0, v)| ≤M
(
|x0 − z0|+ |u− v|

)
(2.50)

for every x0, z0 ∈ X, u ∈ K2, and v ∈ U. Further, if Σ is of class C2 and
p ∈ [1, 2], then denoting

g(x, β) := f(x, β)− f(x0, u)− fx(x0, u)(x− x0)− fu(x0, u)(β − u)

there exists a constant N so that

|g(z0, v)| ≤ N
(
|x0 − z0|2 + |u− v|p

)
(2.51)

for every x0, z0 ∈ X, u ∈ K2, and v ∈ U.

Proof. Property (2.50) is obtained by separately bounding

|f(x0, u)− f(z0, u)|

and
|f(z0, u)− f(z0, v)|

using property (2.48) and the Mean Value Theorem (convexity of U and the
compact support property are used here). We now prove property (2.51). As-
sume first that |u− v| ≤ 1. Then v is in the compact set

K3 := {v | |v − β| ≤ 1 for some β ∈ K2} .

By Taylor’s formula with remainder (recall that f is twice differentiable), we
know that, for all x0, z0, and u, v ∈ K3,

|g(z0, v)| ≤ a|x0 − z0|2 + b|u− v|2

for some constants a, b (which depend on K1 and K3 and hence also depend on
K2). Since |u− v| ≤ 1 and p ≤ 2, this means that also

|g(z0, v)| ≤ a|x0 − z0|2 + b|u− v|p. (2.52)

Next note that gβ(x, β) = fu(x, β)− fu(x0, u), so that the system having g as a
rhs also has linear growth in controls (in equation (2.48), for the same compact
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one must use 2k instead of k). We can then apply the first conclusion, (2.50),
to this other system to conclude, for z0, u, v as in the statement, that

|g(z0, v)− g(z0, u)| ≤M ′|u− v|

for a constant M ′ that depends only on K1 and K2. If |u − v| > 1, then also
|u− v| < |u− v|p; thus,

|g(z0, v)| ≤ |g(z0, u)|+ |g(z0, v)− g(z0, u)|
≤ a|x0 − z0|2 +M ′|u− v|p.

Choosing N := max{a, b,M ′}, the result follows.

We now provide a p-norm version of Theorem 1 (p. 57).

Proposition 2.9.3 Let the notations be as in the statement of Theorem 1.
Pick any p ∈ [1,∞). Then:

1. If S has linear growth on controls, then the set Dσ,τ is open in X×Bpm and
both ψ and α are continuous (with respect to the p-topology on controls).

2. Take any x and any ω admissible for x, and denote ξ := ψ(x, ω). Assume
that

lim
j→∞

xj = x and lim
j→∞

ωj = ω ,

where the sequence {ωj} is equibounded and the convergence is now in
Bpm. Then ξj := ψ(xj , ωj) is defined for all large j and

lim
j→∞

‖ξj − ξ‖∞ = 0 .

3. If p > 1 and Σ has strongly linear growth on controls, then the same
differentiability conclusion as in Theorem 1, Part 3, holds with respect to
the p-topology.

Proof. Consider first the continuity statements. We assume first that X = Rn
and that f is globally Lipschitz in the following sense: For each compact subset
K2 of U, there is a constant M such that

|f(x, u)− f(z, v)| ≤M (|x− z|+ |u− v|)

for all x, z in Rn, u in K2, and v in U. So solutions are globally defined. Assume
that (x, ω) gives rise to the trajectory (ξ, ω); we wish to prove continuity at
(x, ω). Let (ζ, ν) be any other trajectory. We have that, for each σ ≤ t ≤ τ ,

ξ(t)− ζ(t) = ξ(σ)− ζ(σ) +
∫ t

σ

(f(ξ(s), ω(s))− f(ζ(s), ν(s))) ds .
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By the Lipschitz condition, using for K2 any compact containing all values of
ω, there is an M so that

|ξ(t)− ζ(t)| ≤ |ξ(σ)− ζ(σ)|+M ‖ω − ν‖1 +M

∫ τ

σ

|ξ(s)− ζ(s)| ds .

By the Bellman-Gronwall Lemma, we conclude that

|ξ(t)− ζ(t)| ≤ (|ξ(σ)− ζ(σ)|+M ‖ω − ν‖1) e
Mt

for all σ ≤ t ≤ τ . Thus, for each 1 ≤ p <∞ there are constants a, b such that

|φ(t, σ, x, ω)− φ(t, σ, z, ν)| ≤ a|x− z|+ b ‖ω − ν‖p (2.53)

for all x, z in Rn, all ν in Bpm, and all σ ≤ t ≤ τ . This shows the continuity of
ψ and α at (x, ω) under the above global Lipschitz assumption.

Assume now that X, U, and f are arbitrary. Pick any element (x, ω) in Dσ,τ .
Choose open subsets V and W of X such that

V ⊆ clos (V) ⊆ W

and so that
ξ(t) ∈ V for all t ∈ [σ, τ ]

and W has a compact closure. Let θ : Rn → R be any smooth function that is
identically 1 on clos (V) and vanishes outside W.

Consider now the system obtained with X′ = Rn, same U, and f replaced
by h, where

h(x, u) := θ(x)f(x, u)

on X× U and h ≡ 0 if x /∈ X. If f has linear growth in u then h also does, and
hence since θ has compact support we are in the situation of (2.50) in Lemma
2.9.2. Thus, h is globally Lipschitz in the above sense, and we can apply the
first case of the proof to this h.

We let φ̃ be the transition map φ for this new system. By (2.53), there is
then a neighborhood V ′ of x and an ε > 0 such that φ̃(t, σ, z, ν) is in V for all
σ ≤ t ≤ τ whenever z ∈ V ′ and ‖ω − ν‖p < ε.

The maps h and f coincide in a neighborhood of the points of the form
(ξ(t), ω(t)), t ∈ [σ, τ ], because θ is independent of u. Therefore φ(t, σ, z, ν)
solves the original differential equation, i.e. it equals φ̃(t, σ, z, ν) for these t, z, ν.
In particular, Dσ,τ contains a neighborhood of (x, ω) and is therefore open.
Continuity of ψ and α then follows from (2.53).

For the dominated convergence statement, one may apply the previous case.
The hypothesis of linear growth can be assumed, because we can always modify
the rhs of the system in such a manner that its values remain the same in a
neighborhood of the values of the corresponding trajectories but so that the
growth condition is satisfied. For instance, one may multiply f by a function
θ(u) which vanishes for |u| > C.
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We now prove differentiability, assuming that the system is of strong linear
growth in controls. Since differentiability is a local property, we may again
modify f (by multiplication by a scalar function) and assume that X = Rn and
f is globally Lipschitz in the previous sense.

As in the proof for p = ∞, let (ξ, ω) be any fixed trajectory, and consider
the linearization matrices A(t), B(t) along it. For any other control ν (of length
T ) sufficiently near ω in Bpm, and each z near x, we consider the corresponding
trajectory (ζ, ν), where ζ = ψ(z, ν). By continuity, we may choose a neigh-
borhood of ω (in the p-norm) so that this trajectory stays always in a given
compact convex neighborhood of x in X, say K1. Let K2 be any compact set
such that the (essentially bounded) control ω satisfies ω(t) ∈ K2 for almost all
t. As before, introduce δ(t) := ζ(t) − ξ(t) and µ(t) := ν(t) − ω(t). From the
conclusion (2.51) in Lemma 2.9.2, it follows that, if 1 ≤ p ≤ 2, then

δ̇(t) = A(t)δ(t) +B(t)µ(t) + γ(t) ,

where
|γ(t)| ≤ N

(
|δ(t)|2 + |µ(t)|p

)
for a suitable constant N . So if λ solves (2.35) with

λ(σ) = δ(σ) = λ0 = x− z ,

one has again the explicit form

δ(τ) = λ(τ) +
∫ τ

σ

Φ(τ, s)γ(s) ds .

So

|δ(τ)− λ(τ)| ≤M

(
‖µ‖pp +

∫ τ

σ

|δ(t)|2 dt
)

for some constant M . Applying (2.53) to the second term there results that
there is a constant M ′ such that

|δ(τ)− λ(τ)| ≤M ′
(
‖µ‖pp + |λ0|2 + ‖µ‖2p

)
. (2.54)

Since p > 1, it follows that |δ(τ)− λ(τ)| is indeed

o(|λ0|+ ‖µ‖p)

as required to establish differentiability. If, instead, 2 < p, we consider equation
(2.54) for the case p = 2. Since

‖µ‖2 ≤ c ‖µ‖p

for some constant, it follows that |δ(τ)− λ(τ)| is majorized by an expression

M ′′
(
|λ0|2 + 2 ‖µ‖2p

)
,
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again as desired.
The proof of continuity of the derivative is as follows: As in the proof of

Theorem 1, for each (x, ω) in the domain Dσ,τ and each ε > 0 we need to show
that there is some δ > 0 such that, for each (x̃, ω̃) ∈ Dσ,τ so that

‖ω − ω̃‖p + |x− x̃| < δ , (2.55)

necessarily
‖α∗[x, ω]− α∗[x̃, w̃]‖ < ε .

As in the proof for the sup norm, this means that for each ε there should be
some δ such that, for each λ0 ∈ Rn and each µ ∈ Rm, Equation (2.41) must
hold, except that the term ‖µ‖ now should be ‖µ‖p. We again have the bound
(2.43), with Q as in (2.44), as well as the bound (2.45), with c now being valid
for arbitrary u.

Bounding Q and applying Hölder’s inequality, we conclude from (2.44) and
(2.45) that the left-hand side of (2.43) is bounded by

k|λ0|+ k′
∥∥∥B(·)− B̃(·)

∥∥∥
q
‖µ‖p + (τ − σ)1/qck ‖µ‖p , (2.56)

where

k := sup
s∈[σ,τ ]

|Φ(τ, s)− Φ̃(τ, s)| ,

k′ := sup
s∈[σ,τ ]

|Φ(τ, s)| ,

and q = p
p−1 .

Note that k′ is finite because Φ is continuous in s; thus, the proof will be
completed if we show that both

∥∥∥B(·)− B̃(·)
∥∥∥
q

and k are small for (x̃, ω̃) near

(x, ω).
Consider equation (2.42). This can be thought of as a system in dimension

n2 whose controls are ξ, ω. Note that fxu is bounded, because we multiplied f
by a function of x with compact support, and the original system has strong
linear growth. In particular, then, this n2-dimensional system has itself linear
growth. It follows from Part 1 that k in equation (2.56) is indeed small provided
that ‖ω − ω̃‖p and

∥∥∥ξ − ξ̃
∥∥∥ be small, but the second of these tends to zero as

the first does and |x− x̃| → 0, by continuity.
Finally, we need to establish that if |xn − x| → 0 and ‖ωn − ω‖p → 0

then, with Bn(t) = fu(ξ(t), ω(t)), also ‖Bn(·)−B(·)‖q → 0. Since under the
assumptions also ‖ξn − ξ‖∞ → 0 and therefore ‖ξn − ξ‖p → 0, where ξn =
ψ(xn, ωn), and the values of all ξn may be assumed to stay in a compact subset
of the state space, it will be enough to prove the following fact (for each entry
b of the matrix B): If

b : Rl → R
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is a bounded continuous function and if

‖νn − ν‖p → 0 ,

then also
‖b ◦ νn − b ◦ ν‖q → 0 .

Note that ‖ωn − ω‖p → 0 implies that ωn converges to ω in measure, that is,

lim
n→∞

meas {t ∈ [σ, τ ] | |ωn(t)− ω(t)| ≥ δ} → 0

for each δ > 0 (see, for instance, Exercise 13.33 in [190]). Since b is uniformly
continuous, also b◦ωn converges in measure to b◦ω. Because the sequence {b◦ωn}
is uniformly bounded, it follows from the Dominated Convergence Theorem and
the Riesz Theorem (see, e.g., Exercise 12.57 in [190]) that the convergence is
also in q-norm, as desired.

Remark 2.9.4 The differentiability result is false if p = 1. For instance, let
σ = 0, τ = 1, and consider the system

ẋ = u2

with X = R and U = (−1, 1). We claim that the map

β := α(0, ·) = φ(1, 0, 0, ·) : ν →
∫ 1

0

ν(t)2 dt

is not differentiable at ω = 0, from which it follows that neither is α differentiable
at (0, 0). To see this by contradiction, write

L := β∗[0]

and note that, because β(ν) = β(−ν) and Lν = −L(−ν) for each ν,

2 ‖β(ν)‖ ≤ ‖β(ν)− Lν‖+ ‖β(−ν)− L(−ν)‖ . (2.57)

In particular, consider the family of controls ωε:

ωε(t) =
{

1 if t ∈ [0, ε],
0 otherwise

and note that ‖ωε − ω‖1 → 0 when ε→ 0. Thus, it should hold that each term
in the right-hand side of (2.57), and hence also β(ωε), is of order

o(‖ωε‖1) = o(ε) .

Since β(ωε) = ε, this is a contradiction.
Note that, on the other hand, for p > 1 one has for this example that

‖ωε‖p = ε1/p,

and there is no contradiction in that case. 2
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Remark 2.9.5 For p <∞ either the linear growth condition or the dominated
convergence assumption is essential. Otherwise, not even continuity holds. This
is because convergence in the p-topology does not imply convergence in the q-
topology, for q > p. Indeed, take any finite p and consider the equation ẋ = uq,
where q > p is arbitrary. Pick any r with q > (1/r) > p. The control ωε defined
now by

ωε(t) := ε−r for t ≤ ε

and zero otherwise, has ‖ωε‖p → 0 as ε→ 0, but

|ξε(1)| = ε1−rq →∞

for the corresponding solution ξε. 2

2.10 Sampling

In Section 1.3 we discussed the motivation behind the process of sampling and
digital control. We now define this precisely.

Definition 2.10.1 Let Σ = (R,X,U, φ) be a continuous-time system, and pick
any real number δ > 0. The δ-sampled system associated to Σ is the dis-
crete-time system Σ[δ] defined as follows. Let Eδ be the subset of

Z× X× U

consisting of those triples (k, x, u) that satisfy that ω is admissible for x, where

ω ∈ U[kδ,(k+1)δ)

is defined by
ω(t) ≡ u for all t ∈ [kδ, (k + 1)δ) .

The state space of Σ[δ] is then the set of all x ∈ X for which there is some k, ω
with (k, x, ω) ∈ Eδ, and the local-in-time dynamics are given on Eδ by

P(k, x, u) := φ((k + 1)δ, kδ, x, ω) .

For systems with outputs, Σ[δ] has the same Y and h as Σ. 2

Note that, in this definition, the effect of the control u on the sampled
system is undefined if the solution to the differential equation does not exist for
the entire interval [kδ, (k + 1)δ]. We think of the sampled system as providing
a “snapshot” view of the original system every δ seconds, with constant control
applied in between; if the original system had an explosion time during the
interval, the state at the end of the interval would be undefined.

It is easy to show that if Σ is linear (respectively, time-invariant), then
Σ[δ] is also, for any δ. For time-invariant systems, P(x, u) is just the result of
integrating ξ̇ = f(ξ, ω) on [0, δ], with initial state ξ(0) = x and control ω ≡ u.
(And P(x, u) is undefined if the solution does not exist.)
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Exercise 2.10.2 Find Σ[δ] for the following Σ and δ = 1 (all examples have
X = U = R):

(a) ẋ = xu;

(b) ẋ = ax+ bu (a, b are constants); and

(c) ẋ = (x+ u)2 (be sure to specify the state space and the domain of P for
this example). 2

2.11 Volterra Expansions*

For continuous-time systems, certain representations of input to state and re-
sponse maps are particularly useful. Before describing one of these, we review
the Peano-Baker formula and a close relative.

Recall that a fundamental solution of a linear differential equation Φ(t, σ)
admits a power series expansion, the Peano-Baker formula (C.27) discussed
in Appendix C.4. Substituting the power series (C.27) into the variation of
parameters formula gives an expression for φ(τ, σ, x, ω) in terms of a series of
integrals, for linear systems, as shown in Exercise C.4.2 in that Appendix. We
now describe an alternative such series, assuming for simplicity that x0 = 0.
Replace

ξ̇(t) = A(t)ξ(t) +B(t)ω(t) (2.58)
ξ(σ) = 0

by the corresponding integral equation

ξ(t) =
∫ t

σ

B(s)ω(s)ds+
∫ t

σ

A(s)ξ(s) ds ,

and solve this by iteration. There results a series representation for the solution
as follows:

ξ(t) =
∫ t

σ

B(s1)ω(s1) ds1 +
∫ t

σ

∫ s1

σ

A(s1)B(s2)ω(s2) ds2ds1

+
∫ t

σ

∫ s1

σ

∫ s2

σ

A(s1)A(s2)B(s3)ω(s3) ds3ds2ds1 + . . .

+
∫ t

σ

∫ s1

σ

. . .

∫ sl−1

σ

A(s1)A(s2) . . . A(sl−1)B(sl)ω(sl) dsl . . . ds2ds1

+ . . . . (2.59)

Note that this series is slightly different from that given in Exercise C.4.2: the
bottom limits of integration are now all equal to σ.

* This section can be skipped with no loss of continuity.
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Lemma/Exercise 2.11.1 Prove that both the series (2.59) and the series ob-
tained by taking termwise derivatives converge uniformly for t on bounded in-
tervals, and that therefore the series (2.59) provides a solution to the initial
value problem (2.58). 2

Using the above we now show, for a simple type of nonlinear system, how to
obtain an integral representation similar to the variation of parameters formula.
The resulting representation is called a Volterra Series.

A bilinear continuous-time system is one with X = Rn, U = Rm, and equa-
tions

ξ̇(t) =

(
A(t) +

m∑
i=1

ωi(t)Ei(t)

)
ξ(t) +B(t)ω(t) , (2.60)

where E1, . . . , Em, as well as A andB, are matrices of locally essentially bounded
functions. Note that linear systems appear as the special case when all Ei vanish.
A bilinear system with outputs is one with a linear measurement map

y(t) = C(t)ξ(t) (2.61)

and Y = Rp. (One could equally well define complex-valued bilinear systems, of
course.)

For notational simplicity, we restrict attention to single-input bilinear sys-
tems, those for which U = R and

ξ̇(t) = A(t)ξ(t) + ω(t)E(t)ξ(t) +B(t)ω(t) (2.62)

(here B is a column vector), but the multi-input case is entirely analogous.
We will find a series representation for solutions of this equation that exhibits

the dependence on powers of the control ω. To start, we consider the solution
ξ of (2.62) having initial condition ξ(σ) = 0. Introduce the function

ζ(t) := Φ(σ, t)ξ(t) ,

where Φ is the fundamental solution associated to A(t). Then, ζ satisfies the
differential equation

ζ̇ = ωFζ +Gω , (2.63)

where we introduced
G(t) := Φ(σ, t)B(t)

and
F (t) := Φ(σ, t)E(t)Φ(t, σ) .

Using the expression (2.59), with ωF in place of A and G in the place of B, in
order to give a series representation for the solution of (2.63), we obtain that
ζ(t) equals∫ t

σ

G(s1)ω(s1) ds1 +
∫ t

σ

∫ s1

σ

F (s1)G(s2)ω(s1)ω(s2) ds2ds1
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+
∫ t

σ

∫ s1

σ

∫ s2

σ

F (s1)F (s2)G(s3)ω(s1)ω(s2)ω(s3) ds3ds2ds1 + . . .

+
∫ t

σ

∫ s1

σ

. . .

∫ sl−1

σ

F (s1)F (s2) . . . F (sl−1)G(sl)ω(s1) . . . ω(sl) dsl . . . ds2ds1

+ . . . . (2.64)

We now multiply both sides of this equation by Φ(t, σ) and use that ξ(t) =
Φ(t, σ)ζ(t) and the formulas for F and G in terms of Φ, B,E, to conclude that
there is a Volterra expansion

ξ(t) =
∞∑
l=1

∫ t

σ

∫ s1

σ

. . .

∫ sl

σ

Wl(t, s1, . . . , sl)ω(s1) . . . ω(sl)dsl . . . ds1 (2.65)

where Wl(t, s1, . . . , sl) :=

Φ(t, s1)E(s1)Φ(s1, s2)E(s2) . . . E(sl−1)Φ(sl−1, sl)B(sl) . (2.66)

The case when ξ(σ) = x0 6= 0 can be handled as follows: Introducing the
variable

ξ̃(t) := ξ(t)− Φ(t, σ)x0 ,

there results for ξ̃ the equation

˙̃
ξ(t) = A(t)ξ̃(t) + ω(t)E(t)ξ̃(t) + B̃(t)ω(t)

having ξ̃(σ) = 0, where

B̃(t) := E(t)Φ(t, σ)x0 +B(t) ,

and a series can be obtained for ξ̃ as above.
Now it is possible to obtain a representation for the output y as

y(t) = C(t)Φ(t, σ)x0 + V (t) ,

where V (t) is given by

∞∑
l=1

∫ t

σ

∫ s1

σ

. . .

∫ sl

σ

C(t)Wl(t, s1, . . . , sl)ω(s1) . . . ω(sl)dsl . . . ds1 (2.67)

for the series obtained for ξ̃.

Exercise 2.11.2 The transmission of FM signals is based on the modulation
of frequency based on an input voltage. A simple circuit generating such mod-
ulated signals is the one satisfying the differential equation

ÿ(t) +
[
λ2 + u(t)

]
y(t) = 0 ,
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which corresponds to a harmonic oscillator with frequency controlled about the
nominal value λ. We model this as a time-invariant bilinear system

ẋ =
(

0 1
−λ2 0

)
x + u

(
0 0
−1 0

)
x (2.68)

y = (1 0)x

with X = R2, U = R, and Y = R. (The “B” matrix is identically zero.) When
u ≡ 0 one has a standard harmonic oscillator, and

x(t) =
(

sinλt
λ cosλt

)
is a solution, with

x(0) =
(

0
λ

)
.

Find the first three terms of the Volterra representation of y(t) for (2.68), with
this initial state. 2

2.12 Notes and Comments

Basic Definitions

Various definitions of “system” or “machine” have been proposed in the liter-
ature, all attempting to model basically the same notion, but differing among
themselves in mathematical technicalities. Some early references are [114], [230],
and [444], but of course similar transition formalisms (with no controls nor
outputs) have long been used in the theory of dynamical systems. Category-
theoretic definitions also have been suggested, which make the definition of
“linear” system or certain classes of “topological” systems very easy; see, for
instance, [22] for pointers to that literature, as well as [314], Section 8.5. The
area called general systems theory concerns itself with abstract systems defined
by transition maps, typically with no extra algebraic or topological structure;
see, for instance, [300] and [429].

Recently there has been a resurgence of interest in control theory in the
use of automata models that had originated in computer science, logic, and
operations research. In most of these studies, time corresponds not to “real”
clock time but to instants at which the system changes in some special manner,
as in queuing models when a new customer arrives. Work in this area falls
under the general label of “control of discrete-event systems”; some references
are [90], [405], and [433]. An approach combining discrete-event ideas together
with more classical linear design, in the context of a special-purpose computer
language, has been recently proposed in [46]; this paper models some of the
logical operations as discrete-time systems over a finite field. More generally,
the area of hybrid systems has become active in the mid 1990s, see for instance
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the conference proceedings [15]; one possible approach to combining automata
and linear systems was studied in [362] (see also the author’s paper in [15]).

A conceptually very different foundation for system and control theory has
been also proposed. Rosenbrock in [331] emphasized the fact that physical prin-
ciples sometimes lead to mixtures of differential and algebraic equations, and
state space descriptions are not necessarily the most appropriate; implicit dif-
ferential equations are then used. Related to this is the literature on singular
systems, or descriptor systems, defined (in the linear case) by equations of the
type Eẋ = Ax + Bu with the matrix E not necessarily invertible; see, e.g.,
[83], [94], [192], and [277], as well as [82] for the related differential equation
theory. The recent work of Willems has carried out this reasoning to the limit
and proposed a completely different formalism for systems, based on not distin-
guishing a priori between inputs and outputs. Instead of “input/output” data,
one then has an “observed time-series” which summarizes all i/o data without
distinguishing between the two; the papers [309], [424], [425], and [426] provide
an introduction to this literature.

The definitions given may be generalized to include what are often called
multidimensional systems, for which the time set T is Rk or Zk, with k > 1.
(The terminology is most unfortunate, since we normally use the term “dimen-
sion” to refer to the number of dependent variables in the equations defining
the dynamics, rather than to the number of independent variables.) Multidi-
mensional systems are useful in areas such as picture processing or seismic data
analysis, where different space directions may be thought of as “time” coordi-
nates. Multidimensional systems are considerably more difficult to handle, since
the difference and differential equations that appear with ordinary systems are
replaced by partial difference and differential equations. For references to this
area, see the book [57].

There is also a variation of the definition of system that allows for the possi-
bility of the readout map h to depend directly on ω(t). In other words, one has
h : T ×X×U → Y. In the context of such more general systems, one would call
state-output systems those that we have defined here. The use of non-state
output systems causes some technical difficulties which are avoided with our
definition, but one could model such more general systems using pairs (Σ, α),
where Σ is a system with outputs as defined in this Section and α : U× Y → Y

is a map.
In practice, it may often happen that control of a large system can only be

achieved through local effects; this gives rise to the theory of large scale systems
and corresponding decentralized control objectives; see [350] for a detailed treat-
ment of many of the issues that arise there, including the use of decomposition
techniques, as well as many references.

Continuous-time systems ẋ = f(x, u) can be studied as differential inclusions
([26], [111], [93]). In general, given a set-valued map F : X → 2Rn

, that is, a map
that assigns to each point x in X ⊆ Rn a subset F (x) ⊆ Rn, a solution of the
differential inclusion ẋ ∈ F (x) means, by definition, an absolutely continuous
function x : I → X, defined on some interval, so that ẋ(t) ∈ F (x(t)) for almost
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all t ∈ I. To a system (Σ) ẋ = f(x, u) one may associate the differential inclusion
with FΣ(x) := {f(x, u) | u ∈ U}, and paths of the system become solutions of
the latter. Conversely, there is a rich literature dealing with selection theorems
which, under appropriate regularity assumptions on FΣ, guarantee that every
solution of ẋ = FΣ(x) arises in this manner, from some control u.

I/O Maps

There are sometimes cases in which the input affects the output with no delay,
for instance in the “i/o behavior” of more general systems such as those men-
tioned above (h depends in u) or in dealing with a memoryless i/o map, a map
induced by an arbitrary mapping

h : U → Y

between any two sets by the obvious rule

λ(τ, σ, ω)(t) := h(ω(t)).

Unfortunately, there are technical difficulties in formulating this consistently in
terms of response maps. For instance, when treating continuous-time systems
and behaviors one identifies controls that are equal almost everywhere, and
this means that the instantaneous value ω(t) is not well-defined. Also, for the
empty control the output would be undefined, meaning that one cannot really
talk about “instantaneous measurements” of states. Thus, a concept analogous
to that of response cannot be used in this case. It is possible, however, to
generalize the idea of i/o map, where strict causality is now weakened to the
requirement (causality) that

λ̄(µ, σ, ω|[σ,µ))(t) = λ̄(τ, σ, ω)(t)

only for t ∈ [σ, µ), rather than for all t ∈ [σ, µ]. Then a satisfactory theory can
be developed for causal mappings. We prefer to deal here with the concept of a
response, or equivalently, a (strictly causal) i/o map.

Linear Discrete-Time Systems

In control applications, linear systems are of interest mainly in the case in
which the field is K = R, and sometimes, mostly for technical reasons, K = C.
However, finite fields do appear in communications and signal processing theory,
as illustrated by the error detection example; in particular the theory of what
are called convolutional codes is to a great extent the study of linear systems
over such fields (see, for instance, [118] and [297]). Recently, work has been done
on systems over fields of formal Laurent series, which provide a good model for
certain perturbation results; see, for instance, [313].

The algebraic theory of linear systems is no more difficult when dealing with
arbitrary fields than with R or C, and so we will give most results for general K.
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On the other hand, it is also possible to define linear systems over rings rather
than fields, with the same definition but using “module” instead of “vector
space”; these are useful in various applications such as modeling the effect of
fixed precision integer arithmetic or delay systems (see remarks below). Some
results valid over fields generalize, typically with much harder proofs, to systems
over rings, but many others do not. For references on systems over rings see,
for instance, [61], as well as the early papers [332] and [333] that started most
of this research.

Linear Continuous-Time Systems and Behaviors

It is also of great interest to consider linear (or nonlinear) infinite dimensional
systems, also called distributed systems. For instance, transmission delays give
rise to what are often called delay-differential or hereditary models such as

ẋ(t) = x(t− 1) + u(t) ,

which reflects the effect of a retarded feedback; or one may study systems defined
by partial differential equations, such as a heat equation with boundary control.
Many such examples can be modeled by equations of the type ẋ = Ax + Bu
evolving in Banach spaces. There is a rich and extensive literature on these
matters; see, for instance, [281] for optimal control, as well as the books [107],
[133], or [147], or the paper [437], for more “system theoretic” questions, each
using a somewhat different approach.

Sometimes it is possible to model usefully infinite dimensional systems as
“systems over rings of operators.” For instance, one may write the above delay
system as the “one dimensional” system

ẋ = σx+ u ,

where “σ” is a shift operator on an appropriate space of functions. Viewing
this as the linear system (σ, 1) over the polynomial ring R[σ] permits using
techniques —like Pole Shifting— from the theory of systems over rings, resulting
in constructive synthesis procedures. This approach is due to Kamen; see, for
instance, [61], [62], [79], [81], [233], [234], [305], [349], [357], [396], and [397] for
more on the topic and related results, and [74] for the study of certain systems
defined by partial differential equations in this manner.

Volterra Expansions

The Volterra expansion can be generalized to bilinear systems with more con-
trols, and locally or in asymptotic senses to more general classes of nonlinear
systems; see, for instance, [336] for details on this and the above example. (One
approach for general nonlinear systems relies in first approximating nonlinear
systems by bilinear ones, a process analogous to taking truncations of a Tay-
lor expansion. There is also an alternative approach to bilinear approximation,
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valid in compact-open topologies of controls and based on the Stone-Weierstrass
Theorem; see [381].)

Volterra series are important because, among other reasons, they exhibit the
various homogeneous nonlinear effects separately. In the context of identifica-
tion, they allow the separation of higher harmonic responses to periodic signals.
When the original system is linear, every term except that for l = 1 vanishes,
and the Volterra series (2.65) is nothing more than the variation of parameters
formula; more generally, the solution of the linearized system along ξ ≡ 0, ω ≡ 0
is obtained by simply dropping all terms except the first one. It is also possible
to give Volterra expansions for smooth discrete-time systems, as also discussed
in [336].

Volterra series were one of the most popular engineering methods for non-
linear systems modeling during the 1950s. Their theoretical study, especially
in relation to state space models, was initiated during the early 1970s; see, for
instance, [69] for a survey of the early literature.

An alternative approach to Volterra series is based on what are called gen-
erating series, or Fliess series. These are formal power series that essentially
correspond to expanding the “kernels” Wl, and can be interpreted in terms of
mappings from jets of germs of differentiable inputs into jets of outputs. They
are closely related to work on the representation of solutions of differential equa-
tions, as in [89]; see [140] and references therein, as well as [199], [373], [241],
and the excellent book [327].



Chapter 3

Reachability and
Controllability

3.1 Basic Reachability Notions

In all of the definitions to follow, Σ = (T ,X,U, φ) is an arbitrary system.

Definition 3.1.1 An event is a pair (x, t) ∈ X× T .

• The event (z, τ) can be reached from the event (x, σ) iff there is a path
of Σ on [σ, τ ] whose initial state is x and final state is z, that is, if there
exists an ω ∈ U[σ,τ) such that

φ(τ, σ, x, ω) = z .

One says also that (x, σ) can be controlled to (z, τ).

• If x, z ∈ X, T ≥ 0 ∈ T , and there exist σ, τ ∈ T with τ − σ = T such
that (z, τ) can be reached from (x, σ), then z can be reached from x in
time T . Equivalently, x can be controlled to z in time T .

• z can be reached from x (or x can be controlled to z) if this happens
for at least one T . 2

Note that, by the identity axiom in the definition of system, every event and
every state can be reached from itself. Also, note that if Σ is time-invariant,
then z can be reached from x in time T iff (z, t+ T ) can be reached from (x, t)
for any t ∈ T ; thus, there is no need to consider explicitly the notion of event
for time-invariant systems.

We use the notation (x, σ) ; (z, τ) to indicate that the event (z, τ) can be
reached from (x, σ). Note that the inequality σ ≤ τ is implicit in this notation.
For states, we write x;

T
z if z can be reached from x in time T , and just x ; z

to indicate that z can be reached from x.

81
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Lemma/Exercise 3.1.2 Prove the following statements:

(a) If (x, σ) ; (z, τ) and (z, τ) ; (y, µ), then (x, σ) ; (y, µ).

(b) If (x, σ) ; (y, µ) and if σ < τ < µ, then there exists a z ∈ X such that
(x, σ) ; (z, τ) and (z, τ) ; (y, µ).

(c) If x;
T
y for some T > 0 and if 0 < t < T , then there is some z ∈ X such

that x;
t
z and z ;

T−t y.

(d) If x;
t
z, z;

s
y, and Σ is time-invariant, then x ;

t+s
y.

(e) If x ; z, z ; y, and Σ is time-invariant, then x ; y. 2

Exercise 3.1.3 Give examples to show that:

• Properties (d) and (e) in Lemma 3.1.2 may be false if Σ is not time-invar-
iant, and

• Even for time-invariant systems, it is not necessarily true that x ; z
implies that z ; x (so, “;” is not an equivalence relation). 2

Remark 3.1.4 Let Σ be a continuous-time system as in Definition 2.6.7 and
let σ < τ . With the present terminology, Lemma 2.6.8 says that (x, σ) ;

(z, τ) for the system Σ iff (z, σ) ; (x, τ) for the system Σ−σ+τ . This remark
is sometimes useful in reducing many questions of control to a given state to
analogous questions (for the time-reversed system) of control from that same
state, and vice versa. 2

Recall that a linear system is one that is either as in Definition 2.4.1 or as
in Definition 2.7.2.

Lemma 3.1.5 If Σ is linear, then:

(a) If (x1, σ) ; (z1, τ) and (x2, σ) ; (z2, τ), then, for each r ∈ K, (x1 +
rx2, σ) ; (z1 + rz2, τ).

(b) (x, σ) ; (z, τ) iff (0, σ) ; (z−φ(τ, σ, x,0), τ). (Here 0 denotes the control
ω ≡ 0.)

(c) If Σ is time-invariant, x;
T
z iff 0 ;

T
(z − φ(T, 0, x,0)).

(d) If Σ is time-invariant, x1
;
T
z1 and x2

;
T
z2 imply that

(x1 + rx2) ;
T

(z1 + rz2) for all r ∈ K.

Proof. Part (a) follows by linearity of φ(τ, σ, ·, ·) (see Lemmas 2.4.2 and 2.7.4),
and part (d) is a consequence of this. The equivalence

φ(τ, σ, x, ω) = z iff z − φ(τ, σ, x,0) = φ(τ, σ, 0, ω)

implies both parts (b) and (c).
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Definition 3.1.6 The system Σ is (completely) controllable on the inter-
val [σ, τ ] if for each x, z ∈ X it holds that (x, σ) ; (z, τ). It is (completely)
controllable in time T if for each x, z ∈ X it holds that x;

T
z. It is just

(completely) controllable if x ; z for all x, z. 2

Lemma 3.1.7 Let Σ be a linear system, and pick any σ, τ, T ∈ T .

(a) Σ is controllable on [σ, τ ] iff (0, σ) ; (y, τ) for all y ∈ X.

(b) If Σ is time-invariant, then Σ is controllable in time T iff 0 ;
T
y for all

y ∈ X.

(c) If Σ is continuous-time, then it is controllable on [σ, τ ] iff (x, σ) ; (0, τ)
for all x ∈ X.

(d) If Σ is time-invariant and continuous-time, then Σ is controllable in time
T iff x;

T
0 for all x ∈ X.

(e) The conclusions in (c) and (d) hold also if “continuous-time” is replaced
by “discrete-time and A(k) is invertible for all k ∈ [σ, τ ]” (in (d), “A is
invertible”).

Proof. To prove part (a), pick any events (x, σ) and (z, τ). Let

y := z − φ(τ, σ, x,0) .

By assumption, (0, σ) ; (y, τ). Thus, by Lemma 3.1.5(b), (x, σ) ; (z, τ), as
desired. Assume now that Σ is time-invariant and that

0 ;
T
y

for all y ∈ X. Then, (0, 0) ; (y, T ) for all y ∈ X, so by part (a) Σ is controllable
(on [0, T ]), and this establishes part (b).

Assume now that Σ is continuous-time, or that it is discrete-time and the
invertibility condition in (e) holds. Pick any y ∈ X. By part (a), we must prove
for (c) that (0, σ) ; (y, τ). We claim that there is some x ∈ X such that

φ(τ, σ, x,0) = −y .

In continuous-time we may take x := −Φ(σ, τ)y, and in discrete-time we take
x := −P−1y, where P is the linear transformation

Φ(τ, s) = A(τ − 1)A(τ − 2) . . . A(σ + 1)A(σ) ,

which is invertible under the assumption that each A(k) is. By hypothesis,
(x, σ) ; (0, τ). So by Lemma 3.1.5(b),

(0, σ) ; (−φ(τ, σ, x,0), τ) = (y, τ) ,



84 3. Reachability and Controllability

as desired. Finally, part (d) follows from (b) because the hypothesis gives now
that (x, 0) ; (0, T ) for all x ∈ X.

The property in (a) and (b), that any state be reachable from zero, is some-
times called reachability. We proved that, for linear systems, reachability and
controllability are equivalent. Note also that the property in (c), (d), and (e),
that one be able to control every state to the origin, is called “controllability” by
some authors (a more precise term, also used sometimes, is null-controllability).
We prefer to reserve the term controllability for the property defined in 3.1.6.

Remark 3.1.8 Part (e) of the above result illustrates a principle that is rather
general in control theory: Finite dimensional smooth discrete-time systems with
“reversible” or “invertible” dynamics tend to have a theory very analogous to
that of continuous-time systems. (Essentially, because group actions can be
associated to systems for which the maps φ(τ, σ, ·, ω) are invertible.) Except for
the algebraic structure theory of time-invariant linear systems, general (non-
invertible) discrete-time systems behave in a much more complicated manner
than continuous-time systems. One way in which distributed (i.e., infinite di-
mensional) continuous-time systems behave very differently from continuous-
time (finite dimensional) systems is precisely in the sense that they tend not
to have invertible dynamics; for instance, a system that evolves according to a
diffusion equation will smooth out initial conditions. 2

3.2 Time-Invariant Systems

Throughout this section, unless otherwise stated, Σ is an arbitrary time-invar-
iant system.

Definition 3.2.1 Let T ∈ T and x ∈ X. The reachable set from x in time
T is

RT (x) := {z ∈ X | x;
T
z} .

The reachable set from x is

R(x) :=
⋃
T∈T+

RT (x) = {z ∈ X | x ; z} .

If S is a subset of X, we also write

RT (S) :=
⋃
x∈S

RT (x),

R(S) :=
⋃
x∈S

R(x) ,

for the sets reachable from the subset S. 2
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Note that R0(S) = S for all subsets S, and that Σ is controllable (respec-
tively, controllable in time T ) iff R(x) (respectively, RT (x)) = X for all x ∈ X.

From Lemmas 2.4.2 and 2.7.4, we have the following:

Lemma 3.2.2 If Σ is linear, then RT (0) is a subspace, for all T ∈ T . 2

If Σ is linear and x is now an arbitrary state, the equality

φ(T, 0, x, ω) = φ(T, 0, x,0) + φ(T, 0, 0, ω)

shows that
RT (x) = φ(T, 0, x,0) +RT (0)

and hence that RT (x) is a linear submanifold (translation of a subspace) in X.

Lemma 3.2.3 For each t, s ∈ T ,

Rs+t(x) = Rs(Rt(x))

for each x ∈ X.

Proof. Lemma 3.1.2, Part (b) implies that Rs+t(x) ⊆ Rs(Rt(x)), while the
reverse inclusion follows by Part (d).

It is of interest to know whether reachability can be tested in finitely many
steps. In automata theory, one frequently uses the following observation:

Lemma 3.2.4 Assume that Σ is a discrete-time system and card (X) = n <∞.
Then, ⋃

{k=0,...,n−1}

Rk(x) = R(x)

for all x ∈ X.

Proof. Pick x and a z ∈ R(x). Assume that k is the smallest integer such that
x;
k
z, and assume by way of contradiction that k ≥ n. By part (c) of Lemma

3.1.2, there exist elements

x = z0, z1, . . . , zk = z

with
zi ;1 zi+1, i = 0, . . . , k − 1 .

Since k ≥ n, there are 0 ≤ i < j ≤ k such that zi = zj . Since

x;
i
zi and zj ;

k−j z ,

it follows by part (d) of Lemma 3.1.2 that x;
l
z, l = i + k − j < k, which

contradicts minimality of k.
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Recall the notion of equilibrium state x ∈ X; for a time-invariant system,
this is equivalent to the requirement that there exists a u ∈ U such that for
all T ∈ T+, φ(T, 0, x, ω) = x, where ω ≡ u. For discrete-time systems this is
equivalent to

P(x, u) = x

and for continuous-time systems to

f(x, u) = 0 .

If x is an equilibrium state, then x ∈ RT (x) for all T . Thus, for all S ∈ T+,

RS(x) ⊆ RS(RT (x)) ,

and so by Lemma 3.2.3:

Corollary 3.2.5 If x is an equilibrium state, then

RS(x) ⊆ RS+T (x)

for each S, T ∈ T+. 2

Lemma 3.2.6 Let x be an equilibrium state. If there are any S, T ∈ T+, T > 0,
such that

RS(x) = RS+T (x) ,

then necessarily RS(x) = R(x).

Proof. First note that
RS+kT (x) = RS(x)

for all positive integers k. This can be proved inductively: The case k = 1 is
given, and

RS+(k+1)T (x) = RT (RS+kT (x))
= RT (RS(x))
= RS+T (x)
= RS(x) ,

where the second and last equalities hold by inductive hypothesis. Now assume
given any z ∈ R(x). So there is some t ∈ T so that z ∈ Rt(x). Find an integer
k such that S + kT > t. By Corollary 3.2.5, z ∈ RS+kT (x) = RS(x).

Corollary 3.2.7 Assume that x is an equilibrium state, that X is a vector
space over a field K with dim X = n < ∞, and that RT (x) is a subspace for
each T ∈ T+. (By Lemma 3.2.2, this always happens if Σ is a finite dimensional
linear system and x = 0.) Then:
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(a) If T = Z, Rn(x) = R(x).

(b) If T = R, then Rε(x) = R(x) for all ε > 0.

Proof. Pick any strictly increasing sequence

0 = τ0 < τ1 < τ2 < . . . < τn+1

of elements of T , and let
Xi := Rτi(x)

for each i. If it were true that Xi were properly included in Xi+1 for all these i,
then it would follow that dim Xi+1 > dim Xi for all i, and hence that dim Xn+1 ≥
n + 1 > dim X, a contradiction. Thus, in each such chain of reachability sets
there is some i such that Xi = Xi+1. By Lemma 3.2.6, we conclude that

Rτi(x) = R(x) .

Now in case (a) we apply the above argument with τi = i, and in case (b) we
use instead τi = iε/n.

The conclusion that, for linear continuous-time systems, if one can reach z
from 0, then one can do so in arbitrarily small time, is non-intuitive. Of course,
this can never happen in a physical system. Underlying the above proof is the
fact that the control-values space is all of Km. In order to obtain smaller ε,
one will in general need larger values for the controls (see, for instance, Exercise
3.5.7). Later, in the Chapter on optimal control, we will state an optimization
problem that imposes a cost associated to the magnitudes of controls.

Lemma/Exercise 3.2.8 Let

CT (x) = {z ∈ X | z;
T
x}, C(x) =

⋃
T∈T+

CT (x) .

Prove Lemmas 3.2.3, 3.2.4, and 3.2.6, and Corollaries 3.2.5 and 3.2.7 for the
statements that result when “C” is substituted for “R” throughout. 2

Exercise 3.2.9 Consider a discrete-time bilinear system x(t+ 1) = u(t)Ex(t),
with X = R2,U = R, and

E =
(

1 0
1 1

)
.

Show that

RT

(
1
0

)
=
{(

x1

x2

) ∣∣∣∣ Tx1 = x2

}
for each positive integer T . This is a subspace for each such T , but RT

(
1
0

)
6= R

(
1
0

)
for all T . Does this contradict Corollary 3.2.7? 2
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Corollary 3.2.10 (a) An n-dimensional discrete-time linear system is con-
trollable if and only if

R(0) = Rn(0) = X .

(b) A continuous-time linear system is controllable if and only if

R(0) = Rε(0) = X for all ε > 0

if and only if C(0) = Cε(0) = X for all ε > 0.

Proof. If Σ is controllable, then R(x) = X for all x ∈ X, so by Corollary
3.2.7 it holds in particular that Rn(0) = X in the discrete-time case, and that
Rε(0) = X for all ε > 0 in the continuous-time case. Conversely, if RT (0) = X

for some T > 0, then Σ is controllable, by Lemma 3.1.7(b). In continuous-time,
CT (0) = X implies the same conclusion, by part (d) of the same Lemma.

Exercise 3.2.11 Give an example of a discrete-time (time-invariant) linear sys-
tem of dimension 1 for which C(0) = X but R(0) = {0}. 2

Let Σ be an n-dimensional discrete-time time-invariant linear system (A,B).
From the formula

φ(n, 0, 0, ω) =
n∑
i=1

Ai−1Bω(n− i) ,

it follows that z is in Rn(0) iff it is in the image of the linear map

R = R(A,B) := [B,AB,A2B, . . . , An−1B] (3.1)

which maps
Un → X

sending

(u1, . . . , un) 7→
n∑
i=1

Ai−1Bui .

When U = Km and X = Kn, we identify R(A,B) with an n by nm matrix whose
columns are the columns of B,AB, . . . , An−1B in that order. By Corollary
3.2.10, Σ is controllable iff the image of the linear map R is all of X, and this
happens iff its rank (i.e., the dimension of its image) is n. Thus:

Theorem 2 The n-dimensional discrete-time linear system Σ is controllable if
and only if rankR(A,B) = n. 2

Note that from the Cayley-Hamilton Theorem one knows that

An = α1I + α2A+ . . .+ αnA
n−1 (3.2)
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where
χ
A
(s) = det(sI −A) = sn − αns

n−1 − . . .− α2s− α1 (3.3)

is the characteristic polynomial of A. Multiplying both sides of (3.2) by A, and
using again (3.2) to substitute for the An that results in the right-hand side, it
follows that An+1 is a linear combination of the matrices Ai, i = 0, . . . , n − 1.
Recursively, the same holds for all powers of A. Thus, for any vector v, the span
of {Aiv, i ≥ 0} coincides with the span of {Aiv, i < n}. Applying this to each
of the columns of B, we conclude that the condition rankR(A,B) = n fails if
and only if there is some n-dimensional row vector ρ 6= 0 such that

ρAiB = 0 for all i ≥ 0 , (3.4)

which means that there exists a linear function (namely, x 7→ ρx) on the state
space that vanishes at all states reachable from the origin.

If now Σ is an n-dimensional continuous-time system, we still may consider
the matrix R(A,B) as in (3.1). A fact that is at first sight remarkable —
and which is ultimately due to the common properties shared by difference
and differential time-invariant linear equations— is that the same algebraic
condition as for discrete-time is necessary and sufficient for continuous-time.
We now prove this fact. (Later, cf. Remark 3.5.22, we derive it from a general
theorem about time-varying systems.) The critical observation is that, for any
row vector ρ,

ρetAB =
∞∑
i=0

ρAiB
ti

i!
≡ 0

if and only if (3.4) holds, because of analyticity of the exponential.

Theorem 3 The n-dimensional continuous-time linear system Σ is controllable
if and only if rankR(A,B) = n.

Proof. If the rank condition fails, there exists some row vector ρ 6= 0 so that
(3.4) holds. Since every element of R(0) = R1(0) has the form

x =
∫ 1

0

e(1−t)ABω(t) dt =
∫ 1

0

etABω(1− t) dt , (3.5)

also ρx = 0 for all such x. Thus, R(0) 6= X, and the system is not controllable.
Conversely, if controllability fails, then there is some ρ 6= 0 so that ρx = 0

for every x in the subspace R(0). In particular, consider the control

ω(t) := B∗e(1−t)A
∗
ρ∗

on the interval [0, 1], where “∗” indicates conjugate transpose. From (3.5),

0 = ρx =
∫ 1

0

ρetABB∗etA
∗
ρ∗ dt =

∫ 1

0

∥∥∥B∗etA∗ρ∗∥∥∥2

dt ,
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and hence, ρetAB ≡ 0.

Take as an illustration the linearized pendulum (harmonic oscillator). With
the matrices in equation (2.31),

R =
(

0 1
1 0

)
,

and the system is controllable. This means that every configuration of position
and velocity can be changed into any other such configuration through the
application of a suitable control. We later compute an explicit example of such
a control.

For the original nonlinear pendulum, the use of feedback transformations as
discussed in Chapter 1 allows establishing that

ẋ1 = x2, ẋ2 = − sinx1 + u

is also controllable; it is only necessary to modify whatever control is used to
transfer x to z in the linear system ẋ1 = x2, ẋ2 = u by addition of the term
sin ξ1(t) evaluated along the ensuing trajectory. This is just a property of this
simple example; in general, for nonlinear systems controllability is far more
difficult to characterize. The linearization principle for controllability studied
later is useful in reducing questions of “local” controllability to the linear case,
however.

Exercise 3.2.12 Assume that the body of an airplane is slanted φ radians (its
“pitch angle”) with respect to the horizontal. It is flying at a constant (nonzero)
ground speed of c meters per second, and its flight path forms an angle of α
radians with the horizontal (for α > 0 the plane is gaining altitude, and for
α < 0 it is descending). Denoting the plane’s altitude in meters by h and
assuming the angles are small, the above quantities are related by the following
linearized differential equations:

α̇ = a(φ− α)
φ̈ = −ω2(φ− α− bu)
ḣ = cα

where ω > 0 is a constant representing a natural oscillation frequency and a, b
are positive constants. (See Figure 3.1(a).) The control u is proportional to the
position of the elevators. (Elevators are movable surfaces located in the tail. A
more complete space and orientation model would include other such surfaces:
For instance, the rudder, also in the tail, provides directional control or “yaw,”
and the ailerons in the wing create opposing torques to affect lateral attitude
or “roll.” In addition, engine thrust affects speed.)

Model the above as a linear system Σ with n = 4,m = 1, using x1 = α,
x2 = φ, x3 = φ̇, and x4 = h. Prove that Σ is controllable. 2
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Figure 3.1: (a) Airplane example. (b) Inverted pendulum.

Exercise 3.2.13 Consider a system consisting of a cart to the top of which an
inverted pendulum has been attached through a frictionless pivot. The cart is
driven by a motor which at time t exerts a force u(t), taken as the control. (See
Figure 3.1(b).) We assume that all motion occurs in a plane, that is, the cart
moves along a straight line. We use φ to denote the angle that the pendulum
forms with the vertical, δ for the displacement of the center of gravity of the cart
with respect to some fixed point, F ≥ 0 for the coefficient of friction associated
with the motion of the cart, g for the acceleration of gravity, l > 0 for the length
of the pendulum, M > 0 for the mass of the cart, and m ≥ 0 for the mass of
the pendulum, which we’ll assume is concentrated at the tip. (If the mass is
not so concentrated, elementary physics calculations show that one may replace
the model by another one in which this does happen, using a possibly different
length l. We allow the case m = 0 to model the situation where this mass is
negligible.)

Newton’s second law of motion applied to linear and angular displacements
gives the two second order nonlinear equations

(M +m)δ̈ +mlφ̈ cosφ−mlφ̇2 sinφ+ F δ̇ = u
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and
lφ̈− g sinφ+ δ̈ cosφ = 0 .

We shall only be concerned with a small angle φ, so we linearize the model
about φ = 0. This results, after taking x1 = δ, x2 = δ̇, x3 = φ, x4 = φ̇, in a
linear system Σ with n = 4,m = 1 and matrices as follows:

A =


0 1 0 0
0 − F

M −mg
M 0

0 0 0 1
0 F

lM
g(m+M)
lM 0

 , B =


0
1
M
0

− 1
lM

 .

Prove that Σ is controllable. (Controllability holds for all possible values of the
constants; however, for simplicity you could take all these to be equal to one.)

This example, commonly referred to as the “broom balancing” example, is
a simplification of a model used for rocket stabilization (in that case the control
u corresponds to the action of lateral jets). 2

3.3 Controllable Pairs of Matrices

Note that the controllability conditions are exactly the same, in terms of the
matrices (A,B), for the discrete and continuous case; so we are justified in
making the following definition for pairs of matrices:

Definition 3.3.1 Let K be a field and let A ∈ Kn×n, B ∈ Kn×m, for positive
integers n,m. The pair (A,B) is controllable or reachable if rankR(A,B) =
n. 2

We call R = R(A,B) the reachability (or controllability) matrix of (A,B);
the image of the corresponding map, i.e., the column space of R, is the reachable
(or controllable) space of (A,B), and we denote it by

R(A,B)

or just R. For discrete-time or continuous-time linear systems, R is then the
same as the set of states reachable from the origin, as is clear for discrete-time
and follows from the proof of Theorem 3 (p. 89) for continuous-time. Whenever
we refer below to a “pair” (A,B), we mean an (A,B) as above. The Cayley-
Hamilton Theorem implies the following observation:

Lemma 3.3.2 Let (A,B) be a pair as in Definition 3.3.1, and let

bj := jth column of B, j = 1, . . . ,m.

Then the controllable space R(A,B) is the span of

{Aibj , i ≥ 0, j = 1, . . . ,m} .

Thus, R is the smallest A-invariant subspace of X = Kn that contains the
columns of B. In particular, (A,B) is controllable iff this span is all of X. 2
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When m = 1 this says that controllability of (A,B) is equivalent to the
requirement that B, seen as a (column) vector in Kn, be cyclic for the matrix
A. In this sense controllability generalizes the classical notion of cyclicity in
linear algebra.

We let GL(n) denote the group of all invertible n × n matrices over K.
The following result, often called the Kalman controllability decomposition, is
extremely useful in giving simple proofs of facts about controllability.

Lemma 3.3.3 Assume that (A,B) is not controllable. Let dimR(A,B) = r <

n. Then there exists a T ∈ GL(n) such that the matrices Ã := T−1AT and
B̃ := T−1B have the block structure

Ã =
(
A1 A2

0 A3

)
B̃ =

(
B1

0

)
(3.6)

where A1 is r × r and B1 is r ×m. (If r = 0, the decomposition is trivial, and
A1, A2, B1 are not there.)

Proof. Pick any subspace S such that

R⊕ S = Kn

and let {v1, . . . , vr} be a basis of R and {w1, . . . , wn−r} be a basis of S. Then,
with

T := (v1, . . . , vr, w1, . . . , wn−r) ,

the desired forms for Ã and B̃ follow from the facts that R is A-invariant and
that it contains the image of B.

Lemma/Exercise 3.3.4 Prove that (A1, B1) is itself a controllable pair. 2

For a continuous-time system (A,B), we can interpret the above decompo-
sition as follows: With the change of variables

x(t) := Tz(t)

the equations ẋ = Ax+Bu are transformed into

ż1 = A1z1 +A2z2 +B1u

ż2 = A3z2

where z1, z2 are r- and (n − r)-dimensional respectively. It is then clear that
the z2 component of the state cannot be controlled in any way. An analogous
observation applies to discrete-time systems. Note that the “only if” part of
Theorem 3 (p. 89) is an immediate consequence of this decomposition result.

The characteristic polynomial of A splits as

χ
A

= χ
c
χ
u
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where
χ
c
= χ

A1
and χ

u
= χ

A3
.

Note that A1 is a matrix representation for the restriction of A to R, so χ
c

is independent of the choice of basis on R. The same is true therefore for
χ
u

= χ
A
/χ

c
. (Independence of choice of basis for the latter also follows from

the fact that A3 is a matrix for the linear map induced by A on the quotient
Kn/R and hence is uniquely defined up to similarity.) If r = 0, we make the
convention that χ

c
= 1.

Definition 3.3.5 The polynomials χ
c

and χ
u

are, respectively, the control-
lable and the uncontrollable parts of the characteristic polynomial χ

A
(with

respect to the pair (A,B)). 2

Sometimes one refers to the eigenvalues (or the eigenvectors) of these as the
“controllable modes” and “uncontrollable modes,” respectively, of the system
(or matrix pair) (A,B).

Exercise 3.3.6 Prove that if m = 1 and A is a diagonal matrix

A =


λ1 0 . . . 0 0
0 λ2 . . . 0 0
...

...
. . .

...
...

0 0 . . . λn−1 0
0 0 . . . 0 λn

 B =


b1

b2
...

bn−1

bn


then (A,B) is controllable iff λi 6= λj for each i 6= j and all bi 6= 0. 2

We will refer to the following result as the Hautus Lemma:

Lemma 3.3.7 Let K̃ be the algebraic closure of the field K. (In most applica-
tions, K = R or C, so K̃ = C.) The following properties are equivalent for the
pair (A,B):

(a) (A,B) is controllable.

(b) rank [λI −A,B] = n for all λ ∈ K̃.

(c) rank [λI −A,B] = n for each eigenvalue λ of A.

Proof. Note first that (b) and (c) are equivalent, since the first n× n block of
the n× (n+m) matrix [λI − A,B] already has full rank whenever λ is not an
eigenvalue of A. Also, since controllability is characterized by a rank condition,
and hence by the nonvanishing of certain determinants, the pair (A,B) is con-
trollable iff it is controllable as a pair over the field K̃. It follows that we may
assume that K̃ = K.
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We prove next that (a) implies (b). Assume that the rank is less than n for
some λ ∈ K. Thus, the row space of [λI − A,B] has dimension less than n, so
there exists some nonzero vector p ∈ Kn and some λ such that

p′[λI −A,B] = 0 . (3.7)

Thus, p′A = λp′ (λ is a left eigenvalue of A), and p′B = 0. Therefore also
p′AkB = λkp′B = 0 for all k, and hence

p′R(A,B) = 0 ,

contradicting controllability.
Finally, we establish that (b) implies (a). Assume that (a) does not hold,

so there is a decomposition as in (3.6), with r < n. Let λ, v be an eigen-
value/eigenvector pair of the transposed matrix A′3, so that

v′(λI −A3) = 0 .

It follows that the nonzero n-vector

w :=
(

0
v

)
is a left eigenvector of Ã, with w′B̃ = 0. Hence p := (T ′)−1w 6= 0 satisfies

p′[(λI −A)T,B] = 0 .

Since the column space of the matrix [(λI − A)T,B] coincides with that of
[λI −A,B], also (3.7) holds, and hence (b) cannot be true.

Corollary 3.3.8 If (A,B) is controllable, then rank [A,B] = n. 2

Recall that the geometric multiplicity of an eigenvalue λ of a matrix A is the
dimension of the nullspace ker (λI −A).

Lemma/Exercise 3.3.9 Assume that (A,B) is controllable and that rankB =
q. Then, the geometric multiplicity of each eigenvalue of A is at most q. 2

The uncontrollable modes can be characterized elegantly using the Hautus
condition, as follows.

Lemma/Exercise 3.3.10 The zeros of χ
u

are precisely the complex numbers
λ for which

rank [λI −A,B] < n . 2
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It would seem to be natural also to study a slightly more general class of “lin-
ear” (or more precisely, “affine”) systems, namely, the class of non-homogeneous
linear systems

ẋ = Ax+Bu+ c , (3.8)

c 6= 0 (or their analogue in discrete-time). At least for controllable systems
however, the following simple consequence of Lemma 3.3.7 shows that, except
for a translation of coordinates in state and input-value spaces, x → x − x0,
u→ u− u0, homogeneous linear systems result again. By colW we denote the
column space of the matrix W , i.e., the span of the columns of W .

Exercise 3.3.11 Assume that (A,B) is a pair as before and c ∈ Kn is an
arbitrary vector. Prove that:

(a) If there is any λ ∈ K such that c /∈ col [λI − A,B], then there is a T ∈
GL(n) such that, with the change of variables z := Tx, equation (3.8) has
the partitioned form

ż1 = A1z1 +B1u,

ż2 = λz2 + 1

(z1 of size n − 1 and z2 scalar) and similarly in discrete-time. It follows
that the system (3.8) and its discrete-time analogue are not controllable.

(b) If c ∈ col [A,B], then there are x0, u0 such that

Ax+Bu+ c = A(x− x0) +B(u− u0)

and if c ∈ col [I −A,B] there are x0, u0 such that

Ax+Bu+ c = A(x− x0) +B(u− u0) + x0 .

Interpret in terms of a differential (respectively, difference) equation for
x− x0 with control u− u0.

(c) Conclude that a nonhomogeneous linear system as above is controllable if
and only if the pair (A,B) is controllable and that in that case the system
is, up to a change of variables, a linear system. 2

Let K = R or C. One important characteristic of the notion of controllability
is that it is a generic property, in the sense that the set of controllable pairs is
an open and dense subset of the set of all pairs of a given size. We formulate
this statement as follows. For each fixed pair of positive integers n,m, let

Sn,m := {(A,B) | A ∈ Kn×n, B ∈ Kn×m} ,

identified with Kn2+nm by listing all coefficients of A,B in some fixed order.
We let Scn,m be the subset of Sn,m consisting of all controllable pairs.
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Proposition 3.3.12 If K = R or C, the set Scn,m is open and dense in Sn,m.

Proof. The complement Sun,m of Scn,m is an algebraic subset of Sn,m, that is, the
set of common zeros of a set of polynomials {P1, . . . , Pr} in n2 + nm variables.
Indeed, we may take as the Pi the set of all possible determinants of n × n
submatrices of R(X,Y ), where X,Y are matrices of indeterminates. Then

rankR(A,B) < n ,

that is,
(A,B) ∈ Sun,m

iff all these minors vanish. Note that Sun,m is closed, since it is the intersection of
the zero sets of the Pi, each of which is closed by continuity of the Pi. Moreover,
Sun,m is proper, since for any fixed n,m there exists at least one controllable
system.

It is only left to prove that any proper algebraic subset of a Euclidean space
Kq must have a dense complement, or equivalently that this set cannot have any
interior. Since an algebraic set is an intersection of sets of zeros of polynomials,
it is only necessary to see that a set of the type {y|P (y) = 0} (P polynomial)
cannot have a nonempty interior unless P ≡ 0. This is clear by the principle
of analytic continuation, or explicitly for polynomials simply by noting that all
derivatives of P must be zero at an interior point, and hence that all coefficients
of P are zero. (Alternatively, one could argue purely algebraically, using in-
ductively the fact that a single-variable polynomial cannot have infinitely many
zeros.)

One may also prove that Sun,m has Lebesgue measure zero. Genericity of
controllability means that, if all the coefficients of A and B are experimentally
measured quantities, then the resulting system in all likelihood will be control-
lable. However, if a system is near Sun,m, it will be “hard” to control, and in
fact the “true” system we are trying to model may be uncontrollable, with mea-
surement errors accounting for the discrepancy. It is important in practice to
estimate how close a system is to being uncontrollable. Various recent papers
deal with this issue, and numerically robust methods based on this research
have been designed. In particular, one has the following characterization.

For any controllable pair (A,B) over C, we let

δ(A,B) := dist
(
(A,B),Sun,m

)
,

where the distance is measured with respect to the operator norm, i.e.,

dist(F,G) = ‖F −G‖

for any two matrices F,G of size n× (n+m). Since for each fixed n,m the set
of uncontrollable systems is closed —in fact it is an algebraic set, as remarked
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in the above proof— it follows that the distance is always achieved, i.e., there
is some (Ã, B̃) ∈ Sun,m so that

δ(A,B) = dist
(
(A,B), (Ã, B̃)

)
. (3.9)

This distance is not easy to compute, as it involves a minimization over all
uncontrollable pairs. On the other hand, we may consider the quantity

δ′(A,B) := min
λ∈C

σmin(λI −A,B) ,

where σmin denotes smallest singular value, which involves just a scalar mini-
mization. (Singular values are discussed in Appendix A.2.) We are justified in
writing “minimum” as opposed to just “infimum” because the function

f(λ) := σmin(λI −A,B)

is nonnegative and continuous (continuity of singular values on matrix entries,
Corollary A.4.5 in Appendix A.4, using the fact that the rank of (λI −A,B) is
always n, by controllability), and lim|λ|→∞ f(λ) = ∞ because

σmin(λI −A,B) = |λ|σmin

(
I − 1

λ
A,

1
λ
B

)
and σmin(I − 1

λA,
1
λB) → σmin(I, 0) = 1.

Proposition 3.3.13 For each controllable pair (A,B), δ(A,B) = δ′(A,B).

Proof. Let (Ã, B̃) ∈ Sun,m be as in (3.9), and write

∆A := Ã−A, ∆B := B̃ −B .

By the Hautus condition, there is some λ so that

[λI − Ã, B̃] = [λI −A,B] + [−∆A,∆B ]

has rank less than n. By Corollary A.2.5 applied to (λI − A,B) and ∆ =
(−∆A,∆B),

δ′(A,B) ≤ σmin(λI −A,B) ≤ ‖(−∆A,∆B)‖ = ‖(∆A,∆B)‖ = δ(A,B) .

To prove the other inequality, let λ be such that δ′(A,B) = σmin(λI − A,B).
Again by Corollary A.2.5, there must exist matrices (∆A,∆B) of norm equal
to σmin(λI − A,B) so that, defining Ã, B̃ as above, this is a pair at distance
σmin(λI −A,B) from (A,B), which is not controllable. So

δ(A,B) ≤ σmin(λI −A,B) = δ′(A,B)

holds too.
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Exercise 3.3.14 Let (A,B) correspond to a time-invariant discrete-time lin-
ear system Σ. Recall that null-controllability means that every state can be
controlled to zero. Prove that the following conditions are all equivalent:

1. Σ is null-controllable.

2. The image of An is contained in the image of R(A,B).

3. In the decomposition in Lemma 3.3.3, A3 is nilpotent.

4. rank [λI −A,B] = n for all nonzero λ ∈ K̃.

5. rank [I − λA,B] = n for all λ ∈ K̃. 2

3.4 Controllability Under Sampling

When using digital control, inputs are restricted in various ways. As discussed
at length in Chapter 1, one way of modeling the restriction to piecewise constant
controls is via the notion of sampling. It is therefore of interest to know when
a continuous-time system that is known to be controllable remains so if we
can only apply controls that are constant on sampling intervals [kδ, (k + 1)δ].
Mathematically, the question is whether the sampled system Σ[δ] is controllable,
and the answer will depend on the sampling time δ as well as the system Σ.
The material in Appendix A.3 is used here.

If Σ is a continuous-time linear (still time-invariant) system, u ∈ U is a
control value, and δ > 0 is a real number, the variation of parameters formula
gives that, for ω ≡ u,

φ(δ, 0, x, ω) = eδAx +
∫ δ

0

e(δ−s)ABu ds

= Fx + Gu ,

where

F := eδA , G := A(δ)B , A(δ) :=
∫ δ

0

e(δ−s)A ds. (3.10)

So Σ[δ] is the discrete-time time-invariant linear system (F,G), and it is con-
trollable iff

R(F,G) = [G,FG, . . . , Fn−1G]
= A(δ)[B, eδAB, . . . , e(n−1)δAB]
= A(δ)R(eδA, B) (3.11)

has rank n. The second equality follows from the fact that the matrices A(δ)

and eδA commute, being both functions of A. Note that A(δ) = f(A), where f
is the entire function

f(s) =
∫ δ

0

e(δ−t)sdt =
∞∑
n=0

δn+1

(n+ 1)!
sn =

eδs − 1
s

.
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Since sf(s) = eδs − 1, one also has the useful identity

AA(δ) = eδA − I .

We shall say that the continuous-time system Σ is δ-sampled controllable
if the discrete-time system Σ[δ] is controllable. Of course, δ-sampled control-

lability for any δ > 0 implies controllability, since for any states x, z, x ; z in
Σ[δ] also implies that x ; z in the original system Σ (using piecewise constant
controls). The interest is in determining conditions for the converse to hold.
From equation (3.11) it follows that Σ is δ-sampled controllable iff both A(δ)

and R(eδA, B) have rank n.

Lemma 3.4.1 Σ is δ-sampled controllable if and only if the pair (eδA, B) is
controllable and A has no eigenvalues of the form 2kπi/δ for any nonzero integer
k.

Proof. By the above remarks, it suffices to prove that A(δ) is invertible if and
only if the eigenvalue condition holds. This follows from the Spectral Mapping
Theorem, since its eigenvalues are the possible values f(λ), where f is the above
function and λ is an eigenvalue of A. If λ = 0, f(λ) = δ 6= 0; otherwise,

f(λ) =
eδλ − 1
λ

,

the numerator being nonzero for all λ 6= 0 if and only if the eigenvalue condition
holds.

Example 3.4.2 Consider, as an example, the system Σ corresponding to the
linearized pendulum (2.31), which was proved earlier to be controllable. In
Appendix C.4 we compute

etA =
(

cos t sin t
− sin t cos t

)
.

Thus, for any δ > 0,

R(eδA, B) =
(

0 sin δ
1 cos δ

)
,

which has determinant (− sin δ). By Lemma 3.4.1, Σ is δ-sampled controllable
iff

sin δ 6= 0 and 2kπi 6= ±iδ ,

i.e., if and only if δ is not a multiple of π.
Take, for instance, the sampling time δ = 2π. From the explicit form of etA,

we know that eδA = I. Thus,

A(δ) = A−1(eδA − I) = 0 ,
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so G = 0. This means that the discrete-time system Σ[δ] has the evolution
equation

x(t+ 1) = x(t) .

No matter what (constant) control is applied during the sampling interval [0, δ],
the state (position and velocity) is the same at the end of the interval as it
was at the start of the period. (Intuitively, say for the linearized pendulum, we
are acting against the natural motion for half the interval duration, and with
the natural motion during the other half.) Consider now the case when δ = π,
which according to the above Lemma should also result in noncontrollability of
Σ[δ]. Here

F = eδA = −I

and
A(δ) = A−1(eδA − I) = −2A−1 = 2A ,

so

G = 2AB =
(

2
0

)
.

Thus, the discrete-time system Σ[δ] has the evolution equations:

x1(t+ 1) = −x1(t) + 2u(t)
x2(t+ 1) = −x2(t) .

This means that we now can partially control the system, since the first coordi-
nate (position) can be modified arbitrarily by applying suitable controls u. On
the other hand, the value of the second coordinate (velocity) cannot be modi-
fied in any way, and in fact at times δ, 2δ, . . . it will oscillate between the values
±x2(0), independently of the (constant) control applied during the interval. 2

Exercise 3.4.3 Consider the system (with U = R,X = R2)

ẋ1 = x2

ẋ2 = −x1 − x2 + u ,

which models a linearized pendulum with damping. Find explicitly the systems
Σ[δ], for each δ. Characterize (without using the next Theorem) the δ’s for
which the system is δ-sampled controllable. 2

The example that we discussed above suggests that controllability will be
preserved provided that we sample at a frequency 1/δ that is larger than twice
the natural frequency (there, 1/2π) of the system. The next result, sometimes
known as the “Kalman-Ho-Narendra” criterion, and the Lemma following it,
make this precise.
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Theorem 4 Let K = R and let Σ = (A,B) be a controllable continuous-time
(time-invariant) linear system. If δ > 0 is such that

δ(λ− µ) 6= 2kπi, k = ±1,±2, . . . ,

for every two eigenvalues λ, µ of A, then Σ is also δ-sampled controllable.

Proof. We will prove that (eδA, B) is a controllable pair. The conclusion then
will be a consequence of Lemma 3.4.1, because if A were to have any eigenvalue
λ of the form 2kπi/δ, k = nonzero integer, then, with this λ,

δ(λ− λ̄) = 4kπi ,

contradicting the hypothesis.
We now establish that the Hautus criterion must hold for (eδA, B). By the

Spectral Mapping Theorem, all eigenvalues of eδA are of the form eδλ, where λ
is an eigenvalue of A. So we must check that

rank [eδλI − eδA, B] = n

for each such λ. Equivalently, we must prove that for each nonzero vector p
which is an eigenvector of (eδA)′, necessarily

p′B 6= 0 . (3.12)

By controllability of (A,B) the conclusion (3.12) holds if p is an eigenvector
of A′. So the only step left is to show that A′ and (eδA)′ = eδA

′
have the

same eigenvectors. Lemma A.3.3 in the Appendix on linear algebra implies
this, provided that f(λ) := eδλ is one-to-one on the spectrum of A. But this is
precisely what the hypothesis of the Theorem asserts.

The condition in the above Theorem is not necessary except when the num-
ber of controls m = 1 (see below). A simpler, though stronger, sufficient con-
dition is as follows. For any given system Σ = (A,B), a frequency of Σ is any
number of the form

|Imλ|
2π

,

where λ is an eigenvalue of A. For instance, for the system in Example 3.4.2
there is only one frequency, 1/2π. This is the frequency of oscillation of the
solutions of the uncontrolled system ẋ = Ax, which are all combinations of sin t
and cos t (hence of period 2π). Note that B does not affect the frequencies.

Lemma/Exercise 3.4.4 A controllable continuous-time time-invariant sys-
tem Σ = (A,B) remains controllable provided that the sampling frequency
1/δ is larger than 2ω for every frequency ω of Σ. 2
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Remark 3.4.5 When m = 1, the eigenvalue condition stated in Theorem 4
is also necessary. This is proved as follows: Assume that (A,B) is δ-sampled
controllable but that λ 6= µ are eigenvalues of A such that

eδλ = eδµ = α .

Choose two (necessarily linearly independent) eigenvectors:

Av = λv, Aw = µw .

Then also
eδAv = αv and eδAw = αw ,

from which it follows that α is an eigenvalue of eδA of geometric multiplicity
greater than one, contradicting Lemma 3.3.9. 2

Exercise 3.4.6 Give an example to show that the eigenvalue condition in The-
orem 4 is not necessary (if m > 1). 2

Remark 3.4.7 There is a somewhat different way of proving Theorem 4, which
is more conceptual. We give it now. The main point is that under the hypotheses
of the Theorem it can be proved that A is an analytic function of eδA, so that
A is a linear combination of the matrices

ekδA, k = 0, . . . , n− 1 .

Once this is known, it follows that each column of R(A,B) is a linear combi-
nation of the columns of R(eδA, B), and hence the second matrix cannot have
rank less than n, since the first one has rank n by the controllability hypothesis.
It then follows that the pair (eδA, B) is controllable, as desired.

We now show that A is an analytic function of eδA. (The proof requires the
concept of analytic but nonentire functions of matrices.) Consider the exponen-
tial function f(s) = eδs. The hypothesis means precisely that f is one-to-one
on the set

Λ = {λ1, . . . , λl}

of eigenvalues of A. Pick disjoint neighborhoods

O1,O2, . . . ,Ol

of
f(λ1), f(λ2), . . . , f(λl)

respectively. Since f is everywhere nonsingular, we may apply the Inverse Func-
tion Theorem to conclude that, taking smaller Ok’s if necessary, there exist
disjoint neighborhoods

O0
1,O0

2, . . . ,O0
l

of
λ1, λ2, . . . , λl
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and diffeomorphisms
gk : Ok → O0

k

such that
gk ◦ fk = identity on each O0

k .

Finally, let O (resp. O0) be the union of the sets Ok (resp. O0
k), and let g be

the extension of the gk’s. Then g ◦ f equals the identity in the open set O0

which contains the eigenvalues of A, and hence

g(f(A)) = A ,

which proves that indeed A is a function of eδA = f(A). 2

3.5 More on Linear Controllability

This section develops some of the basic facts about controllability of linear sys-
tems, possibly time-varying. The focus is on the continuous-time case; the
discrete-time situation is in part analogous and far simpler (and left as an ex-
ercise), although some aspects cannot be generalized.

We start with a review of some basic properties of generalized inverses of
operators. Appendix A.2 reviews pseudoinverses of matrices; since here the
interest is on the operator from controls to states, and controls belong to an
infinite dimensional space, a somewhat more general result is needed. On the
other hand, we restrict for simplicity of exposition solely to the case of onto
operators.

Pseudoinverses

Let K = R or C. Recall that an inner product space H over K is a vector space
together with a binary operation 〈x, y〉 such that 〈x, y〉 ∈ K for all x, y ∈ H and
the following properties hold for all x, y, z ∈ H and all α, β ∈ K:

(a) 〈x, y〉 = 〈y, x〉 (overbars denote complex conjugation; thus, in the case
K = R, we are simply saying that inner products are symmetric);

(b) 〈x, αy + βz〉 = α〈x, y〉+ β〈x, z〉; and

(c) 〈x, x〉 > 0 for x 6= 0 and 〈0, 0〉 = 0.

Given such an inner product, one defines an associated norm ‖x‖ :=
√
〈x, x〉,

and H becomes a metric space with the distance function d(x, y) := ‖x− y‖. If
H is complete as a metric space with this distance, then H is called a Hilbert
space.

There are two particular types of Hilbert spaces that we use. For any fixed
n, we view Kn as the set of all column n-vectors with the inner product

〈x, y〉 := x∗y =
n∑
i=1

xiyi .
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(Here “*” denotes conjugate transpose.) The other type of Hilbert space that
we work with is infinite dimensional, and is defined as follows. For each positive
integer m, we let L2

m(σ, τ) be the set of all square integrable functions ω :
[σ, τ) → Km. Such an ω can be thought of as a column m-vector of square
integrable functions. The set L2

m(σ, τ) is a Hilbert space with the inner product

〈ω, ν〉 :=
∫ τ

σ

ω(t)∗ν(t) dt . (3.13)

Let Ω and X be two Hilbert spaces. Given a continuous linear mapping (in
functional-analytic terms, a bounded operator)

L : Ω → X ,

there exists always an adjoint operator L∗, defined by the property that

〈Lω, x〉X = 〈ω,L∗x〉Ω for all x ∈ X, ω ∈ Ω .

For instance, if Ω = Km and X = Kn, and L is thought of as an n×m matrix
(with respect to the canonical bases of Km,Kn) then L∗ is just the conjugate
transpose of L.

Example 3.5.1 As another example, consider the case Ω = L2
m(σ, τ),X = Kn,

and
Lω :=

∫ τ

σ

k(t)∗ω(t) dt , (3.14)

where k is a fixed m× n matrix of elements of L2(σ, τ). Thus, if we denote by
ki the ith column of k, i = 1, . . . , n, then each ki is in L2

m(σ, τ) and

Lω =

 〈k1, ω〉
...

〈kn, ω〉

 .

We now compute the adjoint of L. Pick any ω ∈ Ω and x ∈ X. Since 〈Lω, x〉
equals(∫ τ

σ

k(t)∗ω(t) dt
)∗

x =
(∫ τ

σ

ω(t)∗k(t) dt
)
x =

∫ τ

σ

ω(t)∗(k(t)x) dt ,

we have that L∗x is the element of L2
m given by the function (L∗x)(t) = k(t)x. 2

From now on we assume that X is finite dimensional. (Most of what we do
generalizes easily to the case of arbitrary X but L of closed range. The latter
property is automatic in the finite dimensional case.)

The following Lemma is basic. Here “im” denotes image, “ker” kernel or
nullspace, and “⊥” indicates orthogonal complement:

S⊥ = {z| 〈x, z〉 = 0 for all x ∈ S} .

Since X was assumed finite dimensional, it holds that (S⊥)⊥ = S for all sub-
spaces S of X.
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Lemma 3.5.2 For any L as above, imLL∗ = (kerL∗)⊥ = imL.

Proof. It is clear that imLL∗ ⊆ imL. Since “⊥” reverses inclusions, it will be
enough to prove that

(imLL∗)⊥ ⊆ kerL∗ ⊆ (imL)⊥ .

Pick any z ∈ (imLL∗)⊥. Then, 〈LL∗x, z〉 = 0 for all x ∈ X, so in particular for
x = z:

0 = 〈LL∗z, z〉 = 〈L∗z, L∗z〉 = ‖L∗z‖2 ,
which implies that z ∈ kerL∗. Hence also z ∈ (imL)⊥, as desired, because for
ω ∈ Ω, 〈Lω, z〉 = 〈ω,L∗z〉 = 0.

We let
W : X → X, W := LL∗ . (3.15)

When X = Kn, we identify W with an n× n matrix. Note that

W ∗ = (LL∗)∗ = L∗∗L∗ = LL∗ = W , (3.16)

i.e., W is self-adjoint. (When X = Kn, W is a Hermitian matrix.) Moreover,
W is positive semidefinite, because

〈x,Wx〉 = ‖L∗x‖2

for all x. Since X is finite dimensional, the following are equivalent: W is onto,
one-to-one, invertible, positive definite. We can then conclude as follows.

Corollary 3.5.3 The following statements are equivalent for L,W as above:

(a) L is onto.

(b) L∗ is one-to-one.

(c) W is onto.

(d) detW 6= 0.

(e) W is positive definite. 2

Consider again the situation in Example 3.5.1. Here L is onto iff the matrix

W =
∫ τ

σ

k(t)∗k(t) dt > 0 . (3.17)

Equivalently, L is onto iff L∗ is one-to-one, i.e.,

there is no p 6= 0 in X with k(t)p = 0 for almost all t ∈ [σ, τ) , (3.18)

or, with a slight rewrite and ki := ith column of k∗:

〈p, ki〉 = 0 for all i and almost all t⇒ p = 0 . (3.19)
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Proposition 3.5.4 Assume that L is onto, and let

L# := L∗(LL∗)−1 : X → Ω . (3.20)

Then, L#x is the unique solution of Lω = x of smallest possible norm, i.e.,

• L(L#x) = x for all x ∈ X, and

•
∥∥L#x

∥∥ < ‖ω‖ for every ω for which Lω = x and ω 6= L#x.

Proof. Since
LL# = (LL∗)(LL∗)−1 = identity ,

the first property is clear. Assume now that Lω = x. We will prove that
〈ω − L#x, L#x〉 = 0, so

‖ω‖2 =
∥∥ω − L#x

∥∥2
+
∥∥L#x

∥∥2

will give the desired conclusion. But

〈ω − L#x, L#x〉 = 〈ω,L#x〉 −
∥∥L#x

∥∥2
,

so we prove that the two terms on the right are equal:

〈ω,L#x〉 = 〈ω,L∗(LL∗)−1x〉 = 〈Lω, (LL∗)−1x〉 = 〈x, (LL∗)−1x〉
= 〈LL∗(LL∗)−1x, (LL∗)−1x〉 = 〈L∗(LL∗)−1x, L∗(LL∗)−1x〉

=
∥∥L#x

∥∥2
.

This completes the proof.

The operator L# is the generalized inverse or (Moore-Penrose) pseudoinverse
of L. When L is not onto, one may define an operator with the minimizing
property in the above result restated in a least-squares sense; we omit the details
here since only the case when L is onto will be needed (see Appendix A.2 for
the finite dimensional case).

In Example 3.5.1,

(L#x)(t) = k(t)
[∫ τ

σ

k(s)∗k(s) ds
]−1

x .

Note that if the entries of k happen to be essentially bounded (not just square
integrable), then L#x is also essentially bounded.

It is easy to compute the operator norm of L# in terms of the matrix W .
We are defining the operator norm as∥∥L#

∥∥ := sup
‖x‖=1

∥∥L#x
∥∥
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with respect to the L2
m norm. From the definitions (3.15) and (3.20), it follows

that, for each vector x,∥∥L#x
∥∥2

=
∥∥L∗W−1x

∥∥2

= 〈L∗W−1x, L∗W−1x〉
= 〈LL∗W−1x,W−1x〉
= 〈x,W−1x〉 .

Therefore, ∥∥L#
∥∥ =

∥∥W−1
∥∥1/2

; (3.21)

that is, the norm of the pseudoinverse is the square root of 1/σmin, where σmin

is the smallest eigenvalue of the positive definite matrix W .

Application to Controllability

Recall from Lemma 3.1.7(a) that the continuous-time linear system Σ is control-
lable on [σ, τ ] iff it holds that (0, σ) ; (y, τ) for all y ∈ X. Thus, controllability
means precisely that the following operator is onto:

N : L∞m (σ, τ) → Kn : ω 7→ φ(τ, σ, 0, ω) =
∫ τ

σ

Φ(τ, s)B(s)ω(s) ds .

Thus, the extension of N to L2
m, with k(s) := B(s)∗Φ(τ, s)∗:

L : L2
m(σ, τ) → Kn : ω 7→

∫ τ

σ

k(s)∗ω(s) ds , (3.22)

is also onto. Note that entries of B are essentially bounded, by the definition of
a continuous-time linear system, and that the entries of Φ(τ, s) are (absolutely)
continuous in s. Thus, each entry of k is in L∞m (σ, τ) and hence also in L2

m(σ, τ),
so L is an operator as in Example 3.5.1. (When considering the extension L of
N , we really are dealing with the system Σ “with L2 controls” in the sense of
Exercise 2.7.5, but we do not need to use this fact explicitly.)

Given any Σ, we consider the operator L defined by formula (3.22). If Σ is
controllable, L is onto. Conversely, assume that L is onto. Then for each x ∈ X,
ω := L#x is such that Lω = x. Since the entries of k are essentially bounded,
it follows that ω is also essentially bounded. So ω is in the domain of N , and
hence x is in the image of N . We conclude that L is onto iff N is, that is, iff
Σ is controllable. (Alternatively, we could argue that L is onto iff N is, using
the fact that L∞m is dense in L2

m and that both N and L are continuous.) We
apply the above results to this L, to obtain the following conclusion. For the
last part, recall that

φ(τ, σ, x, ω) = z iff z − φ(τ, σ, x,0) = Nω .
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Theorem 5 Assume that Σ is a continuous-time linear system, σ < τ ∈ R,
and denote by bi the ith column of B. The following statements are equivalent:

1. Σ is controllable in [σ, τ ];

2. W (σ, τ) =
∫ τ
σ

Φ(τ, s)B(s)B(s)∗Φ(τ, s)∗ ds > 0;

3. There is no nonzero vector p ∈ X such that 〈p,Φ(τ, s)bi(s)〉 = 0 for almost
all s ∈ [σ, τ ] and all i.

If the above are satisfied, then, given any two x, z ∈ X, the control given by the
formula

ω(t) = B(t)∗Φ(τ, t)∗W (σ, τ)−1(z − Φ(τ, σ)x) (3.23)

is the unique one that minimizes ‖ω‖ among all those controls satisfying

φ(τ, σ, x, ω) = z . 2

Exercise 3.5.5 Let Σ be a continuous-time linear system, and pick σ < τ ∈ R.
Consider the controllability Gramian

Wc(σ, τ) :=
∫ τ

σ

Φ(σ, s)B(s)B(s)∗Φ(σ, s)∗ ds .

Show: Σ is controllable in [σ, τ ] if and only if Wc(σ, τ) has rank n, and, in that
case, the unique control of minimum square norm that steers x to 0 is given by
the formula ω(t) = −B(t)∗Φ(σ, t)∗Wc(σ, τ)−1x. 2

Example 3.5.6 Consider the harmonic oscillator (linearized pendulum)

ẋ1 = x2

ẋ2 = −x1 + u .

Assume that we wish to find a control transferring

x =
(

1
0

)
to z = 0 in time 2π while minimizing the “energy”∫ 2π

0

u(t)2dt .

We apply the Theorem. First note that, using etA as computed in Example
3.4.2, there results

W =
∫ 2π

0

e(2π−s)A
(

0
1

)
(0 1)e(2π−s)A

∗
ds

=
∫ 2π

0

(
sin2 s − sin s cos s

− sin s cos s cos2 s

)
ds

= πI ,
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so

W−1(z − Φ(2π, 0)x) = (−1/π)
(

1
0

)
.

Therefore,

ω(t) = − 1
π

(0 1)
(

cos(2π − t) − sin(2π − t)
sin(2π − t) cos(2π − t)

)(
1
0

)
=

1
π

sin t

gives the desired control. 2

The above Theorem provides to some extent a computable criterion for con-
trollability in [σ, τ ]. One may obtain numerically the fundamental solution and
then perform the required integration to get the constant matrix W (σ, τ), whose
determinant is then checked to be nonzero. Below we develop a criterion, ap-
plicable when the entries of A and B are smooth as functions of time, that
does not require integration of the differential equation. In practice, of course,
round-off errors will make the determinant of W (σ, τ) always nonzero. Thus,
controllability cannot be decided precisely. Furthermore, if the determinant of
W turns out to be small, even if the system is controllable, it is not so in a prac-
tical sense, since the necessary controls will tend to be very large, as suggested
by the term W−1 that appears in the expression of the minimum norm control.
This is related to the fact that even though most systems are controllable (at
least in the time-invariant case), many may be “close” to being uncontrollable;
recall the discussion after the proof of Proposition 3.3.12. It is also related to
the fact that trying to control in too short an interval will require large con-
trols, no matter how controllable the system is (since the integral defining W is
taken over a small interval). The next exercise deals with a particular case of
an estimate of how large such controls must be.

Exercise 3.5.7 For the system

ẋ1 = x2

ẋ2 = u

show that the operator L# corresponding to σ = 0, τ = ε satisfies∥∥L#
∥∥ = O(ε−

3
2 )

as ε→ 0. (Hint: Use (3.21) by showing that the smallest eigenvalue of W (0, ε)
is of the form

ε3

12
+ o(ε3) .

The power series expansion for
√

1 + α may be useful here.) 2

We may restate condition (3) in a slightly different form, which will be useful
for our later study of observability. Transposing the conclusion (d) of Lemma
C.4.1, one has the following:
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Lemma 3.5.8 For any A(·), the fundamental solution Ψ(t, s) associated to the
adjoint equation

ṗ(t) = −A(t)∗p(t) (3.24)

is Ψ(t, s) := Φ(s, t)∗. 2

Corollary 3.5.9 The continuous-time linear system Σ is controllable on [σ, τ ]
if and only if there does not exist a nonzero solution p(t) of the adjoint equation
on [σ, τ ] such that

〈p(t), bi(t)〉 = 0 for almost all t ∈ [σ, τ ]

for all i = 1, . . . ,m (recall that bi is the ith column of B).

Proof. We show that the existence of such a solution would be equivalent to
the property in (3) of Theorem 5 (p. 109). For this, note simply that if p is a
solution of the adjoint equation on [σ, τ ] then p(t) = Ψ(t, τ)p(τ) = Φ(τ, t)∗p(τ),
so

〈p(t), b〉 = 〈p(τ),Φ(τ, t)b〉

for any vector b, and that p(t) is nonzero for all t if and only if p(τ) 6= 0.

The last part of Theorem 5 provides a solution to a particular type of opti-
mal control problem, that of minimizing the norm of the control that affects a
given state transfer. In applications, this norm is typically proportional to some
measure of the energy used in controlling the system. There is a variation of this
problem that can be solved with precisely the same techniques. Assume that
the coordinates of the control u are assigned different costs. For instance, we
may want to consider a situation in which there are two independent controls
and it is 10 times more expensive to apply a unit of the first control as it is
of the second. In that case, it would make sense to try to minimize the cost
(10u1)2 + u2

2 = 100u2
1 + u2

2. More generally, we may have a cost of the type∑
i

∑
j aiju

2
iu

2
j :

Exercise 3.5.10 Let Σ be a controllable continuous-time linear system, and let
Q be a real symmetric positive definite m ×m matrix. Pick any x, z ∈ X, and
σ, τ ∈ R. Find a formula for a control ω ∈ L∞m (σ, τ) which gives φ(τ, σ, x, ω) = z
while minimizing ∫ τ

σ

ω(s)∗Qω(s) ds .

Prove that for each pair x, z there is a unique such control. Do this in two
alternative ways: (1) Applying again the material about pseudoinverses, but
using a different inner product in the set L2

m. (2) Factoring Q = Q∗1Q1 and
observing that the same result is obtained after a change of variables. 2

Remark 3.5.11 Optimal control problems for linear systems with quadratic
cost result typically in solutions that are linear in a suitable sense. For instance,
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the optimal control in Theorem 5 (p. 109) is linear in both x and z. This is
not surprising, since in an abstract sense minimizing a quadratic function (here,
the norm of the control) subject to linear constraints (the linear differential
equation) can be thought of, after elimination, as an unconstrained minimization
of a quadratic function, which in turn can be solved by setting derivatives to zero;
since derivatives of quadratic functions are linear, the solution to the original
problem becomes linear in the original data. (This kind of reasoning can be
made precise through the study of abstract quadratic optimization problems in
infinite dimensional spaces.) The linearity property means that in general, linear
systems problems with quadratic costs are far easier to solve than, say, linear
problems with nonquadratic costs or nonlinear control problems with quadratic
costs. Chapter 8 studies other linear-quadratic problems, in which the final
state is not constrained and costs are imposed along trajectories. 2

Remark 3.5.12 Theorem 5 (p. 109) shows that among all controls effecting the
transfer (x, σ) ; (z, τ) there is a unique one of minimum norm. Of course, if one
does not impose the minimality requirement, there are many such controls, since
N maps an infinite dimensional space into a finite dimensional one. Many dense
subsets of L∞m will map onto all of the state space. For instance, there are always
in the controllable case piecewise constant controls so that (x, σ) ; (z, τ). (See
more about this in Section 3.9.)

Observe also that the explicit formula for the minimum norm control shows
that this control is of class Ck provided that A(·) and B(·) are of class Ck. 2

Exercise 3.5.13 Let Σ be a discrete-time linear system with U = Km,X =
Kn,K = R or C. State and prove the analogue of Theorem 5 (p. 109) for Σ.
(Hint: Instead of Φ(σ, τ) use now the matrix product

A(τ − 1)A(τ − 2) . . . A(σ) .

Let Ω := KmT , T = τ − σ, and apply the pseudoinverse results again.) 2

Exercise 3.5.14 For this problem, we call a time-invariant system output con-
trollable if it holds that for each x ∈ X and each y ∈ Y there exists a T ≥ 0 and
a control u such that h(φ(T, x, u)) = y. Prove that a time-invariant continu-
ous-time linear system (A,B,C) is output controllable iff

rankCR(A,B) = rank [CB, . . . , CAn−1B] = p. 2

Exercise 3.5.15 (Optional, computer-based.) In Exercise 3.2.12, calculate nu-
merically, using the pseudoinverse formula, controls of minimal energy transfer-
ring one given state to another in time T = 1. (Unrealistically, but for mathe-
matical simplicity, take all constants equal to one.) 2

A Rank Condition

The characterization of controllability given in Theorem 5 involves integration
of the differential equation of the system. We now look for a simpler condition,
analogous to the Kalman rank condition for time-invariant systems.
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If Σ is a continuous-time linear system and I is an interval in R, we say
that Σ is smoothly-varying on I iff A(t) and B(t) are smooth (infinitely
differentiable) as functions of t for t ∈ I, and that Σ is analytically varying
on I iff A(t) and B(t) also are analytic on I. Analyticity means that for
each t ∈ I each entry of A and B can be expanded in a power series about t,
convergent in some nontrivial interval (t− ε, t+ ε) (see Appendix C).

The matrix function Φ(s, t) is smooth (respectively, analytic,) as a function
of t ∈ I and s ∈ I when Σ is smoothly (respectively, analytically) varying on I.
Fix Σ and I so that Σ is smoothly varying on I, and fix a nontrivial subinterval
[σ, τ ] ⊆ I. Introduce the (smooth) n×m matrix function

M0(t) := Φ(τ, t)B(t) ,

and let
Mk(t) := (dkM0/dt

k)(t), k ≥ 1 .

Consider also the matrix of functions obtained by listing all the columns of the
Mi, i = 0, . . . , k:

M (k)(t) := (M0(t),M1(t), . . . ,Mk(t)) .

Proposition 3.5.16 Let Σ be a continuous-time linear system.

1. Assume that Σ is smoothly varying on I, and pick any σ < τ so that
[σ, τ ] ⊆ I. If there exists a t0 ∈ [σ, τ ] and a nonnegative integer k such
that

rankM (k)(t0) = n ,

then Σ is controllable.

2. Assume now that Σ is analytically varying on I, and let t0 be any fixed
element of I. Then, Σ is controllable on every nontrivial subinterval of I
if and only if

rankM (k)(t0) = n

for some integer k.

Proof. If Σ were not controllable on [σ, τ ], there would exist by condition (3)
in Theorem 5 (p. 109) a nonzero vector p such that p∗M0(t) = 0 for almost
all t ∈ [σ, τ ], and hence by continuity of M0, for all such t. It follows that all
derivatives are also identically zero, that is,

p∗Mk(t) ≡ 0

for all t ∈ [σ, τ ] and all k ≥ 0. Thus, the rows of each matrix M (k)(t) are
linearly dependent, so rankM (k)(t) < n for all t ∈ [σ, τ ]. This proves the first
statement.
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We now prove sufficiency in the analytic case. If Σ were not controllable on
[σ, τ ], then, as in the smooth case, p∗Mk(t) ≡ 0 on [σ, τ ], for all k. But then,
by the principle of analytic continuation, also

p∗Mk(t) ≡ 0 for all t ∈ I .

Thus, if the rank is n for some t ∈ I and some k, we obtain a contradiction.
Conversely, suppose now that Σ is controllable and analytically varying on

I. Assume that there is some t0 ∈ I such that

rankM (k)(t0) < n

for all k. For this t0, let

Pk := {p ∈ Kn| p∗M (k)(t0) = 0} .

By assumption, the subspaces Pk are all nonzero. Since

P0 ⊇ P1 ⊇ . . . ,

the dimensions of the Pk are nonincreasing. Let PK have minimal dimension;
then

Pk = PK for k ≥ K .

Pick p ∈ PK . It follows that p∗Mk(t0) = 0 for all k. By analyticity, p∗M0(t) ≡ 0
for t in an interval about t0 (expand in a power series about t0), and so, by
analytic continuation, this holds on all of I and in particular on all of [σ, τ ].
This would contradict the assumed controllability of Σ.

The above result can be restated somewhat more elegantly in terms of the
infinite matrix

M(t) := (M0(t),M1(t), . . . ,Mk(t), . . .) .

The system Σ is controllable if M(t0) has rank n for some t0, and in the analytic
case this condition is also necessary for every t0.

The condition would seem still to involve integration, since the transition
matrix Φ is used in defining theMk’s. But we can obtain an equivalent condition
as follows: Let B0 := B and, for each i ≥ 1,

Bi+1(t) := A(t)Bi(t)−
d

dt
Bi(t) .

Note that the Bi can be obtained directly from the data (A,B).

Lemma 3.5.17 For all i and all t ∈ I, Mi(t) = (−1)iΦ(τ, t)Bi(t).
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Proof. By induction. The case i = 0 holds by definition. Assume the Lemma
proved for i, and consider Mi+1. Then,

Mi+1(t) =
d

dt
Mi(t) = (−1)i

d

dt
[Φ(τ, t)Bi(t)]

= (−1)i
{[

∂

∂t
Φ(τ, t)

]
Bi(t) + Φ(τ, t)

d

dt
Bi(t)

}
= (−1)i

{
−Φ(τ, t)A(t)Bi(t) + Φ(τ, t)

d

dt
Bi(t)

}
,

where the last equality holds by Lemma C.4.1(d). But the last term is equal to
(−1)i+1Φ(τ, t)Bi+1(t), as desired.

Since Φ(τ, t) is invertible for all τ, t, p∗Mi(t0) = 0 if and only if q∗Bi(t) = 0,
with q = Φ(τ, t)∗p. We conclude:

Corollary 3.5.18 The conclusions of Proposition 3.5.16 hold when

rank [B0(t0), B1(t0), . . . , Bk(t0)] = n (3.25)

holds instead of the rank condition on M (k)(t0). 2

Remark 3.5.19 In Proposition 3.5.16 and Corollary 3.5.18, infinite differen-
tiability is not needed for the necessity statements, in the following sense: If
A(·) and B(·) are k-times differentiable and if M (k)(t0) or (3.25) have rank n
at some t0, then controllability already follows by the same argument. 2

Exercise 3.5.20 Show by counterexample that without analyticity the rank
condition is not necessary. More precisely, give two examples as follows:

(i) A smooth system with n = m = 1 that is controllable in some nontrivial
interval but for which there is some t0 so that M (k)(t0) ≡ 0 for all k; and

(ii) A smooth system with n = m = 2 that is controllable in some nontrivial
interval but for which the rank is one for every t0 and k. 2

Example 3.5.21 Consider the system with K = R, n = 3, m = 1, and matrices

A(t) =

 t 1 0
0 t3 0
0 0 t2

 B(t) =

 0
1
1

 .

This system is smoothly (in fact, analytically) varying on (−∞,∞). Since

[B0(0), B1(0), B2(0), B3(0)] =

 0 1 0 −1
1 0 0 0
1 0 0 2

 ,

and this matrix has rank 3, the system is controllable on every nontrivial interval
[σ, τ ]. 2
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Remark 3.5.22 In the time-invariant case, Bi(t) ≡ Ai−1B, so the above con-
dition says that Σ is controllable on any nontrivial interval [σ, τ ] if and only
if the columns of (B,AB,A2B, . . .) span an n-dimensional space, which as re-
marked in Lemma 3.3.2 is equivalent to the condition rankR(A,B) = n. This
provides yet another proof of Theorem 3 (p. 89). 2

In general, for any fixed t0, it may be necessary to check the rank of the
matrix in Corollary 3.5.18 for arbitrarily large k. As an illustration, consider
the analytic system

ẋ = tku ,

where k is any integer. This is controllable on any nontrivial interval (just check
rank condition at 1, for instance), but with t0 = 0 we would have to check up
to the kth matrix. For generic t0, k = n is enough, however, as shown in the
following problem. (So, even though there is no “Cayley-Hamilton Theorem”
to apply, as was the case for time-invariant systems, the situation is still good
enough for almost every t0.)

Exercise 3.5.23 Let Σ be a continuous-time linear system, analytically varying
on I. Prove that if Σ is controllable on any nontrivial subinterval [σ, τ ] then

rank [B0(t), B1(t), . . . , Bn−1(t)] = n

for almost all t ∈ I. (Hint: First prove that if rankM (k)(t) = rankM (k+1)(t)
for t in an open interval J ⊆ I, then there must exist another subinterval J ′ ⊆ J
and analytic matrix functions

V0(t), . . . , Vk(t)

on J ′ such that

Mk+1(t) =
k∑
i=0

Mi(t)Vi(t)

on J ′. Conclude that then rankM (k)(t) = rankM (l)(t) for all l > k on J ′.
Argue now in terms of the sequence nk := max{rankM (k)(t), t ∈ I}.) 2

Exercise 3.5.24 Consider the continuous-time linear system over K = R with
n = 2,m = 1, and matrices

A(t) =
(

0 1
−1 0

)
B(t) =

(
cos t
− sin t

)
.

Prove that the system is not controllable over any fixed interval, but that for
every fixed σ in R, the (“frozen”) time-invariant linear system (A(σ), B(σ)) is
controllable. Show noncontrollability of the time-varying system in two different
ways:

(i) Via the rank test; and
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(ii) Alternatively by explicitly calculating solutions and noticing that the
reachable set from the origin at any fixed instant is a line. 2

Exercise 3.5.25 Refer to Exercise 3.2.12. Assume here that the ground speed
is not constant but is instead a function of time, c = c(t) (take c to be smooth,
though much less is needed). Apply the rank criteria for time-varying linear
systems to conclude that the system is controllable in any nontrivial interval in
which c is not identically zero. 2

3.6 Bounded Controls*

In this section, we deal with continuous-time time-invariant systems of the form
ẋ = Ax+Bu for which U is a subset of Rm. Linear systems have, by definition,
U = Rm, so we call such systems “linear systems with constrained controls”.
For instance, take the system ẋ = −x+ u (n = m = 1), with U = (−1, 1). The
pair (A,B) = (1, 1) is controllable, but the system with restricted controls is
not, since it is impossible to transfer the state x = 0 to z = 2 (since ẋ(t) < 0
whenever x(t) ∈ (1, 2)).

In order to avoid confusion with reachability for the associated linear systems
with unconstrained controls, in this section we will say that z ∈ Rn can be U-
reached from x ∈ Rn (or that x can be U-controlled to z) in time T if there is
some input ω : [0, T ] → Rm so that φ(T, 0, x, ω) = z and ω(t) ∈ U for (almost)
all t ∈ [0, T ]. We define the reachable set in time T ≥ 0

RT
U(x) := {z ∈ Rn U-reachable from x in time T}

and RU(x) :=
⋃
T≥0RT

U(x). (Thus RRm(x) is the same as what we earlier called
R(x).)

In this section we will establish the following result.

Theorem 6 Let U be a bounded neighborhood of zero. Then, RU(0) = Rn if
and only if

(a) the pair (A,B) is controllable, and

(b) the matrix A has no eigenvalues with negative real part.

Observe that the necessity of controllability for the pair (A,B) is obvious,
since RU(0) ⊆ R(0).

We prove Theorem 6 after a series of preliminary results.

Lemma 3.6.1 Let U ⊆ Rm and pick any two S, T ≥ 0. Then

RT
U(0) + eTARS

U(0) = RS+T
U (0) .

* This section can be skipped with no loss of continuity.
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Proof. Pick

x1 =
∫ T

0

e(T−τ)ABω1(τ)dτ =
∫ S+T

S

e(S+T−τ)ABω1(τ − S)dτ

and

x2 =
∫ S

0

e(S−τ)ABω2(τ)dτ

with the inputs ωi U-valued. Note that

eTAx2 =
∫ S

0

e(S+T−τ)ABω2(τ)dτ .

Thus

x1 + eTAx2 =
∫ S+T

0

e(S+T−τ)ABω(τ)dτ

where

ω(s) =
{
ω2(τ) 0 ≤ τ ≤ S
ω1(τ − S) S ≤ τ ≤ S + T.

Note that ω(t) ∈ U for all t ∈ [0, S + T ]. Thus RT
U(0) + eTARS

U(0) ⊆ RS+T
U (0).

The converse inclusion follows by reversing these steps.

By induction on q we then conclude:

Corollary 3.6.2 Let U ⊆ Rm and pick any T ≥ 0 and any integer q ≥ 1. Then

RT
U(0) + eTART

U(0) + . . .+ e(q−1)TART
U(0) = RqT

U (0) .

Proposition 3.6.3 (1) If U ⊆ Rm is convex, then RU(0) is a convex subset of
Rn. (2) If (A,B) is controllable and U ⊆ Rm is a neighborhood of 0 ∈ Rm, then
RU(0) is an open subset of Rn.

Proof. Convexity of each RT
U(0) follows from linearity of φ(T, 0, 0, u) on u and

convexity of U. This proves that the (increasing) union RU(0) is convex, when
U is convex.

Assume now that (A,B) is controllable and U ⊆ Rm is a neighborhood of
0. We first prove that, for each T > 0, RT

U(0) is a neighborhood of 0 ∈ Rn.
Fix such a T . Pick a subset U0 ⊆ U which is a convex neighborhood of 0.
The desired conclusion will follow if we show that 0 ∈ Rn is in the interior of
RT

U0
(0), since RT

U0
(0) ⊆ RT

U(0). So without loss of generality, for the rest of this
paragraph we replace U by U0 and hence assume that U is also convex. Pick
any basis e1, . . . , en of Rn. Let e0 := −

∑n
i=1 ei. For each i = 0, . . . , n there is

an input ωi, not necessarily U-valued, so that

ei = φ(T, 0, 0, ωi) .
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Let µ > 0 be so that, with ω′i := 1
µωi, i = 0, . . . , n, it holds for all i that ω′i(t) ∈ U

for (almost) all t ∈ [0, T ]. (There exists some such µ because U is a neighborhood
of 0 and the ωi are essentially bounded.) Thus e′i := 1

µei = φ(T, 0, 0, ω′i) ∈ RT
U(0)

for each i.
Pick any ε1, . . . , εn such that |εi| ≤ 1

2(n+1) for all i. Then

ε1
µ
e1 + . . .+

εn
µ
en =

n∑
i=1

(
1− ε

n+ 1
+ εi

)
e′i +

1− ε

n+ 1
e′0

with ε =
∑
i εi. This is a convex combination. Since all e′i ∈ RT

U(0), and this
set is convex, it follows that ε1

µ e1 + . . . + εn

µ en ∈ RT
U(0) for all small enough

ε1, . . . , εn, which shows that RT
U(0) is a neighborhood of 0.

Finally, we show that RU(0) is open. Pick any S > 0. By the previous
discussion, there is some open subset V ⊆ RS

U(0) containing zero. Pick any
x ∈ RU(0); we wish to show that some neighborhood of x is included in RU(0).
Let ω : [0, T ] → U be so that x = φ(T, 0, 0, ω). The set W := eTAV is open,
because eTA is nonsingular. For each y = eTAv ∈W ,

y + x = eTAv + φ(T, 0, 0, ω) ∈ RT
U(V ) .

Thus x +W is an open subset of RT
U(V ) ⊆ RS+T

U (0) ⊆ RU(0) which contains
x.

For each eigenvalue λ of A and each positive integer k we let

Jk,λ := ker (λI −A)k

(a subspace of Cn) and the set of real parts

JR
k,λ := Re (Jk,λ) = {Re v | v ∈ Jk,λ}

(a subspace of Rn). Observe that if v ∈ Jk,λ, v = v1+iv2 with vj ∈ Rn, j = 1, 2,
then v1 ∈ JR

k,λ, by definition, but also the imaginary part v2 ∈ JR
k,λ, because

(−iv) belongs to the subspace Jk,λ. We also let J0,λ = JR
0,λ = {0}.

Let L be the sum of the various spaces JR
k,λ, with Reλ ≥ 0, and let M

be the sum of the various spaces JR
k,λ, with Reλ < 0. Each of these spaces

is A-invariant, because if v is an eigenvector of A, and v = v1 + iv2 is its
decomposition into real and imaginary parts, then the subspace of Rn spanned
by v1 and v2 is A-invariant. From the Jordan form decomposition, we know
that every element in Cn can be written as a sum of elements in the various
“generalized eigenspaces” Jk,λ, so taking real parts we know that Rn splits into
the direct sum of L and M . (In fact, L is the largest invariant subspace on
which all eigenvalues of A have nonnegative real parts, and analogously for M .)

We will need this general observation:

Lemma 3.6.4 If C is an open convex subset of Rn and L is a subspace of Rn
contained in C, then C + L = C.
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Proof. Clearly C = C + 0 ⊆ C +L, so we only need prove the other inclusion.
Pick any x ∈ C and y ∈ L. Then, for all ε 6= 0:

x+ y =
(

1
1 + ε

)
[(1 + ε)x] +

(
ε

1 + ε

)[(
1 + ε

ε

)
y

]
.

Since C is open, (1 + ε)x ∈ C for some sufficiently small ε > 0. Since L is a
subspace,

(
1+ε
ε

)
y ∈ L ⊆ C. Thus x+ y ∈ C, by convexity.

The main technical fact needed is as follows. Fix any eigenvalue λ = α+ iβ
of A with real part α ≥ 0, and denote for simplicity JR

k := JR
k,λ.

Lemma 3.6.5 Assume that (A,B) is controllable and U ⊆ Rm is a neighbor-
hood of 0. Then JR

k ⊆ RU(0) for all k.

Proof. First replacing if necessary U by a convex subset, we may assume
without loss of generality that U is a convex neighborhood of 0. We prove the
statement by induction on k, the case k = 0 being trivial. So assume that
JR
k−1 ⊆ RU(0), and take any ṽ ∈ Jk,λ, ṽ = ṽ1 + iṽ2. We must show that
ṽ1 ∈ RU(0).

First pick any T > 0 so that eλTj = eαTj for all j = 0, 1, . . .. (If β = 0 one
may take any T > 0; otherwise, we may use for instance T = 2π

|β| .) Next choose
any δ > 0 with the property that v1 := δṽ1 ∈ RT

U(0). (There is such a δ because
RU(0) contains 0 in its interior, by Proposition 3.6.3.) Since v ∈ ker (λI −A)k,
where v = δṽ,

e(A−λI)tv =
(
I + t(A− λI) +

t2

2
(A− λI)2 + . . .

)
v = v + w ∀ t ,

where w ∈ Jk−1. Thus

eαtv = eλtv = etAv − eλtw = etAv − eαtw ∀ t = jT, j = 0, 1, . . . . (3.26)

Decomposing into real and imaginary parts w = w1 + iw2 and taking real parts
in Equation (3.26),

eαtv1 = etAv1 − eαtw1 ∀ t = jT, j = 0, 1, . . . .

Now pick any integer q ≥ 1/δ. Thenq−1∑
j=0

eαjT

 v1 =
q−1∑
j=0

ejTAv1 + w′

where w′ = −
∑
eαjTw1 belongs to the subspace JR

k−1. Applying first Corol-
lary 3.6.2 and then Lemma 3.6.4, we conclude that

pv1 ∈ RqT
U (0) + JR

k−1 ⊆ RU(0)
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where

p =
q−1∑
j=0

eαjT ≥
q−1∑
j=0

1 = q ≥ 1
δ
.

(Here is precisely where we used that α ≥ 0.) Therefore δpṽ1 = pv1 ∈ RU(0).
On the other hand, δp ≥ 1 means that

ṽ1 =
1
δp
δpṽ1 +

(
1− 1

δp

)
0

is a convex combination. Since δpṽ1 and 0 both belong to RU(0), we conclude
by convexity of the latter that indeed ṽ1 ∈ RU(0).

Corollary 3.6.6 Assume that (A,B) is controllable and U ⊆ Rm is a neigh-
borhood of 0. Then L ⊆ RU(0).

Proof. As before, we may assume without loss of generality that U is convex.
We have that L is the sum of the spaces JR

k,λ, over all eigenvalues λ with real
part nonnegative, and each of these spaces is included in RU(0). In general, if
L1 and L2 are two subspaces of a convex set C, L1 + L2 ⊆ C (since x + y =
1
2 (2x) + 1

2 (2y)), so the sum of the L’s is indeed included in RU(0).

The next result says that the reachable set from zero is a “thickened linear
subspace”:

Corollary 3.6.7 Assume that (A,B) is controllable and U ⊆ Rm is a convex
and bounded neighborhood of 0. Then there exists a set B such that RU(0) =
B + L and B is bounded, convex, and open relative to M .

Proof. We claim that RU(0) = (RU(0)
⋂
M) + L. One inclusion is clear from(

RU(0)
⋂
M
)

+ L ⊆ RU(0) + L = RU(0)

(applying Lemma 3.6.4). Conversely, any v ∈ RU(0) can be decomposed as
v = x + y ∈ M + L; we need to show that x ∈ RU(0). But x = v − y ∈
RU(0)+L = RU(0) (applying the same Lemma yet again). This establishes the
claim.

We let B := RU(0)
⋂
M . This set is convex and open in M because RU(0)

is open and convex. We only need to prove that it is bounded.
Let P : Rn → Rn be the projection on M along L, that is, P (x + y) = x

if x ∈ M , y ∈ L. Observe that PA = AP because each of L and M are A-
invariant (so v = x+ y, Ax ∈M , Ay ∈ L, imply PAv = Ax = APv). Pick any
x ∈ RU(0)

⋂
M . Since x ∈ RU(0), there are some T and some ω so that

x =
∫ T

0

e(T−τ)ABω(τ) dτ .
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On the other hand, since x ∈M , x = Px. Thus:

x = Px =
∫ T

0

Pe(T−τ)ABω(τ) dτ =
∫ T

0

e(T−τ)Ax(τ) dτ ,

where x(τ) = PBω(τ) ∈M
⋂
PB(U) for all τ .

Since the restriction of A to M has all its eigenvalues with negative real part,
there are positive constants c, µ > 0 such that

∥∥etAx∥∥ ≤ ce−µt ‖x‖ for all t ≥ 0
and all x ∈ M . Since PB(U) is bounded, there is then some constant c′ such
that, if x is also in PB(U),

∥∥etAx∥∥ ≤ c′e−µt for all t ≥ 0. So, for x as above we
conclude

‖x‖ ≤ c′
∫ T

0

e−µ(T−τ) dτ ≤ c′

µ
(1− e−µT ) ≤ c′

µ
,

and we proved that B is bounded.

Proof of Theorem 6

Assume first that RU(0) = Rn. We already remarked that the pair (A,B) must
be reachable. If the eigenvalue condition (b) does not hold, then L is a proper
subspace of Rn and M 6= 0. Enlarging U if necessary, we may assume that U is
convex and bounded. Lemma 3.6.7 claims that Rn = RU(0) is then a subset of
L + B, with bounded B, a contradiction. Conversely, assume that (a) and (b)
hold. By Corollary 3.6.6, Rn = L ⊆ RU(0).

We also say that the system Σ is U-controllable ifRU(x) = Rn for all x ∈ Rn.

Exercise 3.6.8 Let U be a bounded neighborhood of zero. Show:

1. Every state can be U-controlled to zero if and only if (a) the pair (A,B)
is controllable and (b) the matrix A has no eigenvalues with positive real
part.

2. Σ is completely U-controllable (that is, RU(x) = Rn for all x ∈ Rn) if and
only if (a) the pair (A,B) is controllable, and (b) all eigenvalues of the
matrix A are purely imaginary.

3.7 First-Order Local Controllability

For nonlinear systems, the best one often can do regarding controllability notions
is to characterize local controllability —and even that problem is not totally
understood. In order to talk about local notions, a topology must be introduced
in the state space. Even though the only nontrivial results will be proved for
discrete-time and continuous-time systems of class C1, it is more natural to
provide the basic definitions in somewhat more generality. A class called here
topological systems is introduced, which captures the basic continuity properties
needed. In Chapter 5, a few basic facts about stability are proved in the general
context of such systems. From now on in this Chapter, and unless otherwise
stated, system means topological system in the sense of Definition 3.7.1 below.
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Topological Systems

If X is a metric space, we use d(a, b) to denote the distance between elements of
X, and as earlier, we let d∞ be the uniform distance between two time functions
into X; that is, if γ1, γ2 : I → X, for some interval I ⊆ T , then

d∞(γ1, γ2) := sup{d(γ1(t), γ2(t)), t ∈ I}

(essential supremum when dealing with measurable functions and T = R). We
also use the notation

Bρ(x) := {y ∈ X | d(x, y) < ρ}

for the open ball of radius ρ centered at x, and

Bρ(x) := {y ∈ X | d(x, y) ≤ ρ}

for its closure.

Definition 3.7.1 A topological system Σ is an object

(T ,X,U, φ)

such that X is a metric space; Σ is a system when X is thought of just as a set;
and for each σ < τ in T and each ω ∈ U[σ,τ),

ψ(τ, σ, ·, ω)

has an open domain and is continuous there as a map into X[σ,τ ] (with metric
d∞). 2

In other words, the following property must hold for each pair σ < τ in T :
If ω is admissible for the state x, and if

xn → x

in X, then there is some integer N such that ω is admissible for xn for all n > N ,
and

lim
n→∞

d(φ(t, σ, xn, ω), φ(t, σ, x, ω)) = 0

uniformly on t ∈ [σ, τ ].
From Theorem 1 (p. 57) and Lemma 2.8.3, the following is then immediate:

Proposition 3.7.2 If Σ is either a continuous-time system, or a discrete-time
system of class C0, then Σ is topological when X is given the induced topology
of Rn. 2
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Remark 3.7.3 If Σ is a topological system, then the map φ(t, σ, x, ω) is jointly
continuous on (t, x), provided only that φ(·, σ, x, ω) be continuous for each fixed
σ, x, ω (as happens with continuous-time systems). Indeed, given any σ, τ, ω,
any ξ for which ω is admissible, any t ∈ [σ, τ ], and any number ε > 0, there is
always, because of uniform continuity of φ in x, a δ > 0 so that

d(φ(t, σ, x, ω), φ(t, σ, y, ω)) < ε/2

whenever d(x, y) < δ. Furthermore, continuity of φ(·, σ, x, ω) ensures that there
is a δ′ > 0 so that

d(φ(s, σ, x, ω), φ(t, σ, x, ω)) < ε/2

whenever s ∈ [σ, τ ] is such that |t− s| < δ′. Therefore, also

d(φ(s, σ, x, ω), φ(t, σ, y, ω)) < ε

if (s, x) is close to (t, y), as required. 2

An equilibrium state x0 is one for which there exists a control value u0 ∈ U

such that
φ(τ, σ, x0, ω0) = x0

for each σ ≤ τ, σ, τ ∈ T , where ω0 is the control with ω0(t) ≡ u0. When the
system Σ is linear, we always take x0 = 0 and u0 = 0. Unless otherwise stated,
x0 is a fixed but arbitrary equilibrium state.

Definition 3.7.4 Let Σ be a topological system. Let ξ be any path on an interval
I = [σ, τ ], and denote

x0 := ξ(σ), x1 := ξ(τ) .

The system Σ is locally controllable along ξ if for each ε > 0 there is some
δ > 0 such that the following property holds: For each z, y ∈ X with d(z, x0) < δ
and d(y, x1) < δ there is some path ζ on I such that

ζ(σ) = z , ζ(τ) = y

and
d∞(ζ, ξ) < ε .

When x is an equilibrium state and ξ ≡ x on the interval [σ, τ ], T = τ − σ,
one simply says that Σ is locally controllable (in time T ) at x. 2

Thus, local controllability along a trajectory corresponds to the possibility
of controlling every initial state near the original initial state to every final state
near the original final state, and being able to do so without deviating far from
the original trajectory. For equilibrium states, the initial and final states are
the same, and the definition can be put in slightly different terms, using the
following terminology:
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Figure 3.2: Local controllability along trajectory.

Definition 3.7.5 Let Σ be a topological system, and let y, z be in X. If V is a
subset of X containing y and z, we say that z can be controlled to y without
leaving V [in time T ] (or, that y can be reached from z inside V) if there exists
some path ζ on some interval [σ, τ ] [respectively, with T = τ − σ] such that

ζ(σ) = z and ζ(τ) = y

and also
ζ(t) ∈ V

for all t ∈ [σ, τ ]. 2

Remark 3.7.6 Using the above definition, one can restate: The system Σ is
locally controllable in time T at the equilibrium state x if and only if for every
neighborhood V of x there is another neighborhood W of x such that, for any
pair of elements z, y in W, z can be controlled to y inside V in time T (see
Figure 3.3). 2

For linear systems, local controllability is not an interesting notion:

Lemma/Exercise 3.7.7 For any discrete-time or continuous-time linear sys-
tem Σ and each pair σ < τ in T , the following properties are equivalent:

(a) Σ is locally controllable along some trajectory Γ on [σ, τ ].

(b) Σ is locally controllable along every trajectory Γ on [σ, τ ].

(c) Σ is controllable on [σ, τ ]. 2

The following is an example of the “linearization principle” mentioned in
Chapter 1. In particular, for continuous-time systems ẋ = f(x, u), with (0, 0) ∈
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Figure 3.3: Local controllability at a state.

X× U and f(0, 0) = 0, the result asserts that controllability of the pair (A,B)
obtained by expanding to first order ẋ = Ax+Bu+o(x, u) is sufficient to insure
local controllability about x = 0.

Theorem 7 Assume that Σ is a continuous-time system of class C1. Then,

1. Let Γ = (ξ, ω) be a trajectory for Σ on an interval I = [σ, τ ]. Then, a
sufficient condition for Σ to be locally controllable along ξ is that Σ∗[Γ] be
controllable on [σ, τ ].

2. Let Σ be time-invariant, and assume that x is an equilibrium state. Pick
any ε > 0 and any u ∈ U such that f(x, u) = 0. Then, a sufficient condi-
tion for Σ to be locally controllable at x in time ε is that the linearization
of Σ at (x, u) be controllable.

Proof. The second part is a special case of the first, so we prove part (1). Let
x0 := ξ(σ) and x1 := ξ(τ). Consider the mapping

α : Dσ,τ → X, α(x, ν) := φ(τ, σ, x, ν) .

Note that α(x0, ω) = x1. By Theorem 1 (p. 57), Part 3, this mapping is contin-
uously differentiable, and its partial differential with respect to ν evaluated at
(x0, ω) is the mapping φΓ(τ, σ, 0, ·), which is onto by the controllability assump-
tion. It follows using the Implicit Mapping Theorem for maps from a normed
space into a finite dimensional space, as in Theorem 53 (p. 465) in Appendix B,
that there exists an ε1 > 0 and a continuously differentiable mapping

j : Bε1(x0)× Bε1(x1) → L∞m

such that
α(z, j(z, y)) = y

for all (z, y) in the domain of j and such that j(x0, x1) = ω. Given now any
ε > 0, pick δ > 0 small enough so that

d∞(ξ, ψ(z, j(z, y))) < ε



3.7. First-Order Local Controllability 127

whenever z ∈ Bδ(x0) and y ∈ Bδ(x1); such a δ exists by continuity of j and of
ψ, and it is as desired for local controllability.

Lemma/Exercise 3.7.8 For discrete-time systems of class C1, the same con-
clusions as in Theorem 7 hold. 2

Remark 3.7.9 The definition of local controllability can be weakened in many
ways while still preserving the idea that every state close to the original state
can be controlled to every state close to the final one. One such weakening is to
allow for large excursions. For instance, consider the following bilinear system
in R2, with U = R:

ẋ =
[(

0 −1
1 0

)
+ u

(
1 0
0 1

)]
x

or in polar coordinates away from the origin,

θ̇ = 1
ρ̇ = uρ .

Pick any nonzero state, say, x := (1, 0)′. From the polar coordinate description,
it is clear that the system restricted to R2−{0} is controllable and, in particular,
that every state near x can be controlled to every other state near x. However,
the only way to control x to (1 + ε, 0)′, for ε small, is through a motion of time
at least 2π that circles about the origin, and in particular a motion that leaves
the ball of radius 1 about x. Therefore, this system is not locally controllable
in our sense. 2

The following are some examples of locally controllable systems and the
application of the linearization principle.

Example 3.7.10 With X = R2 and U = R, consider the system

ẋ1 = x1 + sinx2 + x1e
x2

ẋ2 = x2
2 + u.

This is locally controllable at x = 0, because the linearization at (0, 0),

A =
(

2 1
0 0

)
B =

(
0
1

)
satisfies the controllability rank condition. When u2 is substituted for u in the
second equation, the linear test fails, since now B = 0. In fact, the system is
not locally controllable there, since starting at 0 it is impossible to reach any
states of the form

(
0
x2

)
with x2 < 0. On the other hand, the linear test is not

definitive: For instance, if we have u3 instead of u in the second equation, then
the linear test fails (again B = 0) but the system is still locally controllable.
This last fact follows from the observation that, given any trajectory (ξ, ω) of
the original system, then (ξ, ν) is a trajectory of the system that has u3 in the
second equation, if we define ν(t) := ω(t)1/3. 2
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Example 3.7.11 Consider the system with X = U = R and equations

ẋ = 1 + u sin2 x .

We claim that this system is controllable along every trajectory Γ = (ξ, ω) with
ω smooth defined on any I = [σ, τ ] (with σ < τ). Indeed, the linearization
matrices (here 1× 1) are

A(t) = (ω(t) sin 2ξ(t)) B(t) =
(
sin2 ξ(t)

)
.

So rankB(t0) = 1 for at least one t0 ∈ [σ, τ ] if and only if sin ξ(t) is not
identically equal to zero. But if the latter happens, then

ξ̇ ≡ 1 ,

which implies that ξ cannot be constant.
The assumption that ω is smooth is not necessary, as it is not hard to

prove controllability of the linearization directly, but this assumption serves to
illustrate the use of the controllability criteria for linear time-varying systems.
In this example, it is not hard to establish global controllability of the original
system. 2

Exercise 3.7.12 Prove that, for the above example,

rank (B0(t), B1(t), B2(t)) = 1

for all t. 2

3.8 Controllability of Recurrent Nets*

We turn to studying controllability of what are often called “recurrent neural
networks”. These constitute a class of nonlinear systems which, although for-
mally analogous to linear systems, exhibit interesting nonlinear characteristics,
and arise often in applications, and for which strong conclusions can be derived.

In this section, we use θ to denote the hyperbolic tangent function

θ(x) = tanhx : R → R : x 7→ ex − e−x

ex + e−x
.

This is sometimes called the “sigmoid” or “logistic” map; see Figure 3.4.
For each positive integer n, we let ~θn denote the diagonal mapping

~θn : Rn → Rn :

 x1
...
xn

 7→

 θ(x1)
...

θ(xn)

 . (3.27)

* This section can be skipped with no loss of continuity.
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Figure 3.4: tanh

Definition 3.8.1 An n-dimensional, m-input recurrent net is a continuous-
time time-invariant system with X = Rn, U = Rm, and equations of the form

ẋ(t) = ~θn (Ax(t) +Bu(t)) , (3.28)

where A ∈ Rn×n and B ∈ Rn×m. 2

Since ~θn is a globally Lipschitz map, such a system is complete (every input
is admissible for every state). Observe that, if in place of θ = tanh we had
θ = the identity function, we would be studying continuous-time time-invariant
linear systems. Recurrent nets arise when the rates of change of state variables
are bounded (|ẋi| < 1), and one models this limitation by means of ~θn, which
provides a smooth distortion, or saturation, of the rates of change. In system-
theoretic terms, we may represent a net by means of a block diagram as in
Figure 3.5.

l- - - - -

�

6

u x

A

+B
∫

~θn

Figure 3.5: Block diagram of recurrent net.

We need the following concept, which we define for more general systems.

Definition 3.8.2 A system Σ, with state-space X ⊆ Rn, is strongly locally
controllable around x0 ∈ X if for each neighborhood V of x0 there is some
neighborhood W of x0, included in V, so that, for every pair of states y and z
in W , y can be controlled to z without leaving V. 2

Related notions are studied in Section 3.7; intuitively, we are asking that
any two states that are sufficiently close to x0 can be steered to one another
without large excursions.

For each pair of positive integers n and m, we let

Bn,m :=
{
B ∈ Rn×m | ∀ i, rowi(B) 6= 0 and ∀ i 6= j, rowi(B) 6= ±rowj(B)

}
,

where rowi(·) denotes the ith row of the given matrix. In the special case
m = 1, a vector b ∈ Bn,1 if and only if all its entries are nonzero and have
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different absolute values. Asking that B ∈ Bn,m is a fairly weak requirement:
the complement of Bn,m is an algebraic subset of Rn×m, so Bn,m is generic in
the same sense as in Proposition 3.3.12.

In this section, we will prove the following result:

Theorem 8 The following two properties are equivalent:

1. B ∈ Bn,m.

2. The system (3.28) is strongly locally controllable around every state.

If a system Σ is strongly locally controllable around x0, in particular there
exists some neighborhood W of x0 so that every x ∈ W is both controllable to
x0 and reachable from x0, that is,

x0 ∈ int
(
R(x0)

⋂
C(x0)

)
. (3.29)

If Σ is strongly locally controllable around every state x0, then the reachable
setsR(x0) are both open and closed, for each x0. (Pick any x̄ ∈ R(x0); by (3.29)
some neighborhood of x̄ is included in R(x̄), and hence also in R(x0), so R(x0)
is indeed open. Next take any x̄ in the closure of R(x0); now we know that
there is some neighborhood W of x̄ such that every x ∈ W can be steered to
x̄. Since W ∩R(x0) 6= ∅, we can find a point x̂ which is reachable from x0 and
can be steered to x̄, so x̄ ∈ R(x0), proving that R(x0) is also closed.) Note that
R(x0) is always nonempty, because x0 ∈ R(x0). Thus:

Lemma 3.8.3 If a system Σ is strongly locally controllable around every state
and X is connected, Σ is completely controllable. 2

Putting together Theorem 8 and this Lemma, we have, then:

Corollary 3.8.4 If B ∈ Bn,m, the system (3.28) is completely controllable. 2

Theorem 8 will be proved after some generalities are established.

A Local Controllability Lemma

We start with an observation that is of independent interest. By coV we mean
the convex hull of a set V .

Lemma 3.8.5 Consider a continuous-time time-invariant system ẋ = f(x, u)
and suppose that x0 ∈ X is a state such that

0 ∈ int co
{
f(x0, u) | u ∈ U

}
. (3.30)

Then
x0 ∈ int

(
R(x0)

⋂
C(x0)

)
.
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Proof. Pick a finite subset U0 ⊆ U so that 0 ∈ int co
{
f(x0, u) | u ∈ U0

}
. We

assume, without loss of generality, that x0 = 0. Let S1 be the unit sphere
{λ ∈ Rn | ‖λ‖ = 1}. Define a function ϕ : X 7→ R by letting

ϕ(x) = max{h(λ, x) | λ ∈ S1} ,

where
h(λ, x) = min{〈λ, f(x, u)〉 | u ∈ U0} .

The function h is a minimum of a finite collection of continuous functions, so h
is continuous; thus, ϕ is well-defined and continuous as well.

Since 0 is an interior point of the convex hull of the set {f(0, u) | u ∈ U0},
there is some δ > 0 such that, for every λ ∈ S1, the vector −4δλ is a convex
combination of the f(0, u), u ∈ U0. Given any λ ∈ S1, the number −4δ is
equal to 〈λ,−4δλ〉, which is a convex combination of the numbers 〈λ, f(0, u)〉,
u ∈ U0. So at least one of these numbers is ≤ −4δ. So h(λ, 0) ≤ −4δ. Since
this is true for all λ ∈ S1, we conclude that ϕ(0) ≤ −4δ. Since ϕ is continuous,
there exists α > 0 such that, if B = Bα(x) = {x ∈ Rn | ‖x‖ ≤ α}, then B ⊆ X

and ϕ(x) ≤ −2δ whenever x ∈ B.
Now fix a point x̄ ∈ B, and let S be the set consisting of all those pairs

(I, ω) such that I ⊆ [0,∞) is an interval containing 0, and ω : I → U0 is
a measurable function (i.e., a control with values in U0) for which there is a
solution ξ : I → X (defined on the complete interval) of ξ̇(t) = f(ξ(t), ω(t))
with initial state ξ(0) = x̄, and this solution satisfies:

d ‖ξ(t)‖
dt

≤ −δ (3.31)

for almost every t ∈ I. (Note that ‖ξ(·)‖ is absolutely continuous, because ξ is,
as is clear from the definition of absolute continuity.)

We order S, by letting

(I1, ω1) � (I2, ω2)

iff I1 ⊆ I2 and ω1 is the restriction to I1 of ω2. Every totally ordered nonempty
subset of S has an upper bound in S (take the union of the intervals, and a
common extension of the ω’s). By Zorn’s Lemma, S has a maximal element
(I, ω).

In general, for any pair (J , ν) ∈ S and its corresponding path ζ, Equa-
tion (3.31) implies that ‖ζ(t)‖ ≤ ‖ζ(0)‖ − δt for all t ∈ J , and, in particular,
that ‖ζ(t)‖ ≤ ‖ζ(0)‖ ≤ α for all t ∈ J . So ζ is entirely contained in B. As
t ≤ α

δ for all t ∈ J , J must be bounded. Furthermore, (closJ , ν) is also in
S, when we view ν also as a control defined on the closure of J , because the
maximal solution for ν seen as such a control cannot be ζ, but must extend
to the closure (since ζ(·) takes values in a compact, cf. Proposition C.3.6), and
Property (3.31) still holds a.e. on the closure. Applied to J = I, and since I
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is maximal, this argument shows that I = clos I. Thus, I = [0, T ] for some T .
Let ξ be the path corresponding to (I, ω). We claim that

ξ(T ) = 0 . (3.32)

Indeed, suppose this claim would not be true, so x̂ := ξ(T ) ∈ B is nonzero.
Since ϕ(x̂) ≤ −2δ, we have h(λ̂, x̂) ≤ −2δ, where λ̂ := −x̂/‖x̂‖. So there exists
some u0 ∈ U0 such that 〈λ̂, f(x̂, u0)〉 ≤ −2δ. Let ζ : [T, T +β] → X be the path,
with ζ(T ) = x̂, which corresponds to the control that is constantly equal to u0,
for some β > 0. We may assume that ζ(t) 6= 0 for all t (otherwise, we could
extend by ζ and already have a control that drives x̄ to zero). Using that the
gradient of x 7→ ‖x‖ is x′

‖x‖ , we have

ρ(t) :=
d

dt
‖ζ(t)‖ = 〈λ(t), f(ζ(t), u0)〉 ,

where

λ(t) =
ζ(t)
‖ζ(t)‖

is a continuous function with λ(T ) = λ̂. Since ρ(T ) = 〈λ̂, f(x̂, u0)〉 ≤ −2δ, we
can assume, by taking β small enough, that ρ(t) ≤ −δ for t ∈ [T, T +β]. Letting
Ĩ = [0, T + β], we extend ω to a control ω̃ : Ĩ → U0, defining ω̃(t) := u0 for
t ∈ (T, T + β]. The path with initial state x is ξ̃ : Ĩ → X, whose restrictions
to [0, T ] and [T, T + β] are ξ and ζ respectively. As (Ĩ, ω̃) ∈ S and (I, ω) ≺
(Ĩ, ω̃) but (I, ω) 6= (Ĩ, ω̃), we have contradicted the maximality of (I, ω). This
contradiction proves claim (3.32).

In conclusion, we established that every x̄ ∈ B can be controlled to 0. We
may also apply this argument to the reversed system ẋ = −f(x, u), whose paths
are those of the original system run backward in time (cf. Lemma 2.6.8). The
hypothesis applies to the reversed system, because if the convex hull of the set
{f(0, u) | u ∈ U0} contains zero in its interior, then the same is true for the
convex hull of {−f(0, u) | u ∈ U0}. Thus, we find some other ball B− with the
property that every x ∈ B− can be reached from 0. Then W = B ∩ B− is so
that every state in W is both controllable to 0 and reachable from 0.

Corollary 3.8.6 Under the same assumptions as Lemma 3.8.5, the system is
strongly locally controllable at x0.

Proof. Given x0, and given any neighborhood V of x0, we may consider the
new continuous-time system with state space V, same input value set, and same
equations, but restricted to V. The restricted system has the property that
there is an open set W which contains x0 and is so that every state in W is
both controllable to and reachable from x0. Thus any two states in W can be
steered to each other, and by definition the paths stay in the restricted state
space, namely, the desired neighborhood V.
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Remark 3.8.7 The argument used in the proof of Lemma 3.8.5 is analogous
to the methods of proof used in Section 5.7, relying upon a “control-Lyapunov
function” V (x) (the function V (x) = ‖x‖2) so that minu∇V (x) · f(x, u) < −c
for all x near zero, for some c > 0. If this property is weakened to merely
asking that, for all nonzero x near zero, minu∇V (x) · f(x, u) < 0, then only
asymptotic controllability (cf. Chapter 5) will be guaranteed to hold, instead of
controllability. 2

A Result on Convex Hulls

The relevant properties of θ are summarized follows.

Lemma 3.8.8 The function θ = tanh satisfies:

1. θ is an odd function, i.e. θ(−s) = −θ(s) for all s ∈ R;

2. θ∞ = lims→+∞ θ(s) exists and is > 0;

3. θ(s) < θ∞ for all s ∈ R;

4. for each a, b ∈ R, b > 1,

lim
s→+∞

θ∞ − θ(a+ bs)
θ∞ − θ(s)

= 0 . (3.33)

Proof. The first three properties are clear, with θ∞ = 1, so we need to prove
the limit property (3.33). Note that σ(x) = (1 + e−x)−1 satisfies

σ(r)
σ(t)

= σ(r) + er−tσ(−r) (3.34)

for all r, t, and that 1− tanhx = 2σ(−2x) for all x ∈ R. Thus

1− tanh(a+ bs)
1− tanh s

= σ(−2a− 2bs)︸ ︷︷ ︸
→0

+ e−2a e2(1−b)s︸ ︷︷ ︸
→0

σ(2a+ 2bs)︸ ︷︷ ︸
→1

→ 0

as desired.

For each vector a ∈ Rn and matrix B ∈ Rn×m, we write

Sa,B :=
{
~θn(a +Bu) , u ∈ Rm

}
.

Lemma 3.8.9 If B ∈ Bn,m and a ∈ Rn, then 0 ∈ int coSa,B .

Proof. Since B ∈ Bn,m, there is some u0 ∈ Rm such that the numbers bi :=
rowi(B)u0 are all nonzero and have distinct absolute values. (Because the set
of u’s that satisfy at least one of the equations

rowi(B)u = 0 , rowi(B)u+ rowj(B)u = 0 , rowi(B)u− rowj(B)u = 0
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for some i 6= j is a finite union of hyperplanes in Rm.) Fix one such u0. As
Sa,Bu0 ⊆ Sa,B , it is enough to show the result for Bu0 instead of B. So we
assume from now on that B = (b1, . . . , bn)′ has just one column, and all its
entries bi are nonzero and have distinct absolute values.

Assume by way of contradiction that 0 6∈ int coSa,B . Using a separating
hyperplane†, we know that there is a nonzero row vector c = (c1, . . . , cn) such
that c ~θn(a +Bu) ≥ 0 for all u ∈ R. Writing a = (a1, . . . , an)′, this means that

n∑
i=1

ci θ(ai + biu) ≥ 0 ∀u ∈ R . (3.35)

We now prove that such an inequality cannot hold, if the bi are nonzero and
have distinct absolute values, unless all the ci are equal to 0. Since θ is odd, we
may assume that each bi > 0, since each term ciθ(ai+ biu) for which bi < 0 can
be rewritten as (−ci)θ(−ai + (−bi)u). Thus, reordering if needed, we assume
that 0 < b1 < . . . < bn. Finally, dropping all those terms in the sum for which
ci = 0, we may assume that c1 6= 0 (using smaller n, if necessary). Taking the
limit in (3.35) as u → −∞ we obtain

∑n
i=1 ci(−θ∞) ≥ 0. So from (3.35) we

obtain
n∑
i=1

ci (θ∞ − θ(ai + biu)) ≤ 0 ∀u ∈ R . (3.36)

Therefore

c1 +
n∑
i=2

ci
θ∞ − θ(ai + biu)
θ∞ − θ(a1 + b1u)

≤ 0 ∀u ∈ R . (3.37)

If we prove that each term in the sum converges to zero as u → +∞ then it
will follow that c1 ≤ 0. But this fact follows from property (3.33) (applied with
a = ai − bia1/b1, b = bi/b1, and noting that s = a1 + b1u→∞ as u→∞).

If we take instead the limit in (3.35) as u→ +∞, we find that
∑n
i=1 ciθ∞ ≥ 0.

We therefore also obtain from (3.35) that:

n∑
i=1

ci (θ∞ + θ(ai + biu)) ≥ 0 ∀u ∈ R . (3.38)

Letting v = −u and ãi = −ai, and using that θ is odd,

c1 +
n∑
i=2

ci
θ∞ − θ(ãi + biv)
θ∞ − θ(ã1 + b1v)

≥ 0 ∀ v ∈ R . (3.39)

Taking the limit as v → +∞ and appealing again to property (3.33), we conclude
that also c1 ≥ 0. Thus c1 = 0, contradicting the assumption made earlier.

†Several basic facts about separation of convex sets are reviewed in the chapter on linear
time-optimal control, see page 431.
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A Necessity Statement

Lemma 3.8.10 If B 6∈ Bn,m then there exists a nonzero λ ∈ Rn so that

signλ′ ~θn(Ax+Bu) = signλ′Ax

for all (x, u) ∈ Rn × Rm (with the convention sign 0 = 0).

Proof. We denote, for each i, bi := rowi(B) and ai := rowi(A). There are
three cases to consider: (1) some bi = 0, (2) bi − bj = 0 for some i 6= j, and (3)
bi + bj = 0 for some i 6= j.

In the first case, we let λ := ei (ith canonical basis vector). The conclusion
follows from the equality

e′i
~θn(Ax+Bu) = θ(aix)

and the fact that sign θ(v) = sign v. In the second case, we let λ := ei− ej . The
expression

(ei − ej)
′ ~θn(Ax+Bu) = θ(aix+biu)−θ(ajx+bju) = θ(aix+biu)−θ(ajx+biu)

is nonnegative if and only if aix ≥ ajx (using that θ is monotonic), that is, when
λ′Ax = aix − ajx ≥ 0, so also in this case we have the conclusion. Finally, if
bi + bj = 0, we pick λ := ei + ej . Then

(ei + ej)
′ ~θn(Ax+Bu) = θ(aix+biu)+θ(ajx+bju) = θ(aix+biu)−θ(−ajx+biu)

(since θ is odd), which is nonnegative precisely when (ai + aj)x ≥ 0.

Proof of Theorem 8

From Corollary 3.8.6 and Lemma 3.8.9, since f(x0, u) = ~θn(Ax0 +Bu), we have
that B ∈ Bn,m implies strong local controllability at each x0. To show the
converse, suppose that B 6∈ Bn,m. Let λ be as in Lemma 3.8.10 and let V be Rn
if λ′A = 0 and {x | λ′Ax > 0} otherwise. Pick any state x0 ∈ V. Let RV(x0) be
the set of states reachable from x0 without leaving V. Then RV(x0) is included
in the half space {

x | λ′x ≥ λ′x0
}
.

This is because, if ξ̇ = ~θn(Aξ +Bω) and ξ(t) ∈ V for all t, then

d

dt
λ′ξ(t) = λ′~θn(Aξ(t) +Bω(t)) ≥ 0 ,

so the function ϕ(t) := λ′ξ(t) is nondecreasing. Thus there cannot be a neigh-
borhood of x0 which is reachable from x0 without leaving V. This completes
the proof of the Theorem.
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Exercise 3.8.11 One could also define a class of systems as in (3.28) with other
choices of θ. Theorem 8 may not be true for such other choices. For instance,
the theorem fails for θ = identity (why?). It also fails for θ = arctan: Show that
the 4-dimensional, single-input system

ẋ1 = arctan(x1 + x2 + x3 + x4 + 2u)
ẋ2 = arctan(x1 + x2 + x3 + x4 + 12u)
ẋ3 = arctan(−3u)
ẋ4 = arctan(−4u)

satisfies that B ∈ Bn,m but is not controllable. Explain exactly where the
argument given for θ = tanh breaks down. 2

3.9 Piecewise Constant Controls

Often it is of interest to know how much more restrictive it is to consider only
controls that are of a particular type, such as polynomial in time or piecewise
constant. In general, for any m,σ, τ , let A be any subspace of L∞m (σ, τ) that
satisfies:

1. For each ω ∈ L∞m there is an equibounded sequence in A converging to ω;
and

2. it contains all constant controls.

For instance, one may take polynomial or piecewise constant controls (see Re-
mark C.1.2 in Appendix C). For linear systems, controls in A are rich enough:

Proposition 3.9.1 Assume that Σ is a linear continuous-time system, σ < τ ,
and A is as above. Then the following conditions are equivalent:

(a) Σ is controllable on [σ, τ ].

(b) For each x, z ∈ X, there exists some control inA such that φ(τ, σ, x, ω) = z.

In particular, for time-invariant systems, controllability is equivalent to control-
lability using controls in A.

Proof. Fix any x ∈ X. By Theorem 1 (p. 57), Part 2(i), the set

{φ(τ, σ, x, ω) | ω ∈ A}

is dense in X. But this set is an affine subspace, since this is the set of all
expressions of the form

φ(τ, σ, x, 0) + φ(τ, σ, 0, ω) ,

and the map φ(τ, σ, 0, ·) is linear. Thus, it must be all of X.
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Proposition 3.9.2 Let Σ be a time-invariant continuous-time system of class
C1 with U = Rm, and assume that there is some equilibrium pair (x0, u0) such
that the linearization of Σ at (x0, u0) is controllable. Pick any σ < τ and any A
as above. Then there exists a neighborhood V of x0 such that for each x, z ∈ V
there exists some control ω ∈ A such that φ(τ, σ, x, ω) = z.

Proof. This is proved in exactly the same form as the local controllability
Theorem 7 (p. 126), by application of the Implicit Mapping Theorem to the
mapping α, with controls given the sup norm. The only modification is that
one must restrict controls to A, seen as a (not necessarily dense) subset of
L∞m (σ, τ). But full rank is already achieved on these, because of Proposition
3.9.1 and the fact that the differential is nothing other than the corresponding
reachability map for the linearization.

Note that the above argument used the fact that α is C1 with respect to
the sup norm and that the Implicit Function Theorem was applied about the
control constantly equal to u0 (which is in A by hypothesis).

Corollary 3.9.3 If Σ is as in Proposition 3.9.2, U = Rm, and Σ is controllable,
then for each x, z ∈ X there exists some σ ≤ τ and some piecewise constant
control ω ∈ U[σ,τ) such that φ(τ, σ, x, ω) = z.

Proof. Pick first any σ < τ and apply the Proposition with A = family of
all piecewise constant controls, to obtain the open set V . Let x, z be as in
the statement. Because of the controllability assumption, there is some control
mapping x into x0. By Lemma 2.8.2 there exists some piecewise constant control
ω1 mapping x to some element x′ in V , and similarly there exists a piecewise
constant control ω2 mapping some z′ from V into z. Concatenating ω1 with
a piecewise constant control sending x′ to z′ and this in turn with ω2, the
conclusion follows.

3.10 Notes and Comments

Controllability of Time-Invariant Systems

Since the early work on state-space approaches to control systems analysis, it
was recognized that certain nondegeneracy assumptions were useful, in particu-
lar in the context of optimality results. However, it was not until R.E. Kalman’s
work (see, e.g., [215], [216], [218], and [231]) that the property of controllabil-
ity was isolated as of interest in and of itself, as it characterizes the degrees of
freedom available when attempting to control a system.

The study of controllability for linear systems has spanned a great number
of research directions, and topics such as testing degrees of controllability, and
their numerical analysis aspects, are still the subject of intensive research.

The idea in the proof of Corollary 3.2.7 was to use an ascending chain con-
dition on the spaces Xi to conclude a finite-time reachability result. Similar
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arguments are used often in control theory, under other hypotheses than finite
dimensionality (or finiteness, as in Lemma 3.2.4). For instance, for discrete-
time linear systems over Noetherian rings, one may use the same idea in order
to conclude that R(x) = RT (x) for large enough T .

Controllability of continuous-time piecewise linear systems is studied in [267]
and [411].

There is also an extensive literature on the controllability properties of in-
finite dimensional continuous-time or discrete-time linear systems; see, for in-
stance, [107], [147], and [291]. For such systems it is natural to characterize
“almost” reachability, where the set of states reachable from a given state is
required only to be dense in the state space.

Algebraic Facts About Controllability

What we called the “Hautus condition” actually appeared first in [321], Theorem
1 on page 320, and in a number of other references, including [40]. However, [175]
was the first to stress its wide applicability in proving results for linear systems,
as well as in extending the criterion to stabilizability (asymptotic controllability)
in [176]. Sometimes the condition is also referred to as the “PBH condition”
because of the Belevitch and Popov contributions.

It should be emphasized that genericity of controllability was established
only with respect to the set of all possible pairs. Often one deals with restricted
classes of systems, and among these, controllable systems may or may not form
an open dense subset. This gives rise to the study of structural controllability;
see, for example, [298], and more generally the book [350] and references therein,
for related questions.

In structural controllability studies, classes of systems are defined typically
by constraints on the matrices (A,B). For example, any system obtained from
an equation of the type

ẍ+ αẋ+ βx = γu

(as arises with a damped spring-mass system) via the introduction of state
variables x1 := x, x2 := ẋ will have A11 = B11 = 0 and A12 = 1. These
coefficients 0, 1 are independent of experimental data. Graph-theoretic methods
are typically used in structural controllability.

Controllability Under Sampling

Necessary and sufficient conditions for the preservation of controllability under
sampling for multivariable (m > 1) systems are known, but are more compli-
cated to state than the sufficient condition in Theorem 4 (p. 102). See, for
instance, [154].

The dual version of the Theorem, for observability (see Chapter 6), is very
closely related to Shannon’s Sampling Theorem in digital signal processing.

Some generalizations to certain types of nonlinear systems are also known
(see, for instance, [208] and [371]).
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More on Controllability of Linear Systems

The result in Exercise 3.5.7 is a particular case of the more general fact, for
time-invariant continuous-time single-input (m = 1) systems, that the operator
that gives the optimal transfer from 0 to a state x in time ε has an operator
norm ∥∥L#

∥∥ = O(ε−n+ 1
2 )

for small ε. This is proved in [345], where the multiple-input case is also char-
acterized.

Bounded Controls

Theorem 6 (p. 117) can be found in [343]. A particular case had earlier been
covered in [266], and the general case, as well as the obvious discrete-time ana-
logue, were proved in an abstract algebraic manner in [364]. We based our
presentation on [170], which in turn credits the result, in the stronger form
given in Corollary 3.6.7, to the earlier thesis [196].

It is also possible to give characterizations of controllability under other
constraints on control values. For instance, positive controls are treated in [60].

First-Order Local Controllability

The problem of characterizing local controllability when the first-order test given
in Theorem 7 fails is extremely hard, and constitutes one of the most challenging
areas of nonlinear control research. It is often of interest to strengthen the
definition of local controllability: For instance, about an equilibrium state x
one might require that any state close to x be reachable from x in small time
(small-time local controllability). Such stronger notions give rise to interesting
variations of the nonlinear theory; see, e.g., [388] and references there for this
and related issues.

Recurrent Nets

The systems studied in Section 3.8 are often called “continuous-time recurrent
neural networks”. The motivation for the term comes from an interpretation of
the vector equations for x in (3.28) as representing the evolution of an ensemble
of n “neurons,” where each coordinate xi of x is a real-valued variable which
represents the internal state of the ith neuron, and each coordinate ui, i =
1, . . . ,m of u is an external input signal. The coefficients Aij , Bij denote the
weights, intensities, or “synaptic strengths,” of the various connections. The
choice θ = tanh, besides providing a real-analytic and globally Lipschitz right-
hand side in (3.28), has major advantages in numerical computations, due to
the fact that its derivative can be evaluated from the function itself (θ′ = 1 −
θ2). (Sometimes, however, other “activation functions” are used. One common
choice is the function σ(x) = (1 + e−x)−1, which amounts to a rescaling of θ to
the range (0, 1).) Among the variants of the basic model (3.28) that have been
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studied in the literature are systems of the general form ẋ = −x+~θn(Ax+Bu),
where the term −x provides stability. Recurrent nets (or these variants) arise
in digital signal processing, control, design of associative memories (“Hopfield
nets”), language inference, and sequence extrapolation for time series prediction,
and can be shown to approximate a large class of nonlinear systems; see e.g.
[237].

The implication 2 ⇒ 1 in Theorem 8 is from [375], where the reader may also
find a solution to Exercise 3.8.11. The necessity of the condition B ∈ Bn,m was
shown to the author by Y. Qiao. A characterization of a weak controllability
property for the discrete-time analogue of these systems had been given earlier,
in [12], which had also obtained partial results for the continuous-time problem.

Piecewise Constant Controls

Results similar to Proposition 3.9.1 are in fact true for much larger classes
of systems. It is possible to establish, for instance, that piecewise constant
controls are enough for any analytic continuous-time system. In [367], it is
shown that under one weak extra assumption, polynomial controls can be used
for controllable analytic systems. See [163] for a survey of such results. This
section gave only very simple versions of these more general facts.



Chapter 4

Nonlinear Controllability

In this chapter∗ we study controllability questions for time-invariant continuous-
time systems ẋ = f(x, u).

The property that is easiest to characterize completely for nonlinear con-
tinuous-time systems is the accessibility property, sometimes also referred to as
weak controllability. This is the property that one should be able to reach from
any given state a set of full dimension. However, for certain restricted classes
of systems, results on complete controllability are also available.

To begin, we establish some basic facts regarding Lie algebras of vector fields.
(Working on open subsets of Euclidean spaces, we do not make any explicit use
of notions of differential geometry.)

4.1 Lie Brackets

If f = (f1, . . . , fn)′ : O → Rn is a continuously differentiable map defined on
some open subset O ⊆ Rp, f∗ denotes the Jacobian of f , thought of as a matrix
function on O. That is, for each x0 ∈ O, f∗(x0) ∈ Rn×p is the Jacobian of f
evaluated at x0, the matrix whose (i, j)-th entry is ∂fi

∂xj
|x=x0 .

In the special case when p = n, one calls a continuously differentiable map
f : O → Rn a vector field defined on the open subset O of Rn. A smooth vector
field is a smooth (infinitely differentiable) f : O → Rn; from now on, and unless
otherwise stated, when we say vector field we will mean “smooth vector field”.
The set of all (smooth) vector fields on a given O ⊆ Rn is denoted by V(O).
It is a real vector space under pointwise operations, that is, (rf + g)(x) :=
rf(x) + g(x) for all r ∈ R, f, g ∈ V(O), and x ∈ O.

When ϕ : O → R is differentiable, ϕ∗(x) = ∇ϕ(x) is a row vector, the
gradient of ϕ evaluated at x. The set of smooth functions O → R is denoted by
F(O). This is also a real vector space under pointwise operations.

∗The rest of the book, except for Section 5.3, is independent of the material in this chapter.

141
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For each f ∈ V(O) and each ϕ ∈ F(O), Lfϕ ∈ F(O) is the directional or Lie
derivative of ϕ along f :

(Lfϕ) (x) := ϕ∗(x) f(x) .

One may view Lf as a linear operator F(O) → F(O). Two vector fields f, g ∈
V(O) are equal if and only if Lf = Lg. (Because, if Lfϕ = Lgϕ holds for all ϕ,
then it holds in particular for each of the n coordinate functions πi(x) = xi, and
hence the ith coordinates of f and g coincide: fi(x) = (Lfπi)(x) = (Lgπi)(x) =
gi(x).) Note that Lf is a first-order differential operator, while the composition
Lf ◦ Lg, which we write simply as LfLg, is a second-order operator: one can
verify easily that

LfLg ϕ = g′Hϕf + ϕ∗g∗f , (4.1)

where Hϕ is the Hessian matrix
(

∂2ϕ
∂xi∂xj

)
. Since Hϕ is symmetric,

LfLg ϕ − LgLf ϕ = Lg∗f−f∗g ϕ . (4.2)

Definition 4.1.1 The Lie bracket of f, g ∈ V(O) is [f, g] := g∗f − f∗g ∈
V(O). 2

Equation (4.2) says that

L[f,g] = LfLg − LgLf (4.3)

for all vector fields f and g. The binary operation f, g 7→ [f, g] is skew-
symmetric: [f, g] = −[g, f ] and bilinear: [rf1 + f2, g] = r[f1, g] + [f2, g] and
[f, rg1 + g2] = r[f, g1] + [f, g2]. It is convenient to write

adfg := [f, g] (4.4)

and to think of adf , for each fixed f ∈ V(O), as a linear operator V(O) → V(O).
This operator is a differentiation operator with respect to the Lie bracket:

adf [g, h] = [adfg, h] + [g, adfh]

for all f, g, h, a formula also known as the Jacobi identity , especially when
written in the equivalent form

[f, [g, h]] + [h, [f, g]] + [g, [h, f ]] = 0 .

This is immediate from the equality

L[f,[g,h]] = LfLgLh − LfLhLg − LgLhLf + LhLgLf

obtained by using Equation (4.3) twice and using similar expansions for the
other two terms.

Some properties of, and relations between, the operators just introduced are
as follows.
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Lemma/Exercise 4.1.2 For any f, g ∈ V(O) and any ϕ,ψ ∈ F(O),

• Lf (ϕψ) = (Lfϕ)ψ + ϕ(Lfψ),

• Lϕfψ = ϕLfψ,

• [ϕf, ψg] = ϕψ[f, g] + (Lfψ)ϕg − (Lgϕ)ψf .

Definition 4.1.3 A Lie algebra (of vector fields on O) is a linear subspace
S ⊆ V(O) that is closed under the Lie bracket operation, that is, [f, g] ∈ S
whenever f and g are in S. 2

For any subset A ⊆ V(O), we define Ala, the Lie algebra generated by A,
as the intersection of all the Lie algebras of vector fields which contain A. (The
set of all such algebras is nonempty, since it includes V(O).) An intersection of
any family of Lie algebras is also a Lie algebra; thus,

Ala = smallest Lie algebra of vector fields which contains A .

Lemma 4.1.4 Let A be a subset of V(O). Denote A0 := A, and, recursively,

Ak+1 := {[f, g] | f ∈ Ak, g ∈ A} , k = 0, 1, 2, . . . ,

as well as A∞ :=
⋃
k≥0Ak. Then, Ala is equal to the linear span of A∞.

Proof. Any Lie algebra which contains A must contain A∞ (because, induc-
tively, it contains each Ak), and hence also contains its linear span, which we
will denote by Ã. So we must only show that Ã is a Lie algebra, i.e., that it is
closed under the Lie bracket operation. Since [X, ·] is linear, it suffices to show
that

X ∈ Ã and Y ∈ Ak ⇒ [X,Y ] ∈ Ã (Pk)

holds for every k. Observe that, since each X ∈ Ã can be written as a linear
combination of elements of A∞, and since [·, Y ] is linear, property (Pk) is equiv-
alent to the statement that [X,Y ] ∈ Ã whenever X ∈ A∞ and Y ∈ Ak. We
show (Pk) by induction on k.

The case k = 0 is clear since, for any f ∈ A0 = A, by definition [X, f ] ∈ A`+1

if X ∈ A`. Assume now that the result has been proved for all indices less than
or equal to k, and pick any X ∈ Ã and any Y ∈ Ak+1. Thus we may write
Y = [Y0, f ], for some f ∈ A and Y0 ∈ Ak. The Jacobi identity gives:

[X,Y ] = [X, [Y0, f ]] = [[X,Y0], f ]− [[X, f ], Y0] .

By inductive assumption, [X,Y0] ∈ Ã, so (induction again) [[X,Y0], f ] ∈ Ã.
Similarly, by induction we know that [[X, f ], Y0] ∈ Ã. As Ã is a subspace,
[X,Y ] ∈ Ã, as desired.
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The Lemma says that every element in the Lie algebra generated by the set
A can be expressed as a linear combination of iterated brackets of the form

[[. . . [f1, f2], f3], . . . , f`] ,

for some fi ∈ A. (We make the convention that an “iterated bracket of
length ` = 1” is just an element f1 of the generating set A.) Equivalently,
by skew symmetry, one can write any such element as a combination of brackets
[f`, . . . , [f3, [f2, f1]]], that is, as adf`

. . . adf2f1. So Ala is the smallest linear
subspace of V(O) which includes A and is invariant under the linear operators
adf , f ∈ A.

A Digression on Linear Algebra

Before proceeding, we make a simple but useful observation in linear algebra.
We fix any k = 0, 1, . . . ,∞ or k = ω (as usual, we let Cω denote the set of
analytic functions).

Lemma 4.1.5 Suppose that Q : W → Rn×p is a matrix function of class
Ck, defined on an open subset W ⊆ Rm, which satisfies that, for some q,
rankQ(w) = q for all w ∈ W . Then, for each w0 ∈ W , there is some neigh-
borhood W0 of w0, and there are two matrix functions C : W0 → Rn×n and
D : W0 → Rp×p, both of class Ck and nonsingular for each w ∈W0, such that

C(w)Q(w)D(w) =
(
I 0
0 0

)
for all w ∈W0 , (4.5)

where I is the q × q identity matrix.

Proof. Pick any w0 ∈W . Since Q(w0) has rank q, there exist two permutation
matrices P1 ∈ Rn×n and P2 ∈ Rp×p so that the submatrix obtained from the
first q rows and columns of P1Q(w0)P2 is nonsingular.

Now let ∆(w) be the submatrix obtained by selecting the first q rows and
columns of P1Q(w)P2, for each w ∈W , that is,

P1Q(w)P2 =
(

∆(w) ∗
∗ ∗

)
(where asterisks indicate arbitrary functions of w of class Ck). Thus ∆(w)
is a matrix function of class Ck, and is nonsingular at w = w0. Since the
determinant of ∆(w) is a continuous function of w, there is some open subset
W0 of W such that det ∆(w) 6= 0 for all w ∈ W0. On W0, we consider the
matrix function

Q1(w) := P1Q(w)P2

(
∆(w)−1 0

0 I

)
=
(

I X(w)
Y (w) ∗

)



4.1. Lie Brackets 145

where I is an identity matrix of size q × q and X(w) and Y (w) are of class Ck.
Note that rankQ1(w) = rankQ(w) = q for all w. So this matrix has rank ≡ q:(

I 0
−Y (w) I

)
Q1(w)

(
I −X(w)
0 I

)
=
(
I 0
0 ∗

)
and therefore the “∗” block is identically zero. In conclusion,[(

I 0
−Y (w) I

)
P1

]
Q(w)

[
P2

(
∆(w)−1 0

0 I

)(
I −X(w)
0 I

)]
=
(
I 0
0 0

)
,

and the proof is complete.

Corollary 4.1.6 Suppose that Q : W → Rn×p and f : W → Rn are a matrix
and a vector function, both of class Ck, defined on the same open subset of
some space Rm, and that Q(w) has constant rank on W . Then, the following
two properties are equivalent:

• For each w ∈ W , f(w) belongs to the subspace of Rn spanned by the
columns of Q(w).

• For each w0 ∈ W , there exist a neighborhood W0 of w0 and a class Ck

function α : W0 → Rp, so that

f(w) = Q(w)α(w) for all w ∈W0 . (4.6)

Proof. The second property obviously implies the first, so we need only to prove
the other implication. Thus, assume that rank (Q(w), f(w)) = rankQ(w) = q
for all w ∈ W , and pick any w0 ∈ W . By Lemma 4.1.5, there exist a neighbor-
hood W0 of w0, and C(w) and D(w) of class Ck on W0, so that Equation (4.5)
holds. Note that the matrix (C(w)Q(w)D(w), C(w)f(w)) has the same rank as
the matrix (Q(w), f(w)) (since C(w) and D(w) are nonsingular), so

rank
(
I 0
0 0

∣∣∣∣ C(w)f(w)
)

= q

for all w. We conclude that the last n−q coordinates of C(w)f(w) must vanish,

that is, there is a class Ck function α0 : W0 → Rq so that C(w)f(w) =
(
α0(w)
0n−q

)
on W0, where 0n−q is the zero vector in Rn−q. We conclude that

C(w)Q(w)D(w)
(
α0(w)
0p−q

)
= C(w)f(w) ,

and therefore, since C(w) is nonsingular, that α(w) := D(w)
(
α0(w)
0p−q

)
is as

desired.
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Tangent Vectors

Let W ⊆ Rp and O ⊆ Rn be open subsets of Euclidean spaces. We will call a
smooth map

M : W → O

a slice if its Jacobian M∗(w) has rank p at each w ∈ W . The vector field
f ∈ V(O) is said to be tangent to M if, for all w ∈ W , f(M(w)) is in the
subspace of Rn spanned by the columns of M∗(w).

Remark 4.1.7 Geometrically, we think of the image of M as a “p-dimensional
smooth slice” of O. In differential-geometric terms, when M is one-to-one we
are providing a chart for the submanifold represented by this image. Tangent
vector fields in the sense just defined are precisely those which, when restricted
to the submanifold, are tangent to it in the usual sense. 2

By Corollary 4.1.6, applied to the composition f ◦M : W → Rn, f is tangent
to M if and only if for each w0 ∈W there is some neighborhood W0 of w0 and
a smooth function α : W0 → Rp so that

f(M(w)) = M∗(w)α(w) for all w ∈W0 . (4.7)

It is clear that the set of all vector fields tangent to M forms a linear subspace
of V(O). One of the most useful facts about Lie brackets is expressed in the
next result.

Lemma 4.1.8 Let M : W → O be a slice. Then the set of all vector fields
tangent to M is a Lie algebra.

Proof. Pick any two tangent vector fields f, g and any w0 ∈ W . We must
show that [f, g](M(w0)) belongs to the subspace of Rn spanned by the columns
of M∗(w0). Pick a (common) neighborhood W0 of w0 and smooth functions
α : W0 → Rp and β : W0 → Rp so that f(M(w)) = M∗(w)α(w) and g(M(w)) =
M∗(w)β(w) for all w ∈ W0. We will prove the following formula, from which
the conclusion will follow:

[f, g](M(w)) = M∗(w) [α, β](w) for all w ∈W0 . (4.8)

(Note that [f, g] is a Lie bracket of vector fields in Rn, and [α, β] is a Lie bracket
of vector fields in Rp. The equation amounts to the statement that vector fields
transform covariantly under smooth maps.) From now on, when we write w we
mean “for each w ∈W0”. Consider:

f̃(w) := f(M(w)) = M∗(w)α(w) , g̃(w) := g(M(w)) = M∗(w)β(w) . (4.9)

The chain rule gives

(f̃)∗(w) = f∗(M(w))M∗(w) , (g̃)∗(w) = g∗(M(w))M∗(w) . (4.10)
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We pick any i ∈ {1, . . . , n}, let ei be the ith canonical basis vector, and consider
the smooth function

ϕi := e′iM : W0 → R .

From (4.9) we have that

e′if̃ = Lαϕi and e′ig̃ = Lβϕi . (4.11)

So

e′i (g∗f) (M(w)) = e′ig∗(M(w))M∗(w)α(w)
= e′i(g̃)∗(w)α(w) = (e′ig̃)∗(w)α(w) using (4.10)
= (Lβϕi)∗(w)α(w) = (LαLβϕi) (w) using (4.11).

An analogous argument gives that

e′i (f∗g) (M(w)) = (LβLαϕi) (w)

so we conclude, from the fact that L[α,β] = LαLβ − LβLα (Equation (4.3),
applied to α and β) that

e′i[f, g](M(w)) = e′iM∗(w) [α, β](w) .

As i was arbitrary, (4.8) holds.

4.2 Lie Algebras and Flows

We turn next to establishing a connection between Lie algebras of vector fields
and sets of points reachable by following flows of vector fields.

Some Additional Facts Concerning Differential Equations

For an open subsetO ⊆ Rn and a (continuously differentiable but not necessarily
smooth) vector field f : O → Rn, we write φ, or φf if we wish to emphasize f ,
to denote the flow of f . This is the map that associates to (t, x0) ∈ R×O the
solution φ(t, x0) = x(t) at time t ∈ R, if defined, of the initial value problem

ẋ = f(x) , x(0) = x0 .

(If the solution of this initial value problem does not exist on an interval con-
taining 0 and t, φ(t, x0) is undefined.) We denote by Df , or just D if f is clear
from the context, the domain of φ. This is a subset of R × O which contains
{0} × O.



148 4. Nonlinear Controllability

Exercise 4.2.1 Let O = R and f(x) = x(1− x). Show that D is the union of
R× [0, 1], {

(t, x) ∈ R2

∣∣∣∣x < 0 and t < ln
x− 1
x

}
,

and {
(t, x) ∈ R2

∣∣∣∣x > 1 and t > ln
x− 1
x

}
.

Graph D as a subset of R2, and find an explicit formula for the flow φ(t, x). 2

The set D is always open and the map φ : D → O is continuous. This is
a corollary of Theorem 1 (p. 57), arguing as follows. (See also Remark 3.7.3.)
Let (t, x0) ∈ D, and pick any numbers a < 0 < b so that [a, b]× {x0} ⊆ D and
t ∈ (a, b). The map

O0 → C0([a, b],O) : z 7→ restriction of φ(·, z) to [a, b] (4.12)

is defined for all z in some neighborhood O0 of x0, and it is continuous when
C0([a, b],O) is endowed with the uniform convergence norm. This is shown in
Theorem 1. (The proof there applies only to the interval [0, b], but the result
can also be applied to the “reversed-time” system ẋ = −f(x), and this gives
the conclusion for the interval [a, 0] as well; thus, the result is also true on
[a, b].) In particular, it follows that (a, b) × O0 ⊆ D, so the domain D is open.
To prove continuity, assume that (tk, zk) → (t, x0) as k → ∞ and take any
ε > 0. Since (4.12) is continuous, there is some K such that k > K implies∣∣φ(s, x0)− φ(s, zk)

∣∣ < ε/2 for all s ∈ [a, b], and since φ(·, x0) is continuous, we
may also assume that

∣∣φ(tk, x0)− φ(t, x0)
∣∣ < ε/2 for all such k. Furthermore,

we may assume that tk ∈ [a, b]. Thus∣∣φ(tk, zk)− φ(t, x0)
∣∣ ≤ ∣∣φ(tk, zk)− φ(tk, x0)

∣∣+ ∣∣φ(tk, x0)− φ(t, x0)
∣∣ < ε

for all k > K.
Since f is of class C1, the map φ : D → O is in fact continuously differen-

tiable. Like continuity, this is also a corollary of Theorem 1 (p. 57), where we
now argue as follows. It is shown in that Theorem (as before, the result was only
proved for positive times, but the generalization to τ < 0 is immediate) that,
for each τ , the map z 7→ φ(τ, z) is continuously differentiable, and its partial
derivative with respect to the ith coordinate, evaluated at z = z0, is

∂φ

∂xi
(τ, z0) = λz0(τ) , (4.13)

where λz0(·) is the solution of the variational equation λ̇(t) = f∗(φ(t, z0))λ(t) on
[0, τ ] (or [τ, 0], if τ is negative) with initial condition λ(0) = ei, the ith canonical
basis vector in Rn.

Moreover, ∂φ
∂xi

(τ, z0) = λz0(τ) depends continuously on (τ, z0). Indeed,
suppose that (τk, zk) → (τ, z0). As a first step, we remark that λzk

(s) con-
verges uniformly to λz0(s), for s ∈ [a, b]. This can be proved by noticing
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that the same proof that was used to show that λzk
(t) converges to λz0(t)

for each t, that is to say the continuity of z 7→ ∂φ
∂xi

(t, z), gives automatically
that z 7→ ∂φ

∂xi
(·, z) is also continuous as a map into C0([a, b],Rn); see the argu-

ments after Equation (2.40). (Another proof is by viewing λ̇ = f∗(φ(t, x))λ as
a system λ̇ = f∗(u)λ where u = φ(t, x) is a control, and using continuity with
respect to controls.) As a second step, we point out that λz0(τk) → λz0(τ),
because λz0 is continuous, being the solution of a differential equation. Writing
λzk

(τk)− λz0(τ) = λzk
(τk)− λz0(τk) + λz0(τk)− λz0(τ), we conclude continuity

as earlier.
To show that φ is C1, we need to prove also that ∂φ

∂t is continuous. But this
is clear from the facts that ∂φ

∂t (t, x) = f(φ(t, x)) and φ(t, x) is continuous on
(t, x).

Observe also that, being the solution of a differential equation, λz0(·) is
differentiable, from which it follows that ∂2φ

∂t∂xi
exists. Similarly, ∂2φ

∂t2 exists,
because ∂

∂tf(φ(t, x)) = f∗(φ)∂φ∂t .

Lemma 4.2.2 Pick any k = 1, 2, . . . ,∞. If f is of class Ck, then φ is of class
Ck.

Proof. The case k = 1 was established in the previous discussion. By induction,
assume that the result has been proved for all 1 ≤ ` < k <∞; we now prove it
for k as well. Consider the following differential equation in O × Rn:

d

dt

(
x
λ

)
=

(
f(x)
f∗(x)λ

)
= F

(
x
λ

)
. (4.14)

Observe that F is of class Ck−1 and k − 1 ≥ 1. For any fixed i = 1, . . . , n,
letting ei be the ith canonical basis vector,

φF (t, (x, ei)) =
(

φ(t, x)
∂φ
∂xi

(t, x)

)
.

The inductive hypothesis applies to Equation (4.14), implying that the flow
φF (·, (·, ·)) is of class Ck−1, so also φF (·, (·, ei)) is Ck−1, from which we conclude
that ∂φ

∂xi
is k−1-times continuously differentiable. Thus every partial derivative

of order k which starts with ∂
∂xi

exists and is continuous.
If we show that ∂φ

∂t is also Ck−1, it will have been proved that φ is Ck. To
see this, consider the new extended system, also in O × Rn,

d

dt

(
x
z

)
=

(
f(x)

f∗(x)f(x)

)
= G

(
x
z

)
. (4.15)

Since ẋ = f(x) implies ẍ = f∗(x)f(x), we have that

φG(t, (x, f(x))) =
(
φ(t, x)
∂φ
∂t (t, x)

)
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and, by induction, φG is of class Ck−1, so ∂φ
∂t is indeed Ck−1.

Remark 4.2.3 It is tempting to try to show the continuity of ∂φ
∂xi

(case k = 1)
by the same argument, using Equation (4.14). However, a problem with that
argument is that F would only be assured of being continuous, so an additional
assumption is required (for instance, that f is C2). The argument given for
k = 1, before the Lemma, which views x as an input to the second equation,
avoids this assumption. Yet another argument would be based on the general
fact that solutions of ode’s depend continuously on initial data provided only
that the right hand side be continuous – not necessarily Lipschitz – and that
the equation be known to have unique solutions (as Equation (4.14) does, even
if f is only C1, because of its special triangular structure). 2

Exercise 4.2.4 Show that, if f is of class Ck, all the partial derivatives of φ
of order k are differentiable with respect to t. (Hint: Show, by induction, that
every such derivative is also the solution of a differential equation.) 2

Exercise 4.2.5 Find explicitly the extended flow φF associated to the system
in Exercise 4.2.1. 2

Lie Brackets and Accessibility: Motivational Discussion

We prefer to use, in this discussion, the alternative notation

etfx0 := φ(t, x0) , (4.16)

which is more convenient for dealing with compositions of flows corresponding
to different vector fields. For instance, we can write et2fet1gx instead of the
more cumbersome φf (t2, φg(t1, x)). (Note that, when the differential equation
happens to be linear, i.e. ẋ = Ax and A is a matrix, etfx is precisely the same
as etAx, where etA is the exponential of the matrix A; in general, however, etfx
is merely a useful notational convention.)

The idea behind the use of Lie algebraic techniques is as follows. Suppose
that our goal is to describe the set of points z0 that can be reached, from a
given starting point x0, by following the flow of two vector fields f and g, which
may represent the motions corresponding to two different constant controls u1

and u2, for different intervals of time. For instance, one may follow f forward
for 7 units of time, then g forward for 2 units, and finally f backward for 3
units. (That is, we go from x0 to e−3fe2ge7fx0.) The question of reachability is
nontrivial, because the motions along f and g need not commute. (The resulting
state is not the same, in general, as e2ge4fx0.)

An intuitive and geometric example of this phenomenon is as follows: let f
induce a counterclockwise rotation (at 1 rad/sec) about the z-axis in R3 and g
a counterclockwise rotation about the y axis (also at 1 rad/sec), that is,

f(x) =

−x2

x1

0

 and g(x) =

−x3

0
x1

 .



4.2. Lie Algebras and Flows 151

The flows are

etfx =

 cos t − sin t 0
sin t cos t 0
0 0 1

x1

x2

x3


and

etgx =

 cos t 0 − sin t
0 1 0

sin t 0 cos t

x1

x2

x3

 .

Then, the sequence of rotations: f for π/2 sec, g for π/2 sec, and finally f for
−π/2 sec (i.e., rotate clockwise) has a different net effect than that of simply
rotating about the y axis for π/2 rad. It produces instead a clockwise π/2-rad
rotation around the x-axis, as is easy to see geometrically, or algebraically, since
e(−π/2)fe(π/2)ge(π/2)fx equals 0 1 0

−1 0 0
0 0 1

 0 0 −1
0 1 0
1 0 0

 0 −1 0
1 0 0
0 0 1

x1

x2

x3

 =

 1 0 0
0 0 1
0 −1 0

x1

x2

x3

 .

This example shows that a totally new motion, different from a pure rotation
around the y or the z axes, results by combining the original flows.

Lie theory provides a way to approach the question, by asking the following
“infinitesimal” version of the problem: In what effective directions can one
move, from the given initial point x0? Clearly, one can move in the direction of
f(x0), by following the flow of f (more precisely, one can move along a curve
γ(t) = φ(t, x0) whose tangent γ̇(0) at the initial time is f(x0)), and similarly
one can move in the direction of g(x0). On further thought, it is easy to see
that one may also move in the direction of f(x0)+ g(x0), in the following sense:
there is a curve γ with the property that γ(t) is in the reachable set from x0, for
all t small enough, and such that γ(0) = x0 and γ̇(0) = f(x0) + g(x0). Indeed,
it is enough to take the curve γ(t) := etgetfx0, calculate

γ̇(t) =
∂φg
∂t

(
t, φf (t, x0)

)
+

∂φg
∂x

(
t, φf (t, x0)

)∂φf
∂t

(t, x0)

= g
(
etgetfx0

)
+

∂φg
∂x

(
t, φf (t, x0)

)
f(etfx0) ,

and use that ∂φg

∂x (0, x0) = I. More generally, one may find curves which allow
movement in the direction of any linear combination of f(x0) and g(x0). The
interesting observation is that other directions, in addition to those lying in the
linear span of {f(x0), g(x0)}, may appear, namely, directions obtained by taking
Lie brackets. For example, in the case of the rotations discussed above,

[f, g](x) =

−x2

x1

0

 ,

−x3

0
x1

 =

 0
x3

−x2

 ,
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which is the vector field whose flow is the one that corresponds to the clockwise
rotation about the x axis which we had discovered before. The result in the
following exercise shows the role of Lie brackets in general; we do not need the
result in this form, though it will be implicit in several arguments.

Exercise 4.2.6 Show that, for any two vector fields f and g, and any state x0,
the curve

γ(t) := e−
√
tge−

√
tfe

√
tge

√
tf x0 (4.17)

(defined for all t in some neighborhood of t = 0) has the property that γ̇(0) =
[f, g](x0). (Hint: You may want to use the expansion, for x(t) = etfx0,

x(t) = x(0) + tẋ(0) +
t2

2
ẍ(0) + o(t2) = x0 + tf(x0) +

t2

2
f∗(x0)f(x0) + o(t2)

(and similarly for g), as well as Taylor expansions to first order for each of f(x)
and g(x), to show that e−

√
tge−

√
tfe

√
tge

√
tf x0 = et[f,g]x0 + o(t) as t→ 0.) 2

Nonsingular Reachability

Assume given an open set O ⊆ Rn and a set of vector fields A ⊆ V(O).

Definition 4.2.7 A k-tuple (f1, . . . , fk) of elements of A is nonsingular at
x0 ∈ O if there exists some vector ~t0 = (t01, . . . , t

0
k) ∈ Rk≥0 such that the map

F x
0

f1,...,fk
: Dx0

f1,...,fk
→ O : ~t = (t1, . . . , tk) 7→ etkfk . . . et2f2et1f1x0 ,

which is defined on some open subset Dx0

f1,...,fk
of Rk containing ~t = (0, . . . , 0),

has Jacobian of rank k at (t01, . . . , t
0
k). 2

Notice that since, by Lemma 4.2.2, etfx0 is C∞ on (t, x0), one knows, in-
ductively, that each map F x

0

f1,...,fk
is C∞.

Recall that Ala is the Lie algebra generated by the set A. For each x0 ∈ O,
we consider the subspace

Ala(x0) := {X(x0), X ∈ Ala}

of Rn. The key result is the next one.

Lemma 4.2.8 If Ala(x0) = Rn then there is some nonsingular n-tuple at x0.
Moreover, for each ε > 0, there is some ~t0 ∈ Rn≥0 such that t0i < ε for all i, and
there are elements f1, . . . , fn in A, such that (F x

0

f1,...,fn
)∗(
~t0) has rank n.

Proof. Suppose thatX1, . . . , Xn are inAla and the vectorsX1(x0), . . . , Xn(x0)
are linearly independent. Then, X1(x), . . . , Xn(x) are linearly independent for
each x belonging to some open neighborhood O0 of x0 in O. Thus, replacing
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if necessary O by the subset O0, and restricting all elements of A to O0, we
assume without loss of generality that Ala(x) = Rn for all x ∈ O.

Fix an ε > 0. Let k be the largest possible integer for which there exist some
k-tuple (f1, . . . , fk), and some ~t0 ∈ Rk≥0 with t0i < ε for all i, so that F x

0

f1,...,fk
is

defined on some neighborhood of

[0, t01]× . . .× [0, t0k]

and with the property that (F x
0

f1,...,fk
)∗(
~t0) has rank k. Note that k ≥ 1, because

there is some f ∈ A with f(x0) 6= 0 (otherwise, all brackets are zero, which
would imply that Ala(x0) = {0}), and, for this one-tuple, (F x

0

f )∗(0) = f(x0)
has rank one. To prove the lemma, we need to show that k = n.

Let (f1, . . . , fk), and ~t0 ∈ Rk≥0, all t0i < ε, be so that rank (F x
0

f1,...,fn
)∗(
~t0) = k.

By continuity of (F x
0

f1,...,fn
)∗, we may assume without loss of generality that all

the entries of ~t0 are positive. We pick a neighborhood W ⊆ Rn>0 of ~t0, included
in the domain Dx0

f1,...,fk
, so that rank (F x

0

f1,...,fk
)∗(
~t ) = k for all ~t in W , and

consider the slice M = F x
0

f1,...,fk
: W → O.

Claim: Every element of A is tangent to M . Indeed, assume that this would
not be the case. Then there would be some f ∈ A so that f(M(~s0)) is not in
the span of the columns of M∗(~s0), for some ~s0 ∈W . Consider in that case the
(k + 1)-tuple

(f1, . . . , fk, f) ,

let G be the map F x
0

f1,...,fk,f
, and take ~s0 ′ := (~s0, 0) = (s01, . . . , s

0
k, 0). Note that

G is defined on a neighborhood of

[0, s01]× . . .× [0, s0k]× {0} .

We compute the Jacobian G∗(~s0 ′). Observe that

G(~t , t) = etfM(~t ) ,

so the Jacobian with respect to the variables ~t equals Q(t)M∗(~t ), where Q(t)
is the differential of the map x 7→ etfx evaluated at M(~t ). In particular, at
(~t , t) = ~s0

′, one has M∗(~s0). With respect to t, the derivative is f(etfM(~t )),
which evaluated at ~s0 ′ equals f(M(~s0)). We conclude that

(F x
0

f1,...,fk,f
)∗(~s0

′) = [M∗(~s0), f(M(~s0))] ,

which has rank k+1 (because the first k columns give a matrix of rank k, since
M is a slice, and the last column is not in the span of the rest). Since ~s0 ′ has
all its entries nonnegative and less than ε, this contradicts the fact that k is
maximal, and the claim is established.

We proved in Lemma 4.1.8 that the set of all vector fields tangent to M
is a Lie algebra. This set, as we just showed, contains A. So Ala, being the
smallest Lie algebra containing A, must be a subset of the set of vector fields
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tangent to M . Pick any ~t ∈ W . Then, X(M(~t )) must be in the column space
of M∗(~t ), for each X ∈ Ala. It follows that rankM∗(~t ) = n, so necessarily
k = n, as desired.

4.3 Accessibility Rank Condition

We consider time-invariant continuous-time systems

ẋ = f(x, u) ,

where states evolve in an open subset X ⊆ Rn, for some n. We assume that
f(·, u) is C∞ in x, for each u ∈ U.

Remark 4.3.1 As done in the rest of the text, in order to be able to define and
have reasonable properties for measurable controls, we suppose that the control-
value set U is a metric space and that the Jacobian of f(x, u) with respect to x
is continuous on (x, u). However, for the basic accessibility result to be given,
no regularity in u would be required if one would define “reachable sets” using
only piecewise constant controls. 2

Assume given a system ẋ = f(x, u). We associate to it the following set of
vector fields:

A := {fu = f(·, u), u ∈ U} .

Definition 4.3.2 The Lie algebra of vector fields Ala is called the accessibil-
ity Lie algebra associated to the system. The accessibility rank condition
(ARC) at x0 holds if Ala(x0) = Rn. 2

An especially interesting class of systems, very common in applications, is
that of control-affine systems, for which U ⊆ Rm, f(x, u) is affine in u:

ẋ = g0(x) + u1g1(x) + . . .+ umgm(x) = g0(x) +G(x)u (4.18)

where gi, i = 0, . . . ,m, are m + 1 vector fields and G = (g1, . . . , gm), and, we
assume here,

0 ∈ U and linear span of U = Rm . (4.19)

For systems of this general form, it is not necessary to use all the vector fields
fu when generating Ala:

Lemma 4.3.3 For a control-affine system, Ala = {g0, . . . , gm}la.

Proof. It will suffice to show that the linear spans LG of {g0, . . . , gm} and LA
of A = {fu = f(·, u), u ∈ U} are the same. Each element fu = g0 +

∑
uigi of

A is by definition a linear combination of the gi’s, so it is clear that LA ⊆ LG.
Conversely, using u = 0 shows that g0 ∈ A, and thus also that G(x)u = u1g1 +
. . .+umgm = f(x, u)− f(x, 0) ∈ LA for every u ∈ U. To see that each gi ∈ LA,
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i ∈ {1, . . . ,m}, fix any such i, and write the ith canonical basis vector of Rm
as ei =

∑
j∈J ρjuj , for some uj ’s in U and reals ρj (recall that we are assuming

that (4.19) holds). So, gi = G(x)ei =
∑
j∈J ρjG(x)uj ∈ LA.

In view of the characterization in Lemma 4.1.4, the accessibility rank condi-
tion amounts to asking that there exist n vector fields X1, . . . , Xn, each of which
can be expressed as an iterated Lie bracket [[. . . [fu1 , fu2 ], fu3 ], . . . , fu`

] (with
possibly a different length ` for each of the Xi’s), so that X1(x0), . . . , Xn(x0)
are linearly independent. In the case of control-affine systems, the condition
means that there are n iterated brackets formed out of {g0, . . . , gm} which are
linearly independent when evaluated at x0.

Exercise 4.3.4 The length of the brackets needed in order to generate enough
linearly independent vector fields (the “degree of nonholonomy”) may be much
larger than n. In other words, the ARC may hold at x0, yet its verification
requires one to compute brackets of arbitrary length. Specifically, for each
positive integer ` give an example of a system of dimension two, and a state x0,
so that span (A0

⋃
. . .
⋃
A`−1)(x0) (recall Lemma 4.1.4) has dimension one but

span (A0

⋃
. . .
⋃
A`)(x0) has dimension two. 2

Remark 4.3.5 Any time-invariant linear system ẋ = Ax+Bu is control-affine,
because it has the form (4.18) with g0(x) = the linear vector field Ax and each
gi(x) = the constant vector field bi (the ith column of B). To compute the Lie
algebra Ala for a linear system, we note that, in general, the Lie bracket of two
constant vector fields is zero, and the Lie bracket of a constant and a linear vector
field is a constant one: [h, Fx] = Fh. Also, [Ax,Ax] = 0. Therefore, an iterated
bracket with ` > 1, [[. . . [gi1 , gi2 ], gi3 ], . . . , gi` ], is necessarily zero unless it has the
form [[. . . [bi, Ax], Ax], . . . , Ax] = A`−1bi (or the form [[. . . [Ax, bi], Ax], . . . , Ax],
which differs from it at most in its sign). Thus, the accessibility rank condition
holds at a point x0 if and only if

rank (Ax0, b1, . . . , bm, Ab1, . . . , Abm, . . . , A
n−1b1, . . . , A

n−1bm) = n

(as usual, the Cayley-Hamilton Theorem implies that we do not need to include
any A`bj with ` ≥ n). This is somewhat weaker than controllability, because of
the additional vector Ax0, which does not appear in the Kalman controllability
rank condition. For example, take the one-dimensional system ẋ = x (with
B = 0); we have that the accessibility rank condition holds at each x0 6= 0, but
the set of states reachable from such a state does not even contain the initial
state in its interior (the reachable set from x0 = 1, for instance, is the half-line
[1,+∞)), much less is every other state reachable from x0. 2

For each subset V ⊆ X, initial state x0 ∈ X, and time t > 0, we consider
the set of states that are reachable from x0, in time exactly t, without leaving V
(using measurable essentially bounded controls):

Rt
V(x0) :=

{
z0 | ∃ω ∈ L∞U (0, t) s.t. φ(s, 0, x0, ω) ∈ V ∀ s ∈ [0, t]

and φ(t, 0, x0, ω) = z0
}
.
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For each T ≥ 0, we also consider the set of states reachable in time at most T ,
R≤T

V (x0) :=
⋃
t∈[0,T ]Rt

V(x0), When V = X, we drop the subscript. The whole
reachable set from x0 is R(x0) =

⋃
t≥0Rt(x0). For each V, z0, and t > 0,

we also consider the set of states that are controllable to z0 in time exactly t
without leaving V, namely

CtV(z0) :=
{
x0 | ∃ω ∈ L∞U (0, t) s.t. φ(s, 0, x0, ω) ∈ V ∀ s ∈ [0, t]

and φ(t, 0, x0, ω) = z0
}
,

C≤T

V (z0) :=
⋃
t∈[0,T ] C

t
V(x0), dropping subscripts if V = X, and C(z0) is the set

of states that can be controlled to z0, i.e.,
⋃
t≥0 Ct(x0). The main result can

now be given.

Theorem 9 Assume that the accessibility rank condition holds at x0. Then,
for each neighborhood V of x0, and each T > 0,

intR
≤T

V (x0) 6= ∅ (4.20)

and
int C

≤T

V (x0) 6= ∅ . (4.21)

In particular, R(x0) and C(x0) have nonempty interiors.

Proof. Pick a neighborhood V of x0 and a T > 0. Since Ala(x0) = Rn, there
is a finite subset of vector fields A0 ⊆ A so that

A0la(x0) = Rn .

By continuity of each etfx on t and x, there exists some number ε > 0 with the
property that, for all sequences of n elements f1, . . . , fn ∈ A0, and all sequences
of positive numbers t1, . . . , tn with 0 ≤ ti < ε,

etnfn . . . et2f2et1f1x0 is defined and belongs to V .

(To see this, one may first find a neighborhood V1 of x0 and an ε > 0 so that
etfx ∈ V for all 0 ≤ t < ε, all x ∈ V1, and all the elements of A0; then one
finds a V2 so that etfx ∈ V1 if t is small enough, f ∈ A0, and x ∈ V2, and
so on inductively.) We pick such an ε, and assume without loss of generality
that ε < T/n. Lemma 4.2.8 then insures that there are vector fields f1 =
fu1 , . . . , fn = fun belonging to A0, and some ~t0 ∈ Rn≥0, such that 0 ≤ t0i < ε

for all i and (F x
0

f1,...,fn
)∗(
~t0) has rank n. By continuity, we may assume that all

t0i > 0. By the Implicit Mapping Theorem, the image of F x
0

f1,...,fn
, restricted to

some subset of {(t1, . . . , tn) | 0 < ti < ε, i = 1, . . . , n}, contains an open set.
Since

F x
0

f1,...,fn
(~t ) = etnfun . . . et2fu2 et1fu1x0 = φ(t1 + . . .+ tn, 0, x0, ω) ,
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where ω is the piecewise constant control having value u1 on [0, t1), value u2 on
[t1, t1 + t2), . . . , and value un on [t1 + . . . + tn−1, t1 + . . . + tn], this image is
included in R≤T

V (x0).
To prove the statement for the sets C≤T

V (x0), we argue as follows. Consider
the “time-reversed” system ẋ = −f(x, u). Since the accessibility Lie algebra of
the time-reversed system is obtained from the vector fields {−fu, u ∈ U}, and
is, in particular, a subspace, it coincides with the accessibility Lie algebra of
the original system. Thus, the accessibility rank condition holds for the time-
reversed system. Pick any T and V. In general, if φ(T, 0, x, ω) = z, then, for
the reversed dynamics φ− we clearly have φ−(T, 0, z, ν) = x using the control
ν(t) := ω(T − t), (cf. Lemma 2.6.7), and, moreover, if the intermediate states
φ(t, 0, x, ω) are in V, then the same is true for the states φ−(t, 0, z, ν). Thus, the
set C≤T

V (z) for the original system coincides with R≤T

V (z) for the time-reversal,
and the latter has a nonempty interior (by the first part of the proof).

The property that R(x0) have a nonempty interior is often called accessibil-
ity (from x0). The accessibility rank condition is, in general, only a sufficient
condition:

Exercise 4.3.6 (a) Show that for systems of dimension one: ẋ = f(x, u), X =
R, the accessibility rank condition holds at a state x0 if and only if R(x0) has
a nonempty interior.
(b) Consider the following system with X = R2 and U = R2:

ẋ1 = u1

ẋ2 = ϕ(x1)u2

where ϕ : R → R is a C∞ function with the property that ϕ(z) 6= 0 for each
z 6= 0 but djϕ

dzj (0) = 0 for all j = 0, 1, 2, . . . (for instance, ϕ(z) := e−1/z2 for
z 6= 0, ϕ(0) := 0). Show that, for all x0, x0 ∈ intR≤T

V (x0), but, on the other
hand, the accessibility rank condition does not hold at the points of the form
(0, x2). 2

Exercise 4.3.7 Let ẋ = A(t)x+B(t)u be a time-varying continuous time linear
system, and assume that all the entries of A and B are smooth functions of t.
Introduce the following system with state-space Rn+1:

ẋ0 = 1
ẋ = A(x0)x+B(x0)u .

Explain the relationship between the accessibility rank condition, applied to this
system, and the Kalman-like condition for controllability of ẋ = A(t)x+B(t)u
studied in Corollary 3.5.18. 2

The following easy fact is worth stating, for future reference. It says that
the map x 7→ φ(T, 0, x, ω) is a local homeomorphism, for each fixed control ω.
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Lemma 4.3.8 Suppose that ω ∈ L∞U (0, T ) is admissible for x0, and let z0 =
φ(T, 0, x0, ω). Then the map α = αω : x 7→ φ(T, 0, x, ω), which is defined on
an open subset D of X, is one-to-one, continuous, and has a continuous inverse.
In particular, α(W) is a neighborhood of z0, for each neighborhood W of x0

included in D.

Proof. We have that the control ν(t) := ω(T − t) is admissible for z0, with
respect to the reversed system ẋ = −f(x, u). Moreover, if we write D′ for the
set where β(z) := φ−(T, 0, z, ν) is defined (the dynamics map for the reversed
system), we have that α(D) = D′ and α ◦ β and β ◦ α are both the identity.
From Theorem 1 we know that the domain D is open and α is continuous, and,
applied to the reversed system, also that D′ is open and β is continuous.

Reversible Systems

In general, accessibility is weaker than controllability (as ẋ = 1 illustrates).
Sometimes, however, controllability can be characterized by the accessibility
rank condition.

Definition 4.3.9 A system is weakly reversible if ; is an equivalence rela-
tion, and strongly reversible if for each x0 and each ω ∈ L∞U (0, T ) admissible
for x0, there is some ν ∈ L∞U (0, T ) which is admissible for z0 := φ(T, 0, x0, ω)
and is such that φ(t, 0, x0, ω) = φ(T − t, 0, z0, ν) for all t ∈ [0, T ]. 2

That is, weakly reversible means that z0 ∈ R(x0) if and only if x0 ∈ R(z0),
and strongly reversible means that the same path that takes us from x0 to z0

can be traveled backward. Strong reversibility implies weak reversibility, but
not conversely: the system

ẋ =
(

0 −1
1 0

)
x ,

whose paths are circles transversed counterclockwise, is weakly reversible but
not strongly so.

A very interesting class of strongly reversible systems is obtained from those
control-affine systems for which g0 ≡ 0, that is, systems of the form

ẋ = u1g1(x) + . . .+ umgm(x) = G(x)u . (4.22)

We assume that (4.19) holds and also that U is symmetric: u ∈ U ⇒ −u ∈ U.
These are called systems without drift (because, when u ≡ 0, the state does not
“drift” but, instead, remains constant) and they arise as kinematic models of
mechanical systems. For such systems, we may let ν(t) := −ω(T − t) in the
definition of strongly reversible system, and verify the property using the fact
that ẋ = G(x)ω implies (d/dt)x(T − t) = G(x(T − t))ν(t).
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Remark 4.3.10 It is worth noticing that the first-order test for local con-
trollability provides no information in the case of systems without drift. The
linearization of (4.22) at any state x0 and input value 0 is ẋ = G∗(x0)u. This
system cannot be controllable, unless m ≥ n. 2

Proposition 4.3.11 Assume that the accessibility rank condition holds at x0.
If the system ẋ = f(x, u) is weakly reversible, then

x0 ∈ int
(
R(x0)

⋂
C(x0)

)
.

Moreover, if it is strongly reversible, then

x0 ∈ int
(
R
≤T

V (x0)
⋂
C
≤T

V (x0)
)
.

for every neighborhood V of x0 and every T > 0.

Proof. We know from Theorem 9 that R(x0) has a nonempty interior. Pick
any state z0 in the interior of R(x0). Because of weak reversibility, there is
some control ω ∈ L∞U (0, T ), for some T ≥ 0, such that φ(T, 0, z0, ω) = x0. By
Lemma 4.3.8, there is an open subset W of R(x0) which contains z0 and is such
that W ′ := φ(T, 0,W, ω) is an open subset containing x0. But W ′ ⊆ R(x0),
since x ∈ W ′ implies x = φ(T, 0, z, ω) for some z ∈ W ⊆ R(x0). The proof for
C(x0) is analogous.

Assume now that strong reversibility holds. Pick T0 and V, and let T :=
T0/2. Again by the Theorem, we know that R≤T

V (x0) has a nonempty interior.
Pick any z0 in the interior of R≤T

V (x0), and let 0 ≤ T1 ≤ T and ω ∈ L∞U (0, T1)
be such that φ(T1, 0, x0, ω) = z0 and φ(t, 0, x0, ω) ∈ V for all t ∈ [0, T1]. Let
ν ∈ L∞U (0, T1) be as in the definition of strong reversibility, for this ω. By
the continuity of z 7→ φ(·, 0, z, ν) (as a map into C0([0, T1],X)), there is an
open set W containing z0 and such that φ(t, 0, z, ω) ∈ V for all z ∈ W and all
t ∈ [0, T1], and we may assume without loss of generality that W ⊆ R≤T

V (x0).
Moreover, by Lemma 4.3.8, the image W ′ := φ(T1, 0,W, ν) is an open subset
which contains x0. Note that W ′ ⊆ intR≤T0

V (x0). Indeed, for each x ∈ W ′

there is, by definition, an element z of R≤T

V (x0) which is steered to x in time
≤ T and without leaving V (in fact, using the control ν); and, in turn, z can be
reached from x0 in time T1 without leaving V. The proof for C≤T

V (x0) is entirely
analogous.

Corollary 4.3.12 For a weakly reversible system, if the accessibility rank con-
dition holds at every state x ∈ X and X is connected, then the system is com-
pletely controllable.

Proof. Pick any state x0. Pick any z0 ∈ R(x0). From Proposition 4.3.11, we
know that z0 ∈ intR(z0); by transitivity of reachability, R(z0) ⊆ R(x0), so this
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proves that R(x0) is open. Now pick z0 6∈ R(x0). Again from the Proposition,
z0 ∈ int C(z0). But C(z0)

⋂
R(x0) = ∅ (again, by transitivity of reachability).

Thus both the reachable set R(x0) and its complement are open; since X is
connected and R(x0) 6= ∅, R(x0) = X, as wanted.

Example 4.3.13 (Nelson’s car.) The following is a simplified model of a front-
wheel drive automobile. The state space is R4, and the coordinates of the state

x =


x1

x2

x3

x4

 =


x1

x2

ϕ
θ


denote, respectively, the position of the center of the front axle (coordinates
x1, x2), the orientation of the car (angle ϕ, measured counterclockwise from the
positive x-axis), and the angle of the front wheels relative to the orientation of
the car (θ, also counterclockwise); see Figure 4.1.
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Figure 4.1: 4-dimensional car model.

We now sketch how to derive the equations of motion. There are two con-
straints to take into account, corresponding respectively to the requirement that
the front and back wheels do not slip (no sideways motion of tires; the only mo-
tions allowed are rolling and rotation in place). The front wheels are parallel to
the vector (cos(θ + ϕ), sin(θ + ϕ)), so the instantaneous direction of movement
of the center of the front axle is parallel to this vector:

d

dt

(
x1

x2

)
= u2(t)

(
cos(θ + ϕ)
sin(θ + ϕ)

)
(4.23)
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for some time-dependent scalar u2(t). Observe that ẋ1(t)2 + ẋ2(t)2 = u2(t)2, so
u2 is the velocity of the car, which we think of as a control (engine speed). The
center of the rear axle has coordinates (x1− ` cosϕ, x2− ` sinϕ)′, where ` is the
distance between the two axles. The velocity of this point must be parallel to
the orientation (cosϕ, sinϕ)′ of the back wheels:

sinϕ
d

dt
(x1 − ` cosϕ)− cosϕ

d

dt
(x2 − ` sinϕ) ≡ 0 .

Substituting (4.23) into this orthogonality relation, and after performing some
trigonometric simplifications, we obtain:

`ϕ̇ = u2 sin θ .

To avoid extra notation, we assume from now on that ` = 1. The angle θ
changes depending on the steering wheel position; we take the velocity at which
the steering wheel is being turned as another control, u1. In summary, with
the control-value space U = R2, and writing controls as u = (u1, u2)′ ∈ R2, we
obtain the following system:

ẋ = u1


0
0
0
1

+ u2


cos(ϕ+ θ)
sin(ϕ+ θ)

sin θ
0

 . (4.24)

Note that a control such that u2(t) ≡ 0 corresponds to a pure steering move,
while one with u1(t) ≡ 0 models a pure driving move in which the steering wheel
is fixed in one position. In general, a control is a function u(t) which indicates,
at each time t, the current steering velocity and engine speed.

In practice, of course, the angle θ would be restricted to some maximal
interval (−θ0, θ0); thus we could take the state space as R3 × (−θ0, θ0), which
would not change anything to follow. More importantly, the orientation angle
ϕ only makes sense modulo 2π, that is, angles differing by 2π correspond to
the same physical orientation. Nonlinear control theory is usually developed in
far more generality than here, allowing the state space X to be a differentiable
manifold; thus, a more natural state space than R4 would be, for this example,
R2 × S1 × (−θ0, θ0), that is, the angle ϕ is thought of as an element of the unit
circle.

The model is control-affine; in fact, it is a system without drift ẋ = u1g1 +
u2g2, where the defining vector fields are g1 = steer and g2 = drive:

g1 =


0
0
0
1

 , g2 =


cos(ϕ+ θ)
sin(ϕ+ θ)

sin θ
0

 .

By Proposition 4.3.11 and Corollary 4.3.12, we will have complete controllability,
as well as the property that all states near a given state can be attained with
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small excursions and in small time, once we prove that the accessibility rank
condition holds at every point. (Of course, it is quite obvious from physical
reasoning, for this example, that complete controllability holds.) We compute
some brackets:

wriggle := [steer, drive] =


− sin(ϕ+ θ)
cos(ϕ+ θ)

cos θ
0


and

slide := [wriggle, drive] =


− sinϕ
cosϕ

0
0

 .

(The bracket [wriggle, steer] equals drive, so it is redundant, in so far as check-
ing the accessibility rank condition is concerned.) It turns out that these four
brackets are enough to satisfy the accessibility test. Indeed, one computes

det(steer, drive, wriggle, slide) ≡ 1 ,

so the condition indeed holds.
It is instructive to consider, in particular, the problem of accessibility starting

from the special state x0 = 0. We may interpret this state as corresponding to
a “parallel parked” car; accessibility allows us to move in various directions
without leaving a small neighborhood, that is, without hitting the cars in front
and behind. For ϕ = θ = 0, wriggle is the vector (0, 1, 1, 0), a mix of sliding in
the x2 direction and a rotation, and slide is the vector (0, 1, 0, 0) corresponding
to sliding in the x2 direction. This means that one can in principle implement
infinitesimally both of the above motions. The “wriggling” motion is, based on
the characterization in Exercise 4.2.6, the one that arises, in a limiting sense,
from fast repetitions of the following sequence of four basic actions:

steer - drive - reverse steer - reverse drive . (∗)

This is, essentially, what one does in order to get out of a tight parking space.
Interestingly enough, one could also approximate the pure sliding motion in the
x2 direction: “wriggle, drive, reverse wriggle, reverse drive, repeat” corresponds
to the last vector field, “slide”, which at x = 0 coincides with this motion.
Note that the square roots in Equation (4.17) explain why many iterations of
basic motions (*) are required in order to obtain a displacement in the wriggling
direction: the order of magnitude t of a displacement is much smaller than the
total time needed to execute the maneuver, 4

√
t. 2

Exercise 4.3.14 Consider the following three systems, all with state space R3

and control-value space R2:

ẋ1 = u1, ẋ2 = u2, ẋ3 = x2u1 − x1u2 (Σ1)
ẋ1 = u1, ẋ2 = u2, ẋ3 = x2u1 (Σ2)
ẋ1 = u1, ẋ2 = u2, ẋ3 = x2u1 + x1u2 . (Σ3)
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Answer (justify!): which of these systems are controllable? (Hint: For (Σ3),
you may want to analyze the function `(x1, x2, x3) := x1x2 − x3.) For related
material, cf. Exercises 4.3.16 and 9.4.2, and Examples 5.9.16 and 9.2.14. 2

Exercise 4.3.15 Consider a rigid body which is being controlled by means of
one or more applied torques (for example, a satellite in space, under the action
of one or more pairs of opposing thruster jets). We only study here the effect of
controls on angular momenta; more complete models incorporating orientations
and even linear displacements are of course also possible. With the components
of x = (x1, x2, x3)′ denoting the angular velocity coordinates with respect to
the principal axes, and the positive numbers I1, I2, I3 denoting the respective
principal moments of inertia, this is a system with X = R3, U = Rm, where m
is the number of torques; the evolution is represented by (the Euler equations
for rotational movement):

Iẋ = S(x)Ix+ Tu , (4.25)

where I is the diagonal matrix with entries I1, I2, I3 and where T is a matrix
whose columns describe the axes along which the torques act. The matrix S(x)
is the rotation matrix

S(x) =

 0 x3 −x2

−x3 0 x1

x2 −x1 0

 .

(Equivalently, the equations can be written as Iẋ = I × x + Tu, where “×” is
the vector product in R3.)
(a) Consider the case in which there are two torques (m = 2), which act about
the first two principal axes, that is, T ∈ R3×2 has columns (1, 0, 0)′ and (0, 1, 0)′.
The equations can be written as follows:

ẋ1 = a1x2x3 + b1u1

ẋ2 = a2x1x3 + b2u2

ẋ3 = a3x1x2

where a1 = (I2− I3)/I1, a2 = (I3− I1)/I2, and a3 = (I1− I2)/I3, and b1, b2 are
both nonzero. You may assume that b1 = b2 = 1. Show that the accessibility
rank condition holds at every point, if and only if I1 6= I2.
(b) Now consider the case in which there is only one torque, acting about a
mixed axis. Taking for simplicity the case in which there is rotational symmetry,
I1 = I2, the equations can be written as follows:

ẋ1 = ax2x3 + b1u

ẋ2 = −ax1x3 + b2u

ẋ3 = b3u

where we assume a 6= 0, and the bi’s are real numbers. Show that the accessi-
bility rank condition holds at every point of the state space if and only if b3 6= 0
and b21 + b22 6= 0. 2
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Exercise 4.3.16 Consider a model for the “shopping cart” shown in Figure 4.2
(“knife-edge” or “unicycle” are other names for this example). The state is
given by the orientation θ, together with the coordinates x1, x2 of the midpoint
between the back wheels.
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Figure 4.2: Shopping cart.

The front wheel is a castor, free to rotate. There is a non-slipping constraint
on movement: the velocity (ẋ1, ẋ2)′ must be parallel to the vector (cos θ, sin θ)′.
This leads to the following equations:

ẋ1 = u1 cos θ
ẋ2 = u1 sin θ
θ̇ = u2

where we may view u1 as a “drive” command and u2 as a steering control (in
practice, we implement these controls by means of differential forces on the two
back corners of the cart). We view the system as having state space R3 (a more
accurate state space would be the manifold R2 × S1).
(a) Show that the system is completely controllable.
(b) Consider these new variables: z1 := θ, z2 := x1 cos θ + x2 sin θ, z3 :=
x1 sin θ − x2 cos θ, v1 := u2, and v2 := u1 − u2z3. (Such a change of variables
is called a “feedback transformation”.) Write the system in these variables, as
ż = f̃(z, v). Note that this is one of the systems Σi in Exercise 4.3.14. Explain
why controllability can then be deduced from what you already concluded in
that previous exercise. 2

4.4 Ad, Distributions, and Frobenius’ Theorem

The converse of Theorem 9 (p. 156) is not true: it may well be that the accessi-
bility rank condition does not hold at a state x0, yet R≤T

V (x0) has a nonempty
interior for each neighborhood V of x0 and each T > 0; cf. Exercise 4.3.6. In
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order to provide a partial converse of the Theorem, we first need to develop a
few additional facts regarding flows and Lie brackets.

The “Ad” Operator

Let X ∈ V(O) and pick any (t, x0) in DX (the domain of definition of the flow
of X). If Y is a vector field defined on an open subset OY of O which contains
etXx0, we define

AdtXY (x0) :=
(
e−tX

)
∗

(
etXx0

)
· Y
(
etXx0

)
(this is a matrix, the Jacobian of e−tX evaluated at etXx0, multiplied by the
vector Y (etXx0); we will sometimes use dots, as here, to make formulas more
readable). Geometrically, the vector AdtXY (x0) is the “pull-back” to x0, along
the flow of X, of the vector Y (etXx0). For example, let, in R2,

A :=
(

0 −1
1 0

)
, x0 :=

(
−1
0

)
, Y (x) :=

(
x1

−x1 + x2
2

)
, t :=

π

2
,

and X(x) = Ax. Then,

Adπ
2X
Y (x0) = e(−π/2)A

(
0
1

)
=
(

1
0

)
(a clockwise rotation by π/2 of Y (etXx0)), see Figure 4.3.

Y o

o

(x  )

X

X
Y(e    x   )

X

x

Ad   Y (x  )

o

otX

tX

Figure 4.3: Example of Ad operator.

The state e−tXesY etXx0 = φX(−t, φY (s, φX(t, x0))) is well-defined provided
that s is near zero (because e−tXz0 is defined for z0 = etXx0 and, thus, also for
all z0 sufficiently near etXx0, and esY etXx0 is defined, and is close to etXx0,
when s is small), and

AdtXY (x0) =
∂

∂s

∣∣∣∣
s=0

e−tXesY etXx0 .
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We may view AdtXY as a (smooth) vector field on the open subset Õ ⊆ O
consisting of all x0 such that (t, x0) ∈ DX and etXx0 ∈ OY . Given a third
vector field Z ∈ V(O), and (s, x0) ∈ DZ , we may consider AdsZ(AdtXY )(x0),
provided esZx0 ∈ Õ (that is, if (t, esZx0) ∈ DX and etXesZx0 ∈ OY ); we
write this simply as AdsZAdtXY (x0). Similarly, one may consider iterations of
applications of the Ad operator. The following is an easy consequence of the
chain rule.

Lemma/Exercise 4.4.1 Let X1, . . . , Xk, Y ∈ V(O). Then,

AdtkXk
. . .Adt1X1Y (x0) =(
e−tkXk . . . e−t1X1

)
∗

(
et1X1 . . . etkXkx0

)
· Y
(
et1X1 . . . etkXkx0

)
(4.26)

if (tk, x0) ∈ DXk
, (tk−1, e

tkXkx0) ∈ DXk−1 , . . . , (t1, et2X2 . . . etkXkx0) ∈ DX1 . In
particular,

AdtkX . . .Adt1XY (x0) = Ad(t1+...+tk)XY (x0)

when all the Xi equal the same X. 2

We may view AdtX as an operator on vector fields (defined on open subsets
of O). The following fact relates “Ad” to the “ad” operator introduced earlier,
in Equation (4.4):

Lemma 4.4.2 Let X ∈ V(O) and (t0, x0) ∈ DX . Pick any Y ∈ V(OY ) such
that et

0Xx0 ∈ OY . Then,

∂AdtXY (x0)
∂t

∣∣∣∣
t=t0

= Adt0X [X,Y ] (x0) .

Proof. We have, for all (t, x) ∈ DX , e−tXetXx = x, so taking ∂/∂x there
results (

e−tX
)
∗

(
etXx

)
·
(
etX
)
∗(x) = I

and, taking ∂/∂t,

∂

∂t

((
e−tX

)
∗

(
etXx

) )
·
(
etX
)
∗(x) +

(
e−tX

)
∗

(
etXx

)
· ∂
∂t

((
etX
)
∗(x)

)
= 0 .

(4.27)
On the other hand,

∂

∂t

((
etX
)
∗(x)

)
=

∂

∂t

∂

∂x

(
etXx

)
=

∂

∂x

∂

∂t

(
etXx

)
=

∂

∂x
X
(
etXx

)
= X∗

(
etXx

)
·
(
etX
)
∗(x) ,

so substituting in (4.27) and postmultiplying by
((
etX
)
∗(x)

)−1 there results the
identity:

∂

∂t

((
e−tX

)
∗

(
etXx

) )
= −

(
e−tX

)
∗

(
etXx

)
·X∗

(
etXx

)
. (4.28)
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Thus,

∂

∂t

((
e−tX

)
∗

(
etXx

)
· Y
(
etXx

) )
= −

(
e−tX

)
∗

(
etXx

)
·X∗

(
etXx

)
· Y
(
etXx

)
+
(
e−tX

)
∗

(
etXx

)
· Y∗

(
etXx

)
·X
(
etXx

)
=

(
e−tX

)
∗

(
etXx

)
· [X,Y ]

(
etXx

)
,

as required.

A generalization to higher-order derivatives is as follows; it can be inter-
preted, in a formal sense, as saying that AdtX = etadX . For each k = 0, 1, . . .,
and each vector fields X,Y , we denote ad0

XY = Y and adk+1
X Y := adX(adkXY ).

Lemma 4.4.3 Let X ∈ V(O), (t0, x0) ∈ DX , OY ⊆ O, and Y ∈ V(OY ) be so
that et

0Xx0 ∈ OY . Then, for each k = 0, 1, 2, . . .,

∂kAdtXY (x0)
∂tk

∣∣∣∣
t=t0

= Adt0XadkXY (x0) .

In particular, for any X,Y ∈ V(O) and each x0 ∈ O,

∂kAdtXY (x0)
∂tk

∣∣∣∣
t=0

= adkXY (x0)

for each k.

Proof. Fix the state x0 and consider the function γ(t) := AdtXY (x0); we
want to prove that γ(k)(t) = AdtXadkXY (x0) for each k and for all t such that
(t, x0) ∈ DX and etXx0 ∈ OY . We proceed by induction on k. The case k = 0
is trivial, since, by definition, ad0

XY = Y . Now, assume that the conclusion has
been shown for k. Then,

γ(k+1)(t) =
d

dt
γ(k)(t) =

d

dt
AdtXZ(x0) ,

where Z is adkXY , seen as a vector field defined on OY . By Lemma 4.4.2 (the
case k = 1), γ(k+1)(t) = AdtXadXZ(x0) = AdtXadk+1

X Y (x0), as desired.
In particular, consider any X,Y ∈ V(O) and x0 ∈ O. As (0, x0) ∈ DX , the

conclusions hold for t = 0.

The next few technical results will be needed later, when we specialize our
study to analytic systems.

Lemma 4.4.4 Suppose X and Y are analytic vector fields defined on O. For
any x0 ∈ O, let I = IX,x0 := {t ∈ R | (t, x0) ∈ DX}. Then, the function
γ : I → Rn : t 7→ AdtXY (x0) is analytic.
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Proof. Let α(t) :=
(
e−tX

)
∗

(
etXx0

)
, seen as a function I → Rn×n. Note that

α(0) = I, and that, by Equation (4.28), the vector (etXx0, α(t)) is the solution
of the differential equation

ẋ(t) = X(x(t)) x(0) = x0

α̇(t) = −α(t) ·X∗(x(t)) α(0) = I .

This is a differential equation with analytic right-hand side, so x(·) and α(·) are
both analytic (see, for instance, Proposition C.3.12). Then, γ(t) = α(t)Y (x(t))
is also analytic.

Proposition 4.4.5 If the vector fields Y1, . . . , Y` and X are analytic, then

span
{
AdtXYj(x0), j = 1, . . . `, t ∈ IX,x0

}
equals

span
{

adkXYj(x
0), j = 1, . . . `, k ≥ 0

}
for each x0 ∈ O.

Proof. Fix x0 ∈ O. Let S0 and S1 be, respectively, the sets of vectors ν ∈ Rn
and µ ∈ Rn such that

ν′adkXYj(x
0) = 0 , j = 1, . . . ` , k ≥ 0 (4.29)

and
µ′ AdtXYj(x0) = 0 , j = 1, . . . ` , t ∈ IX,x0 . (4.30)

Take any ν ∈ S0. For each j = 1, . . . `, by Lemma 4.4.3,

ν′
∂kAdtXYj(x0)

∂tk

∣∣∣∣
t=0

= 0 , ∀ k ≥ 0 .

Since, by Lemma 4.4.4, AdtXYj(x0) is analytic as a function of t, this means that
ν′AdtXYj(x0) ≡ 0, so ν ∈ S1. Conversely, if ν ∈ S1, then ν′AdtXYj(x0) ≡ 0
implies that all derivatives at zero vanish, so ν ∈ S0 (analyticity is not needed
here). Thus S0 = S1, and the result is proved.

Corollary 4.4.6 Let the vector fields Y1, . . . , Y`, and X be analytic, and pick
any (t, x0) ∈ DX . Let

d := dim span
{
Yj(etXx0), j = 1, . . . `

}
.

Then,
d ≤ dim span

{
adkXYj(x

0), j = 1, . . . `, k ≥ 0
}
.

Proof. Since AdtXYj(x0) = Q · Yj
(
etXx0

)
, where Q :=

(
e−tX

)
∗

(
etXx0

)
is a

nonsingular matrix, d = dim span {AdtXYj(x0), j = 1, . . . `}. The result follows
then from Proposition 4.4.5.

Exercise 4.4.7 Show that Corollary 4.4.6 need not hold for smooth but non-
analytic vector fields. 2
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Distributions

A distribution (in the sense of differential geometry) is the assignment of a
subspace of tangent vectors to each point in the state space.

Definition 4.4.8 A distribution on the open subset O ⊆ Rn is a map ∆
which assigns, to each x ∈ O, a subspace ∆(x) of Rn. A vector field f ∈ V(O)
is pointwise in ∆, denoted f ∈p ∆, if f(x) ∈ ∆(x) for all x ∈ O. A distribution
is invariant under a vector field f ∈ V(O) if

g ∈p ∆ ⇒ [f, g] ∈p ∆ ,

and it is involutive if it is invariant under all f ∈p ∆, that is, it is pointwise
closed under Lie brackets:

f ∈p ∆ and g ∈p ∆ ⇒ [f, g] ∈p ∆ .

The distribution generated by a set of vector fields f1, . . . , fr ∈ V(O) is defined
by

∆f1,...,fr (x) := span {f1(x), . . . , fr(x)}

for each x ∈ O. A distribution has constant rank r if dim ∆(x) = r for all
x ∈ O. 2

Lemma 4.4.9 Suppose that ∆ = ∆f1,...,fr
is a distribution of constant rank r.

Then,

1. The following two properties are equivalent, for any f ∈ V(O):

(a) f ∈p ∆

(b) For each x0 ∈ O, there are a neighborhood O0 of x0 and r smooth
functions αi : O0 → R, i = 1, . . . , r, so that

f(x) =
r∑
i=1

αi(x)fi(x) for all x ∈ O0 . (4.31)

2. The following two properties are equivalent, for any f ∈ V(O):

(a) ∆ is invariant under f .

(b) [f, fj ] ∈p ∆ for each j ∈ {1, . . . , r}.

3. Finally, the following two properties are equivalent:

(a) ∆ is involutive.

(b) [fi, fj ] ∈p ∆ for all i, j ∈ {1, . . . , r}.
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Proof. The equivalence of 1a and 1b was already established in Corollary 4.1.6
(applied with W = O, p = r, and Q the matrix function whose columns are the
fi’s).

The implication 2a ⇒ 2b is clear, since each fj ∈p ∆. To prove the converse,
pick any g ∈p ∆, and consider any point x0 ∈ O. By the first equivalence, we
can write g(x) =

∑r
j=1 αj(x)fj(x), on some neighborhood O0 of x0, for some

smooth functions αj ’s. Lemma 4.1.2 gives, then, as functions on O0:

[f, g] =
r∑
j=1

αj [f, fj ] + (Lfαj)fj .

Since fj(x0) ∈ ∆(x0) and [f, fj ](x0) ∈ ∆(x0) for all j, we conclude that
[f, g](x0) ∈ ∆(x0).

Similarly, the implication 3a ⇒ 3b is clear, since each fi ∈p ∆. To prove
the converse, we need to show that ∆ is invariant under any f ∈p ∆. The
previous equivalence tells us that it is enough to check that 2b holds, for each
such f . Since each ∆(x) is a subspace, however, this is the same as asking that
[fi, f ] ∈p ∆ for all i and all f ∈p ∆, that is, the property that ∆ is invariant
under fi; but again by the previous equivalence, this holds if [fi, fj ] ∈p ∆ for
all j, which was the assumption.

Exercise 4.4.10 Provide examples of distributions ∆f1,...,fr (necessarily not
having constant rank) for which each of the above equivalences fail. 2

Exercise 4.4.11 A distribution is said to be smooth if it is locally generated by
sets (possibly infinite) of vector fields, that is, for each x0 ∈ O there is a subset
F ⊆ V(O), and there is an open subset O0 ⊆ O which contains x0, such that,
for each x ∈ O0, ∆(x) is the span of the vectors {f(x), f ∈ F}. Show that, if ∆
is a smooth distribution of constant rank r, then for each x0 ∈ O there is some
open subset O0 ⊆ O which contains x0, and a set of r vector fields f1, . . . , fr,
such that ∆ = ∆f1,...,fr on O0, that is, ∆(x) = span {f1(x), . . . , fr(x)} for each
x ∈ O0. 2

Invariance of a distribution under f is equivalent to invariance under the
linear operators Adtf , in the sense that ∆ is invariant under f if and only if
Adtfg(x) ∈ ∆(x) for each (t, x) ∈ Df and each g ∈p ∆. This fact, proved next,
is perhaps the most important property of the Lie bracket operation. (We need
a slightly stronger version, in which g is not necessarily defined globally.)

Lemma 4.4.12 Suppose that ∆ = ∆f1,...,fr has constant rank r, and let X ∈
V(O). Then, the following two properties are equivalent:

1. ∆ is invariant under X.

2. Let O1 be an open subset of O and let t ∈ R be so that (t, x) ∈ DX for
all x ∈ O1. Define O0 := etXO1. Assume that Y ∈ V(O0) is such that
Y (z) ∈ ∆(z) for each z ∈ O0. Then, AdtXY (x) ∈ ∆(x) for each x ∈ O1.
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Proof. We first prove that 2 ⇒ 1. Pick any Y ∈p ∆, and any x0 ∈ O. Take
any open subset O1 ⊆ O containing x0 and any ε > 0 so that (t, x) ∈ DX for all
|t| < ε and all x ∈ O1. It follows from 2 that AdtXY (x) ∈ ∆(x) for all t near
zero and all x ∈ O1, so, in particular, AdtXY (x0) ∈ ∆(x0) for small t. Then,
since ∆(x0) is a subspace, also

1
t

(
AdtXY (x0)− Y (x0)

)
∈ ∆(x0)

and, therefore, since ∆(x0) is closed, the limit [X,Y ](x0) of this expression (cf.
Lemma 4.4.2) is in ∆(x0). So ∆ is invariant under X.

We now prove the converse. We first show that, for each given x ∈ O, and
letting I := {t ∈ R | (t, x) ∈ DX},

αi(t) := AdtXfi(x) ∈ ∆(x) for each i ∈ {1, . . . , r} and each t ∈ I . (4.32)

For this, it is enough to prove that, for each vector ν such that ν′fj(x) = 0 for
all j = 1, . . . , r, necessarily ν′αi ≡ 0 for all i. So pick such a ν, and consider
the row vector function ρ(t) := ν′M(t), where M(t) := (α1(t), . . . , αr(t)). Note
that ρ(0) = ν′(f1(x), . . . , fr(x)) = 0.

Assume that it is not the case that ρ ≡ 0. Suppose there is some t > 0 so
that ρ(t) 6= 0 (if this only happens for some t < 0, the argument is analogous).
Let

t0 := inf{t > 0, t ∈ I, ρ(t) 6= 0} .

Note that ρ(t0) = 0. Consider the point z := et0Xx. For each i = 1, . . . , r,
since [X, fi] ∈p ∆ (invariance under X), from Lemma 4.4.9 we know that
there is a neighborhood O0 of z and there exists a set of smooth functions
{γij , j = 1, . . . , r} ⊆ F(O0) such that

[X, fi](z) =
r∑
j=1

γij(z) fj(z) , for all z ∈ O0 . (4.33)

(We may assume that the neighborhood O0 is common to all i.) By Lemma 4.4.2
and Equation (4.33),

α̇i(t) = AdtX [X, fi] (x) =
(
e−tX

)
∗

(
etXx

)
· [X, fi]

(
etXx

)
=

r∑
j=1

γij
(
etXx

)
αj(t)

as long as |t− t0| is small enough so that etXx ∈ O0. So we have that

Ṁ(t) = M(t)Γ(t) ,

where we are denoting Γ(t) := (γji(etXx)). Then, ρ̇(t) = ρ(t)Γ(t), and ρ(t0) = 0;
by uniqueness of solutions of ρ̇ = ρΓ we have that ρ ≡ 0 for all t sufficiently
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near t0. This contradicts the definition of t0. So it must be that ρ ≡ 0. This
concludes the proof of (4.32).

Finally, pick any O0, O1, t, and Y as in 2, and any x0 ∈ O1. Taking if
necessary a smaller neighborhood O1 of x0, we know that there are smooth
functions {γi, i = 1, . . . , r} ⊆ F(O0) such that Y =

∑r
i=1 γifi on O0. Therefore,

letting αi(t) = AdtXfi(x0) for each i,

AdtXY (x0) =
(
e−tX

)
∗

(
etXx0

)
· Y
(
etXx0

)
=

r∑
i=1

γi
(
etXx0

)
αi(t) ,

which is in ∆(x0) because each αi(t) ∈ ∆(x0) by (4.32).

By induction, we also have then the following consequence of Lemma 4.4.12
(see Figure 4.4).

O O O O
3 2 1 0

Z
Yt  X t  X t  Xe 3 3 22 11ee

Figure 4.4: Z = Adt3X3Adt2X2Adt1X1Y .

Corollary 4.4.13 Suppose that ∆ = ∆f1,...,fr has constant rank r and is in-
variant under each of X1, . . . , Xk ∈ V(O). Let Ok be an open subset of O and
let s1, . . . , sk be real numbers with the following property:

(si, x) ∈ DXi
, ∀x ∈ Oi , i = 1, . . . , k ,

where we define

Ok−1 := eskXkOk , . . . , O1 := es2X2O2 ,O0 := es1X1O1 .

Assume that Y ∈ V(O0) is such that Y (z) ∈ ∆(z) for each z ∈ O0. Then,
AdskXk

. . .Ads1X1Y (x) ∈ ∆(x) for all x ∈ Ok. 2

Definition 4.4.14 A distribution ∆ of constant rank r is completely inte-
grable if, for each x0 ∈ O there exists some neighborhood O0 of x0 and a
smooth function

Ψ : O0 → Rn−r

such that
ker Ψ∗(x) = ∆(x) (4.34)

for all x ∈ O0. 2



4.4. Ad, Distributions, and Frobenius’ Theorem 173

Equation (4.34) says that Ψ∗(x)v = 0 if and only if v ∈ ∆(x). Since ∆
is assumed to have constant rank r, this implies that the Jacobian Ψ∗(x) has
constant rank n − r. If ∆ = ∆f1,...,fr , then, since {f1(x), . . . , fr(x)} is a basis
of ∆(x) for each x, we have that Equation (4.34) is equivalent to:

Ψ∗(x)fj(x) = 0 for j = 1, . . . , r (4.35)

together with:
rank Ψ∗(x) = n− r . (4.36)

In other words, if we consider the rows ψk, k = 1, . . . , n− r, of Ψ, we have that

Lfj
ψk(x) = ∇ψk(x)fj(x) = 0 for k = 1, . . . , n− r, j = 1, . . . , r , (4.37)

and:
{∇ψ1(x), . . . ,∇ψn−r(x)} are linearly independent. (4.38)

Therefore, complete integrability of ∆ means that, locally about each point, the
set of r first order linear partial differential equations

∇ψ(x) fj(x) = 0 j = 1, . . . , r

has n− r independent (in the sense of Jacobians being independent) solutions.

Remark 4.4.15 The terminology arises as follows. A (smooth) function ψ :
O → R is an integral of motion for the flow induced by a vector field f if ψ(x(t))
is constant along solutions. This means that dψ(φf (t,x0))

dt = 0 for all x0 and t,
which is equivalent to the statement that ∇ψ(x)f(x) ≡ 0. Thus, complete
integrability means that, locally, we can find n − r independent integrals of
motion. In geometric terms, since the level sets of Ψ(x) = c are differentiable
submanifolds of dimension r (because Ψ∗ has constant rank n − r) complete
integrability means that the space can be locally partitioned (“foliated”) into
submanifolds of dimension r, in such a manner that the vector fields fi are
tangent to these submanifolds. 2

Frobenius’ Theorem

The following construction provides the main step in the proof of Frobenius’
Theorem. We state it separately, for future reference.

Lemma 4.4.16 Suppose that ∆ = ∆f1,...,fr
is involutive of constant rank r.

Then, for each x0 ∈ O there exists some open subset O0 containing x0, an ε > 0,
and a diffeomorphism Π : O0 → (−ε, ε)n, so that the following property holds.
If we partition

Π =
(

Π1

Π2

)
, Π2 : O0 → (−ε, ε)n−r ,

then ∆(x) = ker (Π2)∗(x) for all x ∈ O0.
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Proof. Pick x0 ∈ O. Let vr+1, . . . , vn be vectors so that

{f1(x0), . . . , fr(x0), vr+1, . . . , vn}

is a basis of Rn. Introduce the vector fields fi ≡ vi, for i = r + 1, . . . , n.
Then {f1(x), . . . , fn(x)} is a basis of Rn for all x in some open subset Õ ⊆ O.
Replacing O by Õ, we assume from now on that {f1(x), . . . , fn(x)} are linearly
independent for all x ∈ O. We consider the following map:

M : (−ε, ε)n → O : t = (t1, . . . , tn) 7→ et1f1 . . . etnfnx0 ,

where ε is chosen small enough so that, for all j > 1, (tj−1, e
tjfj . . . etnfnx0) ∈

Dfj−1 whenever t ∈ (−ε, ε)n. We have, for each j = 1, . . . , n:

∂M

∂tj
(t) =

(
et1f1 . . . etj−1fj−1

)
∗

(
etjfj . . . etnfnx0

)
· fj
(
etjfj . . . etnfnx0

)
= Ad(−t1)f1 . . .Ad(−tj−1)fj−1fj (M(t))

(the last equality because etjfj . . . etnfnx0 = e−tj−1fj−1 . . . e−t1f1M(t), and ap-
plying (4.26)). In particular,

M∗(0, . . . , 0) =
(
f1(x0), . . . , fn(x0)

)
. (4.39)

We claim that

∂M

∂tj
(t) ∈ ∆(M(t)) , for each j = 1, . . . , r and each t ∈ (−ε, ε)n . (4.40)

To show this for each j, we apply Corollary 4.4.13, with k = j − 1, Y = fj ,
X1 = fj−1, . . . , Xk = f1, s1 = −tj−1, . . . , sk = −t1, and Ok is chosen as any
small enough neighborhood ofM(t) with the property that e−tj−1fj−1 . . . e−t1f1x
is defined for every x ∈ Ok. Involutivity of ∆ insures that ∆ is invariant under
all the Xi’s. As Y ∈p ∆, we conclude from that Corollary that

Ad(−t1)f1 . . .Ad(−tj−1)fj−1fj(z) ∈ ∆(z)

for each z ∈ Ok, and, so, in particular, for M(t). This proves the claim.
Because of (4.39), by the Inverse Function Theorem, taking a smaller ε

if necessary, and letting Õ be the image of M , we may assume that M is a
diffeomorphism, that is, there is a smooth function Π : Õ → (−ε, ε)n such that
Π ◦M(t) = t, for all t ∈ (−ε, ε)n. In particular,

Π∗(M(t)) M∗(t) = I ∀ t ∈ (−ε, ε)n . (4.41)

We partition Π as
(

Π1

Π2

)
, where Π2 : Õ → (−ε, ε)n−r. Then (4.41) implies:

Π2∗(M(t))
∂M

∂tj
(t) = 0 ∀ t ∈ (−ε, ε)n , j = 1, . . . , r . (4.42)
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Since the vectors ∂M
∂tj

(t) are linearly independent (because of (4.41)) and they
are in ∆(M(t)) (because of (4.40)), they form a basis of ∆(M(t)); thus

Π2∗(M(t)) ∆(M(t)) = 0 ,

and, since rank Π2∗(M(t)) = n−r, ∆(M(t)) = kerΠ2∗(M(t)). Each point of Õ
is of the form M(t), for some t ∈ (−ε, ε)n, so this means that ∆(x) = kerΠ2∗(x)
for all x ∈ Õ, as wanted.

Theorem 10 (Frobenius) Suppose that ∆ = ∆f1,...,fr has constant rank r.
Then, ∆ is completely integrable if and only if it is involutive.

Proof. Sufficiency follows from Lemma 4.4.16, taking Ψ := Π2. The necessity
part is easy: Pick any x0 ∈ O, let O0 and Ψ be as in the definition of integra-
bility, and consider the rows ψk, k = 1, . . . , n − r, of Ψ, so that (4.37) holds.
Thus, for each i, j ∈ {1, . . . , r},

L[fi,fj ]ψk(x) = LfiLfjψk(x)− LfjLfiψk(x) = 0

for all k = 1, . . . , n− r and all x ∈ O0. In particular, this means that

Ψ∗(x0) · [fi, fj ](x0) = 0 ,

that is, [fi, fj ](x0) ∈ ker Ψ∗(x0) = ∆(x0), proving involutivity.

If O0 is an open subset of O, ∆ is a distribution on O, and Π : O0 → V
is a diffeomorphism onto some open subset V ⊆ Rn, we denote by Π∗∆ the
distribution on V defined by attaching to each element of V the vector space
associated to its preimage:

(Π∗∆)(z) := Π∗
(
Π−1(z)

)
· ∆

(
Π−1(z)

)
. (4.43)

If f ∈ V(O), we also consider the vector field on V:

(Π∗f)(z) := Π∗
(
Π−1(z)

)
· f
(
Π−1(z)

)
. (4.44)

One may interpret Π∗f as the vector field obtained when changing coordinates
under z = Π(x), in the sense that, if x(·) is a curve on O0 so that ẋ = f(x),
then z(t) := Π(x(t)) satisfies, clearly, the differential equation ż = (Π∗f)(z). In
other words, the flow of f maps into the flow of Π∗f . Frobenius’ Theorem can
be reinterpreted in terms of such coordinate changes:

Exercise 4.4.17 Suppose that ∆ = ∆f1,...,fr is a distribution of constant rank
r on an open set O ⊆ Rn. Show that the following two properties are equivalent:

• ∆ is involutive.
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• For each x0 ∈ O there is an open subset O0 ⊆ O which contains x0 and
a diffeomorphism Π : O0 → V into some open subset V ⊆ Rn such that
(Π∗∆)(z) = span {e1, . . . , er} for each z ∈ V, where ei is the ith canonical
basis vector.

(A distribution of the form ∆e1,...,er
is said to be a flat distribution. So, the claim

is that a distribution is involutive if and only if it is locally flat in appropriate
coordinates.) 2

Exercise 4.4.18 Suppose that f1, . . . , fr are smooth vector fields on an open
set O ⊆ Rn, and that f1(x), . . . , fr(x) are linearly independent for each x ∈ O.
Show that the following two properties are equivalent:

• [fi, fj ] = 0 for each i, j ∈ {1, . . . , r}.

• For each x0 ∈ O there is an open subset O0 ⊆ O which contains x0 and
a diffeomorphism Π : O0 → V into some open subset V ⊆ Rn such that
(Π∗fi)(z) = ei for each z ∈ V, where ei is the ith canonical basis vector.

(That is, the vector fields commute if and only if there is a local change of
variables where they all become fi ≡ ei.) 2

Exercise 4.4.19 Provide an example of a set of vector fields f1, . . . , fr so that
(a) the distribution ∆ = ∆f1,...,fr has constant rank r and, locally about each
point x0 ∈ O, transforms under a diffeomorphism into ∆e1,...,er (in the sense
of Exercise 4.4.17), but (b) there is some point x0 such that, for no possible
diffeomorphism Π defined in a neighborhood of x0, (Π∗fi)(z) = ei for all i. 2

Exercise 4.4.20 Consider the following vector fields in R2:

f1

(
x1

x2

)
=
(
x1

x2

)
and f2

(
x1

x2

)
=
(
x2

−x1

)
.

(a) Check that [f1, f2] = 0. Explain in geometric terms why et1f1et2f2x0 =
et2f2et1f1x0 for all t1, t2, and x0.
(b) Find, locally about each x0 6= 0, an explicit change of coordinates Π (whose
existence is assured by (a), cf. Exercise 4.4.18) so that f1 becomes e1 and f2
becomes e2 under Π. 2

Exercise 4.4.21 Consider the following partial differential equation:

ϕx1(x1, x2)x2
1 + ϕx2(x1, x2) = 0 .

(a) Explain how we know that, locally about each x0 = (x0
1, x

0
2) ∈ R2, there

exists a solution ϕ of this equation so that ϕ(x0) = 0 and ∇ϕ(x) 6= 0 everywhere
in its domain.
(b) Now find one such solution, about each point. (You will need different
functions ϕ around different points.)
(Hint: You may want to introduce an appropriate vector field and follow the
construction in the proof of Lemma 4.4.16.) 2
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4.5 Necessity of Accessibility Rank Condition

We wish to prove now two partial converses of Theorem 9 (p. 156). The first one,
valid for arbitrary smooth systems, says that if the sets R≤T

V (x) have nonempty
interior (for all T,V) for each x in an open and dense subset of X, then the acces-
sibility rank condition also holds in a (possibly different) open and dense subset
of X. The second one, valid for analytic systems, drops the “possibly differ-
ent”. (The counterexamples in Exercise 4.3.6 show that more than smoothness
is needed in order to prove this stronger statement.)

Given any system ẋ = f(x, u), the set of points where the accessibility rank
condition holds is an open set (possibly empty), because if X1(x), . . . , Xn(x) are
linearly independent, then they are also linearly independent in a neighborhood
of x. Thus, asking that the rank condition holds in a dense set is equivalent to
asking that it holds in an open dense set.

Theorem 11 The following statements are equivalent:

1. There is an open and dense subset X1 ⊆ X such that intR≤T

V (x0) 6= ∅ for
each x0 ∈ X1, each neighborhood V of x0, and each T > 0.

2. There is an open and dense subset X2 ⊆ X such that the accessibility rank
condition holds at each x0 ∈ X2.

Proof. Theorem 9 (p. 156) shows that if the accessibility rank condition holds
for each x0 ∈ X2, then intR≤T

V (x0) 6= ∅ for each x0 ∈ X2 and all T , V. Assume
now, conversely, that there is a set X1 as in the first statement. Suppose that
the second statement is not true. In that case, there is some open subset X0 ⊆ X

such that the accessibility rank condition fails for every x0 ∈ X0. (Otherwise,
the set where it holds is dense, and hence open dense.) Since X0 is open and X1

is open dense, the intersection X1

⋂
X0 is a nonempty open set, so we may, and

will, assume without loss of generality that X0 ⊆ X1. Let r < n be defined as
the maximal possible dimension of the vector spaces Ala(x), over all x ∈ X0.

Pick X1, . . . , Xr ∈ Ala and x0 ∈ X0 so that X1(x0), . . . , Xr(x0) are linearly
independent. Then, X1(x), . . . , Xr(x) are linearly independent for all x near
x0. Restricting X0 if needed, we may assume that X1(x), . . . , Xr(x) are linearly
independent for all x ∈ X0, and they generate Ala(x) (because of maximality
of r). We introduce the constant-rank distribution ∆ := ∆X1,...,Xr . We have
that [Xi, Xj ] ∈ Ala for all i, j, because, by definition, Ala is a Lie algebra of
vector fields. By the equivalence 3a ⇔ 3b in Lemma 4.4.9, ∆ is involutive.

We apply Lemma 4.4.16 (Frobenius), to conclude that there is some open
subset V ⊆ X0 containing x0, an ε > 0, and a diffeomorphism Π : V → (−ε, ε)n,
so that, if Π2 : V → (−ε, ε)n−r denotes the last n− r coordinates of Π, then

(Π2)∗(x) f(x, u) = 0 (4.45)

for all u ∈ U and x ∈ V (using the fact that, by definition, fu ∈ A ⊆ Ala, so
fu(x) = f(x, u) ∈ ∆(x) for all x).
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We claim that R≤T

V (x0) has an empty interior, in fact for every T > 0, which
contradicts x0 ∈ X1. Since Π is a diffeomorphism, it will be enough to show
that the image

Π
(
R
≤T

V (x0)
)

has an empty interior.
Pick any control ω ∈ L∞U (0, T ), admissible for x0, with the property that

the path x(t) := φ(t, 0, x0, ω) satisfies x(t) ∈ V for all 0 ≤ t ≤ T . Let z(t) :=
Π(x(t)). This is absolutely continuous, and

ż(t) = Π∗(x(t)) f(x(t), ω(t)) = g(z(t), ω(t))

for almost all t ∈ [0, T ], where we define gu := Π∗fu (cf. Equation (4.44)):

g(z, u) := Π∗
(
Π−1(z)

)
f
(
Π−1(z), u

)
for each z ∈ (−ε, ε)n and each u ∈ U. We partition z into blocks of size n − r
and r respectively, so that the differential equation satisfied by z can be written
as ż1 = g1(z1, z2, u), ż2 = g2(z1, z2, u). By (4.45), g2 ≡ 0. Thus the equation is

ż1 = g1(z1, z2, u)
ż2 = 0 ,

in the z variables, and this shows that

Π
(
R
≤T

V (x0)
)
⊆ (−ε, ε)r ×Π2(x0)

has empty interior.

Analytic Case

We now consider analytic systems ẋ = f(x, u), meaning that fu = f(·, u) is
analytic, for each u ∈ U. Models derived from classical mechanics are most
often analytic.

Lemma 4.5.1 Suppose that the accessibility rank condition holds at z0 =
etfux0, for some t, x0, and u ∈ U, and the system is analytic. Then the acces-
sibility rank condition holds at x0 as well.

Proof. Let X = fu. Pick a set Y1, . . . , Yn of vector fields in Ala such that

Y1(etXx0), . . . , Yn(etXx0)

are linearly independent. By Corollary 4.4.6, the vectors adkXYj(x
0) span Rn.

The vector fields adkXYj are in Ala, because X as well as the Yj ’s are. Therefore
Ala(x0) = Rn, that is, the accessibility rank condition holds at x0.
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Theorem 12 For analytic systems, the following two properties are equivalent:

• For each state x and neighborhood V of x, and each T > 0, intR≤T

V (x) 6= ∅.

• The accessibility rank condition holds at every state x.

Proof. Theorem 9 (p. 156) established the sufficiency of the rank condition.
Suppose now that intR≤T

V (x) 6= ∅ for all x,V, T . By Theorem 11 (p. 177), the
accessibility rank condition holds at every state z in some open and dense subset
Z of X. Pick any x0 ∈ X. Consider the set

W := intR(x0)
⋂
Z .

This set is open (intersection of open sets) and nonempty (because intR(x0) is
open and Z is dense). Pick any point z0 ∈ W; thus, there is some T > 0 and
some ω ∈ L∞U (0, T ) such that z0 = φ(T, 0, x0, ω). Approximating ω by piecewise
constant controls, we can conclude that there is a convergent sequence of states
zk → z0, each zk reachable from x0 by piecewise constant controls (see Lemma
2.8.2). Pick any k large enough so that zk ∈ Z. Then, the accessibility rank
condition holds at zk, and there exist u1, . . . , u` ∈ U and positive t1, . . . , t` such
that et1fu1 . . . et`fu`x0 = zk. Applying Lemma 4.5.1 ` times, we have that the
accessibility rank condition holds at x0.

4.6 Additional Problems

Exercise 4.6.1 Let G : X → Rn×m be a matrix function of class C∞, defined
on an open subset X ⊆ Rn. Consider the following properties:

(C) For each x0 ∈ X, there is some neighborhood X0 of x0, and there are two
matrix functions C : X0 → Rn×n and D : X0 → Rm×m, both of class C∞

and nonsingular for each x ∈ X0, such that

C(x)G(x)D(x) =
(
I
0

)
for all x ∈ X0 ,

where I is the m×m identity matrix.

(F) For each x0 ∈ X there are X0, C, and D as above, and there is some
diffeomorphism Π : X0 → V0 into an open subset of Rn so that C(x) =
Π∗(x) for all x ∈ X0.

(a) Show that (C) holds if and only if rankG(x) = m for all x ∈ X.
(b) Show that (F) holds if and only if the columns g1, . . . , gm generate a dis-
tribution ∆g1,...,gm which is involutive and has constant rank m. (That is,
rankG(x) = m for all x ∈ X and the n2 Lie brackets [gi, gj ] are pointwise linear
combinations of the gi’s.)
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(c) Give an example where (C) holds but (F) fails.
(d) Interpret (b), for a system without drift ẋ = G(x)u, in terms of a change
of variables (a feedback equivalence) (x, u) 7→ (z, v) := (Π(x), D(x)−1u). What
are the equations for ż in terms of v, seen as a new input?
(Hint: (a) and (b) are both easy, from results already given.) 2

Exercise 4.6.2 Suppose that ∆ = ∆X1,...,Xr
has constant rank r, is involu-

tive, and is invariant under the vector field f . Pick any x0 ∈ O, and let O0

and Π be as in Frobenius’ Lemma 4.4.16. Define, for z ∈ (−ε, ε)n, g(z) :=
Π∗(Π−1(z)) f(Π−1(z)), and partition g = (g1, g2)′ and z = (z1, z2)′ as in the
proof of Theorem 11. Show that g2 does not depend on z1, that is to say, the
differential equation ẋ = f(x) transforms in the new coordinates z = Π(x) into:

ż1 = g1(z1, z2)
ż2 = g2(z2) .

Explain how, for linear systems ẋ = Ax, this relates to the following fact
from linear algebra: if A has an invariant subspace, then there is a change of
coordinates so that A is brought into upper triangular form consistent with
that subspace. (Hint: (For the proof that ∂g2/∂z1 = 0.) We have that
g2(Π(x)) = Π2∗(x)f(x). On the other hand, each row of Π2∗(x)f(x) is of the
form Lfψi, where ψi’s are the rows of Π2. We know that LXjψi = 0 for all i, j
(this is what Lemma 4.4.16 gives), and also L[f,Xj ]ψi = 0 (because ∆ is invari-
ant under f), so conclude that LXj (Lfψi) = 0. This gives that the directional
derivatives of the rows of g2∗(Π(x)) along the directions ej(x) := Π∗(x)Xj(x)
are all zero. Now observe that the vectors ei(x) are all of the form (ei1, 0)′, and
they are linearly independent.) 2

Exercise 4.6.3 Use the conclusion of Exercise 4.6.2 to prove: for a control-
affine system ẋ = g0+

∑
uigi, if ∆ = ∆X1,...,Xr has constant rank r, is involutive,

and is invariant under g0, and in addition all the vector fields gi ∈p ∆ for
i = 1, . . . ,m, then there is a local change of coordinates, about each state, in
which the system can be expressed in the form

ż1 = g1
0(z1, z2) +

m∑
i=1

uig
1
i (z1, z2)

ż2 = g2
0(z2) .

Compare with the Kalman controllability decomposition for linear systems. 2

Exercise 4.6.4 Show that, for analytic systems with connected state space X,
if the accessibility rank condition holds at even one point x0 ∈ X, then it must
also hold on an open dense subset of X. (Hint: Use that if an analytic function
vanishes in some open set, then it must be identically zero.) 2
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4.7 Notes and Comments

The systematic study of controllability of nonlinear continuous-time systems
started in the early 1970s. The material in this chapter is based on the early work
in the papers [255], [284], [391], and [185], which in turn built upon previous
PDE work in [91] and [182]. Current textbook references are [199] and [311].
An excellent exposition of Frobenius’ Theorem, as well as many other classical
facts about Lie analysis, can be found in [53].

Under extra conditions such as reversibility, we obtained an equivalence be-
tween controllability and accessibility. Another set of conditions that allows
this equivalence is based on having suitable Hamiltonian structures, see, e.g.,
[51]. The advantage of considering accessibility instead of controllability is that,
in effect, one is dealing with the transitivity of a group (as opposed to only a
semigroup) action, since positive times do not play a distinguishing role in the
accessibility rank condition. (Indeed, for analytic systems on connected state
spaces, accessibility is exactly the same as controllability using possibly “neg-
ative time” motions in which the differential equation is solved backward in
time.)

Also, for continuous-time systems evolving on Lie groups according to right-
invariant vector fields, better results on controllability can be obtained; see, for
instance, [126], [211], and [351]. Nonlinear global controllability problems are
emphasized in [160], [161], and [162].

The question of providing necessary and sufficient characterizations for con-
trollability is still open even for relatively simple classes such as bilinear contin-
uous-time systems, but substantial and very deep work has been done to find
sufficient conditions for controllability; see, for instance, [388], or [239]. It is
worth remarking that it can be proved formally that accessibility is “easier”
to check than controllability, in the computer-science sense of computational
complexity and NP-hard problems; see [366], [240].

For discrete-time nonlinear accessibility, see for instance [206] and [208].
Example 4.3.13 is from [308], which introduced the model and pursued the

analysis of controllability in Lie-algebraic terms.
Much recent work in nonlinear control has dealt with the formulation of

explicit algorithms for finding controls that steer a given state to a desired
target state, under the assumption that the system is controllable. This is
known as the path-planning problem. See for instance the survey paper [251]
and the many articles in the edited book [30].
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Chapter 5

Feedback and Stabilization

The introductory Sections 1.2 to 1.5, which the reader is advised to review at
this point, motivated the search for feedback laws to control systems. One is
led then to the general study of the effect of feedback and more generally to
questions of stability for linear and nonlinear systems. This Chapter develops
basic facts about linear feedback and related topics in the algebraic theory of
control systems including a proof of the Pole-Shifting Theorem described in
Chapter 1, as well as an elementary introduction to Lyapunov’s direct method
and a proof of a “linearization principle” for stability. Some more “advanced”
topics on nonlinear stabilization are also included, mostly to indicate some of
the directions of current research.

5.1 Constant Linear Feedback

In this Section, K is an arbitrary field; unless otherwise stated, (A,B) denotes
an arbitrary but fixed pair with A ∈ Kn×n and B ∈ Kn×m, and a “continuous-
time” or a “discrete-time” system means a linear and time-invariant system. In
the special case m = 1, we often denote B as lowercase b.

It is natural to study systems under a change of basis in the state space,
x = Tz. We already considered such transformations when dealing with the
Kalman controllability decomposition (Lemma 3.3.3). Recall that Sn,m is the
set of all pairs with given n,m, and Scn,m is the set of all such controllable pairs.

Definition 5.1.1 Let (A,B) and (Ã, B̃) be two pairs in Sn,m. Then (A,B) is
similar to (Ã, B̃), denoted

(A,B) ∼ (Ã, B̃)

if
T−1AT = Ã and T−1B = B̃

for some T ∈ GL(n). 2

183
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Lemma/Exercise 5.1.2 The following facts hold for the relation ∼:

1. It is an equivalence relation on Sn,m.

2. If (A,B) ∼ (Ã, B̃), (A,B) is controllable if and only if (Ã, B̃) is. 2

Lemma 5.1.3 Let (A, b) be any pair with m = 1, and write

χ(s) = det(sI −A) = sn − αns
n−1 − . . .− α2s− α1

for the characteristic polynomial of A. With the matrices

A† :=


0 0 · · · 0 α1

1 0 · · · 0 α2

0 1 · · · 0 α3
...

...
. . .

...
...

0 0 · · · 1 αn

 b† :=


1
0
0
...
0


it follows that

AR(A, b) = R(A, b)A† and b = R(A, b) b† ,

where R = R(A, b) is the controllability matrix of (A, b).
In particular, (A, b) is controllable if and only if it is similar to (A†, b†).

Proof. The first part is an immediate consequence of the Cayley-Hamilton
Theorem. Since (A†, b†) is controllable, because

R(A†, b†) = I ,

the sufficiency in the last statement follows from Lemma 5.1.2; for the necessity
part, T := R(A, b) provides the required similarity.

The system (A†, b†) is sometimes called the controllability form of (A, b).
From the above Lemma and the fact that (A†, b†) depends only on the charac-
teristic polynomial of A, and because ∼ is an equivalence relation, we conclude
the following. It says that, for single-input controllable systems (m = 1), the
characteristic polynomial of A uniquely determines the pair (A, b) up to simi-
larity.

Corollary 5.1.4 Assume that (A, b) and (Ã, b̃) are two pairs in Scn,1. Then,
(A, b) is similar to (Ã, b̃) if and only if the characteristic polynomials of A and
Ã are the same. 2

Definition 5.1.5 The controller form associated to the pair (A, b) is the pair

A[ :=


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
α1 α2 α3 . . . αn

 b[ :=


0
0
...
0
1

 (CF)

where sn − αns
n−1 − . . .− α2s− α1 is the characteristic polynomial of A. 2
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The symbols A[ and b[ are read as “A-flat” and “b-flat,” respectively, the
terminology motivated by the fact that the nontrivial coefficients appear hori-
zontally, along a row, in contrast to the controllability form, where they appear
vertically.

Lemma/Exercise 5.1.6 The pair (A[, b[) is controllable, and the characteris-
tic polynomial of A[ is

sn − αns
n−1 − . . .− α2s− α1 . 2

Proposition 5.1.7 The single-input (m = 1) pair (A, b) is controllable if and
only if it is similar to its controller form.

Proof. Assume that the pair is controllable. Then, since A[ has the same
characteristic polynomial as A, and the pair (A[, b[) is controllable, it follows
from Corollary 5.1.4 that (A, b) is similar to its controller form. Conversely, if
this similarity holds, then the second statement in Lemma 5.1.2 says that (A, b)
is controllable, because (A[, b[) is controllable.

Thus, up to a change of variables, single-input controllable linear, time-in-
variant systems are precisely those obtained from nth order constant coefficient
scalar differential equations

x(n) − αnx
(n−1) − . . .− α1x = u

by the usual introduction of variables xi := x(i−1), and analogously for discrete-
time systems. Recall that in Chapter 1 we saw how the notion of state-space
system was motivated by this construction.

We shall be interested in studying the effect of constant linear feedback. The
following Lemma will be helpful in that regard:

Lemma/Exercise 5.1.8 For any pair (A,B) and any F ∈ Km×n,

R(A+BF,B) = R(A,B) .

In particular, (A+BF,B) is controllable if and only if (A,B) is. 2

Definition 5.1.9 The nth degree monic polynomial χ is assignable for the
pair (A,B) if there exists a matrix F such that χ

A+BF
= χ. 2

Lemma 5.1.10 If (A,B) ∼ (Ã, B̃), then they can be assigned the same poly-
nomials.

Proof. Given any F , it holds that

χ
A+BF

= χ eA+ eB eF
provided that one chooses F̃ := FT .
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In Chapter 8 it will be proved using optimal control techniques (Corollary
8.4.3 and Exercise 8.4.5) that, if K = R and (A,B) is controllable, then there
is a feedback matrix F such that A+ BF is Hurwitz and another F such that
A+BF is convergent (discrete-time Hurwitz). As discussed in the introductory
Section 1.5, in fact one can assign an arbitrary spectrum under feedback, as
was illustrated there with the linearized pendulum. This is the Pole-Shifting
Theorem, to be proved below. The use of the term pole to refer to the eigenvalues
of A originates in the classical frequency-domain theory of linear systems.

Recall (Definition 3.3.5) that χ
u

is the uncontrollable part of the character-
istic polynomial of A, and we let χ

u
= 1 if the pair (A,B) is controllable.

Theorem 13 (Pole-Shifting Theorem) For each pair (A,B), the assignable
polynomials are precisely those of the form

χ
A+BF

= χ
1
χ
u

where χ
1

is an arbitrary monic polynomial of degree r = dimR(A,B).
In particular, the pair (A,B) is controllable if and only if every nth degree

monic polynomial can be assigned to it.

Proof. Assume first that (A,B) is not controllable. By Lemmas 3.3.3 and
5.1.10, we can assume without loss of generality that (A,B) has the form that
(Ã, B̃) has in (3.6). Write any F ∈ Km×n in the partitioned form (F1, F2),
where F1 is of size m× r and F2 is of size m× (n− r). Since

χ
A+BF

= χ
A1+B1F1

χ
u
,

it follows that any assignable polynomial has the factored form in the statement
of the Theorem.

Conversely, we want to show that the first factor can be made arbitrary by
a suitable choice of F (except for the case r = 0, where only χ

u
is there and

hence there is nothing to prove). Assume given any χ
1
. If we find an F1 so that

χ
A1+B1F1

= χ
1
,

then the choice F := (F1, 0) will provide the desired characteristic polynomial.
By Lemma 3.3.4, the pair (A1, B1) is controllable. Thus, we are left to prove
only that controllable systems can be arbitrarily assigned, so we take (A,B)
from now on to be controllable.

When m = 1, we may assume, because of Lemmas 5.1.10 and 5.1.7, that
(A, b) is in controller form. Given any polynomial

χ = sn − βns
n−1 − . . .− β2s− β1

to be assigned, the (unique) choice

f := (β1 − α1, . . . , βn − αn)
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satisfies χ
A+bf

= χ. Thus, the result has been proved in the case m = 1. (The
fact that f can be obtained immediately from the controller form justifies the
terminology “controller form.”)

Now let m be arbitrary. Pick any vector v ∈ U = Km such that Bv 6= 0, and
let b := Bv. We next show that there exists an F1 ∈ Km×n such that

(A+BF1, b)

is itself controllable. Because the result has been established for the case when
m = 1, there will then be, for any desired χ, a (unique) 1 × n matrix f such
that the characteristic polynomial of

A+B(F1 + vf) = (A+BF1) + bf

is χ, and the Theorem will be proved using the feedback F := F1 + vf .
To establish the existence of F1, we argue as follows. Let

{x1, . . . , xk}

be any sequence of linearly independent elements of X, with k as large as pos-
sible, having the properties that x1 = Bv and

xi −Axi−1 ∈ B := colB (5.1)

for i = 1, . . . , k (with x0 := 0). In other words, the sequence is required to be
such that

Bv = x1
;
1
x2

;
1
. . . ;

1
xk

and k is as large as possible.
We claim that k = n. Consider the span V of {x1, . . . , xk}. By maximality

of k,
Axk +Bu ∈ V for all u ∈ U . (5.2)

This implies, in particular, that

Axk ∈ V .

Thus, equation (5.2) shows that

B ⊆ V − {Axk} ⊆ V ,

so equation (5.1) implies that

Axl ∈ V, l = 1, . . . , k − 1 .

We conclude that V is an A-invariant subspace that contains B. It follows that
R(A,B) ⊆ V. By controllability, this implies that indeed k = n.

Finally, for each i = 1, . . . , k − 1, we let

F1xi := ui ,
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where ui ∈ U is any element such that

xi −Axi−1 = Bui−1 ,

and we define F1xk arbitrarily. Since

R(A+BF1, x1) = (x1, . . . , xn) ,

the desired single-input controllability is achieved.

Exercise 5.1.11 3 Show that, if the field K is infinite, (A,B) is controllable,
and the matrix A is cyclic, then there exists some u so that (A,Bu) is control-
lable. Give counterexamples to show that this fails if the hypothesis that A is
cyclic is dropped, and to show that even if A is cyclic the result fails over the
field of two elements. (Hint: Use the fact that the geometric multiplicity of each
eigenvalue of the transpose A′ must be one, and then solve the inequalities

v′Bu 6= 0

for each eigenvector v of A′.) 2

Exercise 5.1.12 3 For single-input systems, it is possible to give explicit for-
mulas for the (unique) feedback law that assigns any given polynomial. One of
these, Ackermann’s formula, is as follows:

f = −(0 · · · 0 1)R(A, b)−1χ(A) ,

where χ is the desired polynomial. Prove this formula. 2

Remark 5.1.13 A quick numerical procedure for pole-shifting when K = R
(or C) is based on the following argument. Given a controllable pair (A,B),
we first pick an arbitrary nonzero column b of B and then generate at random
(using a pseudorandom number generator) a matrix F . With probability one,

(A+BF, b)

is controllable. Indeed, the set of F for which the property is true is the com-
plement of an algebraic set, hence open dense and of full measure if nonempty;
as we know from the proof of the Theorem that there is some such F , this set is
open dense. (If the random choice happens to be one of the exceptional cases,
we just generate another F .) Now Ackermann’s formula (Exercise 5.1.12) can
be applied to (A+BF, b). 2

Exercise 5.1.14 Refer to Exercise 3.2.12.

(a) Find the controller form for Σ and the similarity T needed to bring the
original system into this form. (In finding the latter, note that T : (A, b) ∼
(A[, b[) is given by T = R(R[)−1, where R = R(A, b) and R[ = R(A[, b[).
Take all constants equal to one, for simplicity.)

(b) Find a feedback u = fx so that all eigenvalues of A+ bf equal −1. 2

Exercise 5.1.15 Repeat Exercise 5.1.14 for the system Σ in Exercise 3.2.13,
taking for simplicity M = m = F = g = l = 1. 2
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5.2 Feedback Equivalence*

The controller form (A[, b[) in Definition 5.1.5 was useful in establishing the
Pole-Shifting Theorem. We proved that every controllable single-input system
can be brought into (a unique) controller form under change of basis in the
state space. Further, a system in this form then can be transformed easily
under feedback into any other. In particular, from the form (CF) and using the
transformation (

A[, b[
)
→
(
A[ − b[(α1, α2, α3, . . . , αn), b[

)
there results the following pair (An, bn):

An =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
0 0 0 . . . 0

 bn =


0
0
...
0
1

 . (5.3)

The above transformation can be interpreted as the application of the feedback

u = fx = −(α1, α2, α3, . . . , αn)x ,

and essentially the previous results show that, under change of basis and feed-
back, any single-input continuous-time time-invariant linear controllable system
can be reduced to a scalar nth order equation of the form

x(n) = u ,

which corresponds to an nth order integrator (or an n-step delay, in the case of
discrete-time systems); see Figure 5.1.

x1u xn xn-1 x2

Figure 5.1: Cascade of integrators.

The purpose of this Section is to provide a generalization of this fact to the
case of multi-input (m > 1) systems. It will state that every controllable pair
(A,B) can be made equivalent, in a suitable sense to be defined below, to one
in a form analogous to that obtained for the case m = 1; for continuous-time
systems, this will result in the form

x
(κ1)
1 = u1

x
(κ2)
2 = u2

...
x(κr)
r = ur

* This section can be skipped with no loss of continuity.
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where (κ1, . . . , κr), r = rankB, is a sequence of integers, called the controllability
indices or Kronecker indices of the system. These integers satisfy

κ1 + . . .+ κr = n

and are unique up to ordering. Thus, every linear continuous-time time-invari-
ant system can be made to behave like r parallel cascades of integrators, under
the action of feedback. This result is of some theoretical interest and can be used
to give an alternative proof of the Pole-Shifting Theorem. In addition, because
the κi’s are unique, the result provides an effective test to determine whether
two systems are equivalent under feedback transformations, in the sense defined
below.

Except when explaining the interpretations for continuous-time systems, we
assume that K is an arbitrary field.

Definition 5.2.1 Let (A,B) and (Ã, B̃) be two pairs in Sn,m. Then (A,B) is
feedback equivalent to (Ã, B̃), denoted

(A,B) ≡ (Ã, B̃)

if
T−1(A+BF )T = Ã and T−1BV = B̃

for some T ∈ GL(n), some F ∈ Km×n, and some V ∈ GL(m). 2

Feedback equivalence corresponds to changing basis in the state and control-
value spaces (invertible matrices T and V , respectively) and applying a feedback
transformation u = Fx+ u′, where u′ is a new control.

Lemma/Exercise 5.2.2 The following facts hold for the relation ≡:

1. It is an equivalence relation on Sn,m.

2. If (A,B) ∼ (Ã, B̃), then (A,B) ≡ (Ã, B̃).

3. If (A,B) ≡ (Ã, B̃), then (A,B) is controllable iff (Ã, B̃) is. 2

The notion of feedback equivalence is closely related with Kronecker’s work
(ca. 1890) on invariants of matrix pencils. This connection is explained in the
next problem; we will derive our results directly in terms of feedback equivalence,
however.

Exercise 5.2.3 An expression of the type sF + G, where F and G are two
n× l matrices over K, is called a pencil of matrices. We think of this as a formal
polynomial in s, with equality of sF+G and sF ′+G′ meaning pairwise equality:
F = F ′ and G = G′. Two pencils are called equivalent if there exist invertible
matrices T ∈ GL(n) and S ∈ GL(l) such that

T [sF +G]S = [sF ′ +G′] .
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Given a pair (A,B), consider the pencil

[sI −A,B] = s[I, 0] + [−A,B] ,

with l = n+m. Prove: (A,B) ≡ (Ã, B̃) if and only if the corresponding pencils
are equivalent. 2

A partition κ = (κ1, . . . , κr) of the integer n is a sequence of positive integers

κ1 ≥ κ2 ≥ . . . ≥ κr

such that
κ1 + κ2 + . . .+ κr = n .

Associated to each such partition for which r ≤ m, we consider the pair (Aκ, Bκ),
defined (with the same n,m) as follows. The matrix Aκ is partitioned into r2

blocks, and Bκ is partitioned into mr blocks:

Aκ =


Aκ1 0 · · · 0
0 Aκ2 · · · 0
...

...
. . .

...
0 0 · · · Aκr

 Bκ =


bκ1 0 · · · 0 0 · · · 0
0 bκ2 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · bκr
0 · · · 0


(5.4)

where each Aκi has size κi × κi and is as in equation (5.3), and each bκi is a
column of length κi as in that equation. Note that when m = 1 there is only
one partition, κ = (n), and (Aκ, Bκ) is in that case just the pair (An, bn) in
(5.3). The above pair (Aκ, Bκ) is said to be in Brunovsky form. For each κ,
this is a controllable pair. Note that

rankBκ = r ≤ m

and that a continuous-time system whose matrices have this form consists of r
integrator cascades, as discussed informally above.

The main Theorem to be proved in this section is as follows:

Theorem 14 For every pair (A,B) in Scn,m, there is a unique partition κ such
that (A,B) ≡ (Aκ, Bκ).

This implies that the partition κ is a complete invariant for controllable
systems under feedback equivalence and that the number of equivalence classes
is equal to the number of such partitions for which r ≤ m. For instance, if n = 3
and m = 2, then there are exactly two equivalence classes, corresponding to the
partitions (3) and (2, 1).

The proof of Theorem 14 will be organized as follows. First we show how
a partition κ can be associated to each pair. We show that this assignment is
invariant under feedback equivalence, that is, that two feedback equivalent pairs
necessarily must give rise to the same κ, and further, for the system (Aκ, Bκ)
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already in Brunovsky form (5.4) the associated partition is κ. This will prove
the uniqueness part of the statement. To establish existence, we show that, for
the κ associated to the pair (A,B), it holds that (A,B) ≡ (Aκ, Bκ); this is done
by an explicit construction of the needed transformations.

Fix any controllable pair (A,B). Let bi denote the ith column of B, and
consider the sequence of vectors

b1, b2, . . . , bm, Ab1, Ab2, . . . , Abm, . . . , A
n−1b1, A

n−1b2, . . . , A
n−1bm .

We say that a vector in this sequence is dependent if it is a linear combination
of the previous ones. Observe that if some Ajbi is dependent, and j < n − 1,
then Aj+1bi also must be dependent. If a vector is not dependent, we call it
independent. We now arrange these vectors in the following pattern:

b1 b2 · · · bm
Ab1 Ab2 · · · Abm

...
...

. . .
...

An−1b1 An−1b2 · · · An−1bm

(5.5)

and we associate a preliminary partition λ = (λ1, . . . , λs) of n as follows. The
integer λi is defined as the number of independent vectors (in the sense explained
above) in the ith row of the table (5.5), and s is the largest index so that the
sth row contains at least one independent vector. From the remark about
the dependence of Aj+1bi following from that of Ajbi, we know that this is a
nonincreasing sequence. Further,

λ1 = rankB ≤ m,

and by controllability
λ1 + . . .+ λs = n ,

so that this is a partition of n into parts none of which exceeds m. If we need to
emphasize that this was done for the system (A,B), we write λ(A,B) instead
of just λ.

x

u

u
1

2

2
x x x

3 41

Figure 5.2: Example leading to indices (3,1).

As an illustration, take the following system, with n = 4 and m = 2 (see
Figure 5.2):

A =


0 1 0 0
0 0 0 0
1 0 0 0
0 0 1 0

 B =


0 1
1 0
0 0
0 0

 (5.6)
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for which, denoting by ei the ith canonical basis element in K4, the above
pattern is

e2 e1
e1 e3
e3 e4
e4 0

and λ(A,B) = (2, 1, 1).

Lemma/Exercise 5.2.4 If (A,B) ≡ (Ã, B̃), then λ(A,B) = λ(Ã, B̃). (Hint:
Establish that for each k the rank of

[B,AB, . . . , AkB]

remains invariant under each of the possible transformations B 7→ BV , A 7→
T−1AT , A 7→ A+BF .) 2

The controllability indices of (A,B) will be obtained from λ(A,B) as the
“conjugate” partition to λ, in the following sense:

Definition 5.2.5 Given a partition λ = (λ1, . . . , λs) of n, the conjugate par-
tition to λ (also called the “dual” partition to λ) is the partition λ′ given by
(λ′1, . . . , λ

′
s′), where λ′i is the number of parts of λ that are ≥ i. 2

For instance, the dual partition to (2, 1, 1) is (3, 1), since there are three λi’s
larger than or equal to 1, and just one larger than or equal to 2 (and none larger
than 2).

The following concept from combinatorics is useful when studying partitions.
A Young tableaux is a matrix of zeros and ones, with the property that there
is never a one below nor to the right of any zero, and no row or column is
identically zero.

Given any partition λ = (λ1, . . . , λs), we can associate to it the Young
tableaux of size s× λ1 that has λ1 ones in the first row, λ2 in the second, and
so forth. For instance, associated to (2, 1, 1) is the tableaux

1 1
1 0
1 0

Conversely, each tableaux with n ones comes from precisely one partition of n.
Under this rule, the tableaux of the conjugate is the transpose of the original

tableaux. From this, it follows that λ′′ = λ for all λ, so λ is uniquely determined
by λ′. Note also that, always, s′ = λ1.

Definition 5.2.6 The controllability indices κ(A,B) of the controllable pair
(A,B) are the elements of the sequence κ1, . . . , κr, where

κ = (κ1, . . . , κr)

is the partition conjugate to λ(A,B). 2
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For example, the system (5.6) has indices 3, 1. In general, the indices are
the numbers of independent vectors in the columns of (5.5), arranged in nonin-
creasing order.

From Lemma 5.2.4 it follows that controllability indices are invariant under
feedback equivalence. Observe that r = λ1 ≤ m, the rank of B. The assignment
(A,B) → κ(A,B) is a mapping from Scn,m into the set of all partitions of n into
r = rankB parts.

Lemma/Exercise 5.2.7 For each partition κ̃ of n into r parts,

κ(Aeκ, Beκ) = κ̃ . 2

The uniqueness statement in Theorem 14 now follows: If (A,B) ≡ (Aκ′ , Bκ′)
and also (A,B) ≡ (Aκ′′ , Bκ′′), then because of feedback equivalence and Lemma
5.2.7,

κ′ = κ(Aκ′ , Bκ′) = κ(A,B) = κ(Aκ′′ , Bκ′′) = κ′′ ,

and the Brunovsky form is unique.
Next we show that there is a sequence of transformations as in the defini-

tion of feedback equivalence that brings any given pair into the corresponding
Brunovsky form.

We first apply a transformation consisting of a permutation of the columns
of B (i.e., V is a permutation matrix, and T = I, F = 0) in such a way that
the columns in (5.5) are rearranged so that the number of independent vectors
in the ith column is nonincreasing. (In the above example, this means that we
use

V =
(

0 1
1 0

)
and obtain the new arrangement

e1 e2
e3 e1
e4 e3
0 e4

after permuting columns.) We denote the new matrix BV again by B and its
columns by bi. (For the above example this means that now B = [e1, e2].)

In terms of the pattern (5.5), then, κi is now the number of independent
vectors in the ith column, and the vectors

b1, . . . , A
κ1−1b1, b2, . . . , A

κ2−1b2, . . . , br, . . . , A
κr−1br

form a basis of Kn. Furthermore, from the definition of dependency it follows
that for each i there is a linear combination

Aκibi +
∑
j<i

αij0A
κibj = −

r∑
j=1

κi∑
k=1

αijkA
κi−kbj . (5.7)
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Next we apply yet another invertible transformation B̃ := BV resulting in new
columns

b̃i := bi +
∑
j<i

αij0bj , i = 1, . . . , r ,

and b̃i := bi for i > r, so that, after again calling B̃ just B, we have that we can
write (5.7) simply as:

Aκibi +
r∑
j=1

κi∑
k=1

αijkA
κi−kbj = 0 (5.8)

(with different coefficients αijk’s). For each

i = 1, . . . , r and l := 1, . . . , κi ,

we introduce the vectors

eil := Al−1bi +
r∑
j=1

l−1∑
k=1

αijkA
l−1−kbj

(with the convention that ei1 = bi). Listing them in the order

e11, e21, . . . ; er1, e12, e22, . . . ; . . .

makes it evident that they are linearly independent, since they form a triangular
linear combination of the basis vectors

b1, b2, . . . , br, Ab1, Ab2, . . . ,

so the matrix T with columns

[e1κ1 , e1(κ1−1), . . . , e11, e2κ2 , e2(κ2−1), . . . , e21, . . . , erκr , er(κr−1), . . . , er1]

is invertible. Note that

Aeil = ei(l+1) −
r∑
j=1

αijlbj

for l < κi and that, because of (5.8),

Aeiκi = −
r∑
j=1

αijκibj ,

from which it follows that the matrix on the basis given by the columns of T ,
that is, Ã := T−1AT , has the following block structure:

A11 A12 · · · A1r

A21 A22 · · · A2r
...

...
. . .

...
Ar1 Ar2 · · · Arr

 (5.9)
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where the off-diagonal blocks Aij , i 6= j, have the form
0 0 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0
∗ ∗ ∗ . . . ∗


and the diagonal blocks have the form

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
∗ ∗ ∗ . . . ∗


where the asterisks indicate possibly nonzero entries. Similarly, since ei1 = bi
for each i, the matrix T−1B is in the desired form (5.4) except for the fact that
the last m − r columns may be nonzero. Applying a new change of basis V in
the control-value space, these columns can be made zero (since they are linearly
dependent on the first r rows, because rankB = r).

Remark 5.2.8 At this stage, one has not yet applied any purely feedback trans-
formations (using F 6= 0 in the definition of feedback equivalence) but only
changes of basis on states and controls. The system has been reduced to a form
analogous to the controllability form (CF). It should be noted however that,
in contrast to the situation with m = 1, the free parameters left (the aster-
isks above) are not uniquely determined by the original pair, so this is not a
“canonical form” in the sense of invariant theory. 2

Finally, the asterisks in the blocks in (5.9) all can be zeroed by application
of a feedback transformation A→ A+BF ; in fact, from the form of B, this can
be achieved simply by using as F the negative of the matrix that has those same
asterisks in the same order (and arbitrary last m− r rows). This completes the
proof of Theorem 14.

xu
2 4

x x xu 11 23

Figure 5.3: Canonical form for example.

Exercise 5.2.9 Write the matrix [sI − A,B] for a pair in Brunovsky form.
Show how to obtain from this expression, and from Exercise 5.2.3, the fact that
rank [sI −A,B] = n for all s is necessary for controllability. 2
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Exercise 5.2.10 The Pole-Shifting Theorem can be proved as an easy conse-
quence of Theorem 14. The critical step is to show that for each controllable
(A,B) there is some feedback transformation F and some u ∈ Km such that
(A+BF,Bu) is controllable. Show how to obtain such an F and u from Theorem
14. 2

Exercise 5.2.11 Let K = R or C. For any fixed n,m, write

n = sm+ t , 0 ≤ t < m

with s the integer part of n/m. Show that the set of pairs (A,B) with indices

s+ 1, . . . , s+ 1︸ ︷︷ ︸
t

, s, . . . , s︸ ︷︷ ︸
m−t

forms an open dense subset of Scn,m. 2

5.3 Feedback Linearization*

We study single-input control-affine (time-invariant, continuous-time) systems

ẋ = f(x) + ug(x) . (5.10)

The state-space is, as usual, an open subset X ⊆ Rn, and the control-value space
is U = R. (This is as in (4.18), with m = 1, but here we prefer to write f and
g, instead of g0 and g1 respectively, for the drift and control vector fields.)

Definition 5.3.1 Let Σ and Σ̃ be two systems of the above form, and suppose
that O and Õ are open subsets of the respective state spaces X and X̃. We say
that (Σ,O) is feedback equivalent to (Σ̃, Õ) if there exist:

• a diffeomorphism T : O → Õ, and

• smooth maps α, β : O → R, with β(x) 6= 0 for all x ∈ O,

such that, for each x ∈ O:

T∗(x) (f(x) + α(x)g(x)) = f̃(T (x)) (5.11)

and
β(x)T∗(x)g(x) = g̃(T (x)) (5.12)

(f, g and f̃ , g̃ are the vector fields associated to the respective systems). 2

* This section can be skipped with no loss of continuity.
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Notice that X and X̃ must have the same dimension, because T is a dif-
feomorphism. One can express the two equalities (5.11)-(5.12) in the following
equivalent form:

T∗(x)
(
f(x)+ug(x)

)
= f̃(T (x))+

1
β(x)

(
u−α(x)

)
g̃(T (x)) ∀x ∈ O , ∀u ∈ Rm.

The change of variables

(x, u) 7→ (z, v) :=
(
T (x),

1
β(x)

[u− α(x)]
)

provides a diffeomorphism between O × R and W × R, whose inverse is

(z, v) 7→ (x, u) :=
(
T−1(z), α

(
T−1(z)

)
+ β

(
T−1(z)

)
v
)
.

Solutions of ẋ = f(x)+ug(x) are transformed into solutions of ż = f̃(z)+vg̃(z),
corresponding to the input v = 1

β(x) [u− α(x)]. We may view u = k(x, v) =
α(x) + β(x)v as a feedback law which “closes the loop” about the system, with
v having the role of a new input, to be used for further control purposes, see
Figure 5.4. Under the change of variables z = T (x), the closed-loop system

- -

6

v k(x, v) ẋ = f(x)+ug(x)
u

x

Figure 5.4: Feedback.

ẋ = f(x) + k(x, v) g(x) (5.13)

(represented by the dashed box in Figure 5.4) transforms into ż = f̃(z)+ vg̃(z).
This new system might be easier to control than the original system, especially
if it is linear.

Definition 5.3.2 The system Σ in (5.10) is feedback linearizable about x0,
where x0 ∈ X, if there exists an open subset O ⊆ X containing x0, a controllable
n-dimensional single-input linear system (Σ̃) ż = Az + vb, and an open subset
Õ ⊆ Rn, such that (Σ,O) is feedback equivalent to (Σ̃, Õ). 2

Given any T, α, β providing an equivalence as in this definition, T is said
to be a linearizing change of variables and the map (x, v) 7→ α(x) + β(x)v a
linearizing feedback.
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Suppose, as an illustration, that we wish to stabilize about x = x0, and
assume that we have found a feedback linearization with the extra property
T (x0) = 0. Since the pair (A, b) is controllable, there is some F ∈ R1×n such
that ż = (A+ bF )z is globally asymptotically stable (Pole Shifting Theorem 13
(p. 186)). Changing back to x variables, we consider the system without inputs

ẋ = f(x) + k̃(x) g(x) , (5.14)

where the new feedback k̃(x) := α(x) + β(x)FT (x) is obtained by substituting
u = k(x, v) and v = Fz = FT (x) (this can be interpreted as adding a feedback
loop around the dashed box shown in Figure 5.4). We claim that system (5.14)
has x0 as an asymptotically stable equilibrium, with a potentially large domain
of attraction: every solution ξ with the property that ξ(t) ∈ O for all t must
converge to x0. Indeed, suppose that ξ is any solution of (5.14) which stays in
O. Let ζ(t) := T (ξ(t)). Then ζ̇(t) = (A+ bF )ζ(t), so ζ(t) → 0 as t→∞. Since
T has a continuous inverse, this means that ξ(t) → x0 as t→∞. (In addition,
if ξ(0) is near x0 then ζ(0) is near zero, so ζ(t) remains close to zero and thus
ξ(t) remains close to x0 for all t.)

Lemma/Exercise 5.3.3 Prove that we have an equivalence relation, in the
following sense:
(a) For each Σ and open O ⊆ X, (Σ,O) is feedback equivalent to (Σ,O).
(b) (Σ,O) feedback equivalent to (Σ̃, Õ) implies (Σ̃, Õ) feedback equivalent to
(Σ,O).
(c) If (Σ,O) is feedback equivalent to (Σ̃, Õ) and (Σ̃, Õ) is feedback equivalent
to (Σ̂, Ô), then (Σ,O) is feedback equivalent to (Σ̂, Ô). 2

Lemma/Exercise 5.3.4 Suppose that the pairs (A, b) and (Ã, b̃) ∈ Sn,1 are
feedback equivalent in the sense of Definition 5.2.1. That is, there exist T ∈
GL(n), F ∈ R1×n, and a nonzero scalar V such that T−1(A + bF )T = Ã and
T−1bV = b̃. Consider the systems Σ and Σ̃ given respectively by ẋ = Ax + ub
and ẋ = Ãx+ ub̃. Show that, for each open subset O ⊆ Rn, (Σ,O) is feedback
equivalent to (Σ̃, T−1O). 2

The study of feedback linearization is simplified considerably by the following
observation. For each positive integer n, we let Σn be the continuous-time linear
system ẋ = Anx + ubn, where An and bn are in the controller form given by
Equation 5.3:

An :=


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
0 0 0 . . . 0

 bn :=


0
0
...
0
1

 .

By Theorem 14 (p. 191), any single input n-dimensional controllable pair is feed-
back equivalent, in the sense of Definition 5.2.1, to this special pair (An, bn).
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Therefore, by Lemma 5.3.4, for any n-dimensional controllable single-input lin-
ear system Σ and any open subset O ⊆ Rn, (Σ,O) is feedback equivalent to
(Σn,W), for some open subset W ⊆ Rn. By transitivity of equivalence, cf.
Lemma 5.3.3, we conclude:

Lemma 5.3.5 The system Σ is feedback linearizable about the state x0 if and
only if there exist an open O ⊆ X containing x0 and an open W ⊆ Rn such that
(Σ,O) is feedback equivalent to (Σn,W). 2

Observe that Equations (5.11)-(5.12) when specialized to Σn can be written
equivalently as follows:

T∗(x) f(x) = AnT (x)− α(x)
β(x)

bn (5.15)

and
T∗(x) g(x) =

1
β(x)

bn . (5.16)

The main result to be proved in this section is as follows. We employ concepts
from the nonlinear controllability Chapter 4.

Theorem 15 The system (5.10) is feedback linearizable about x0 if and only if
the distribution

∆n−1 := ∆g,adfg,...,ad
n−2
f g (5.17)

is involutive when restricted to some neighborhood of x0, and the set of vectors{
g(x0), adfg(x0), . . . , adn−1

f g(x0)
}

is linearly independent.

(When n = 1, the condition is simply g(x0) 6= 0.) Observe that, if the n
vectors shown are linearly independent, then dim ∆n−1(x0) = n − 1. Thus,
dim ∆n−1 ≡ n − 1 on some neighborhood O of x0. On any such set O, the
involutivity condition amounts to the requirement that

[adifg, adjfg](x) ∈ ∆n−1(x) for all x ∈ O and all i, j ∈ {0, . . . , n− 2} (5.18)

(cf. Lemma 4.4.93b). Equivalently, by Frobenius’ Theorem 10 (p. 175), the
condition is that ∆n−1 must be integrable (in some neighborhood of x0).

We need to establish a preliminary general result concerning smooth func-
tions and vector fields.

Lemma 5.3.6 Let O be an open subset of Rn, ϕ ∈ F(O), f, g ∈ V(O). The
following properties are equivalent, for any given nonnegative integer `:

1. For each 0 ≤ i ≤ `, LgLifϕ = 0.

2. For each 0 ≤ j ≤ `, Ladj
fg
ϕ = 0.

3. For each i, j ≥ 0 with i+ j ≤ `, Ladj
fg
Lifϕ = 0.
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Furthermore, if these properties hold, then:

For each i, j ≥ 0 with i+ j = `+ 1 , Lad`+1
f gϕ = (−1)iLadj

fg
Lifϕ . (5.19)

Proof. Note that statements 1 and 2 are particular cases of 3, corresponding to
the choices j = 0 and i = 0 respectively. We will prove, separately, that each of
them implies 3. The proof will be based upon a useful identity which we derive
first.

Equation (4.3) says that Ladfh = LfLh − LhLf for any two vector fields
f, h ∈ V(O). We may apply this formula, in particular, when h has the form
adjfg, and thus derive

Ladj+1
f g = LfLadj

fg
− Ladj

fg
Lf .

This is an equality among operators on smooth functions, so in particular we
may evaluate at any function which is a directional derivative of ϕ, and conclude:

Ladj+1
f gL

i
fϕ = LfLadj

fg
Lifϕ − Ladj

fg
Li+1
f ϕ ∀ i, j ≥ 0 . (5.20)

Suppose now that 1 holds. We prove 3, by induction on j. The case j = 0 is
just 1 (since ad0

fg = g, by definition). Suppose that 3 has been shown to hold,
for a given j (and for all i). We need to prove that, for any i, Ladj+1

f gL
i
fϕ = 0 if

i+(j+1) ≤ `. This is a consequence of identity (5.20). Indeed, if i+(j+1) ≤ `
then also i+ j ≤ `, so, by inductive hypothesis, Ladj

fg
Lifϕ = 0, and so

Ladj+1
f gL

i
fϕ = −Ladj

fg
Li+1
f ϕ . (5.21)

The right-hand side vanishes, again by inductive hypothesis since (i+1)+j ≤ `,
so Ladj+1

f gL
i
fϕ = 0, as claimed.

Next, supposing that 2 holds, we prove 3, this time by induction on i. The
case i = 0 is just 2. Suppose 3 has been shown to hold, for a given i (and for
all j). We must show, for any j, that Ladj

fg
Li+1
f ϕ = 0 if (i + 1) + j ≤ `. As

i+j ≤ ` by inductive hypothesis Ladj
fg
Lifϕ = 0, so Equation (5.21) again holds.

By induction, the left-hand side vanishes, so the right-hand term does too.
Finally, we assume that 3 is true and show

Lad`+1
f gϕ = (−1)iLad`+1−i

f gL
i
fϕ , for i = 0, . . . , `+ 1 (5.22)

by induction on i. When i = 0, this is clear. Assume now that (5.22) has been
proved for some i < `+ 1. We consider Equation (5.20), applied with j = `− i.
Since the first term in the right vanishes, because i + j = ` and 3 is true, we
have that

Lad`+1−i
f gL

i
fϕ = −Lad`−i

f gL
i+1
f ϕ = −L

ad
(`+1)−(i+1)
f g

Li+1
f ϕ .

Substituting into (5.22) completes the induction.

From this Lemma, the following consequence is clear:
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Corollary 5.3.7 Let O be an open subset of Rn, ϕ ∈ F(O), f, g ∈ V(O). The
following properties are equivalent, for any given nonnegative integer `:

1. For all x ∈ O, LgLifϕ(x) = 0 if 0 ≤ i ≤ `, and LgL`+1
f ϕ(x) 6= 0.

2. For all x ∈ O, Ladj
fg
ϕ(x) = 0 if 0 ≤ j ≤ `, and Lad`+1

f gϕ(x) 6= 0.

3. For all x ∈ O, and for i, j ≥ 0, Ladj
fg
Lifϕ(x) = 0 if i + j ≤ `, and

Ladj
fg
Lifϕ(x) 6= 0 if i+ j = `+ 1. 2

Corollary 5.3.8 Let O be an open subset of Rn, ϕ ∈ F(O), f, g ∈ V(O), and
suppose that the equivalent properties in Corollary 5.3.7. Then, for each x ∈ O
the `+ 2 vectors

g(x), adfg(x) . . . , ad`+1
f g(x)

are linearly independent, and the `+ 2 row vectors

∇ϕ(x),∇Lfϕ(x), . . . ,∇L`+1
f ϕ(x)

are linearly independent.

Proof. Consider the following matrix

M(x) =
(
∇ϕ(x),∇Lfϕ(x), . . . ,∇L`+1

f ϕ(x)
)′
·
(
g(x), adfg(x), . . . , ad`+1

f g(x)
)

of size (`+ 2)× (`+ 2), for each x ∈ O. Its (i, j)th entry is:

M(x)
i,j

= ∇
(
Li−1
f ϕ

)
(x) · adj−1

f g(x) .

By (3), M(x) has the triangular structure ��
0 ∗ for every x, where the skew-

diagonal elements are nonzero. ThusM(x) is invertible, which proves the desired
conclusions.

The main step in proving Theorem 15 is given by the following technical
result.

Proposition 5.3.9 Let Σ be a system ẋ = f(x)+ug(x), and let O be an open
subset of the state space X ⊆ Rn. Assume that T = (T1, . . . , Tn)

′ : O → Rn and
α, β : O → R are smooth mappings, with β(x) 6= 0 for all x ∈ O, and are such
that Equations (5.15) and (5.16) hold for all x ∈ O. Then, writing ϕ := T1, the
following properties hold for each x ∈ O:

LgL
i
fϕ(x) = 0 , i = 0, . . . , n− 2 , LgL

n−1
f ϕ(x) 6= 0 (5.23)

Ti+1 = Lifϕ, i = 1, . . . , n− 1, α(x) =
−Lnfϕ(x)

LgL
n−1
f ϕ(x)

β(x) =
1

LgL
n−1
f ϕ(x)

(5.24)

∇ϕ(x) . adjfg(x) = 0 , j = 0, . . . , n− 2 , ∇ϕ(x) . adn−1
f g(x) 6= 0 (5.25)

g(x), adfg(x) . . . , adn−1
f g(x) are linearly independent (5.26)

T∗(x) is nonsingular. (5.27)
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Conversely, suppose that (5.26) is true for all x ∈ O, and assume that ϕ ∈ F(O)
is so that (5.25) holds for all x ∈ O. Then LgL

n−1
f ϕ(x) 6= 0 for all x, so

we may define T1 := ϕ and T2, . . . , Tn, α, β via (5.24); with these definitions,
Equations (5.15) and (5.16) hold for all x ∈ O.

Proof. Suppose that T, α, β are so that Equations (5.15) and (5.16) hold for all
x ∈ O, and let ϕ := T1. Observe that T∗(x)f(x) = (LfT1(x), . . . , LfTn(x))′ and
T∗(x)g(x) = (LgT1(x), . . . , LgTn(x))′, and because of the form of the matrix
An, AnT (x) = (T2(x), . . . , Tn(x), 0)′. So Equation (5.15) says

(LfT1(x), . . . , LfTn(x))
′ =

(
T2(x), . . . , Tn(x),−

α(x)
β(x)

)′
.

Comparing the first n − 1 entries gives T2 = Lfϕ, T3 = LfT2 = L2
fϕ, and,

in general Ti+1 = Lifϕ, j = 1, . . . , n − 1, as required for (5.24), while the last
coordinate gives Lnfϕ = −α/β. On the other hand, Equation (5.16) gives

(LgT1(x), . . . , LgTn(x))
′ =

(
0, . . . , 0,

1
β(x)

)′
.

From the last coordinate, LgLn−1
f ϕ = 1/β, which together with Lnfϕ = −α/β

gives the missing part of (5.24), This also says that LgLn−1
f ϕ is everywhere

nonzero, so the last part of (5.23) holds. On the other hand, the first n − 1
coordinates provide LgTi = LgL

i−1
f ϕ = 0 for i = 1, . . . , n − 1, so all of (5.23)

has been proved as well.
We now show that (5.23) implies all three of (5.25), (5.26), and (5.27). The

first of these is simply the equivalence of 1 and 2 in Corollary 5.3.7, when
` is chosen as n − 2, and the last two follow from Corollary 5.3.8, because
T = (ϕ,Lfϕ, . . . , Ln−1

f ϕ)′.
We conclude by establishing the last (converse) statement. Let ϕ ∈ F(O) be

given, and assume that (5.25) and (5.26) hold for all x. By the equivalence of 1
and 2 in Corollary 5.3.7, also (5.23) holds, and in particular LgLn−1

f ϕ(x) 6= 0 for
all x, so we may indeed define α and β as in (5.24). We also let Ti := Li−1

f ϕ,for
i = 0, . . . , n− 1. Comparing coordinates, both (5.15) and (5.16) are verified.

Proof of Theorem 15

Suppose that Σ is feedback linearizable around x0. Then, there exists some
neighborhood O of x0 and T , α, and β (nowhere vanishing) so that both (5.15)
and (5.16) hold on O. Then, by Proposition 5.3.9, there exists a ϕ ∈ V(O) so
that (5.25) holds. This implies, in particular, that ∇ϕ(x) 6= 0 for all x, and
∇ϕ(x).adjfg(x) = 0 for each j = 0, . . . , n − 2, so the distribution ∆n−1 (which
has constant rank n−1, by (5.26)) is integrable, by the characterizations (4.37)-
(4.38). So ∆n−1, seen as a distribution on O, is involutive.
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Conversely, assume that ∆n−1 is involutive, on some open set V which con-
tains x0, and g(x0), adfg(x0), . . . , adn−1

f g(x0) are linearly linearly independent.
Using if necessary a smaller V, we may assume that g(x), adfg(x), . . . , adn−1

f g(x)
(and, in particular, the first n− 1 vectors in this list) are linearly independent
for each x ∈ V. So, on V, ∆n−1 is constant rank and involutive. By Frobe-
nius’ Theorem 10 (p. 175), ∆n−1 must be integrable, so there exists a neigh-
borhood O ⊆ V of x0 and a ϕ ∈ V(O) so that, for all x ∈ O, ∇ϕ(x) 6= 0
and, for each j = 0, . . . , n − 2, ∇ϕ(x).adjfg(x) = 0. If it were the case that
∇ϕ(x).adn−1

f g(x) = 0 for some x ∈ O, then adn−1
f g(x) would be in the span

of g(x), adfg(x), . . . , adn−2
f g(x) (because these are n − 1 linearly independent

vectors orthogonal to the nonzero vector ∇ϕ(x)), and this contradicts the fact
that g(x), adfg(x), . . . , adn−1

f g(x) are linearly independent. Therefore (5.25)
and (5.26) hold for all x ∈ O, and the second part of Proposition 5.3.9 provides
a T , as well as an α and a (nowhere vanishing) β so that both (5.15) and (5.16)
hold. This provides a feedback linearization, except for the fact that T is not
necessarily a diffeomorphism. However, the first part of Proposition 5.3.9, ap-
plied to this T , shows that T∗(x) is nonsingular. Thus, by the Implicit Function
Theorem, we may restrict O to a smaller neighborhood of x0 in such a manner
that, in this restricted set, T indeed admits a smooth inverse.

Example 5.3.10 We consider a model of an arm driven by a motor through a
torsional spring, see Figure 5.5; this is used as a simplified model of a single-link

motor
θ θ2 1 Lu ,

Figure 5.5: Flexible link.

flexible-joint robot. The equations for the angular positions θ1 and θ2 of the
arm and shaft can be shown to be (see [378]):

Iθ̈1 +MgL sin θ1 + k(θ1 − θ2) = 0
Jθ̈2 − k(θ1 − θ2) = u ,

where I and J are moments of inertia, k is a spring constant (notice that the
term k(θ1−θ2) stands for a restoring force proportional to the difference between
the angles, that is, the torsion of the spring), M is the mass, L is the distance
from the joint to the center of mass of the arm, and u, the control, is the torque
being applied by a motor. We let x1 := θ1, x2 := θ̇1, x3 := θ2, and x4 := θ̇2
and view the system as a system with state space X = R4. (More precisely, one
could represent this as a system whose state space is a differentiable manifold,
accounting for the fact that θ1 − θ2 only matters modulo 2π.) Letting a :=
MgL/I, b := k/I, c := k/J , and d := 1/J , this is a system ẋ = f(x) + ug(x)
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with

f(x) =


x2

−a sinx1 − b(x1 − x3)
x4

c(x1 − x3)

 , g(x) =


0
0
0
d

 .

We compute

(
g(x), adfg(x), ad2

fg(x), ad3
fg(x)

)
=


0 0 0 −bd
0 0 bd 0
0 −d 0 cd
d 0 −cd 0


(constant matrix). This shows that g(x0), adfg(x0), ad2

fg(x
0), ad3

fg(x
0) are lin-

early independent for each x0 and, since [adifg, adjfg] = 0 ∈p ∆3 for all i, j ∈
{0, 1, 2}, that ∆3 is involutive. Thus, the system is feedback linearizable around
every x0. However, much more is true in this example. Let us compute ϕ as
in Proposition 5.3.9. Property (5.25), and the explicit form found above for the
adifg’s, says that we must satisfy, for each x near any given x0,

∂ϕ

∂x4
=

∂ϕ

∂x3
=

∂ϕ

∂x2
= 0 and

∂ϕ

∂x1
6= 0 .

This set of partial differential equations have an obvious solution, which happens
to be globally defined on R4, namely, ϕ(x) := x1. This means that Proposi-
tion 5.3.9 can be satisfied globally. With this choice of ϕ, we compute

Lfϕ(x) = x2

L2
fϕ(x) = −a sinx1 − b(x1 − x3)

L3
fϕ(x) = −ax2 cosx1 − b(x2 − x4)

L4
fϕ(x) = ax2

2 sinx1 + (a cosx1 + b)(a sinx1 + b(x1 − x3)) + bc(x1 − x3)

LgL
3
fϕ(x) = bd .

The obtained mapping T (x) = (ϕ(x), Lfϕ(x), L2
fϕ(x), L3

fϕ(x))′ happens to de-
fine a global diffeomorphism from R4 to R4: its inverse is given by

T−1(z) = (z1, z2, z1 + (1/b)(z3 + a sin z1), z2 + (1/b)(z4 + az2 cos z1))′ .

Thus, with β(x) ≡ 1/bd and α(x) = −(1/bd)L4
fϕ(x), one obtains a global

feedback linearization. 2

Exercise 5.3.11 Property 5.23 in Proposition 5.3.9 says that Σ must have
relative degree n with respect to ϕ on the open set O, and in particular at the
point x0. In general, for any system (Σ) ẋ = f(x) + ug(x), together with a
smooth ϕ : X → R (which we think of as an “output map” for Σ), and a state
x0, one defines the relative degree of (Σ, ϕ) at x0 as the smallest positive integer



206 5. Feedback and Stabilization

r, if one exists, with the property that LgLifϕ(x) = 0 for each 0 ≤ i ≤ r−2 and
each x in some neighborhood O of x0 (this condition is vacuous if r = 1), and
LgL

r−1
f ϕ(x0) 6= 0. If for every i ≥ 0 it is the case that LgLifϕ(x) = 0 on some

neighborhood of x0, we will say that the relative degree exists but is infinite.
(a) Show that, if (Σ, ϕ) has a finite relative degree r around x0, then there
are real numbers µ0, . . . , µr, and ν 6= 0, with the following property: For each
continuous input u defined on some interval [0, τ ], τ > 0, let x(t) = φ(t, 0, x0, u)
be the solution of ẋ(t) = f(x(t))+u(t)g(x(t)), which is defined on some maximal
interval [0, ε), ε > 0, and let y(t) = ϕ(x(t)). Then y is class Cr, and its
derivatives at t = 0 satisfy y(i)(0) = µi for i = 0, . . . , r − 1 and y(r)(0) =
µr + νu(0). Note that this says that the first r − 1 derivatives of the “output”
y are independent of the input, but the rth derivative does depend on u.
(b) Show that for a controllable linear system ẋ = Ax + ub with ϕ(x) = cx
linear and c 6= 0, a finite relative degree is always defined, it is ≤ n, and it is
the smallest r so that cAr−1b 6= 0.
(c) Give an example of Σ, ϕ, x0 for which the relative degree does not exist. To
make the example interesting, you are not allowed to pick one where the relative
degree exists but is infinite. 2

Exercise 5.3.12 Suppose that x0 is an equilibrium state: f(x0) = 0. Show
that, if the system is feedback linearizable about x0, then it is possible to choose
T (x0) = 0 and α(x0) = 0. 2

Exercise 5.3.13 Suppose that x0 is an equilibrium state: f(x0) = 0. Prove
that the linear independence condition in the statement of Theorem 15 is equiva-
lent to asking that the pair (A, b) be controllable, where (A, b) is the linearization
of Σ about x = x0 and u = 0. (That is, A = f∗(x0) and b = g(x0).) 2

Exercise 5.3.14 Suppose that x0 is an equilibrium state: f(x0) = 0 and the
system Σ has dimension 2. Show that Σ is feedback linearizable about x0 if and
only if the linearization of Σ about x = x0 and u = 0 is controllable. 2

Exercise 5.3.15 Give an example of a Σ of dimension 3, and an equilibrium
state x0, such that the linearization of Σ about x = x0 and u = 0 is controllable
but Σ is not feedback linearizable about x0. 2

Exercise 5.3.16 Check that the system ẋ1 = sinx2, ẋ2 = x2
1 + u is feedback

linearizable about x0 = (0, 0)′. Next, find explicit expressions for T , α, and β,
so that both (5.15) and (5.16) are verified for all x ∈ O := R× (−π/2, π/2). 2

Exercise 5.3.17 Show that if the conditions of Theorem 15 hold, then the
distribution ∆k := ∆g,adfg,...,ad

k−1
f g is integrable, on some neighborhood of x0,

for each k = 1, . . . , n − 2. (Hint: For each ∆k, show that ψ = Ljfϕ, j =
0, . . . , n− k − 1 provide independent integrals, if ϕ is as in the proofs.) 2
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Exercise 5.3.18 3 Show that Σ is feedback linearizable in the restricted sense
that one may pick β(x) ≡ 1 if and only if, in addition to the conditions of
Theorem 15 (p. 200), one has that[

adkfg, adjfg
]
∈p ∆k , k = 0, . . . , n− 1 , j = 0, . . . , k − 1

(on some neighborhood of x0). 2

Exercise 5.3.19 3 A far more restrictive problem is that of asking that Σ
be linearizable by means of coordinate changes alone, i.e., that there be some
diffeomorphism defined in a neighborhood of x0, and a controllable pair (A, b),
so that T∗(x)f(x) = AT (x) and T∗(x)g(x) = b. This can be seen as feedback
linearization with α ≡ 0 and β ≡ 1. Show that such a linearization is possi-
ble if and only if g(x0), adfg(x0), . . . , adn−1

f g(x0) are linearly independent and
[adifg, adjfg] = 0 for all i, j ≥ 0. 2

5.4 Disturbance Rejection and Invariance*

A large amount of the linear systems literature has been devoted to the study
of synthesis problems in which a feedback law u = Fx is sought to achieve
objectives other than —or more often, in addition to— stabilization or pole
assignment.

This section describes one of these objectives, the “disturbance rejection”
(sometimes also called “disturbance decoupling”) problem. The method of so-
lution illustrates the application of what is sometimes called the (linear-) “geo-
metric approach” to linear control. This approach is based on the use of certain
spaces that are invariant under the A matrix, modulo the action of controls. Il-
lustrating the use of these spaces is our main purpose here; the material will
not be used in later sections.

Still K denotes an arbitrary field, and unless otherwise stated, (A,B) is an
arbitrary pair, A ∈ Kn×n, B ∈ Kn×m. For the case of no controls, B = 0, the
following reduces to the classical notion of invariant subspace. We let B = colB,
i.e. imB when the latter is thought of as a map

B : U = Km → X = Kn .

Definition 5.4.1 A subspace V of X = Kn is A-invariant mod B if

AV ⊆ V + B

One says equivalently that V is (A,B)-invariant. 2

Since the concept does not depend on B itself but only on its image B,
the alternative terminologies A-invariant mod B and (A,B)-invariant are also
used.

* This section can be skipped with no loss of continuity.
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Exercise 5.4.2 If V is A-invariant mod B and if B ⊆ V then V must also
contain the controllable subspace R(A,B). 2

By definition, V is (A,B)-invariant if and only if for each x ∈ V there exist
a z ∈ V and a u ∈ U such that

Ax = z +Bu .

For a discrete-time system with matrices (A,B), this implies that for each state
x in V there is another state z in V such that x;

1
z (use −u as a control), and

hence, by induction, the state may be kept in V for arbitrary long times. An
analogous statement holds for continuous-time systems; the following observa-
tion is useful in establishing it:

Lemma 5.4.3 The subspace V of X is A-invariant mod B if and only if there
exists a matrix F ∈ Km×n such that V is (A+BF )-invariant.

Proof. Sufficiency is trivial. To prove necessity, let {v1, . . . , vr} be a basis of
the A-invariant mod B subspace V. First choose for each i some ui ∈ U such
that

Avi +Bui ∈ V .

Now define on V
Fvi := ui

and let F be arbitrary on a complement of V.

The matrix F is interpreted as a feedback transformation u = Fx.

Exercise 5.4.4 Let Σ be a linear time-invariant continuous-time system (A,B).
Prove that the subspace V is A-invariant mod B iff for each x ∈ V and each
τ > 0 there is some ω ∈ U[0,τ) such that

ξ(t) ∈ V for all t ∈ [0, τ ]

if ξ is the resulting path ψ(x, ω). 2

The above concept of relative invariance arose originally when treating the
following problem. For concreteness we deal with continuous-time systems, but
the discrete-time case is entirely analogous.

Consider linear time-invariant continuous-time systems with outputs, over
R, with m+ l inputs partitioned as (u, v):

ẋ = Ax+Bu+ Ev y = Cx , (5.28)

where v is to be interpreted as a “disturbance.” This disturbance cannot be
measured directly by the controller, and the objective is to design a feedback
law

u = Fx+ u′
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such that v has no effect whatsoever on the output, no matter what u′ or the
initial condition x0 of (5.28) are.

For instance, in the system

ẋ1 = x2 + u

ẋ2 = v

y = x1

the disturbance v is not decoupled from the output —in particular, for x0 = 0
and u ≡ 0 one has ÿ = v. But using the feedback transformation

u = −x2 + u′

there results a system for which

y(t) = x0
1 +

∫ t

0

u′(s)ds

is independent of v.
In general terms, then, we wish to have

y(t) = Cet
eAx0 + C

∫ t

0

e(t−τ)
eA(Bu′(τ) + Ev(τ)) dτ

independent of v, for some matrix of the form

Ã = A+BF .

This is equivalent to the requirement that

C

∫ t

0

e(t−τ)
eAEv(τ) dτ = 0

for all (measurable and essentially bounded) v : [0, T ] → Rl, all T ≥ 0, and
all t ∈ [0, T ]. Considering this expression as the i/o behavior of the system
(Ã, E,C) with zero initial state, we see from Lemma 2.7.13 that the problem
becomes:

Find a matrix F so that C(A+BF )iE = 0 for all i ≥ 0. (DRP)

In principle, the problem of deciding whether there is such an F (and finding
one in that case) is highly nonlinear in terms of the data A,B,C,E; however,
the following Lemma transforms it into a geometric question. Let E := imE.

Lemma 5.4.5 The DRP problem is solvable if and only if there exists a sub-
space V ⊆ Rn so that

E ⊆ V ⊆ kerC

and
V is A−invariant mod B .
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Proof. Assume that there is such a subspace V. By Lemma 5.4.3 there exists
some F so that V is A+BF -invariant. Thus, for all i ≥ 0,

(A+BF )iE ⊆ (A+BF )iV ⊆ V ⊆ kerC ,

and therefore, C(A+BF )iE = 0, as wanted. Conversely, given such an F , it is
only necessary to define

V := R(A+BF,E) ,
which has the desired properties.

Deciding whether there is such a subspace turns out to be easy, once another
concept is introduced. For any given (A,B,C), we consider the set of possible
(A,B)-invariant subspaces V which are included in kerC. There always is at
least one such subspace, since V = 0 is (A,B)-invariant. We order these sub-
spaces by inclusion. If V1 and V2 are two maximal spaces with these properties,
then their sum is again an (A,B)-invariant subspace included in kerC, so, by
maximality, we have that

V1 = V1 + V2 = V2 .

In other words, there is a unique such maximal (A,B)-invariant subspace in-
cluded in kerC. This is denoted

V∗(A,B,C) .

Furthermore, any V which is (A,B)-invariant and satisfies V ⊆ kerC must be a
subspace of V∗(A,B,C), by the same argument. So if any such space contains
E , V∗ does also. Thus, we have proved the following result.

Theorem 16 The DRP problem is solvable iff E ⊆ V∗(A,B,C). 2

The space V∗ can be calculated recursively, as shown by the next problem.
On a computer, it is necessary then only to solve a sequence of linear equations
in order to find this space, and a further Gaussian elimination can be used to
check the property that E ⊆ V∗(A,B,C).

Exercise 5.4.6 Consider the following algorithm:

V 0 := kerC ,

and, for i = 1, . . . , n,

V i := kerC
⋂
A−1(B + V i−1) .

Prove that V n = V∗(A,B,C). 2

Remark 5.4.7 For motivation regarding the DRP problem, the reader might
want to review the material on PID control in Chapter 1. The objective there
was somewhat weaker than here, however, in that it was only required that
the effect of disturbances be asymptotically damped, as opposed to completely
canceled. Such a more realistic objective can also be studied with geometric
techniques. We picked cancellation merely as the simplest illustration of these
tools. 2
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5.5 Stability and Other Asymptotic Notions

In studying stability, we restrict attention to time-invariant systems only. Time-
varying system stability is an important area, and many results that are rela-
tively easy to establish in the time-invariant case become much more difficult
and interesting in the general time-varying case. However, the main system
theoretic ideas are already illustrated by the case we treat here, while many
technical complications can be avoided. The objective here merely is to provide
a basic introduction to these ideas in the context of control problems.

From now on in this chapter, and unless otherwise stated, system means
time-invariant topological system in the sense of Definition 3.7.1, that is, we
ask that trajectories depend continuously on the initial state. This provides the
right generality for establishing many of the basic facts. Readers interested only
in continuous-time systems may simply substitute “continuous-time system” for
“topological system,” but this does not simplify the proofs in any substantial
manner. When dealing with stability notions for continuous-time systems and
for linear systems, unless otherwise stated we will assume we are working over
K = R.

The next definition is an infinite-time version of that in Definition 3.7.5.

Definition 5.5.1 Let y, z ∈ X, and assume that V is a subset of X containing
both y and z. Then, z can be asymptotically controlled to y without
leaving V if there exists some control ν ∈ U[0,∞) admissible for z so that:

• For the path ζ := ψ(z, ν),
lim
t→∞

ζ(t) = y

• ζ(t) ∈ V for all t ∈ T+.

When V = X, one just says that z can be asymptotically controlled to y. 2

Definition 5.5.2 Let Σ be a topological system and x0 an equilibrium state.
Then Σ is:

• Locally asymptotically controllable to x0 if for each neighborhood V
of x0 there is some neighborhood W of x0 such that each x ∈ W can be
asymptotically controlled to x0 without leaving V.

• Globally asymptotically controllable to x0 if it is locally asymptoti-
cally controllable and also every x ∈ X can be asymptotically controlled to
x0.

For systems with no control, the more standard terminology is to say that the
system Σ is (locally or globally) asymptotically stable with respect to x0, or
that x0 is an asymptotically stable state for the system. 2
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For linear systems, and unless otherwise stated, we always take x0 = 0 when
considering asymptotic controllability (or stability).

We use also the term asycontrollable instead of asymptotically controllable.
The interpretation of Σ being asymptotically controllable is that it should be
possible to drive states close to the desired x0 (or arbitrary states, in the global
case) into x0 without large excursions.

Asycontrollability is a necessary condition for feedback stabilizability, in the
following sense:

Lemma/Exercise 5.5.3 Consider the continuous-time system Σ:

ẋ = f(x, u)

of class C1 and let x0 ∈ X. Assume that there exists some function

k : X → U

of class C1 so that x0 is a local (respectively, global) asymptotically stable state
for the “closed-loop system”

ẋ = f(x, k(x)) .

Then Σ is locally (respectively, globally) asymptotically controllable to x0. The
analogous result holds for discrete-time systems of class C0. 2

Remark 5.5.4 One could consider also a weaker notion, dropping the large
excursion part and requiring only that states close to x0 be asymptotically
controllable to x0. For systems with no control, the standard terminology is then
that x0 is an attractor. For linear systems attractivity results in an equivalent
definition (see below). 2

Proposition 5.5.5 Consider the differential equation

ẋ = Ax

where A ∈ Rn×n, thought of as a continuous-time linear system Σ with no
controls. Then, the following statements are equivalent:

• Σ is locally asymptotically stable.

• Σ is globally asymptotically stable.

• A is Hurwitz.

Analogous statements hold for the discrete-time system x+ = Ax and the dis-
crete-time Hurwitz (convergent) property.
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Proof. First we observe that the local notion implies the global one in the
linear case. Indeed, if there exists some δ > 0 so that each solution with initial
condition ‖z‖ < δ converges to the origin, then for any initial condition y 6= 0,
letting

z :=
δ

2 ‖y‖
y ,

it follows that etAz → 0, and therefore also that

etAy =
2 ‖y‖
δ

etAz → 0 .

Since all solutions of ẋ = Ax converge to zero if and only if A is Hurwitz,
by Proposition C.5.1 in Appendix C.5 on stability of linear equations, it is only
necessary to prove that, if A is Hurwitz, then for each ε > 0 there is a δ > 0
such that ‖ξ(t)‖ ≤ ε for all t > 0 whenever ‖ξ(0)‖ < δ. Consider the function

α(t) :=
∥∥etA∥∥ , t ≥ 0 .

Since A is Hurwitz, α(t) → 0 as t → ∞, so by continuity of α, it must be
bounded, α(t) ≤ K for all t. Since

‖ξ(t)‖ ≤ α(t) ‖ξ(0)‖ ≤ K ‖ξ(0)‖ ,

we may pick δ := ε/K. The discrete-time case is entirely analogous.

Proposition 5.5.6 Let Σ = (A,B) be a continuous-time (respectively, dis-
crete-time) time-invariant linear system. The following statements are then
equivalent:

1. Σ is globally asymptotically controllable (to 0).

2. Σ is locally asymptotically controllable (to 0).

3. Each root of χ
u

has negative real part (respectively, has magnitude less
than 1).

4. There is some F ∈ Rm×n such that A + BF is Hurwitz (respectively,
discrete-time Hurwitz).

Proof. We only prove the continuous-time case, the discrete-time case being
analogous. As in the proof of the previous lemma, the local and global properties
(1) and (2) are equivalent, since controlling z asymptotically to zero using the
control ω is equivalent to controlling

2 ‖y‖
δ

z

using the scaled control
2 ‖y‖
δ

ω .
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Assume now that (1) holds. Pick any

z2 ∈ Rn−r

where the integer r is as in the Kalman controllability decomposition, Lemma
3.3.3, and consider

x := T

(
0
z2

)
where T is the similarity used in that Lemma. By assumption, there is some
control ω on [0,∞) such that ξ(t) → 0, where ξ := ψ(x, ω). It follows that also
ζ(t) := T−1ξ(t) converges to zero. But ζ(t) has the block form(

ζ1(t)
ζ2(t)

)
with

ζ̇2(t) = A3ζ2(t) , ζ2(0) = z2 .

Since z2 was arbitrary, this means that A3 in Lemma 3.3.3 must be Hurwitz, so
(3) is proved.

That (3) implies (4) is a consequence of Theorem 13 (Pole-Shifting), since
the polynomial χ

1
in the statement of that Theorem can be made Hurwitz by

an appropriate choice of the feedback F .
Finally, (4) implies (2) because of Lemma 5.5.3; explicitly, by Proposition

5.5.5, ẋ = (A + BF )x is globally asymptotically stable. Given any x ∈ X,
consider the solution ξ of this closed-loop system with ξ(0) = x. The control

ω(t) := Fξ(t)

is then as desired for global asymptotic controllability.

Thus, in the linear case we may check that Σ is asymptotically controllable
in two steps: First obtain the decomposition in Lemma 3.3.3, and then check
that A3 is Hurwitz. Since global and local notions coincide, we talk in the linear
case just of asymptotically controllable or asymptotically stable systems.

The equivalence of (4) with Σ being global asymptotically controllable is a
characteristic of linear systems. Because of this equivalence, one often refers to
asymptotically controllable linear systems as stabilizable systems. For nonlinear
systems, being asymptotically controllable is not in general equivalent to the
existence of a stabilizing feedback law u = k(x), at least if k is required to be
smooth or even continuous; one exception is the local result presented later,
which applies if the linearization at the origin is itself already asymptotically
controllable. See Section 5.9 below for further discussion of this point.

There is an analogue of the Hautus controllability condition, Lemma 3.3.7,
that applies to asycontrollability:
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Exercise 5.5.7 Prove that the continuous-time (respectively, discrete-time)
linear time-invariant system Σ = (A,B) is asymptotically controllable if and
only if

rank [λI −A,B] = n

for all λ ∈ C with nonnegative real part (respectively, with magnitude greater
than or equal to 1). 2

Exercise 5.5.8 State and prove results analogous to Proposition 3.3.13 for the
distance to the sets of non-asymptotically controllable discrete-time or contin-
uous-time time-invariant linear systems. 2

Exercise 5.5.9 3 Let Sc,dtH
n,m , respectively Sc,Hn,m, denote the set of all control-

lable pairs (A,B) ∈ Scn,m for which A is discrete-time Hurwitz (convergent),
respectively Hurwitz, and consider the map

β : (A,B) →
(
(A− I)(A+ I)−1, (A+ I)−1B

)
.

Prove that this map induces a bijection between Sc,dtH
n,m and Sc,Hn,m. Hint: Use

the Hautus criterion to check controllability of β(A,B). 2

5.6 Unstable and Stable Modes*

The conditions for a linear time-invariant system to be asymptotically control-
lable can be restated in various manners. In this Section we prove a result that
can be read as saying that a system is asymptotically controllable if and only if
its unstable modes are controllable. For simplicity, we let K = R, though many
of the results could be stated in far more generality. Accordingly, “polynomial”
will mean polynomial with real coefficients.

Assume that χ = χ(z) is a polynomial that factors as

χ = χ
g
χ
b

in such a way that χ
g

and χ
b

(read “the good part” and “the bad part” of χ)
have no common complex roots. By the Euclidean algorithm, we know then
that there exist two polynomials p and q such that

pχ
g
+ qχ

b
= 1 ,

and therefore, by specialization, any square matrix C satisfies

I = p(C)χ
g
(C) + q(C)χ

b
(C) , (5.29)

where I is the identity matrix of the same size as C. Further, the product
decomposition of χ gives that χ(C) = χ

g
(C)χ

b
(C) = χ

b
(C)χ

g
(C), so the impli-

cation
χ(C) = 0 ⇒ χ

b
(C)χ

g
(C) = 0 (5.30)

holds.
* This section can be skipped with no loss of continuity.
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Lemma 5.6.1 For any decomposition into two polynomials χ
b
and χ

g
as above,

and any matrix C for which χ(C) = 0,

imχ
g
(C) = kerχ

b
(C) .

Proof. If χ
b
(C)x = 0, then it follows from (5.29) that

x = p(C)χ
g
(C)x = χ

g
(C)x̃ ,

where x̃ := p(C)x. Conversely, if x = χ
g
(C)y, then

χ
b
(C)x = χ

b
(C)χ

g
(C)y = 0

from (5.30).

The Lemma applies in particular when χ is the characteristic polynomial of
C.

We will say that a polynomial χ is a Hurwitz polynomial if all its roots
have negative real part. The characteristic polynomial of C is Hurwitz if and
only if C is a Hurwitz matrix. Similarly, one can define convergent (discrete-
time Hurwitz) polynomials.

Recall that the minimal polynomial mC = mC(z) of a matrix C is the
(unique) monic polynomial of smallest possible degree that annihilates C, that
is,

mC(C) = 0 ,

and that mC divides any polynomial which annihilates C. Since also the roots of
the minimal polynomial are (in general with different multiplicities) the eigen-
values of C, the following holds:

Lemma 5.6.2 The matrix C is Hurwitz (or convergent) if and only if there is
some Hurwitz (respectively, convergent) polynomial χ so that χ(C) = 0. 2

Given any matrix A, we now decompose its characteristic polynomial χ as
χ
g
χ
b
by letting χ

g
collect all of the roots with negative real part. If discrete-time

systems are of interest, one picks a decomposition into roots with magnitude less
than one and magnitude ≥ 1. That χ

g
(and hence also the quotient χ

b
= χ/χ

g
)

has real coefficients follows from the fact that complex conjugate roots appear
in pairs.

For a linear system (A,B), we have introduced at this point two different
factorizations of the characteristic polynomial of A:

χ = χ
c
χ
u

= χ
g
χ
b

one corresponding to the Kalman controllability decomposition (and depending
on B) and the other to stability (independent of B, but dependent on the notion
of stability, such as discrete-time or continuous-time, being used).
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In terms of these polynomials, the equivalence between (1) and (3) in Propo-
sition 5.5.6, which states that the system is asymptotically controllable if and
only if each root of χ

u
has negative real part, can be restated as:

χ
u

divides χ
g

as a polynomial. On the other hand, the following property is easy to establish
for the Kalman controllability decomposition:

Lemma/Exercise 5.6.3 Let χ be any polynomial, and pick any pair (A,B).
Let A3 be any matrix as in the controllability decomposition (3.6) in Chapter
3. Then,

imχ(A) ⊆ R(A,B) ⇔ χ(A3) = 0 . 2

We have the following characterization of asymptotic controllability:

Proposition 5.6.4 Let (A,B) be a time-invariant continuous-time or discrete-
time linear system. The following properties are equivalent:

1. (A,B) is asymptotically controllable.

2. imχ
g
(A) ⊆ R(A,B).

3. kerχ
b
(A) ⊆ R(A,B).

Proof. That the last two properties are equivalent follows from Lemma 5.6.1.
By Lemma 5.6.3, we must prove that the system is asymptotically controllable
if and only if

χ
g
(A3) = 0 (5.31)

for some A3 as in that Lemma. But if (5.31) holds, then Lemma 5.6.2 implies
that A3 is Hurwitz (or convergent, in the discrete-time case), and so the system
is indeed asymptotically controllable. Conversely, if the system is asymptotically
controllable, then χ

u
, the characteristic polynomial of A3, divides χ

g
, from which

(5.31) holds because of the Cayley-Hamilton Theorem.

The space imχ
g
(A) = kerχ

b
(A), or more precisely the kernel of the cor-

responding complex mapping, can be thought of as the set of unstable modes
of the system, as in the next exercise. Thus, the above result can be restated
roughly in the following way:

A linear system is asymptotically controllable if and only if its un-
stable modes are controllable

which is an intuitive fact: Stable modes decay by themselves, and unstable
modes can be controlled to zero.

Exercise 5.6.5 Let v be an eigenvector of A. Prove that v corresponds to an
eigenvalue with nonnegative real part if and only if it is in the kernel of χ

b
(A)

seen as a complex matrix. 2
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The following exercise makes use of the concept of (A,B)-invariant subspace
introduced in Section 5.4. It deals with the question of deciding, for the time-
invariant continuous-time linear system

ẋ = Ax+Bu , y = Cx ,

whether there is any feedback law u = Fx so that

Cξ(t) → 0 as t→∞

for every solution of
ẋ = (A+BF )x .

In other words, the state may not be stabilized, but the observations should be.
When C = I, this is just the stabilization problem, and asymptotic controlla-
bility is necessary and sufficient. More generally, the result of the exercise can
be interpreted as saying that unstable modes must be either controllable or not
“observable” by C.

Exercise 5.6.6 3 Show that the above problem is solvable if and only if

kerχ
b
(A) ⊆ R(A,B) + V∗(A,B,C) . 2

5.7 Lyapunov and Control-Lyapunov Functions

For nonlinear systems, the best one often can do in order to establish that a
system is asymptotically stable or asymptotically controllable is to use the Lya-
punov function method. The intuitive idea behind this method is that, if there
exists some sort of “energy” measure of states such that this energy dimin-
ishes along suitably chosen paths, then the system can be made to approach a
minimal-energy configuration.

We first illustrate the basic ideas of the Lyapunov direct method with the
simplest (and most classical) case. Assume that X is an open subset of Rn, f is
a vector field defined on X, and V : X → R is a differentiable function. Consider
the new function

LfV : X → R , (LfV )(x) := ∇V (x) f(x)

(we drop the parentheses and write simply LfV (x); also, we often insert a dot
and write “∇V (x) · f(x)” in order to help readability). This is the directional,
or Lie, derivative of V in the direction of the vector field f (also considered in
Section 4.1). It is the expression that appears when taking the derivative of V
along a path of the system with no controls ẋ = f(x) and state space X. That
is, if ξ is any path of ẋ = f(x), then

dV (ξ(t))
dt

= LfV (ξ(t)) .
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The Lyapunov stability method is based on the following observation: If there
is a function V such that

LfV (x) < 0

for all nonzero x, then V (ξ(t)) must decrease. If in addition one can guarantee
that V (x) → 0 implies x→ 0, then this means that ξ(t) → 0. The main point of
this is that there is no need to compute explicitly the solutions of the differential
equation (hence the term direct method). On the other hand, a certain amount
of ingenuity and/or physical intuition is needed in order to come up with a
suitable “energy” function V .

We will prove the basic results for discrete as well as continuous-time sys-
tems, and in fact, with the appropriate definitions, for arbitrary topological sys-
tems. Moreover, we give a control-theoretic version of the results. To avoid con-
fusion with the more classical term, we use the terminology “control-Lyapunov
function” for systems with controls, and “Lyapunov function” for systems with-
out controls.

Definition 5.7.1 A local control-Lyapunov function for the system Σ
(relative to the equilibrium state x0) is a continuous function V : X → R for
which there is some neighborhood O of x0 such that the following properties hold:

1. V is proper at x0, that is,

{x ∈ X | V (x) ≤ ε}

is a compact subset of O for each ε > 0 small enough.

2. V is positive definite on O:

V (x0) = 0 , and V (x) > 0 for each x ∈ O, x 6= x0 .

3. For each x 6= x0 in O there is some time σ ∈ T , σ > 0, and some control
ω ∈ U[0,σ) admissible for x such that, for the path ξ = ψ(x, ω) correspond-
ing to this control and this initial state,

V (ξ(t)) ≤ V (x) for all t ∈ [0, σ)

and
V (ξ(σ)) < V (x) .

A global control-Lyapunov function for Σ (relative to x0) is a continuous
V which is (globally) proper, that is, the set

{x ∈ X | V (x) ≤ L}

is compact for each L > 0, and such that (2) and (3) are satisfied with O = X.
For systems without controls, we say simply (local or global) Lyapunov

function. 2
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Remark 5.7.2 Properness amounts to the requirement that V −1(C) be com-
pact whenever C ⊆ R is compact. When X = Rn, a continuous V : Rn → R≥0 is
proper if and only if V −1(C) is bounded whenever C is bounded, or equivalently,

lim
‖x‖→∞

V (x) = ∞ .

A V which satisfies this last property, equivalent to properness in the special
case X = Rn, is also said to be weakly coercive or radially unbounded . 2

Local control-Lyapunov functions are often only specified in a neighborhood
of x0. If the state space is well-behaved enough, they can be extended while
preserving the desired properties. The next exercise illustrates this.

Exercise 5.7.3 Let V : O → R be a continuous and positive definite function
defined on some neighborhood O of x0, where X = Rn. Assume that V satisfies
property (3) in Definition 5.7.1. Show that, then, there exists a local control-
Lyapunov function W for the same system, with W = V on some neighborhood
of x0. (Hint: For δ > 0 small enough, let W = V on the ball Bδ(x0) and
W (x) := V (δ(x−x0)/

∥∥x− x0
∥∥) outside. Verify the definition of properness for

ε less than inf{V (x),
∥∥x− x0

∥∥ = δ}.) 2

The main result is as follows:

Theorem 17 If there exists a local (respectively, global) control-Lyapunov func-
tion V for Σ, then Σ is locally (respectively, globally) asymptotically controllable.

Proof. Assume that V is a local control-Lyapunov function. Choose an α0 > 0
so that {x | V (x) ≤ α0} is a compact subset of O (property (1) in Definition
5.7.1). We first remark that, if ξ is a path on [0,∞) such that

V (ξ(t)) → 0 as t→∞ ,

then, necessarily,
ξ(t) → x0 .

This fact is, in turn, a consequence of the following observation:
Claim 1: For each open neighborhood W of x0 there is some β > 0 such

that the set
{x | V (x) ≤ β}

is included in W. Indeed, if this were not the case, there would exist a sequence
{xn} of elements of X with the properties that xn /∈ W for all n but

V (xn) → 0 as n→∞ .

Without loss of generality, we assume that all xn are in the set

K := Wc
⋂
{x | V (x) ≤ α0}
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(we denote the complement of a set S as Sc), which is itself compact. So {xn}
has a convergent subsequence in K,

xnk
→ x0 ,

and by continuity of V , it follows that V (x0) = 0, so by positive definiteness
x0 = x0. But then x0 is in K, contradicting the fact that it is in W. This proves
the claim.

For any x ∈ X, we say that z ∈ X is nicely reachable from x if there exist a
σ > 0 and a ω ∈ U[0,σ) such that for the trajectory ξ := ψ(x, ω) it holds that
ξ(σ) = z,

V (ξ(t)) ≤ V (x) for all t ∈ (0, σ) ,

and
V (ξ(σ)) < V (x) .

Property (3) in the definition of control-Lyapunov function says that for each
state y ∈ O, y 6= x0 there is some state nicely reachable from y. Note also that,
if z is nicely reachable from x, and if y is nicely reachable from z, then y is also
nicely reachable from x. For each x ∈ O, we let

B(x) := inf{V (z) | z is nicely reachable from x} .

By the above remarks, necessarily B(x) < V (x) if x 6= x0.
Claim 2:

V (x) < α0 ⇒ B(x) = 0 .

Indeed, suppose that there is some x (necessarily 6= x0), with V (x) < α0 but

B(x) = α > 0 .

Because of the choice of α0, necessarily x ∈ O. Let {zn} be a sequence of
elements nicely reachable from x such that

V (zn) → α

monotonically as n→∞. Thus, all the zn are in the compact set

C := {z | V (z) ≤ V (x)} ,

and, without loss of generality, we may assume then that the sequence is con-
vergent,

zn → z, V (z) = α .

Since α 6= 0, also z 6= x0. Further, since

α < V (x) < α0 ,

also z ∈ O, so there is some y that is nicely reachable from z. We pick an ε > 0
such that both

V (z) < V (x)− ε and V (y) < V (z)− ε (5.32)
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and we let ν ∈ U[0,σ) be admissible for z and such that the path ζ := ψ(z, ν) is
so that ζ(σ) = y and

V (ζ(t)) ≤ V (z) for all t ∈ (0, σ] .

Since V is uniformly continuous on the compact set C, there is a δ > 0 such
that

|V (a)− V (b)| < ε whenever d(a, b) < δ and a, b ∈ C .

Using that Σ is a topological system, we know then that there is some integer
N such that ν is admissible for zN and such that

d∞(ζN , ζ) < δ ,

where ζN is the path ψ(zN , ν). So from the choice of δ, it follows that

|V (ζN (t))− V (ζ(t))| < ε (5.33)

for each t ∈ [0, σ]. We claim that the state yN := ζN (σ) is nicely reachable from
x; this will give a contradiction, because

|V (yN )− V (y)| < ε

together with
V (y) < B(x)− ε

imply that V (yN ) < B(x), contradicting the definition of B(x). Concatenating
with ν a ω that (nicely) controls x to zN , it is only necessary to prove that

V (ζN (t)) ≤ V (x) for all t ,

but this is a consequence of (5.33) and (5.32). The contradiction is due to the
assumption that α = B(x) > 0. This establishes Claim 2.

We next claim that, if V (x) < α0, x 6= x0, then there is a sequence of states

{xn, n ≥ 0}

such that x0 = x, an increasing sequence of times tn ∈ T+, t0 = 0, and controls

ωn ∈ U[tn,tn+1)

such that tn →∞ as n→∞ and so that for each n ≥ 0 the following properties
hold:

1. ωn is admissible for xn.

2. φ(tn+1, tn, xn, ωn) = xn+1.

3. With ξn := ψ(xn, ωn), V (ξn(t)) ≤ 2−nV (x) for all t ∈ [tn, tn+1].
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Assume for a moment that the claim is proved. Then, we may define a control ω
on [0,∞) as the concatenation of the ωn’s. This control is admissible for x. This
is verified by checking that each restriction to an interval [0, τ) is admissible:
Since tn → ∞, there is some n so that tn > τ ; thus, the restriction to [0, τ)
is also the restriction of a finite concatenation of the ωn and hence is indeed
admissible. Let (ξ, ω) be the corresponding trajectory; since ξ is a concatenation
of the ξn, it follows that

V (ξ(t)) → 0 as t→∞

and therefore also that ξ(t) → x0.
To prove the claim, it will be sufficient by induction to show that for each

x ∈ X for which
0 < V (x) < α0

there is some σ > 1, and some control ω of length σ, admissible for x, such that
the path ξ := ψ(x, ω) satisfies

V (ξ(t)) ≤ V (x) for all t

and also
V (ξ(σ)) < (1/2)V (x) .

By continuity of V at x0, there is some ε > 0 such that

V (z) < (1/2)V (x) whenever d(z, x0) < ε .

Let ω0 ∈ U[0,1) be a constant control such that

φ(t, 0, x0, ω0) ≡ x0 .

Since Σ is topological, there is some δ > 0 such that, for each y ∈ X with
d(y, x0) < δ, necessarily ω0 is admissible for y and the path ζ := ψ(y, ω0)
satisfies d(ζ(t), x0) < ε for all t, and hence by the choice of ε so that

V (ζ(t)) < (1/2)V (x)

for all t ∈ [0, 1]. Because of Claim 1, there is some δ0 > 0 with the property
that

V (y) < δ0 ⇒ d(y, x0) < δ .

Now use the fact that B(x) = 0. There is, then, some τ > 0 and some control
ω1 ∈ U[0,τ) such that the path ξ1 := ψ(x, ω1) satisfies that

V (ξ1(t)) ≤ V (x) for all t ∈ [0, τ ]

and so that V (ξ1(τ)) < δ0; hence, because of the choice of δ, also

d(ξ1(τ), x0) < δ .



224 5. Feedback and Stabilization

The concatenation of ω1 and (a translate of) ω0 is then as desired.
Now we prove that Σ is locally asymptotically controllable. Let V be any

neighborhood of x0. Choose some α1 > 0 such that

{y | V (y) < α1} ⊆ V ,

and let
α := min{α0, α1} .

We take
W := {y | V (y) < α}

in the definition of locally asymptotically controllable. For any y ∈ W, y 6= x0,
the previous claim applies, because V (y) < α0. Thus, there is some trajectory
(ξ, ω) on [0,∞) such that ξ(0) = y,

ξ(t) → x0 as t→∞ ,

and
V (ξ(t)) ≤ V (y) < α1 for all t .

In particular, ξ(t) ∈ V for all t.
Assume finally that V is a global control-Lyapunov function, and pick any

y ∈ X. Let β := V (y). The only fact about O and α0 used in the above proof,
besides property (3) in the definition of control-Lyapunov function, was that
the set

{y | V (y) ≤ α0}

is compact and is contained in O. So here we may take in particular O := X

and α0 := β + 1. Pick, in the previous paragraph, V := X. Then α1 := β + 1
can be used, and so with W as above we have that y ∈ W and hence that y is
asymptotically controllable to x0.

The question of establishing converses to Theorem 17 is a classical one, not
studied in this text; see the discussion at the end of the chapter. Property (3)
in the definition of control-Lyapunov function (V decreases along appropriate
trajectories) cannot be checked, for continuous-time systems, without solving
differential equations. As discussed in the introduction to this section, Lyapunov
analysis relies on a direct criterion for decrease, expressed infinitesimally in
terms of directional derivatives of V along control directions, as follows.

Lemma 5.7.4 Let Σ be a continuous-time system and V : X → R a continuous
function. Assume that O ⊆ X is an open subset for which the restriction of V
to O is continuously differentiable and properties (1) and (2) in the definition
of control-Lyapunov function hold. Then, a sufficient condition for V to be a
control-Lyapunov function is that for each x ∈ O, x 6= x0, there exist some
u ∈ U such that

∇V (x).f(x, u) < 0 . (5.34)

If this property holds with O = X, V is a global control-Lyapunov function.
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Proof. We need only to establish property (3) in the definition. Pick any
x ∈ O, x 6= x0, and any u ∈ U such that equation (5.34) holds. For small σ > 0,
the control on [0, σ] with ω(t) ≡ u is admissible for x. We let (ξ, ω) be the
corresponding trajectory. By continuity of ∇V and of f(·, u), we may choose σ
small enough so that

dV (ξ(t))
dt

= ∇V (ξ(t)).f(x, ω(t)) < 0

for all t ∈ [0, σ]. It follows that V (ξ(t)) < V (x) for all t > 0.

Observe that, for systems with no controls, condition (5.34) amounts to the
requirement that LfV (x) < 0 for all x ∈ O, x 6= x0; this is the most classical case
studied for differential equations. For continuous-time systems ẋ = f(x) with no
controls, it is customary to write just “V̇ (x)” instead of (LfV )(x) = ∇V (x)f(x).

Example 5.7.5 Consider the system with X = R2, U = R, and equations

ẋ1 = x2

ẋ2 = − sinx1 + u

where we take all notions with respect to the equilibrium state x0 = 0 (and
corresponding input u0 = 0). This corresponds to a model for a pendulum
where we do not identify states whose angles differ by 2π. The squared norm

V (x) := x2
1 + x2

2

is a positive definite proper smooth function on R2, so we test to see if it is a
local or global control-Lyapunov function for Σ. Using the criterion in Lemma
5.7.4, we check the sign of

∇V (x).f(x, u) = 2x1x2 − 2x2 sinx1 + 2x2u .

When x2 6= 0, this expression is indeed negative for an appropriate choice of
u. But at any x such that x2 = 0, it vanishes identically. Thus, the criterion
cannot be applied. After some trial and error (typical of the use of the Lyapunov
function technique), we try the alternative

V (x) := 2x2
1 + x2

2 + 2x1x2 ,

which is still smooth, positive definite, and proper (since it is also a positive
definite quadratic form). Now however,

∇V (x).f(x, u) = (4x1 + 2x2)x2 + (2x1 + 2x2)(− sinx1 + u) .

When x1+x2 6= 0, again the expression can be made negative by an appropriate
choice of u. But the expression is automatically negative for any other nonzero
x. Indeed, if x1 +x2 = 0 then the second term vanishes, but the first one is now
−2x2

2, which is negative unless x2 = 0, which can only happen if x1 = −x2 = 0
too. Thus, the expression is negative except at x = 0, and V is a global control-
Lyapunov function for Σ. So Σ is globally asymptotically controllable. 2
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For linear systems, one often considers quadratic Lyapunov functions. As
usual, we write P > 0 to indicate that a matrix P is symmetric and positive
definite, P ≥ 0 to indicate positive semidefinite, and P ≤ 0, P < 0 for negative
semidefinite and definite respectively. We remind the reader that, unless oth-
erwise stated, asymptotic stability notions and Lyapunov functions for linear
systems are always meant with respect to x0 = 0.

Lemma/Exercise 5.7.6 Let Σ be a linear (time-invariant) continuous-time
system with no controls, ẋ = Ax, and let P > 0, P ∈ Rn×n. Prove that the
condition

A′P + PA < 0

is sufficient for V (x) := x′Px to be a Lyapunov function for Σ. 2

Lemma/Exercise 5.7.7 Let Σ be a linear (time-invariant) discrete-time sys-
tem with no controls over R, x+ = Ax, and let P > 0, P ∈ Rn×n. Prove that
the condition

A′PA− P < 0

is sufficient for V (x) := x′Px to be a Lyapunov function for Σ. 2

Condition (5.34) in Lemma 5.7.4 is often too restrictive. The next condition
is less restrictive, but applies only to systems with no controls. The strict
inequality is replaced by a weak inequality, but an extra condition is imposed.
The application of Theorem 17 to the type of function described in the next
Lemma is a weak version of what is often called the LaSalle invariance principle.

Lemma 5.7.8 Assume that Σ is a continuous-time system with no controls,
that V : X → R is a continuously differentiable map, and that the open set
O ⊆ X is such that properties (1) and (2) in the definition of Lyapunov function
hold. Then, V is a (local) Lyapunov function if the following properties hold:

1. For each x ∈ O,
∇V (x).f(x) ≤ 0 (5.35)

2. whenever ξ is a trajectory on the infinite interval I = [0,∞) for which

∇V (ξ(t)).f(ξ(t)) ≡ 0 for all t , (5.36)

necessarily ξ(t) ≡ x0.

Further, V is a global Lyapunov function provided that these conditions hold
with O = X and V is proper.

Proof. We start by picking an ε0 > 0 so that property (1) in the definition of
Lyapunov function holds, that is, {x ∈ X | V (x) ≤ ε0} is compact and contained
in O. Since V is continuous at x0, there is some δ > 0 such that V (x) < ε0
for all x in the closed ball Bδ(x0). We claim that the definition of Lyapunov
function is satisfied with Õ := Bδ(x0).
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Observe that, since Bδ(x0) ⊆ {x ∈ X | V (x) ≤ ε0} ⊆ O, V is positive definite
on Õ. Furthermore, V is proper, because the compact set {x ∈ X | V (x) ≤ ε}
is included in Õ for all ε ≤ ε0 small enough (proof: otherwise, there is some
sequence {xk}, contained in the compact set {x ∈ X | V (x) ≤ ε0} \Bδ(x0), such
that V (xk) → 0; without loss of generality, xk → x̂, which gives a contradiction
since by continuity of V it holds that V (x̂) = 0, but x̂ 6∈ Bδ(x0)).

We need only to establish property (3). For this, take any x ∈ Õ, x 6= x0,
and consider the maximal solution ξ with ξ(0) = x, which is defined on some
interval of the form I = [0, σ), with σ ≤ ∞.

We first show that σ = ∞. Condition (5.35) implies that V (ξ(t)) is non-
increasing as long as ξ(t) remains in the original set O, for which it is in turn
sufficient that it remain in the set

S := {x | V (x) ≤ ε0}

because of the choice of ε0. Assume that there would be some T > 0 in I so
that V (ξ(T )) ≥ ε0. Since V (ξ(·)) is continuous, there is a first such T ; thus, we
may assume that V (ξ(t)) < ε0 for all t ∈ [0, T ). So V (ξ(·)) is nonincreasing on
[0, T ], which implies that V (ξ(T )) ≤ V (x) < ε0, a contradiction. We conclude
that ξ remains in the compact set S for all t ∈ I, so by Proposition C.3.6 in
Appendix C, I = [0,∞), as desired.

Thus, the trajectory is defined for all t, and V is nonincreasing. Assume
that it were the case that

V (ξ(t)) = V (x) for all t .

It follows that dV/dt ≡ 0 identically, and hence condition (5.36) holds there.
We conclude that ξ ≡ x0, contradicting the assumption that ξ(0) = x 6= x0.
Thus, there is some t so that V (ξ(t)) < V (x), and V is a Lyapunov function as
desired.

Exercise 5.7.9 Use Lemma 5.7.8 to establish the following generalization of
Lemma 5.7.6: Assume that Σ is as in Lemma 5.7.6, and P > 0, P ∈ Rn×n.
Prove that a sufficient condition for V (x) := x′Px to be a Lyapunov function
for Σ is that

A′P + PA ≤ −C ′C ,

(the inequality is understood in the usual sense for symmetric matrices: Q1 ≤
Q2 means that x′Q1x ≤ x′Q2x for all x) where C is a p × n matrix (p some
integer) for which the pair (A,C) is observable, that is, (A′, C ′) is controllable.
(Hint: See Corollary 3.5.9 in Section 3.5.) 2

Exercise 5.7.10 State and prove a discrete-time analogue of Exercise 5.7.9. 2



228 5. Feedback and Stabilization

Example 5.7.11 Consider now a system with no controls corresponding to a
damped harmonic oscillator (or a pendulum linearized about θ = θ̇ = 0),

ẋ1 = x2

ẋ2 = −x1 − x2 .

We want to study its asymptotic stability (with respect to x0 = 0) using Lya-
punov function techniques. Again trying the squared norm V (x) := x2

1 + x2
2,

this is now a global Lyapunov function. To check this, we apply Lemma 5.7.8.
Note that

∇V (x).f(x) = −2x2
2 ≤ 0

for all x. Further,
∇V (ξ(t)).f(ξ(t)) ≡ 0

along a trajectory ξ implies that ξ2 ≡ 0 along the trajectory, so also ξ̇2 ≡ 0 and
hence from the second equation ξ1 ≡ 0. Thus, ξ ≡ 0, and the Lemma applies.

Alternatively in this simple example, one can compute the eigenvalues of

A =
(

0 1
−1 −1

)
which have real part − 1

2 , so A is a Hurwitz matrix. 2

Example 5.7.12 Consider the double integrator system (X = R2 and U = R):

ẋ1 = x2

ẋ2 = u .

The linear feedback law u = −x1 − x2 globally stabilizes this system, cf. Ex-
ample 5.7.11. We show now how to globally stabilize this system with a simple
feedback law which is globally bounded in magnitude. Let θ : R → R be any
locally Lipschitz and strictly increasing continuous function such that θ(0) = 0
(for instance, we may pick θ(s) := tanh s, which is bounded). We show that the
feedback law

u := −θ(x1 + x2)

globally asymptotically stabilizes the given system. In order to construct a
Lyapunov function, let Θ(s) :=

∫ s
0
θ(t) dt. This function is clearly positive

definite and proper; we claim that

V (x1, x2) := Θ(x1) + Θ(x1 + x2) + x2
2

is a Lyapunov function for the resulting closed-loop system. Indeed, a simple
calculation shows that

∇V (x) · f(x) = [θ(x1)− θ(x1 + x2)]x2 − [θ(x1 + x2)]2 .

Since θ is monotonic, the term [θ(x1)−θ(x1 +x2)]x2 is always nonpositive, and
it is strictly negative unless x2 = 0. If x2 = 0, then the second term is negative,
unless also x1 = 0. Thus, ∇V (x)f(x) < 0 for all x 6= 0, as required. 2
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Exercise 5.7.13 For the system in Example 5.7.11, find a quadratic global
Lyapunov function V that satisfies the strict inequality condition in Lemma
5.7.4, that is, ∇V (x).f(x) < 0 for all x 6= 0. 2

Exercise 5.7.14 Modify Example 5.7.11 to deal with the full nonlinear model
of a damped pendulum with no controls,

ẋ1 = x2

ẋ2 = − sinx1 − x2 .

Now all the states with x1 = kπ and x2 = 0 are equilibria, so for x0 = 0 there is
at most local asymptotic stability. From physical considerations, a reasonable
Lyapunov function to try is

V (x) = (1− cosx1) + (1/2)x2
2

(sum of potential and kinetic energy), say for x1 ∈ [−π/2, π/2], and 1+(1/2)x2
2

for all other x1. Show that this is a local Lyapunov function. 2

Exercise 5.7.15 Consider any system with X = R2, U = R, and equations

ẋ1 = f1(x1, x2) + uxr1

ẋ2 = f2(x1, x2) + uxr2

where f1 and f2 are arbitrary and r ∈ Z+. Then:

1. Show, using a control-Lyapunov function, that if r is odd then this system
is globally asymptotically controllable (with respect to the origin).

2. Give examples to show that, when r is even, the system may or may not
be locally asymptotically controllable. 2

Exercise 5.7.16 Consider a continuous-time system ẋ = f(x) with no controls
and X = Rn. Suppose that V : Rn → R is proper and positive definite, and
satisfies V̇ (x) = LfV (x) < 0 for all x 6= 0 (this is the Lyapunov condition in
Lemma 5.7.4). Show that there exists a continuous function α : [0,∞) → [0,∞)
which is positive definite (that is, α(0) = 0 and α(r) > 0 for all r > 0) such that
the following differential inequality holds:

∇V (x) · f(x) = V̇ (x) ≤ −α(V (x)) for all x ∈ Rn .

(Hint: Study the maximum of LfV (x) on the set where V (x) = r.) 2

Exercise 5.7.17 3 Suppose that V is as in Exercise 5.7.16. Show that there
is a proper and positive definite W : Rn → R so that

∇W (x) · f(x) = Ẇ (x) ≤ −W (x) for all x ∈ Rn ,

that is, provided we modify V , we can choose α = identity. (Hint: Try W =
ρ ◦ V , for a suitably constructed ρ : [0,∞) → [0,∞).) 2
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Linear Systems

For linear systems, Lyapunov functions can be obtained constructively; we now
show that for any asymptotically controllable linear system there is always a
global quadratic control-Lyapunov function. The material in Appendix C.5 on
Stability of Linear Equations should be reviewed at this point, as well as Propo-
sition A.4.6 and Corollary A.4.7 in Section A.4 of the Linear Algebra Appendix.

Since a continuous-time system Σ = (A,B) is asymptotically controllable
if and only if there is an F such that ẋ = (A + BF )x is asymptotically stable
(Lemma 5.5.6), and similarly for discrete-time systems and convergent matrices,
it is enough to prove the claim for systems without controls.

We need first a very useful matrix Lemma. A matrix equation of the type
MX +XN = Q is often called a Sylvester equation.

Lemma 5.7.18 Let M and N be two fixed n × n matrices over K = R or C,
and consider the linear operator

L : Kn×n → Kn×n, L(X) := MX +XN .

If both M and N are Hurwitz, then L is invertible.

Proof. There are two proofs one can give: one algebraic and the other analytic.
The algebraic proof uses Corollary A.4.7 in Appendix A.4. This Corollary can
be applied with A = M , B = −N ′; since N and M are Hurwitz, M and −N ′

have no common eigenvalues. There is also a purely analytic proof, which results
in an explicit formula for the solution, as follows.

It will suffice to prove that L is onto. Thus, we need to show that given any
matrix Q there exists some X so that

MX +XN = Q .

Since M and N are Hurwitz,∥∥etMQetN∥∥ ≤ c ‖Q‖ e2λt

for all t ≥ 0, where λ < 0 is any real number such that all eigenvalues of M and
N have real parts less than λ. Therefore,

P := −
∫ ∞

0

etMQetN dt

is well-defined. Further,

MP + PN = −
∫ ∞

0

[MetMQetN + etMQetNN ] dt

= −
∫ ∞

0

d(etMQetN )
dt

dt

= Q− lim
t→∞

etMQetN = Q ,

as desired.
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Theorem 18 Let A ∈ Rn×n. The following statements are equivalent:

1. A is Hurwitz.

2. For each Q ∈ Rn×n, there is a unique solution P of the Lyapunov matrix
equation

A′P + PA = Q ,

and if Q < 0 then P > 0.

3. There is some P > 0 such that A′P + PA < 0.

4. There is some P > 0 such that V (x) := x′Px is a Lyapunov function for
the system ẋ = Ax.

Proof. Note that (2) trivially implies (3), and that (3) implies (4) (use Lemma
5.7.4, or refer to Exercise 5.7.6). Also, (4) implies (1) by Theorem 17 (p. 220).
(An alternative and direct proof that (3) implies (1) is also given in the proof
of Lemma 8.4.7 in Chapter 8.)

So it is only left to show that (1) implies (2). Pick any Q. Since A is
Hurwitz, A′ also is, and thus Lemma 5.7.18 shows that there is for each Q a
unique solution P . The formula for P ,

P := −
∫ ∞

0

etA
′
QetA dt ,

shows that P > 0 if Q < 0, since the latter implies that −etA′QetA is a positive
definite matrix for each t.

Observe that, for example, when Q := −I the proof gives the Lyapunov
function

V (x) =
∫ ∞

0

∥∥etAx∥∥2
dt .

Lemma/Exercise 5.7.19 Let A ∈ Rn×n. The following statements are then
equivalent:

1. A is convergent (discrete-time Hurwitz).

2. For each Q ∈ Rn×n, there is a unique solution P of the discrete Lyapunov
matrix equation

A′PA− P = Q ,

and if Q < 0 then P > 0.

3. There is some P > 0 such that A′PA− P < 0.

4. There is some P > 0 such that V (x) := x′Px is a Lyapunov function for
the system x+ = Ax. 2
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Remark 5.7.20 As pointed out in Appendix C.5, there are direct algebraic
tests for determining whether a matrix is Hurwitz, without computing eigenval-
ues. The following is a simple example of one such test; it is more complex than
those used in practice, but it is relatively trivial to establish. Given an n × n
real matrix A, set up the equation

A′X +XA = −I ,

and solve for symmetric X. This is a linear equation, so Gaussian elimination
can be used. If no solution exists, then A is already known not to be Hurwitz.
If a solution X is found, we check whether it is positive definite, for instance by
evaluating all the principal minors of X. If X > 0, then A is Hurwitz, by part
(3) of Theorem 18 (p. 231). If not, either the solution was not unique or the
unique solution is not positive definite, so by part (2) of the Theorem we know
that A is not Hurwitz.

There is a more abstract way to prove the existence of an algebraic test for
stability. Since the Hurwitz property can be expressed in first-order logic, one
also knows from logical arguments based on the Tarski-Seidenberg Theorem for
real-closed fields that Hurwitz matrices are precisely those whose entries satisfy
some expression in terms of polynomial equalities and inequalities. 2

Even though we have not treated stability of time-varying systems, it is
worth pointing out through an example some of the difficulties that may arise
in the more general theory. Consider a differential equation

ẋ(t) = A(t)x(t) .

It is a common mistake to assume that if A(t0) is Hurwitz for each t0 then the
differential equation must have some sort of stability property. The following
exercise shows that this need not be the case.

Exercise 5.7.21 For any fixed 1 < a < 2, consider the following matrix of
functions of time:

A(t) =
(

−1 + a cos2 t 1− a sin t cos t
−1− a sin t cos t −1 + a sin2 t

)
.

Prove that A(t0) is Hurwitz for each fixed t0 ∈ R, but that

ξ(t) = e(a−1)t

(
cos t
− sin t

)
satisfies ẋ(t) = A(t)x(t) but does not converge to the origin. 2

Theorem 17 (p. 220) and Exercise 5.7.9 can be used to construct an explicit
feedback matrix F as needed for part 4 of Proposition 5.5.6.:
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Exercise 5.7.22 Suppose that the pair (A,B) is controllable. Pick any T > 0
and consider the controllability Gramian (cf. Exercise 3.5.5)

W :=
∫ T

0

e−sABB′e−sA
′
ds .

Let F := −B′W−1. Prove that A+BF is a Hurwitz matrix, i.e., the feedback

u = −B′W−1x

stabilizes ẋ = Ax+Bu. (Hint: Prove, equivalently, that the transpose (A+BF )′

is Hurwitz, by an application of Exercise 5.7.9, taking “P” there as W , “A” as
(A+BF )′, and “C” as B′. You will need to use that (A+BF,B) is controllable,
and you will need to evaluate the integral appearing in the expression for AW +
WA′.) 2

5.8 Linearization Principle for Stability

Consider as an illustration the following discrete-time system with no controls
and with X = R:

x(t+ 1) =
1
2
x(t) + x2(t) .

The linearization at x0 = 0 is the system

x(t+ 1) =
1
2
x(t) ,

which is asymptotically stable. We may expect that the original system is itself
(at least locally) asymptotically stable with respect to x0 = 0. Indeed, the
time-one mapping

φ(t+ 1, t, x) = P(x) =
1
2
x+ x2

is a contraction on some interval [−ε, ε], because P ′(0) = 1/2 < 1. For instance,
we may take ε = 1/8. On this interval, x = 0 is the only fixed point of P. By
the Contraction Mapping Theorem, it then follows that

Pn(x) → 0

for each initial
x ∈ [−1/8, 1/8] .

From this we may conclude that Σ is locally asymptotically stable. Note by the
way that Σ is not globally asymptotically stable, since x = 1/2 is an equilibrium
point.

We shall leave the general discrete-time case as an exercise and prove the
continuous-time version of the above observation.
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Theorem 19 Assume that Σ is a time-invariant continuous-time system of
class C1,

ẋ = f(x, u)

with X ⊆ Rn and U ⊆ Rm open, and let (x0, u0) be an equilibrium pair, i.e.,

f(x0, u0) = 0 .

Assume that the linearization of Σ at (x0, u0) is asymptotically controllable.
Then Σ is locally asymptotically controllable (to x0). Moreover, there exists in
that case a matrix F ∈ Rm×n such that the closed-loop system

ẋ = fcl(x) := f(x, u0 + F (x− x0)) (5.37)

is locally asymptotically stable.

Proof. It will be enough to prove the last statement, since this implies that Σ
is locally asymptotically controllable. Let (A,B) be the linearization at (x0, u0).
By Proposition 5.5.6, there is some F such that

Acl := A+BF

is Hurwitz. Pick the (unique) P > 0 such that

A′clP + PAcl = −I .

Let Σcl be the system with no controls having the equation (5.37).
We claim that the linearization of Σcl at x = x0 is the linear system with

matrix Acl. To establish this fact, write first

f(x, u) = A(x− x0) +B(u− u0) + g(x− x0, u− u0) ,

where

lim
‖(α,β)‖→0

‖g(α, β)‖
‖(α, β)‖

= 0 .

So it holds that
fcl(x) = Acl(x− x0) + γ(x− x0) ,

where
γ(x− x0) = g(x− x0, F (x− x0))

is of order o(x− x0), as wanted.
Consider the function

V (x) := (x− x0)′P (x− x0)

on Rn. For small enough ε > 0, the sets

{x ∈ Rn | V (x) ≤ ε}
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are included in X, so they are compact subsets of X. We take the restriction
of V to X; thus (1) and (2) in the definition of Lyapunov function are satisfied
for any open O ⊆ X. We now find an O so that the criterion in Lemma 5.7.4 is
satisfied. Note that

∇V (x).fcl(x) = −
∥∥x− x0

∥∥2
+ 2(x− x0)′Pγ(x− x0) .

Since ∥∥2(x− x0)′Pγ(x− x0)
∥∥

‖x− x0‖2
≤ c

∥∥γ(x− x0)
∥∥

‖x− x0‖
→ 0

as
∥∥x− x0

∥∥ → 0, it follows that ∇V (x).fcl(x) < 0 whenever
∥∥x− x0

∥∥ is small
enough. This determines an open neighborhood of x0 as desired.

Lemma/Exercise 5.8.1 Assume that Σ is a time-invariant discrete-time sys-
tem of class C1,

x+ = P(x, u) ,

with X ⊆ Rn and U ⊆ Rm open, and let (x0, u0) be an equilibrium pair, i.e.

P(x0, u0) = x0 .

Assume that the linearization of Σ at (x0, u0) is asymptotically controllable.
Then Σ is locally asymptotically controllable (to x0). Moreover, there exists in
that case a matrix F ∈ Rm×n such that the closed-loop system

x+ = Pcl(x) := P(x, u0 + F (x− x0)) (5.38)

is locally asymptotically stable. 2

Exercise 5.8.2 3 Our proof of the above Theorem is based on Lyapunov sta-
bility ideas. An alternative proof could be based on a contraction argument as
in the discussion at the beginning of this section, using that for linear systems
with no controls the matrix A is Hurwitz (convergent in the discrete-time case)
if and only if the map

x 7→ etAx

(or, x 7→ Atx in discrete-time) is a contraction for t > 0 large enough. Carry
out such a proof in detail. 2

Exercise 5.8.3 Use Exercise 5.7.11 and Theorem 19 (p. 234) to show that the
nonlinear damped pendulum treated in Exercise 5.7.14 is locally asymptotically
stable. 2

Exercise 5.8.4 Find explicitly a matrix F ∈ R1×2 as concluded in Theorem
19 (p. 234), for the system (X = R2,U = R, x0 = 0)

ẋ1 = x1x2 + x2

ẋ2 = u .

Show that Σ is not globally asymptotically controllable. 2
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First-Order Necessary Conditions for Stabilization

Consider a continuous-time time-invariant system

ẋ = f(x, u) (5.39)

of class C1 and an equilibrium pair (x0, u0). We say that this system is (lo-
cally) C1 stabilizable (respectively, smoothly stabilizable) with respect to this
equilibrium pair if there exists a function

k : X0 → U, k(x0) = u0,

of class C1 (respectively, of class C∞) defined on some neighborhood X0 of x0

for which the closed-loop system (with state-space X0)

ẋ = f(x, k(x)) (5.40)

is locally asymptotically stable. If X0 = X and (5.40) is globally asymptotically
stable, we say that the system (5.39) is globally C1 (or C∞) stabilizable.

Theorem 19 showed that local smooth stabilizability holds provided that
the linearization about the equilibrium pair is itself asymptotically controllable.
This condition is not necessary, as illustrated by

ẋ = u3 ,

which has the linearization A = B = 0 but which can be smoothly stabilized by
k(x) := −x. However, there is a partial converse to the fact that stabilizability
of the linearization implies local stabilizability. In order to present it, we first
need a result which complements Theorem 18 (p. 231) on Lyapunov equations.

Proposition 5.8.5 Assume that A ∈ Rn×n has at least one eigenvalue with
positive real part. Then there exists a symmetric n × n matrix P , a constant
c > 0, and a positive definite matrix Q such that the following two properties
hold:

1. A′P + PA = cP +Q and

2. there is some x so that x′Px > 0 .

Proof. Assume that A has eigenvalues with positive real part. Let

c := min{a | a > 0 and a+ ib is an eigenvalue of A} .

Consider the matrix C := A− c
2I; this has no purely imaginary eigenvalues but

still has some eigenvalues with positive real part. Decomposing into its stable
and unstable parts, there exists an invertible matrix T such that

TCT−1 = D =
(
D1 0
0 D2

)
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and both D1 and −D2 are Hurwitz matrices. We will obtain a symmetric matrix
P so that there is some x so that x′Px > 0 and so that

D′P + PD = I . (5.41)

It will then follow that
A′P̃ + P̃A = cP̃ +Q ,

with the choices P̃ = T ′PT and Q = T ′T . Both P̃ and Q are symmetric,
and because T is invertible, it holds that Q > 0 and there is some x so that
x′P̃ x > 0. Thus, it is only necessary to find P as above.

Since D1 is Hurwitz, there exists a symmetric (positive definite) P1 of appro-
priate size so that D′

1P1 + P1D1 = −I, by Theorem 18 (p. 231). Equivalently,

D′
1(−P1) + (−P1)D1 = I .

Similarly, since −D2 is Hurwitz, there is a P2 > 0 so that (−D2)′P2+P2(−D2) =
−I, or equivalently

D′
2P2 + P2D2 = I .

With

P :=
(
−P1 0

0 P2

)
we conclude that (5.41) holds, and also (0 x)P

(
0
x

)
> 0 for all x 6= 0.

We wish to prove that certain systems are not locally (and hence not glob-
ally) asymptotically stable. In order to establish this, we prove that the systems
in question are not even “stable” in the sense of Lyapunov. We have not dis-
cussed (non-asymptotic) stability, so we define directly the opposite concept:

Definition 5.8.6 Let Σ be a time-invariant system with no controls, and let x0

be an equilibrium state. The system Σ is unstable if there exists some ε > 0 so
that, for each δ > 0, there is some state x in the ball Bδ(x0) of radius δ about
x0 and there is some T ∈ T+ so that φ(T, x) is defined and φ(T, x) /∈ Bε(x0). 2

Clearly, an unstable system cannot be asymptotically stable.

Theorem 20 Let (Σ) : ẋ = f(x) be a continuous-time time-invariant system
with no controls, and let x0 ∈ X be an equilibrium state. Let V : B → R be a
C1 function defined on the ball B = Bε(x0), and assume that there exists some
constant c > 0 such that

W (x) := LfV (x)− cV (x) ≥ 0 for all x ∈ B

and so that
x0 ∈ clos {x | V (x) > 0} . (5.42)

Then the system Σ is unstable.
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Proof. We use the same ε for the definition of instability. Pick any δ > 0,
assumed without loss of generality to be less than ε. By the second assumption,
there is some x ∈ Bδ(x0) for which V (x) > 0. Picking a smaller ε if needed,
we may assume that V is bounded by β on B. We need to show that it cannot
happen that ξ = ψ(x) is defined and remains in B for all t > 0. Assume then
that this is the case.

Consider the function α(t) := e−ctV (ξ(t)). This is differentiable, and its
derivative satisfies

α̇(t) = e−ctW (ξ(t)) ≥ 0 for all t > 0 .

Thus, e−ctβ ≥ α(t) ≥ α(0) = V (x) for all t, with c > 0, contradicting the fact
that V (x) > 0.

Corollary 5.8.7 Let (Σ) : ẋ = f(x) be a continuous-time time-invariant sys-
tem with no controls, and let x0 ∈ X be an equilibrium state. Let A be the
linearization matrix at x0, that is,

ẋ = A(x− x0) + g(x− x0) ,

where g(x) is a continuous function that has order o(x) as x→ 0. If A has any
eigenvalues with positive real part, then Σ is unstable.

Proof. Let P,Q, c be given as in Proposition 5.8.5, and let V (x) := (x −
x0)′P (x − x0) in Theorem 20, restricted to X. Note that, if y′Py > 0 then
V (x0 + λy) > 0 for all λ 6= 0, so (5.42) holds.

With the same c,

W (x) = LfV (x)− cV (x) = (x− x0)′Q(x− x0) + 2(x− x0)′Pg(x− x0) .

If we prove that W (x) > 0 for all small enough x, the result will follow. For
this, note that

x′Qx

‖x‖2
≥ σ for each x 6= 0 ,

where σ is the smallest eigenvalue of Q, while

|2x′Pg(x)|
‖x‖2

≤ 2 ‖P‖ ‖g(x)‖
‖x‖

,

which is smaller than σ for all small x.

Corollary 5.8.8 Let Σ be a continuous-time time-invariant system of class C1.
Let (x0, u0) be an equilibrium pair for Σ, and let (A,B) be the linearization at
this pair. Assume that (A,B) has an uncontrollable eigenvalue with positive
real part, that is, that χ

u
(Definition 3.3.5) has a root with real part > 0. Then

the system Σ is not locally C1 stabilizable.
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Proof. Assume that the system would be C1 stabilizable by means of the
feedback law k : X → U, and write

k(x) = F (x− x0) + g2(x− x0) ,

where g2(x) = o(x) as x → 0. Note that A + BF still has an eigenvalue with
positive real part, by (the straightforward part of) Theorem 13 (p. 186). If we
also expand

f(x, u) = A(x− x0) +B(x− x0) + g1(x− x0)

with g1(x) = o(x), we may conclude that the closed-loop equations are

ẋ = (A+BF )(x− x0) + g(x− x0) ,

where g(x) := Bg2(x) + g1(x, k(x)) is again of order o(x). But the closed-loop
system cannot be stable, by Corollary 5.8.7.

Since the zeros of χ
u

are the right-hand plane numbers for which the rank
of [sI − A,B] drops (by Lemma 3.3.10), we may summarize the discussion as
follows, for time-invariant continuous-time systems Σ and their linearizations:

rank [sI −A,B] = n for all Re s ≥ 0 ⇒ Σ locally C1 stabilizable

rank [sI −A,B] < n for some Re s > 0 ⇒ Σ not locally C1 stabilizable

The critical case, when the only uncontrollable unstable eigenvalues are
purely imaginary, gives rise to the more interesting theory, since the linearization
does not characterize stabilizability.

It is important to emphasize that the above results refer to C1 stabilizability.
There may exist, even in the second case, a feedback that is smooth everywhere
but at x0, and even continuous everywhere, which gives an asymptotically stable
system. An example of this is provided by the system

ẋ = x+ u3 ,

(x0 = 0 and u0 = 0) for which the feedback u := −2x1/3 stabilizes. Proposi-
tion 5.9.10 below deals with stabilization by k(x) smooth away from the origin.

5.9 Introduction to Nonlinear Stabilization*

The previous section discussed first-order conditions for stabilization. One of the
conclusions was that, if the linearization about the equilibrium being considered
has any uncontrollable eigenvalues with positive real part, then C1 stabilizability
is impossible. Thus, from the point of view of the theory of local C1 stabilization,
the “critical case,” in which there are some purely imaginary uncontrollable
eigenvalues, is the one to be studied further.

* This section can be skipped with no loss of continuity.
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In this section, we discuss several further issues regarding nonlinear stabi-
lization. We start with three different approaches to building feedback. All are
Lyapunov-function based, and the resulting techniques have found wide appli-
cability, both for local (in critical cases) and global stabilization. The first two,
“damping control” and “backstepping”, allow the construction of feedback that
is smooth at the origin, while the third one, the use of “universal formulas” for
stabilization, typically guarantees smoothness only away from the equilibrium
of interest.

We close the section with “Brockett’s necessary condition” for nonlinear
stabilization.

Damping Control

The first method starts with a V which insures boundedness of trajectories
(typically, V is an energy function associated to a conservative system), and
adds a “friction” term implemented through a feedback law.

Proposition 5.9.1 We consider smooth control-affine systems

ẋ = f(x) +
m∑
i=1

uigi(x)

as in Equation (2.34) (but writing here f instead of g0) with X = Rn, U = Rm,
and f(0) = 0. Suppose that V is smooth, positive definite, and (globally)
proper, and satisfies

LfV (x) = ∇V (x) · f(x) ≤ 0 for all x ∈ X . (5.43)

Consider the following set:

Q :=
{
x | LfV (x) = 0 and LkfLgiV (x) = 0 for all k = 0, 1, 2, . . . , i = 1, . . . ,m

}
and suppose that Q = {0}. Then, the following smooth feedback law:

u = k(x) := − (∇V (x) ·G(x))′ = − (Lg1V (x), . . . , LgmV (x))′ (5.44)

globally asymptotically stabilizes the system (with respect to x0 = 0, u0 = 0).

Proof. This is a simple application of the LaSalle invariance principle, cf.
Lemma 5.7.8. We consider the closed-loop system

ẋ = F (x) = f(x)−
m∑
i=1

LgiV (x) gi(x)

and note that

∇V (x).F (x) = LfV (x)−
m∑
i=1

(LgiV (x))2
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is nonpositive for all x, by assumption. Take now any trajectory ξ for which
∇V (ξ(t)).F (ξ(t)) ≡ 0; we need to show that ξ ≡ 0. Along such a trajectory, it
must be the case that LfV (ξ(t)) ≡ 0 and also Lgi

V (ξ(t)) ≡ 0 for every i. For
any given i, also the time derivatives of LgiV (ξ(t)) must vanish identically. The
first derivative of this function is LfLgiV (ξ(t)) (chain rule), and, inductively,
the kth derivative is LkfLgiV (ξ(t)). It follows that ξ(t) ∈ Q for all t, so indeed
ξ ≡ 0.

Exercise 5.9.2 This problem is a variation of Proposition 5.9.1. Suppose given
a smooth control-affine system, and V as there, so that (5.43) holds, and con-
sider, for each x ∈ X, the following vector subspace of Rn

∆(x) := span
{
f(x), adkfgi(x), i = 1, . . . ,m, k = 0, 1, 2, . . .

}
(in the differential-geometric terminology of Chapter 4, ∆ defines a “distribu-
tion”). Assume that ∇V (x) = 0 implies x = 0 and that

dim ∆(x) = n for all x 6= 0 .

Show that the feedback law (5.44) stabilizes the system. (Hint: Prove by
induction on k that, if ξ is a solution of ẋ = f(x) so that LfV (ξ(t)) ≡ 0 and
LgiV (ξ(t)) ≡ 0 for all i, then also Ladk

fgi
V (ξ(t)) ≡ 0, for all k and all i. You will

need to use the facts that Ladk+1
f gi

can be expressed in terms of LfLadk
fgi

and
Ladk

fgi
Lf , and that ∇ (LfV ) vanishes on the set {x | LfV (x) = 0} (why?).) 2

Exercise 5.9.3 Give a feedback law u = k(x), k(0) = 0, that stabilizes the
bilinear system

ẋ =
[(

0 1
−1 0

)
+ u

(
0 1
1 0

)]
x .

(Use the above results.) 2

Exercise 5.9.4 3 As in Exercise 4.3.15, consider the problem of controlling the
angular momentum of a rigid body by the use of one or more applied torques.
For concreteness, we assume that three torques are being applied. Thus (cf.
Exercise 4.3.15), we have a system with X = R3, U = R3, and equations given
by:

Iẋ = S(x)Ix+ Tu , (5.45)

where here I denotes the diagonal matrix with entries I1, I2, I3, T ∈ R3×3, and

S(x) =

 0 x3 −x2

−x3 0 x1

x2 −x1 0

 .

It is assumed that Ii 6= Ij whenever i 6= j. We may also write this system in the
more standard form ẋ = f(x) + G(x)u, where G(x) = (g1(x), g2(x), g3(x)) =
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I−1T is constant and f(x) = I−1S(x)Ix. Motivated by the above results, we
consider the following function (the kinetic energy):

V (x) :=
1
2
(
I1x

2
1 + I2x

2
2 + I3x

2
3

)
and, associated to it, the following feedback law:

k(x) = − (∇V (x) ·G(x))′ = − (Lg1V (x), . . . , Lgm
V (x))′ = −T ′x .

Prove that this feedback stabilizes the system if and only if every row of T is
nonzero. (Hint: You need to prove that Q = {0}. For this, you will need to
consider the various cases rankT = 1, 2, 3 separately. The computations in each
case are geometric, using the fact that Q may be written as intersections of
appropriate lines, cones, and ellipsoids.) 2

Backstepping

The following Lemma is useful in establishing that, under certain conditions,
a series connection of two systems is stabilizable provided that each system is.
For simplicity, we give the smooth version, but it will be clear from the proof
how to relax to less differentiability. This result, often called the “integrator
backstepping lemma,” allows one to recursively design controllers for certain
complex systems by a step-by-step procedure, starting with a simpler system
and adding at each stage an integrator “in front” (at the input) of the simpler
system.

Lemma 5.9.5 Assume that the smooth system (with X open in Rn and U open
in Rm)

ẋ = f(x, u)

is smoothly locally stabilizable using u = k(x) and that there is a local Lyapunov
function V as in Lemma 5.7.4 for the system (5.40), which is smooth. Let

h : X× U → Rm

be smooth, h(x0, u0) = 0. Then, the system

ẋ = f(x, z) (5.46)
ż = h(x, z) + u (5.47)

having control set Rm is again smoothly locally stabilizable (with respect to the
equilibrium point (x0, u0) and the control 0). The same result holds if “global”
is used throughout.

In particular, the system obtained by integrating controls (h ≡ 0) is again
stabilizable.
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Proof. Assume that (5.40) is asymptotically stable and that

∇V (x).f(x, k(x)) < 0 (5.48)

for x 6= x0.
For any state on the surface S = {(x, z) | z = k(x)} such that x 6= x0,

∇V (x).f(x, z) < 0; thus, x moves towards x0, or, more precisely,V (x) decreases,
as long as the trajectory stays in S. See Figure 5.6 (x0 = 0 and u0 = 0 there).
The idea of the proof will be to construct a controller which forces every state
that is not on S to approach S. The dashed lines in Figure 5.6 indicate the
desired motions. One obvious way to force moves towards S is to find controls
so that ‖z − k(x)‖2 is decreased, in addition to V (x) being decreased. Thus, we
consider the following (smooth) function:

W (x, z) := V (x) +
1
2
‖z − k(x)‖2

as a candidate control-Lyapunov function. Note that W (x, z) will be small if
both z ≈ k(x) and x ≈ x0, which implies z ≈ u0.

**z  - k(x  )

z=k(x)

x

z

* *
(x  , z   )

Figure 5.6: Desired surface z = k(x).

The derivative of W , along a trajectory corresponding to a control u, is:

∇V (x).f(x, z) + (z − k(x))′
(
h(x, z) + u− k∗[x]f(x, z)

)
. (5.49)

Let us write
u = −h(x, z) + k∗[x]f(x, z) + û ,
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where û is to be chosen as a function of x and z. Then (5.49) becomes

∇V (x).f(x, z) + (z − k(x))′û

and we are left with trying to make this expression negative.
Since f is smooth, there is an n×m smooth matrix G such that

f(x, k(x) + z) = f(x, k(x)) +G(x, z)z

for all (x, z), or equivalently,

f(x, z) = f(x, k(x)) +G(x, z − k(x))(z − k(x)) (5.50)

for all (x, z). (For instance, if we write α(λ) := f(x, k(x) + λz), then from
α(1) = α(0) +

∫ 1

0
α′(λ) dλ we conclude that one choice is

G(x, z) :=
∫ 1

0

fz(x, k(x) + λz) dλ ,

where fz is the Jacobian of f with respect to z.) Since already ∇V (x).f(x, k(x))
is negative, for x 6= x0, and since now z−k(x) appears as a factor, we may simply
use û = −[∇V (x).G(x, z− k(x))]′ + ũ to first subtract the effect of G, and then
stabilize using an appropriate ũ, for instance −(z − k(x)). Formally, then, we
consider the following feedback law:

k̃(x, z) := −h(x, z) + k∗[x]f(x, z)− [∇V (x).G(x, z − k(x))]′ − z + k(x) .

Note that k̃(x0, u0) = 0 and that k̃ is smooth. Along the trajectories of (5.46)-
(5.47) with this feedback law, the derivative of W is

∇V (x).f(x, z) +
[
h(x, z) + k̃(x, z)− k∗[x]f(x, z)

]′
(z − k(x)) ,

which, by (5.50), reduces simply to

∇V (x).f(x, k(x))− ‖z − k(x)‖2 .

This latter expression is negative whenever (x, z) 6= (x0, u0). Thus, W is a Lya-
punov function for the composite system, which is then asymptotically stable.
The arguments can be done either locally or globally.

Example 5.9.6 Consider the system Σ with X = U = R and

ẋ = u3 .

This system is (globally) stabilizable (relative to x0 = 0) using the feedback
u = k(x) := −x. The Lyapunov function V (x) = x2 can be used. We wish to
show that the new system Σ′ with equations

ẋ = z3

ż = u
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is again smoothly stabilizable (relative to (0, 0)). We have the expansion

f(x, k(x) + z) = (k(x) + z)3

= (k(x))3 + [3(k(x))2 + 3k(x)z + z2]z
= f(x, k(x)) +G(x, z)z,

where G(x, z) = 3x2 − 3xz + z2. Equivalently,

f(x, z) = f(x, k(x)) +G(x, z − k(x))(z − k(x))
= f(x, k(x)) + (z2 − zx+ x2)(z + x) .

In the above proof, we obtain

W (x, z) : = V (x) +
1
2
(z − k(x))2

= x2 +
1
2
(z + x)2

and the feedback law

k̃(x, z) = −z3 − [2x(z2 − zx+ x2)]− z − x .

Note that k̃(0, 0) = 0 and that k̃ is a polynomial. Along the trajectories of Σ′

with this feedback law, the derivative of W is

Ẇ = [2x+ (z + x)]z3 + (z + x)[−z3 − 2x(x2 − xz + z2)− x− z]
= −2x4 − (z + x)2 ,

which is negative whenever (x, z) 6= (0, 0). This proves that W is a Lyapunov
function for the composite system Σ′, which is therefore (globally) asymptoti-
cally stable. 2

Exercise 5.9.7 Consider the following system, with X = R3 and U = R:

ẋ1 = x3
2

ẋ2 = x3

ẋ3 = u

(and x0 = 0, u0 = 0). Find a smooth globally stabilizing feedback law. 2

Exercise 5.9.8 The equations for the angular momentum of a rigid body con-
trolled by two independent torques (e.g., a satellite controlled by two pairs of
opposing jets, cf. also Exercises 4.3.15 and 5.9.4) can be written, for appropriate
parameter values and after some simplification, as:

ẋ1 = a1x2x3 + u1

ẋ2 = a2x1x3 + u2

ẋ3 = a3x1x2
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where a1, a2, and a3 are certain constants and a3 6= 0. We view this as a system
with X = R3 and U = R2. Prove that this system can be globally smoothly
stabilized (about x = 0 and u = 0), and exhibit a smooth stabilizing feedback.
(Hint: Apply Lemma 5.9.5.) 2

A Universal Formula for Feedback

Several approaches to modern feedback design start with a control-Lyapunov
function for a system, and use the control-Lyapunov function in order to con-
struct a feedback stabilizer. We now describe one technique which has proven
useful in that regard, restricting attention to control-affine continuous-time
time-invariant systems

ẋ = f(x) + u1g1(x) + . . .+ umgm(x) = f(x) +G(x)u (5.51)

having X = Rn and U = Rm (as in Equations (4.18), (4.22), and (5.10), except
that, here, we prefer to write f instead of g0). We suppose that the system
is smooth, and that f(0) = 0, and discuss stabilization with respect to the
equilibrium x0 = 0, u0 = 0.

Given is a smooth global control-Lyapunov function V with the infinitesimal
decrease property which was described in Lemma 5.7.4. That is, V : Rn → R is
proper and positive definite, and, for each nonzero x ∈ Rn, there is some u ∈ Rm
so that Equation (5.34) holds. When specializing to control-affine systems, this
condition says that, for each x 6= 0, there must be some u ∈ Rm so that

LfV (x) + u1Lg1V (x) + . . .+ umLgmV (x) < 0 (5.52)

or, equivalently,

Lg1V (x) = . . . = LgmV (x) = 0 and x 6= 0 ⇒ LfV (x) < 0 . (5.53)

Given such a V , one obvious way to try to control the system to zero is to use
a feedback law u = k(x) which selects, for each x 6= 0, some u so that (5.52)
holds. The value of V will then decrease along trajectories, and properness
and positive definiteness will assure that the trajectory itself converges to zero.
There are many ways to select such an u as a function of x. For example, if we
can be assured that a suitable u can be found in a compact subset U0 ⊂ Rm (U0

may be allowed to depend on x, if desired), and if there is a unique minimizer
to

min
u∈U0

LfV (x) + u1Lg1V (x) + . . .+ umLgm
V (x)

then one could pick u = k(x) to be this minimizer. Such an approach is a
useful one, and it appears often in applications. It might give rise, however, to
technical difficulties. For example, the function u = k(x) may not be sufficiently
regular so that the closed-loop differential equation has unique solutions for each
initial condition. Also, the minimization may not be trivial to perform, from a
computational point of view. In addition, smoothness of k(x) is often desirable,
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for implementation reasons. We show next that it is always possible to select
a u = k(x) that is a smooth function of x, at least for x 6= 0. (If we would be
content with a class C` feedback k, with ` <∞, it would be sufficient to assume
that V , as well as the system, are merely of class C`+1.) That is, we look for
a mapping k : Rn → Rm, with k(0) = 0 and so that k restricted to Rn \ 0 is
smooth, so that

∇V (x). [f(x) + k1(x)g1(x) + . . .+ km(x)gm(x)] < 0 (5.54)

for all nonzero x. Note that, if any such k happens to be continuous at the
origin, then the following property, the small control property for V , must hold
as well (take u := k(x)):

For each ε > 0 there is a δ > 0 so that, whenever 0 < ‖x‖ < δ, there
is some u with ‖u‖ < ε such that (5.52) holds.

Exercise 5.9.9 Suppose that F : Rn → Rn is locally Lipschitz when restricted
to Rn \ {0} and satisfies F (0) = 0, and assume that V is a proper and positive
definite continuously differentiable function such that ∇V (x) · F (x) < 0 for all
nonzero x. (For example, F = f +

∑
kigi, where k, with k(0) = 0, is smooth on

Rn \ {0} and (5.54) holds for all nonzero states.) Show that there is a unique
solution of ẋ = F (x), for each initial condition, defined for all t ≥ 0. Moreover,
every solution converges to zero, and for each ε > 0 there is some δ > 0 so that
‖x(0)‖ < δ implies that ‖x(t)‖ < ε for all t ≥ 0. That is, the system ẋ = F (x)
is globally asymptotically stable. As an illustration, compute the solutions, for
each initial condition and each t ≥ 0, of the one-dimensional system ẋ = −x 1

3

(V (x) = x2 is as required for this F ). (Hint: On the open set X := Rn \ {0},
there is local existence and uniqueness, and completeness can be proved using
properness of V . Properness and positive definiteness also guarantee that 0 is
an equilibrium, so behavior such as that of ẋ = +x

1
3 cannot occur.) 2

Proposition 5.9.10 Let the smooth and positive definite V : Rn → R be so
that, for each x 6= 0, there is an u ∈ Rm so that (5.52) holds. Then there exists
a k, k(0) = 0, k smooth on Rn \ 0, satisfying (5.54). Moreover, if V satisfies the
small control property, then k can be chosen to also be continuous at 0.

Proof. We shall prove the theorem by constructing a fixed real-analytic function
ϕ of two variables, and then designing the feedback law in closed-form by the
evaluation of this function at a point determined by the directional derivatives
∇V (x).f(x) and ∇V (x).gi(x)’s.

Consider the following open subset of R2:

S := {(a, b) ∈ R2 | b > 0 or a < 0} .

Pick any real analytic function q : R → R such that q(0) = 0 and bq(b) > 0
whenever b 6= 0. (Later we specialize to the particular case q(b) = b.) We now
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show that the function defined by:

ϕ(a, b) :=

 a+
√
a2 + bq(b)
b

if b 6= 0

0 if b = 0

is real-analytic on S. For this purpose, consider the following algebraic equation
on p:

F (a, b, p) = bp2 − 2ap− q(b) = 0 (5.55)

which is solved by p = ϕ(a, b) for each (a, b) ∈ S. We show that the derivative
of F with respect to p is nonzero at each point of the form (a, b, ϕ(a, b)) with
(a, b) ∈ S, from which it will follow by the Implicit Function Theorem that ϕ
must be real-analytic:

1
2
∂F

∂p
= bp− a

equals −a > 0 when b = 0 and
√
a2 + bq(b) > 0 when b 6= 0.

Assume now that V satisfies (5.52). We write

a(x) := ∇V (x).f(x), bi(x) := ∇V (x).gi(x), i = 1, . . . ,m ,

and

B(x) := (b1(x), . . . , bm(x)), β(x) := ‖B(x)‖2 =
m∑
i=1

b2i (x) .

With these notations, condition (5.53) is equivalent to:

(a(x), β(x)) ∈ S for each x 6= 0 .

Finally, we define the feedback law k = (k1, . . . , km)′, whose coordinates are:

ki(x) := −bi(x)ϕ(a(x), β(x)) (5.56)

for x 6= 0 and k(0) := 0. This is smooth as a function of x 6= 0. Moreover, at
each nonzero x we have that (5.54) is true, because the expression there equals

a(x)− ϕ(a(x), β(x))β(x) = −
√
a(x)2 + β(x)q(β(x)) < 0 .

To conclude, we assume that V satisfies the small control property and
show that, with the choice q(b) := b, the obtained function k is continuous at
the origin. Pick any ε > 0. We will find a δ > 0 so that ‖k(x)‖ < ε whenever
‖x‖ < δ. Since k(x) = 0 whenever β(x) = 0, we may assume that β(x) 6= 0 in
what follows. Let ε′ := ε/3.

Since V is positive definite, it has a minimum at 0, so ∇V (0) = 0. Since the
gradient is continuous, every bi(x) is small when x is small. Together with the
small control property, this means that there is some δ > 0 such that, if x 6= 0
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satisfies ‖x‖ < δ, then there is some u with ‖u‖ < ε′ so that a(x) + B(x)u < 0
and

‖B(x)‖ < ε′ . (5.57)

Since a(x) < −B(x)u, the Cauchy-Schwartz inequality gives a(x) < ε′ ‖B(x)‖.
Thus

|a(x)| < ε′ ‖B(x)‖ (5.58)

provided 0 < ‖x‖ < δ and a(x) > 0. On the other hand, observe that

b ϕ(a, b) = a+
√
a2 + b2 ≤ 2 |a|+ b

for every (a, b) ∈ S for which b > 0. Thus, if 0 < ‖x‖ < δ and a(x) > 0,
necessarily

ϕ(a(x), β(x)) ≤ 2ε′

‖B(x)‖
+ 1

and hence also, using (5.57),

‖k(x)‖ = ϕ(a(x), β(x)) ‖B(x)‖ ≤ 3ε′ = ε

as desired. There remains to consider those x for which a(x) ≤ 0. In that case,

0 ≤ a(x) +
√
a(x)2 + β(x)2 ≤ β(x)

so 0 ≤ ϕ(a(x), β(x)) ≤ 1 and therefore

‖k(x)‖ = ϕ(a(x), β(x)) ‖B(x)‖ ≤ ε′ < ε

as desired too.

It is worth writing out formula (5.56) explicitly in the special case m = 1:

k(x) =

 −
LfV (x) +

√
[LfV (x)]2 + [LgV (x)]4

LgV (x)
if LgV (x) 6= 0

0 if LgV (x) = 0 .

As an example, consider the case of one-dimensional systems with a scalar con-
trol (m = n = 1),

ẋ = f(x) + ug(x) .

This system is stabilizable if the following assumption holds: if g(x) = 0 and
x 6= 0 then xf(x) < 0. The feedback law given by the above construction, using
the Lyapunov function V (x) = x2/2, is simply

k(x) = −
xf(x) + |x|

√
f(x)2 + x2g(x)4

xg(x)

(which is smooth, even though the absolute value sign appears, because in the
one dimensional case there are two connected components of R− {0},) so that
the closed-loop system becomes

ẋ = −sign (x)
√
f(x)2 + x2g(x)4 .
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Exercise 5.9.11 The function ϕ can be obtained as the solution of an opti-
mization problem. For each fixed x 6= 0, thought of as a parameter, not as a
state, we may consider the pair (a(x), B(x)) as a (1,m) pair describing a linear
system of dimension 1, with m inputs. The equations for this system are as
follows, where we prefer to use “z” to denote its state, so as not to confuse with
x, which is now a fixed element of Rn \ {0}:

ż = az +
m∑
i=1

biui = az +Bu . (5.59)

The control-Lyapunov function condition guarantees that this system is asymp-
totically controllable. In fact, the condition “B = 0 ⇒ a < 0” means pre-
cisely that this system is asymptotically controllable. A stabilizing feedback
law k = k(x) for the original nonlinear system must have, for each fixed x, the
property that

a+
m∑
i=1

biki < 0 .

This means that u = kz must be a stabilizing feedback for the linear sys-
tem (5.59). Consider for this system the infinite-horizon linear-quadratic prob-
lem of minimizing (cf. Theorem 41 (p. 384))∫ ∞

0

u2(t) + β(x)z2(t) dt .

(For motivation, observe that the term u2 has greater relative weight when β is
small, making controls small if x is small.)
Prove that solving this optimization problem leads to our formula (5.56). 2

We next turn to other necessary conditions for stabilizability. As we will
remark, both of these hold even for weaker notions than C1 stabilizability.

Topological Obstructions to Stability

When dealing with time-invariant systems with no controls, we write just φ(t, x)
instead of φ(t, 0, x, ω).

Let Σ be any (topological) system with no controls and x0 an equilibrium
state. Assume that the system is locally asymptotically stable (with respect to
x0). The domain of attraction of x0 is the set

D = D(x0) := {x ∈ X | lim
t→∞

φ(t, x) = x0} .

We need the following Lemma:

Lemma 5.9.12 For each x ∈ D and each neighborhood V of x0 there exists
some neighborhood V ′ of x, V ′ ⊆ D, and some T ∈ T+, such that for all y ∈ V ′
it holds that

φ(t, y) ∈ V for all t ≥ T .

In particular, D is open.
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Proof. Let W be an open neighborhood of x0 included in the domain of at-
traction D and for which all trajectories starting in W remain in V; such a
neighborhood exists by the definition of asymptotic stability.

Now pick any point x in D. By definition of D, there exists some T ≥ 0
such that φ(T, x) ∈ W. By continuity of φ(T, ·), there is then a neighborhood
V ′ of x such that

φ(T, y) ∈ W for all y ∈ V ′ .

Since trajectories starting at φ(T, y) are in D, it follows that V ′ ⊆ D. Since
these stay in V, the other conclusion follows too.

Theorem 21 If T = R and φ(t, x) is continuous on t (as happens with contin-
uous-time systems), then the domain of attraction is a contractible set.

Proof. To prove contractibility, we need to provide a continuous mapping

H : [0, 1]×D → D

such that H(0, x) = x for all x ∈ D and (for instance) H(1, x) = x0 for all x.
We define H as follows, for t < 1:

H(t, x) := φ

(
t

1− t
, x

)
and H(1, ·) ≡ x0. By Remark 3.7.3, H is continuous in both variables, for t < 1.

We are left to prove only continuity at each (1, x). Take any such x, and
pick any neighborhood V of H(1, x) = x0. We wish to find some δ > 0 and
some neighborhood V ′ of x such that

H(s, y) ∈ V whenever y ∈ V ′ and s > 1− δ .

By Lemma 5.9.12, there is a V ′ and a T so that this happens provided that
s

1−s > T . It is only necessary then to pick δ := 1
T+1 .

Corollary 5.9.13 If Σ is a continuous-time system for which X is not con-
tractible, then Σ is not C1 globally stabilizable (about any x0).

Proof. If the system were stabilizable, the resulting closed-loop system would
be a continuous-time system that is asymptotically stable and for which the
domain of attraction is all of X.

Example 5.9.14 Consider the continuous-time system on X = R2 − {0} and
U = R2,

ẋ1 = u1

ẋ2 = u2 .
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This system is completely controllable, because any two points in the plane
can be joined by a differentiable curve that does not cross the origin and any
such curve is a path for the system. Furthermore, every point is an equilibrium
point. About any x0 there is local smooth stabilizability since the linearization
has the same equations as the original system, but considered as a system with
X = R2. More explicitly, we may use the control law ui := −(xi − x0

i ), which
is well-defined on some neighborhood of any (nonzero) x0. But, for no x0 is the
system globally smoothly stabilizable, because X is not a contractible space.

This system is not complete (for instance, the control constantly equal to
(1, 0)′ on [0, 1] is not admissible for x = (−1, 0)′); a similar but complete example
is as follows: Take the same state space and equations

ρ̇ = ρu1

θ̇ = u2 .

in polar coordinates or

ẋ =
(
u1 −u2

u2 u1

)
x

in the (x1, x2) coordinates. 2

Remark 5.9.15 The result in Corollary 5.9.13 can be extended to show that
there does not exist for noncontractible X a globally stabilizing feedback k for
which the closed-loop system is just locally Lipschitz on X. Indeed, for any such
k we may consider the closed-loop system defined by the equation

ẋ = f(x, k(x)) .

By the local existence Theorem, and the well-posedness Theorem 55 (p. 486) in
the Appendix on differential equations, this defines a topological system, and it
also satisfies the hypotheses of Theorem 21. 2

Brockett’s Necessary Condition

There is a powerful and easy to check necessary condition for local stabilization,
which we present next. As a motivation, consider first the very special case of
a continuous-time system ẋ = f(x, u), of dimension one, with X being an open
subset of R which contains zero. If there would be a feedback law u = k(x) which
stabilizes this system with respect to x0 = 0, then clearly it must be the case that
f(x1, k(x1)) > 0 for some (actually, for all) x1 < 0, and that f(x2, k(x2)) < 0 for
some x2 > 0 (otherwise, if, for example, f(x, k(x)) ≥ 0 for all x near zero, then
no trajectories ξ of the closed-loop system with initial condition ξ(0) > 0 can
approach 0). It follows, using continuity of x 7→ f(x, k(x)) and connectedness of
[x1, x2] (i.e., the Intermediate Value Theorem), that there is some open interval
V , containing zero, with the following property: for each p ∈ V , there is some
x ∈ X and some u ∈ U (namely, u = k(x)) so that f(x, u) = p. In other words,
(x, u) 7→ f(x, u) contains a neighborhood of zero in its image. For arbitrary
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dimensions but linear systems, the same statement is true. Indeed, asymptotic
controllability (with respect to x0 = 0 and u0 = 0) implies, via the Hautus
condition:

rank [A,B] = n ,

which means that the mapping (x, u) 7→ Ax+Bu must be onto (since this is a
linear map, the conclusion is equivalent to asking that there exists a neighbor-
hood of zero included in its image). There is a common generalization of these
two observations:

Theorem 22 Assume that the C1 continuous-time system Σ:

ẋ = f(x, u)

is locally C1 stabilizable with respect to x0. Then the image of the map

f : X× U → Rn

contains some neighborhood of x0.

We prove this Theorem below, after reviewing a result from nonlinear anal-
ysis. First, we illustrate with an application.

Example 5.9.16 Consider the system on X = R3 and U = R2 with equations:

ẋ1 = u1

ẋ2 = u2

ẋ3 = x2u1 − x1u2

and equilibrium state 0. No point of the form 0
0
ε

 (ε 6= 0)

is in the image of f , so there is no C1 feedback stabilizing the system. This
system, incidentally, is completely controllable, a fact that is easy to establish
using Lie-algebraic techniques. It is also a bilinear system. Note that the
linearized system has a single uncontrollable mode, λ = 0. (This is usually
called “Brockett’s example”; see also Exercises 4.3.14, 4.3.16, and 9.4.2, and
Example 9.2.14.) 2

The result from nonlinear analysis that we need is as follows; it depends on
basic facts from degree theory which are cited in its proof.

Fact 5.9.17 Let Bρ(0) be the closed ball of radius ρ centered at the origin in
Rn and Sρ its boundary:

Sρ = {x | ‖x‖ = ρ} .
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Assume given a continuous function

H : [0, 1]× Bρ(0) → Rn

such that H(1, x) = −x for all x and

H(t, x) 6= 0

for all x ∈ Sρ and all t. Let

F : Bρ(0) → Rn : x 7→ H(0, x) .

Then there exists some ε > 0 such that the image of F contains the ball Bε(0).

Proof. For any continuous function G : Bρ(0) → Rn and any p ∈ Bρ(0) for
which G(x) 6= p for all x ∈ Sρ, one defines in nonlinear analysis the degree of G
with respect to p, deg(G, p). (If G is C1 and if detG∗[x] 6= 0 for every x in the
preimage G−1(p) – which is a finite set, by the Implicit Mapping Theorem and
the compactness of Bρ(0) – then deg(G, p) is

∑
x∈G−1(p) sign (detG∗[x]), that

is to say, the number of solutions of G(x) = p, where each solution is counted
with sign, which depends on the orientation. If the Jacobian condition is not
satisfied, or if the map G is merely continuous, small perturbations of G are
used, and one proves that the definition is the same no matter which particular
perturbation was taken. In any case, the index is always an integer.) See,
for instance, [47], Chapter 2, for details. The degree is a homotopy invariant,
as long as the homotopy H satisfies that H(x, t) 6= p for boundary x (above
reference, property 2-7). Applied to the above data, this gives that

deg(F, 0) = deg(−x, 0) = (−1)n ,

the last equality by exercise 2-3 in that reference. Since F never vanishes on
Sρ, there is some ε > 0 so that |F (x)| > ε for all x ∈ Sρ. It follows that

F (x) 6= y for all y ∈ Bε(0) and x ∈ Sρ ,

so the degree deg(F, y) is well-defined for all such y. Since the degree depends
continuously on y (property 2-8 in the above reference), and it is an integer, it
follows that

deg(F, y) = deg(F, 0) 6= 0

for all y ∈ Bε(0). But nonzero degree implies that F (x) = y has at least one
solution (property 2-15 in the reference), as required.

We can now complete the proof of Theorem 22. Without loss of generality,
we take x0 = 0. Considering the obtained closed-loop system, we must show
that, if a system

ẋ = f(x)
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defined on some ball about the origin is asymptotically stable with respect to
0, then the image of the mapping

x 7→ f(x)

must contain a neighborhood of the origin. Pick a ball Bρ(0) which is included
in the domain of attraction D ⊆ X ⊆ Rn.,

We apply the above fact, using the following homotopy, for x ∈ Bρ(0) and
t ∈ [0, 1]:

H(t, x) :=


f(x) if t = 0
−x if t = 1
1
t

[
φ
(

t
1−t , x

)
− x
]

if 0 < t < 1

which connects f and −x. Note that H(t, x) 6= 0 for all x 6= 0 and all t, since
there cannot be nonzero equilibria or periodic points.

At points of the form (t, x) with t > 0, H is the product of the continuous
function 1/t with

H0(t, x)− x ,

where H0 is the homotopy used in the proof of Theorem 21, so it is continuous
there. It only remains to show continuity at t = 0. That is, we need to establish
that, for each x and each ε > 0, there is some neighborhood W of x and some
δ > 0 such that

|H(t, y)− f(x)| < ε whenever y ∈ W and t < δ .

Since for every s and y it holds that 1
s (φ(s, y)− y) = 1

s

∫ s
0
f(φ(τ, y)) dτ ,

1 + s

s
(φ(s, y)− y)− f(x) =

1
s

∫ s

0

{f(φ(τ, y))− f(x)} dτ +
∫ s

0

f(φ(τ, y)) dτ .

By continuity of f(φ(·, ·)), there are a neighborhood W of x and δ > 0 so that

‖f(φ(τ, y))− f(x)‖ < ε/2

whenever y ∈ W and τ < δ. Let M be a bound on the values of ‖f(φ(τ, y))‖
for y ∈ W and τ ≤ δ. Thus, if s < δ it holds that, with t = s

1+s ,

|H(y, t)− f(x)| < ε/2 +M
t

1− t
(5.60)

provided y ∈ W and s = t
1−t < δ. The proof of Theorem 22 is completed by

picking a smaller δ so that t < δ implies that the second term in (5.60) is less
than ε/2.

Remark 5.9.18 The proof uses only the existence of k so that the closed-loop
system is Lipschitz. Note also that, for any given neighborhood V of x0, the
image f(V ×U) must contain a neighborhood of x0: this is clear from the proof,
or applying the Theorem to the system restricted to the state-space V. 2
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Exercise 5.9.19 Consider the following system, with X = R3 and U = R3:

ẋ1 = u2u3

ẋ2 = u1u3

ẋ3 = u1u2

and its equilibrium pair x0 = 0, u0 = 0.
(1) Show that V (x) = ‖x‖2 is a control-Lyapunov function for this system, so
the system is asymptotically controllable.
(2) Prove that there is no possible local C1 stabilizer for this system. 2

Exercise 5.9.20 Consider a system without drift

ẋ = G(x)u

that is, a control-affine system for which f = 0. (Recall, cf. Equation (4.22)
and material after that, that controllability of such systems is equivalent to the
accessibility rank condition.) We assume that m < n and G is smooth. Show
that (with x0 = 0, u0 = 0):
(1) If rankG(0) = m then there is no possible local C1 stabilizer for this system.
(2) Give an example where there is a global C1 stabilizer. 2

5.10 Notes and Comments

Constant Linear Feedback

See Chapter 2 of [212] for an extensive discussion of controller and controllability
forms, as well as related topics such as their use in analog computer simulations.

The Pole-Shifting Theorem has a long history. The proof for single-input
systems, simple once the controller form is obtained, appears to have been
discovered independently during the late 1950s. Kalman credits J. Bertram,
ca. 1959, and Kailath credits also [329]. (In 1962, Harvey and Lee reported
in [174] a weak version of the Theorem, asserting only stabilizability, as a con-
sequence of the single-input case.) The general, multivariable, case, over the
complexes, was first proved by Langenhop in [265] and independently by Popov
ca. 1964, who discussed it in [321]. Over the real field, a complete proof was
given by Wonham in [431]. The simple proof for general fields, by reduction
to the single-input case, was given in [191]. The result that there is some F1

so that (A + BF1, b) is controllable is known as Heymann’s Lemma; our proof
is from [177]. Pole-placement problems for “singular” or “descriptor” systems
Eẋ = Ax+Bu are discussed for instance in [94].

For a solution of Exercise 5.1.11, see [430]; for Exercise 5.1.12, see [212],
Section 3.2.

For any given pair (A,B) and desired characteristic polynomial χ, there are
(when m > 1) many feedback matrices F such that χ

A+BF
= χ. As a set of
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equations on the nm entries of F , assignability introduces only n constraints,
one for each of the coefficients of the desired characteristic polynomial. It is
possible to exploit this nonuniqueness in various ways, for instance in order
to impose other design requirements like the assignment of some eigenvectors,
or the optimization of some criterion, such as the minimization of ‖F‖. Fur-
thermore, the Pole-Shifting Theorem does not say anything about the possible
Jordan form of A+BF , that is, the possible similarity class of the closed loop
A matrix. The more precise result is sometimes called Rosenbrock’s Theorem,
and is given in [331]; a purely state-space proof of this Theorem was given in
[117] (see also [119]).

Design issues in control theory depend on the “zeros” of a system as well as its
poles (the eigenvalues of A). The book [212] discusses various notions of “zero”
for linear systems, a topic that will not be discussed here. Recently there has
been work characterizing system zeros using techniques of commutative algebra;
see [436] and references therein.

Feedback Equivalence

The Brunovsky form originated with [77]; see also [224], on which our discussion
is based (but note that some of the formulas in the original paper are incorrect).

Feedback Linearization

The original formulation of the feedback linearization problem was given in [71],
for the restricted case treated in Exercise 5.3.18. The problem in the general
form, including the multiple-input case (m > 1) is from [207] and [197], and is
covered in detail in textbooks such as [199] and [311]. We restricted attention to
the single-input case because this is sufficient for illustrating the techniques but
is technically much simpler than the general case. (In general, instead of An and
bn in the controller form 5.3, one must base the proof on the Brunovsky form
and Theorem 14. Frobenius’ Theorem must also be generalized, to deal with
nested families of distributions ∆1 ⊆ ∆2 ⊆ . . . rather than single distributions,
as part of the proof of the multiinput case.) Exercise 5.3.19 can be solved
directly, not using feedback linearization ideas; see for instance [311], Theorem
5.3. Example 5.3.10 is from [378].

Disturbance Rejection and Relatively Invariant Subspaces

The notion of (A,B)-invariant subspace and the applications to solving systems
problems, were proposed independently by [39] and [432]. It forms the basis
of the approach described in [430], which should be consulted for a serious
introduction to the topic of relatively invariant subspaces and many control
applications. See [178] for a different manner of presenting these concepts and
relations with other formalisms.

There has been much research during the last few years attempting to gen-
eralize these techniques to nonlinear systems. See, for instance, the textbooks
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[199] and [311] for a treatment of that topic. The basic idea is to think of the
space V not as a subset of the state space, but as what is sometimes called a
“distribution” of subspaces in the tangent space to X. That is to say, one thinks
of V as an assignment of a (possibly different) space V(x) at each x ∈ X. (See
Definition 4.4.8.) Invariance then is defined with respect to the possible direc-
tions of movement, and an analogue of Lemma 5.4.3 is obtained, under strong
extra assumptions, from the classical Frobenius’ Theorem on partial differential
equations (cf. Theorem 10 (p. 175).) See also [166], [167], [194], [200], [257],
[302], and [303] in this context, including discrete-time nonlinear versions.

Stability and Other Asymptotic Notions

There are a large number of references on stability, most of them in the classical
dynamical systems literature. The paper [63] gives an excellent bibliographical
survey of those results on stability that are of major importance for control.
Related to stability questions in feedback systems, it is worth pointing out that
recently there have been studies of control laws in relation to chaotic and other
highly irregular behavior; see, for instance, [29] and [341], as well as the relevant
papers in the book [273] and the very early work already discussed in [213].

Attractivity is, in general, not equivalent to asymptotic stability, contrary
to what happens for linear systems (Proposition 5.5.5); for a counterexample,
see, for instance, [169], pages 191-194. The weaker notion of attractivity is less
interesting, partly because positive results usually will establish the stronger
property anyway, and also because of considerations that arise in input/output
design. It is also possible to introduce notions associated to simply “stability”
(as opposed to asymptotic stability). For differential equations (no controls) this
is defined as the property that states near x0 should not give rise to trajectories
that go far from x0. Except in the context of proving an instability result, we
did not discuss this notion.

Stable and Unstable Modes

For a solution of Exercise 5.6.6 see [430], Chapter 4. That book also has many
applications of the concepts discussed in this section.

Lyapunov and Control-Lyapunov Functions

There are various results which provide converses to Theorem 17, at least for
systems with no controls. The book [49] covers abstract dynamical systems. For
continuous-time systems ẋ = f(x), with f(0) = 0 and evolving in Rn, and under
weak assumptions on f (locally Lipschitz is sufficient), Massera’s Theorem, given
in [296], asserts that, if the system is asymptotically stable with respect to 0
then there is a smooth Lyapunov function V , which satisfies the infinitesimal
decrease condition V̇ (x) = LfV (x) < 0 for all x 6= 0; if the system is globally
asymptotically stable, then a proper V exists. In other words, Lemma 5.7.4 is
necessary as well as sufficient in the case of systems with no controls. For other
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proofs see also [169], [262] (allows continuous f ; even though solutions may
not be unique, a notion of asymptotic stability can be defined in that case),
and [428]. The reader may also find a proof in [279], which extends Massera’s
Theorem to smooth Lyapunov functions for systems subject to disturbances
(robust stability), and is presented in the more general context of stability with
respect to sets rather than merely equilibria.

For control systems, the situation with converses of Lemma 5.7.4 is far more
delicate. The existence of V with the infinitesimal decrease property is closely
tied to the existence of continuous fedback stabilizers; see [23], [372]. If differ-
entiability is relaxed, however, one may always find control-Lyapunov functions
for asymptotically controllable systems: see the result in [363], and the recent
applications to discontinuous feedback design in [92].

In any case, all converse Lyapunov results are purely existential, and are
of no use in guiding the search for a Lyapunov function. The search for such
functions is more of an art than a science, and good physical insight into a
given system plus a good amount of trial and error is typically the only way
to proceed. There are, however, many heuristics that help, as described in
differential equations texts; see, for instance, [334]. Another possibility is to
build control-Lyapunov functions recursively, via “backstepping” as discussed
in Lemma 5.9.5 and pursued systematically in [259].

For Exercise 5.7.17, see e.g. [323].
Example 5.7.12 implies that there exists a bounded feedback of the type

u = θ(Fx) which stabilizes a double integrator. The result might not be sur-
prising, since we know (cf. Exercise 3.6.8) that the double integrator (A has
all eigenvalues at zero) is null-controllable using bounded controls. It is a bit
surprising, on the other hand, that, for the triple integrator ẋ1 = x2, ẋ2 = x3,
ẋ3 = u, while still true that every state can be controlled to zero using bounded
controls, it is in general impossible to find any globally stabilizing feedback of
the form u = θ(Fx), with θ a saturation function; see [150]. On the positive
side, however, slightly more complicated feedback laws do exist in general, for
stabilizing linear systems with saturating inputs; see [392].

The example in Exercise 5.7.21 is due to [295]. In the adaptive control
literature one finds extensive discussions of results guaranteeing, for slow-enough
time variations, that a time-varying system is stable if the “frozen” systems are.

Linearization Principle for Stability

Even though, as discussed in Section 5.9, the linearized condition in Theorem
19 is sufficient but not necessary, this condition does become necessary if one
imposes exponential stability rather than just asymptotic stability; see, for in-
stance, [372] and references therein, as well as [157].

Theorem 20 is basically Lyapunov’s Second Theorem on Instability, proved
in 1892; it is often referred to (in generalized form) as “Chaetaev’s Theorem.”
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Introduction to Nonlinear Stabilization

The question of existence of smooth and more generally continuous feedback
laws in the nonlinear case is the subject of much current research; it is closely
related to the existence of Lyapunov functions and to the existence of smooth
solutions to optimal control problems. See, for instance, the survey papers [372]
and [101], as well as [1], [4], [23], [27], [54], [72], [92], [99], [100], [109], [186], [187],
[210], [238], [268], [294], [339], [342], [355], [403], [407], and [443]. The recent
textbook [259] covers many questions of nonlinear feedback design. Discontinu-
ous feedback of various types is, of course, also of interest, and is widespread in
practice, but less has been done in the direction of obtaining basic mathematical
results; see, for instance, [385] for piecewise analytic feedback, [362] for piece-
wise linear sampled feedback, [353] for pulse-width modulated control (a type of
variable rate sampling), and [92] for a notion of feedback based upon the idea
of sampling at arbitrarily fast rates. A major recent result in [99] showed that
time-varying smooth feedback stabilizers exist for a large class of systems (see
also the related work, and alternative proof, in [374]). There is also an extensive
engineering literature, e.g., [406], on sliding mode control, in which discontinuity
surfaces play a central role.

The line of work illustrated by Proposition 5.9.1 and Exercise 5.9.2 is based
on [202], [210], and [268]. Exercise 5.9.4 is from [8].

The assumption in Lemma 5.9.5 about the existence of a suitable Lya-
punov function is redundant, since stabilizability implies it (Massera’s Theorem,
quoted above). The proof of this Lemma was given independently in [80], [249],
and [403]. An alternative proof of the same result about stability of cascade
systems is given in [368], using only elementary definitions. A local version of
the result has been known for a long time; see, for instance, [415]. For closely
related work, see also [250].

Proposition 5.9.10 is essentially from [23]. The proof that we gave, based
on the use of the “universal” formula (5.56), is from [369]. The result in [23] is
far more general than stated here, however, especially in that it includes con-
sideration of control-value sets U which are proper subsets of Rm. For universal
formulas that apply to more general sets U, and for applications, see e.g. [199],
[259], [278]. The material that centers around Proposition 5.9.10 can be stated
in necessary and sufficient form, because the existence of a stabilizing feed-
back implies, via the converse Lyapunov theorem cited earlier, the existence of
appropriate control-Lyapunov functions; see [23].

Theorem 22 was stated originally in [72]; see [443]. The proof given here is
close to that for vector fields in [254]. See also [338].

There is also a wide literature regarding the stabilization of infinite dimen-
sional linear systems; see, for instance, the survey article [324], as well as [113]
and the general references cited for infinite dimensional linear systems theory.



Chapter 6

Outputs

Except for the basic definitions given in Chapter 2, the other major ingredient
in control theory, taking into account the constraints imposed by the impos-
sibility of measuring all state variables, has not been examined yet. These
constraints were illustrated in Chapter 1 through the example of proportional-
only (as opposed to proportional-derivative) control. Section 1.6, in particular,
should be reviewed at this point, for a motivational introduction to observability,
observers, and dynamic feedback, topics which will be developed next.

As discussed in Chapter 1, a natural set of questions to consider when mea-
surements are restricted revolves around the concept of observability. This deals,
in some sense, with the inversion of the relation between states and outputs to
recover states, a problem dual to that of controllability, which deals instead with
the correspondence between controls and states. This duality will not be made
explicit in general —there has been work framing it in the language of category
theory— but the discussion in the first sections of this Chapter closely parallels
the beginning of Chapter 3. Moreover, in the special but most important case of
linear systems, the duality between control and observation takes a particularly
elegant form, and it allows the application of results from previous chapters to
problems of observability.

6.1 Basic Observability Notions

In all of the definitions that follow, Σ = (T ,X,U, φ,Y, h) is an arbitrary system
with outputs.

Recall from Definition 2.2.4 that for each initial state x0 the i/o response of
the initialized system (Σ, x0) is the map λΣ,x0 (denoted λx0 , or even just λ, if
Σ and/or x0 are clear from the context), which assigns to each triple (τ, σ, ω)
with ω admissible for x0 the function value

h(τ, φ(τ, σ, x0, ω))

261
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representing the last output, at time τ , due to applying the control ω ∈ U[σ,τ)

when starting at the initial state x0. Especially when σ, τ are fixed, we also
denote λx0(τ, σ, ω) as λσ,τx0 (ω) or just λ(ω).

For instance, for the linear continuous-time time-varying system

ẋ = A(t)x+B(t)u (6.1)
y = C(t)x

one has that

λσ,τx0 (ω) = η(τ) = C(τ)Φ(τ, σ)x0 + C(τ)
∫ τ

σ

Φ(τ, s)B(s)ω(s) ds ,

where Φ denotes as usual the fundamental solution of ẋ = A(t)x.

Definition 6.1.1 Let x, z ∈ X and σ, τ ∈ T , with σ ≤ τ .

• The control ω ∈ U[σ,τ) distinguishes between the events (x, σ) and
(z, σ) if it is admissible for both and

λσ,τx (ω) 6= λσ,τz (ω) .

• The events (x, σ) and (z, σ) are distinguishable on the interval [σ, τ ],
or in time (at most) T = τ − σ, if there is some t ∈ [σ, τ ] and some
ω ∈ U[σ,t) that distinguishes them. If (x, σ) and (z, σ) are distinguishable
on at least one interval, then they are just called distinguishable.

• The states x and z are distinguishable by a given control, or in time T , or
just distinguishable, if there is some σ ∈ T so that the respective property
holds for the events (x, σ) and (z, σ). 2

Distinguishable events (x, σ) and (z, σ) are therefore those that can be sep-
arated by applying some control, in the sense that if the system is initially in
state x at time σ it will behave differently than if it started in state z at time
σ. They are indistinguishable (i.e., not distinguishable) if every control leads
to the same output. If one thinks of a system as a “black box” into which
inputs can be applied and from which outputs emerge, distinguishability of in-
ternal states —or events, if time is of importance— is precisely the possibility
of differentiating among them on the basis of input/output experiments.

Note that distinguishability in time T implies distinguishability in any larger
time T ′ > T , by definition. Also,

h(σ, x) 6= h(σ, z)

is equivalent to distinguishability in time 0 because

λσ,σx (�) = h(σ, x) 6= h(σ, z) = λσ,σz (�) ,

where � is the control of length zero. One may call this “instantaneous distin-
guishability.”



6.1. Basic Observability Notions 263

Example 6.1.2 Consider the states x = 1 and z = −1 for the continuous-time
system

ẋ = x2 , y = x2

having X = R and U a one-point set. On any interval [0, t], 0 < t < 1, the
outputs are

λ0,t
−1 =

(
1

1 + t

)2

and

λ0,t
1 =

(
1

1− t

)2

,

which are distinct; thus, 1,−1 are distinguishable in time t. (We omit “ω”
from the notation for λ since there are no controls.) On any interval [0, t] with
t ≥ 1, on the other hand, λ0,t

1 is undefined, so 1,−1 cannot be distinguished
by a control of length larger than 1, but they are still distinguishable in any
time larger than 1 according to our definition. Note that each pair of states
x, z so that x + z 6= 0 is instantaneously distinguishable by the measurement
y = x2, but how the dynamical behavior is essential in separating any other
pair of states x and −x. 2

We use the notation (x, σ)∼
τ

(z, σ) to indicate that the events (x, σ) and
(z, σ) are indistinguishable on the interval [σ, τ ] and just (x, σ) ∼ (z, σ) if they
are indistinguishable. For states, we write x∼

T
z if x cannot be distinguished

from z in time T and just x ∼ z to indicate that they are indistinguishable.
Observe that

(x, σ) ∼ (z, σ) iff (x, σ)∼
τ

(z, σ) for all τ ≥ σ

as well as

x∼
T
z iff (x, σ)∼

τ
(z, σ) for all σ, τ so that τ − σ = T

and
x ∼ z iff x∼

T
z for all T ∈ T+ .

Lemma/Exercise 6.1.3 Assume that Σ is a complete system. Show that in
this case, on events and states, ∼ and ∼

τ
are equivalence relations. 2

Definition 6.1.4 The system Σ is observable on the interval [σ, τ ] if for
every pair of distinct states x and z the events (x, σ) and (z, σ) are distinguish-
able on the interval [σ, τ ]. It is observable in time T if any two distinct states
are distinguishable in time T and just observable if any two distinct states are
distinguishable. 2

As in Chapter 3, these notions simplify considerably for linear systems. Re-
call that a linear system is one that is either as in Definition 2.4.1 or as in
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Definition 2.7.2. By linearity of φ(τ, σ, ·, ·) (see Lemmas 2.4.2 and 2.7.4) and of
h(t, ·), it follows that

λσ,τx (ω) = h(τ, φ(τ, σ, x, ω))

is linear on (x, ω). From (x, ω) = (x,0) + (0, ω), it follows that

λσ,τx (ω) = λσ,τx (0) + λσ,τ0 (ω) (6.2)

for all pairs (x, ω), where 0 denotes the control ω ≡ 0 of length τ −σ. Equation
(6.2) is sometimes called the superposition principle, because it expresses the
fact that for linear systems the output from any initial state is the superposition
(sum) of the zero-state response and the response to the zero input.

In particular, for any two states x, z, if

λσ,τx (ω) 6= λσ,τz (ω)

for some ω, then also
λσ,τx (0) 6= λσ,τz (0)

and so
λσ,τx (ω) 6= λσ,τz (ω)

for all ω. In particular, the events (x, σ) and (z, σ) are distinguishable on [σ, τ ] if
and only if 0 distinguishes them on some subinterval [σ, t]. Similar remarks apply
to the distinguishability of states. The equality λσ,τx−z(0) = λσ,τx (ω) − λσ,τz (ω)
implies:

Lemma 6.1.5 For linear systems, (x, σ) and (z, σ) are indistinguishable on
[σ, τ ] if and only if

λσ,tx−z(0) = 0

for all t ∈ [σ, τ ]; that is, (x − z, σ) is indistinguishable from (0, σ) using zero
controls on [σ, τ). Similarly, any two states x, z are indistinguishable if and only
if x− z is indistinguishable from 0. 2

Corollary 6.1.6 For linear systems, observability on the interval [σ, τ ] is equiv-
alent to

τ⋂
t=σ

ker
(
x 7→ λσ,tx (0)

)
= 0 . 2

For linear systems observable on [σ, τ ] a single experiment, namely applying
the zero control (on increasing intervals), serves to separate all possible pairs.
This is in general false for nonlinear systems, as illustrated by the following
example using a finite discrete-time system.

Example 6.1.7 Consider the discrete-time time-invariant finite system with

X = {a, b, c, d} , U = {u, v} , Y = {α, β} ,
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local-in-time transition function P given by the following table:

P u v

a c c
b c b
c a a
d d a

and output function h(a) = h(b) = α and h(c) = h(d) = β. The pairs

{a, c}, {a, d}, {b, c}, {b, d}

are instantaneously distinguishable. To distinguish

{a, b}

one may use any sequence starting with v and to distinguish

{c, d}

any sequence starting with u. In summary, every pair of distinct states can be
distinguished in time 1, and the system is observable in time 1.

There is however no single “universal” sequence ω ∈ U[σ,τ) so that for every
pair x 6= z it would hold that

λσ,tx (ω|[σ,t)) 6= λσ,tz (ω|[σ,t))

for some t (that is allowed to depend on x and z). This is because if ω starts with
u, then all outputs when starting at a or b coincide, since the state trajectories
coincide after the first instant, but if ω starts with v, then ω cannot separate c
from d. 2

This Example illustrates the “hypothesis testing” character of observability:
For each pair of states there is some experiment that allows one to distinguish
between them, but there is in general no “universal” experiment that allows a
diagnosis of the initial state. The notion introduced next is somewhat better
behaved in that sense.

Final-State Observability

Note that in Example 6.1.7, even though the initial-state information may have
been lost, it is still the case that after applying a suitable input sequence and
measuring the outputs, the final state may be determined completely. If the
ultimate objective is to control the system to a given state, this knowledge is
sufficient. As an illustration, assume that it is desired to bring the system to
x = a. This is a reasonable objective, since every state can be controlled to a,
but the goal now is to choose the controls based only on output measurements.
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Consider the control on [0, 2) with ω(0) = u and ω(1) = v. The outputs at
times 0, 1, 2 constitute one of the sequences

αβα ββα βαβ ,

and if either of the first two happened —corresponding to the possible initial
states a, b, or d— then we know that the final state, the state at time 2, is
already a, which is as desired. If the last happens —initial state was c— the
final state is known to be c. In either case, all future behavior of the system is
completely known. Control to a is achieved in the last case simply by applying
one further input, either u or v.

This discussion motivates the next definition, totally parallel to that of dis-
tinguishability. The terminology that we use is not standard. Since as proved
later this concept does not give anything essentially new for continuous-time
systems, this subsection can be skipped by the reader interested only in contin-
uous-time.

As in Chapter 2, Remark 2.2.2, λ̄ denotes the entire output corresponding
to a control ω, that is,

λ̄σ,τx (ω)(t) := λσ,tx (ω|[σ,t)) (6.3)

for each t ∈ [σ, τ ] and each state x, and we drop x or σ, τ when they are clear
from the context.

Definition 6.1.8 The control ω ∈ U[σ,τ) final-state distinguishes between
the events (x, σ) and (z, σ) if ω is admissible for both x and z and either

• λ̄σ,τx (ω) 6= λ̄σ,τz (ω), or

• φ(τ, σ, x, ω) = φ(τ, σ, z, ω). 2

As with distinguishability, if there exists one such ω on some interval [σ, t) so
that t ≤ τ , then (x, σ) and (z, σ) are final-state distinguishable on the interval
[σ, τ ] or in time τ − σ. If (x, σ) and (z, σ) are final-state distinguishable on
some interval [σ, τ ], then they are just called final-state distinguishable. For
states x and z, they are final-state distinguishable by a given control, or in
time T , or just final-state distinguishable if there is some σ ∈ T for which the
respective property holds for the events (x, σ) and (z, σ). A system Σ is final-
state observable on an interval [σ, τ ] if for every pair of states x and z the events
(x, σ) and (z, σ) are final-state distinguishable on the interval [σ, τ ]. It is final-
state observable in time T if any two states are final-state distinguishable in time
T , and just final-state observable if any two states are final-state distinguishable.

It is immediate from the definition that distinguishable states are also final-
state distinguishable. Thus, observable systems are always final-state observ-
able. The converse is not true, as illustrated by the discrete-time system

x+ = 0, y = 0 ,
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with X = U = Y = R. No two states are distinguishable, and hence the system is
in particular unobservable, but every control (of length at least one) final-state
distinguishes, since the state is zero after one instant, so the system is final-state
observable. However, for continuous-time systems the concepts are equivalent:

Proposition 6.1.9 A continuous-time system is observable on [σ, τ ] (or ob-
servable in time T , or observable) if and only if it is final-state observable on
[σ, τ ] (respectively, in time T , final-state observable).

Proof. Necessity always holds, so pick a final-state observable system and any
two distinct events (x, σ) 6= (z, σ). Let ω be so that it final-state distinguishes
the events (x, σ) and (z, σ); without loss of generality, assume ω ∈ U[σ,τ). If
λ̄σ,τx (ω) 6= λ̄σ,τz (ω), then some restriction ω[σ,t) distinguishes between them, and
there is nothing left to prove. So assume that

φ(τ, σ, x, ω) = φ(τ, σ, z, ω) .

Let ξ(t) = φ(t, σ, x, ω) and ζ(t) = φ(t, σ, z, ω). Then ξ and ζ are two solutions
of ẋ = f(x, ω) defined on all of [σ, τ ] and having the same value at time t = τ .
By uniqueness of solutions, ξ ≡ ζ, contradicting the assumption that ξ(σ) =
x 6= z = ζ(σ). This gives the implication on any fixed interval [σ, τ ], and the
other implications follow from here.

As discussed earlier, observability requires multiple experiments, except for
linear systems and some other restricted classes of systems. But if a system is
final-state observable, it is often possible to prove that it is final-state distin-
guishable using single (long-enough) experiments, as in the following exercise.

Exercise 6.1.10 Assume that Σ is a final-state observable time-invariant dis-
crete-time complete system for which cardX <∞. Show that there exists some
T ≥ 0 and some fixed control ω of length T so that ω final-state distinguishes
every pair of states. (Hint: Consider any control for which the set of pairs of
states (x, z) that are final-state indistinguishable by ω is of minimal possible
cardinality.) 2

Continuous-Time Systems

There is an analogue of the discussion in Section 3.9, dealing with the sufficiency
of various classes of controls in testing observability for continuous-time systems.

For any fixed σ, τ , let A be any subset of L∞U (σ, τ) so that for each ω ∈ L∞U
there exists a sequence of elements

ω(j) ∈ A , ω(j) → ω pointwise a.e. ,

which is equibounded (all values in a fixed compact).
Examples of sets A that satisfy the above conditions are discussed in Remark

C.1.2 in Appendix C. They include analytic controls when U is an open convex
subset of Rm.

The following observation then is very useful.
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Proposition 6.1.11 If (x1, σ) and (x2, σ) are distinguishable, then they can
be distinguished by a control in A.

Proof. By Theorem 1 (p. 57), Part 2(i), and the continuity of h, it follows
that, if ω ∈ U[σ,τ) is admissible for some x, and if ω(j) → ω pointwise almost
everywhere and the sequence is equibounded, then ω(j) is also admissible for x
for large j, and

λσ,τx (ω(j)) → λσ,τx (ω) .

Thus, if ω distinguishes two events and ω(j) → ω for some equibounded sequence
in A, then for large enough j one of the controls in the approximating sequence
already distinguishes.

An interesting consequence of Proposition 6.1.11 is the fact that, for analytic
systems, observability can be achieved almost instantaneously. The analogous
controllability result is of course false, except for linear systems (cf. Remark
3.7.9).

Proposition 6.1.12 Let Σ be a continuous-time system over K = R,

ẋ = f(t, x, u) , y = h(t, x) ,

for which the maps f and h are real-analytic in all their arguments, U and Y

being assumed to be open subsets of Euclidean spaces Rm and Rp, respectively,
with U convex. Assume that (x, σ) and (z, σ) are distinguishable on [σ, τ ] and
pick any δ > 0. Then, these events are distinguishable in time δ.

In particular, if Σ is observable on [σ, τ ], then it is observable in arbitrarily
small time δ > 0.

Proof. The two states x and z can be distinguished by an analytic control ω
on [σ, τ ], by Proposition 6.1.11. Let ξ = ψ(τ, σ, x, ω) and ζ = ψ(τ, σ, z, ω) be
the ensuing paths and let

α(t) := λ̄σ,τx (ω)(t) = h(t, ξ(t)) , β(t) := λ̄σ,τz (ω)(t) = h(t, ζ(t)) .

These are analytic functions of time, because h as well as each of ξ and ζ are (cf.
Proposition C.3.12 in Appendix C). Thus, if these functions were to coincide
on [0, δ], then they would be identically the same, contradicting the fact that
they differ at t = τ .

Exercise 6.1.13 Prove that if Σ is a continuous-time system as in Proposition
6.1.12, then indistinguishability is an equivalence relation. 2

6.2 Time-Invariant Systems

Throughout this section, unless otherwise stated, Σ is an arbitrary time-invar-
iant system with outputs.
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For each fixed t ∈ T+ we denote

It := {(x, z) ∈ X× X | x∼
t
z} ,

that is, the relation ∼
t

seen as a set of ordered pairs. Note that

It ⊆ Is

for each pair s ≤ t. We also let

I :=
⋂
t∈T+

It

denote the set of indistinguishable pairs. The following can be seen as a dual
statement to the one in Lemma 3.2.6:

Lemma 6.2.1 If there are any S, T ∈ T+, T > 0, such that

IS = IS+T ,

then necessarily IS = I.

Proof. It will be enough to establish that

IS = IS+kT (6.4)

for all positive integers k, since then for each t ∈ T+ there is some k so that
S + kT > t and therefore IS = IS+kT ⊆ It. We prove (6.4) by induction on k,
the case k = 1 holding by hypothesis. Assume then that (6.4) holds for k − 1
and pick any

(x, z) ∈ IS = IS+T . (6.5)

We want to prove that (x, z) ∈ IS+kT . If this were not to be the case, then there
would be some ω ∈ U[0,t) that distinguishes between them, with t ≤ S + kT .
It cannot be the case that t < T , since that would contradict the fact that
(x, z) ∈ IS+T . So we may consider the control

ω1 := ω|[0,T ) ,

which must be admissible for both x and z because ω was. Let

x1 := φ(T, 0, x, ω1), z1 := φ(T, 0, z, ω1) .

The control
ω2 := ω|[T,t)

distinguishes x1 and z1, in time t−T ≤ S+(k−1)T , so by inductive hypothesis
these states can also be distinguished by some control ω3 of length at most S.
Finally, introduce the concatenation

ω′ := ω1ω3 ,
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which is a control of length at most S+T distinguishing x and z. The existence
of such a control contradicts (6.5).

The following two results are analogues of Lemma 3.2.4 and Corollary 3.2.7,
respectively.

Corollary 6.2.2 Assume that Σ is a complete discrete-time system and 1 <
card (X) = n <∞. Then

I = In−2 ,

and in particular Σ is observable if and only if it is observable in time n− 2.

Proof. Consider the sequence of sets

In−1 ⊆ In−2 ⊆ . . . ⊆ I0 ⊆ X× X .

The inclusions cannot be all strict. Indeed, recall (Lemma 6.1.3) that, since Σ
is complete, indistinguishability in time i is an equivalence relation. Let li be
the number of equivalence classes under ∼

i
; strict inclusions would imply

ln−1 > ln−2 > . . . > l0 > 1 ,

which is impossible since all li ≤ n. Thus, either I0 = X×X, i.e., h is constant
and therefore I = X× X, or we are in the situation of Lemma 6.2.1.

Exercise 6.2.3 Show that, for arbitrary finite discrete-time systems, not nec-
essarily complete,

I = I
n(n−1)

2 .

Give an example to illustrate that the formula I = In−2 may not hold if the
system is not complete. 2

If Σ is a linear system and T ∈ T+, we let

OT :=
T⋂
t=0

{x | λ0,t
x (0) = 0}

so that x∼
T
z if and only if x− z ∈ OT . In this case, a strict inclusion

IT ⊂ IS

is equivalent to
dimOT < dimOS ,

so there cannot be any proper chain

Itn ⊂ Itn−1 ⊂ . . . ⊂ It0 ⊂ X× X ,

and this implies, by the same argument as that used to prove Corollary 3.2.7:
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Corollary 6.2.4 Assume that Σ is a linear system of dimension n <∞. Then:

(a) If Σ is discrete-time, I = In−1.

(b) If Σ is continuous-time, I = Iδ for all δ > 0.

In particular, observable finite dimensional discrete-time systems are observable
in n − 1 steps, and observable finite dimensional continuous-time systems are
observable in arbitrarily small time. 2

The continuous-time part is of course also a consequence of Proposition
6.1.12. Observe that for a discrete-time linear system over a finite field of q
elements, Corollary 6.2.2 gives an estimate of qn− 2 steps, while using linearity
gives the far smaller estimate n− 1.

For discrete-time linear systems, On−1 = kerOn(A,C), where for each k we
are denoting

Ok(A,C) =


C
CA
...

CAk−1

 (6.6)

and this kernel is zero precisely when the transposed matrix has full row rank,
from which the following fact follows (denoting On simply as O):

Theorem 23 The n-dimensional discrete-time linear system Σ is observable if
and only if

rankO(A,C) = n ,

or equivalently, if and only if (A′, C ′) is controllable. 2

For continuous-time linear systems,

Oε = {x | CetAx = 0 for all t ∈ [0, ε]} ,

which is equivalent, by analyticity of CetAx, to the set of conditions

CAix = 0, i = 0, 1, 2, . . . ,

or equivalently, because of the Cayley-Hamilton Theorem, to these same condi-
tions for i = 0, . . . , n − 1. Thus, again observability is equivalent to the kernel
of the matrix in (6.6) being trivial for k = n, and we conclude as follows.

Theorem 24 The n-dimensional continuous-time linear system Σ is observable
if and only if

rankO(A,C) = n ,

or equivalently, if and only if (A′, C ′) is controllable. 2
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By the two Theorems, there is no ambiguity in calling a pair of matrices
(A,C) with A ∈ Kn×n and C ∈ Kp×n an observable pair if O(A,C) has rank
n. In general, all the material in Section 3.3 dualizes to results about observable
pairs. For instance, the Hautus controllability condition becomes:

(A,C) is observable iff rank
[
λI −A
C

]
= n for all λ ∈ K̃ (6.7)

and the set of all observable pairs is generic, in the sense of Proposition 3.3.12,
among all pairs.

The Kalman controllability decomposition in Lemma 3.3.3 dualizes to an
observability decomposition: If rankO(A,C) = r ≤ n, then there exists a T ∈
GL(n) such that the matrices Ã := T−1AT and C̃ := CT have the block
structure

Ã =
(
A1 0
A2 A3

)
C̃ = (C1 0 ) (6.8)

where A1 is r×r, C1 is p×r, and (Lemma 3.3.4) the pair (A1, C1) is observable.
As before, if r = 0, the decomposition is trivial, and A1, 0, A2, C1 are not there.

As in the controllability case, two pairs (A,C) and (Ã, C̃) are said to be
similar if such a T exists.

This decomposition corresponds, using continuous-time to illustrate, to a
change of variables

x(t) := Tz(t)

under which the equations ẋ = Ax, y = Cx are transformed into

ż1 = A1z1

ż2 = A2z1 +A3z2

y = C1z1 ,

where z1, z2 are r- and (n−r)-dimensional respectively. Thus, the z2 coordinate
does not affect the output, even indirectly.

Exercise 6.2.5 Refer to Exercise 3.2.12. Show that using the altitude h as the
measurement map, the system Σ is observable. Show that using instead any
other coordinate as an output (for instance, φ, which can be measured with a
gyroscope) would not result in observability. 2

Exercise 6.2.6 Refer to Exercise 3.2.13.

(a) Show that the system is not observable if one uses the pendulum angle
x3 = φ as the measurement map. Provide an example of two indistin-
guishable states, and explain intuitively why they are indistinguishable.

(b) Show that using the cart position x1 = δ as the measurement map, the
system Σ is observable, as long as m > 0. However, when m = 0, which
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models the case where the pendulum mass is negligible compared to that
of the cart, the system is not observable. (Why is this difference more or
less clear intuitively?)

(c) Prove that if both δ and φ are measured, i.e.

C =
(

1 0 0 0
0 0 1 0

)
,

then the system is observable even if m = 0. 2

Observability Under Additional Structure

Many possible nonlinear generalizations of Corollaries 6.2.2 and 6.2.4 are avail-
able when additional algebraic assumptions are made on the system structure.
The following discussion is meant to illustrate this fact through some examples.

Consider complete discrete-time (still time-invariant) polynomial systems.
These are systems with X = Rn, U = Rm, Y = Rp, and equations

x+ = P(x, u) , y = h(x) ,

for which the maps P : Rn+m → Rn and h : Rn → Rp are polynomial.

Proposition 6.2.7 Let Σ be as above. There exists then a finite set of controls
ω1, . . . , ωk such that, for any pair of states x and z, these states are distinguish-
able if and only if one of the controls ωi distinguishes them. In particular, if Σ
is observable, then there is some finite time T so that Σ is observable in time T .

Proof. For each possible control ω let ∆ω be the polynomial in 2n variables
corresponding to the function

∆ω(x, z) := λx(ω)− λz(ω) .

In particular, ∆�(x, z) = h(x) − h(z). Observe that ω does not distinguish
between the two states x and z precisely when ∆ω(x, z) = 0.

From the Hilbert Basis Theorem, we know that there exists a finite set of
controls ω1, . . . , ωk so that for each other ω there are polynomials p1, . . . , pk
with

∆ω(x, z) =
k∑
i=1

pi(x, z)∆ωi(x, z) .

This implies that, if for any given pair (x0, z0) of states it holds that

∆ωi(x
0, z0) = 0 for all i = 1, . . . , k ,

then, for the same pair, necessarily ∆ω(x0, z0) = 0 for every other control, and
the conclusion is established. (Recall that the Hilbert Basis Theorem asserts
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that every ideal in the polynomial ring R[x1, . . . , xn, z1, . . . , zn] is finitely gen-
erated. We apply this to the ideal generated by the ∆ω’s. Each element of this
ideal is a finite linear combination of the elements ∆ω, so each member of a
finite generating set can in turn be written in terms of a finite number of the
∆ω’s.)

Exercise 6.2.8 Show that the result does not extend to analytic systems by
considering the system

x+ =
1
2
x , y = sinx ,

which is observable but not in finite time. 2

Exercise 6.2.9 There is a continuous-time version of the above result. Con-
sider continuous-time polynomial systems

ẋ = f(x, u) , y = h(x) ,

where X,U,Y, h are as above and f is polynomial. We assume completeness.
Show that, again, there exists then a finite set of controls ω1, . . . , ωk such that,
for any pair of states x and z, these states are distinguishable if and only if one
of the controls ωi distinguishes them. (Hint: Use analytic controls and argue in
terms of the corresponding derivatives y(0), ẏ(0), . . . that there must exist for
each such control a polynomial ∆ω so that x and z are indistinguishable by ω if
and only if ∆ω(x, z) = 0. The Hilbert Basis Theorem is needed for that. Now
apply the Basis Theorem again.) 2

Abstract Duality

The duality between controllability and observability can be formalized in var-
ious manners for nonlinear systems. More precisely, a form of duality holds
between reachability from a fixed initial state and observability. For linear
systems, reachability from the origin is equivalent to complete controllability,
and this explains the use of “controllability” in the linear case. The following
exercise illustrates one abstract —and trivial— version of this duality.

Exercise 6.2.10 Let Σ be a complete time-invariant system with outputs and
cardY ≥ 2. Consider the system

Σ̃ := (T , X̃,U, φ̃)

defined as follows. Its state space X̃ is the set of all maps X → Y, and for each
ω ∈ U[σ,τ) and each state α : X → Y of X̃,

φ̃(τ, σ, α, ω)

is the map
x 7→ α(φ(τ, σ, x, ω̃)) ,
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where ω̃ is the time-reversed control ω̃(t) := ω(σ+ τ − t). Note that the output
map h can be seen as an element of X̃. Prove that if Σ̃ is reachable from h, i.e.,

R(h) = X̃ ,

then Σ is observable. 2

Sampled Observability

Let Σ = (A,B,C) be a linear time-invariant continuous-time system with out-
puts over K = R. Consider the situation where measurements of the state of the
system are only possible at discrete instants t = kδ, for integers k, where δ > 0
is a fixed number, called the sampling interval. This situation was discussed
in Section 1.3 on digital control, and a discrete-time system with outputs, Σ[δ],
which models the system obtained by disregarding the intermediate observa-
tions, was introduced in Definition 2.10.1. In analogy with the discussion in
Section 3.4 we ask when is Σ δ-sampled observable, that is, when is Σ[δ] observ-
able as a discrete-time time-invariant linear system? Note that

Σ[δ] = (eδA, A(δ)B,C) ,

so observability is equivalent to controllability of

(eδA
′
, C ′)

and therefore δ-sampled observability holds provided that (A′, C ′) is δ-sampled-
controllable (Lemma 3.4.1). In particular, if δ satisfies the spectrum conditions
in Theorem 4 (p. 102), then observability of (A,C) implies δ-sampled observ-
ability:

Proposition 6.2.11 Assume that Σ is observable and that

δ(λ− µ) 6= 2kπi, k = ±1,±2, . . . , (6.9)

for every two eigenvalues λ, µ of A. Then Σ is also δ-sampled observable. 2

Thus, again using the terminology in Section 3.4:

Observability is preserved if the sampling frequency is larger than
twice the largest frequency of A

(cf. Lemma 3.4.4).

Exercise 6.2.12 Let ωi, i = 1, . . . , k be k different positive real numbers. Show
that there is some continuous-time time-invariant linear system with outputs
and no inputs Σ = (A, 0, C) such that:

• Σ is observable, and
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• for each set of 2k real numbers ai, ϕi, i = 1, . . . , k, there is some initial
state x so that

λ0,t
x = η(t) =

k∑
i=1

ai sin(2πωit+ ϕi)

for all t ≥ 0.

Conclude from the above discussion that, if

1
δ
> 2 max

i=1,...,m
|ωi| ,

then the complete function η(t) can be recovered from the values

η(0), η(δ), η(2δ), . . .

for every set of ai’s and ϕi’s. 2

6.3 Continuous-Time Linear Systems

Pick any finite dimensional continuous-time linear system with outputs but no
inputs Σ = (A(t), 0, C(t)). Its adjoint Σ∗ is the system

ẋ(t) = −A(t)∗x(t) + C(t)∗u(t) . (6.10)

Corollary 3.5.9 asserts that controllability of Σ∗ on an interval [σ, τ ] is equivalent
to there not being any nonzero solution ξ of the equation ẋ = −(−A∗)∗x = Ax
on [σ, τ ] for which C(t)ξ(t) ≡ 0. But then Corollary 6.1.6 gives:

Σ is observable on [σ, τ ] ⇐⇒ Σ∗ is controllable on [σ, τ ]

Another way to state this adjointness is in terms of the operator

L : Ω = L2
p(σ, τ) → X = Kn : ω 7→

∫ τ

σ

k(t)∗ω(t) dt (6.11)

which was considered in Section 3.5, where

k(s) = C(s)Φ(s, τ) , (6.12)

that is, the operator corresponding to the input-to-state map for the adjoint
system. It was proved in Section 3.5 that L is onto (Σ∗ is controllable on the
interval [σ, τ ]) if and only if L∗ is one-to-one, where

(L∗x)(t) = C(t)Φ(t, τ)x = C(t)Φ(t, σ)Φ(σ, τ)x .
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But this mapping is one-to-one precisely when there is no nonzero x so that the
trajectory with initial state Φ(σ, τ)x gives a zero output, that is, if the original
system is observable.

This adjointness permits applying the results of Section 3.5 to observability
problems for continuous-time linear systems. For example, observability on
[σ, τ ] is equivalent to the positive definiteness of

W =
∫ τ

σ

Φ(s, τ)∗C(s)∗C(s)Φ(s, τ) ds , (6.13)

which in principle can be checked numerically.

Least-Squares Observation

The optimal-norm property of the pseudoinverse of the input-to-state operator
in Section 3.5 dualizes into an optimal-observation property. This is discussed
next, after some general remarks about pseudoinverses.

In general, consider a bounded linear operator L from a Hilbert space Ω
into a finite dimensional space X, as in Section 3.5. Assume from now on that
L is onto, so that the conclusions of Corollary 3.5.3 hold: The adjoint L∗ is
one-to-one, and

W : X → X, W := LL∗

is positive definite. The pseudoinverse

L# := L∗W−1 : X → Ω

was defined in Equation (3.20), and it was shown that it provides the minimum-
norm solution of Lω = x. The next result proves that its adjoint

(L#)∗ = W−1L : Ω → X

gives the least-squares solution of L∗z = ω. (For operators between finite dimen-
sional spaces, both of these are particular cases of the pseudoinverse construction
in Appendix A.2 on singular values.)

Lemma 6.3.1 For each ω ∈ Ω, let z := W−1Lω. Then

‖L∗z − ω‖ ≤ ‖L∗ζ − ω‖

for all ζ ∈ X, with equality only if ζ = z.

Proof. Pick any ω ∈ Ω. Observe that for all x ∈ X it holds that

〈L∗x, L#Lω − ω〉 = 0 (6.14)

because, as LL#L = L, this expression equals 〈x, Lω − Lω〉. In particular,
given any ζ ∈ X we may apply (6.14) to the element x = ζ − z to obtain

〈L∗ζ − L#Lω,L#Lω − ω〉 = 0
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and therefore that

‖L∗ζ − ω‖2 =
∥∥L∗ζ − L#Lω

∥∥2
+
∥∥L#Lω − ω

∥∥2

=
∥∥L∗ζ − L#Lω

∥∥2
+ ‖L∗z − ω‖2 ,

which establishes the desired inequality. Equality can hold only if

L∗ζ = L#Lω = L∗z ,

which, since L∗ is one-to-one, is equivalent to ζ = z.

Now consider the system Σ = (A(t), 0, C(t)) and an interval [σ, τ ]. We
introduce the reachability operator associated to the adjoint system Σ∗, that is,
L as in (6.11), so that k is as in (6.12), W is as in (6.13),

Lη =
∫ τ

σ

Φ(s, τ)∗C∗(s)η(s) ds ,

and
(L∗ζ)(t) = C(t)Φ(t, τ)ζ = C(t)Φ(t, σ)Φ(σ, τ)ζ .

We now let the operator
M0 : L2

p(σ, τ) → X

be defined by the formula

M0η := Φ(σ, τ)W−1
∫ τ
σ

Φ(s, τ)∗C(s)∗η(s) ds

which is obtained as the composition Φ(σ, τ)W−1L.
Using the “λ̄” notation for the entire output function as in Equation (6.3),

Lemma 6.3.1 gives that x = M0η is the least-squares solution of

λ̄x(0) = η

that is, for any given output function η, M0η is the state that minimizes the
difference between this function and the one that would correspond to initial
state x and control ≡ 0.

In general, for the system (6.1), let

M(ω, η) := M0

(
η − λ̄0(ω)

)
be the operator on L2

m(σ, τ) × L2
p(σ, τ) that subtracts the effect of any given

control ω on the output and then provides the best least-squares solution for
this new control.

The main result on optimal observation follows immediately from the pre-
ceeding discussion:
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Theorem 25 Assume that Σ = (A,B,C) is observable. Take any ω ∈ L2
m(σ, τ)

and any η ∈ L2
p(σ, τ), and let x̂ := M(ω, η). Then,∥∥λ̄x̂(ω)− η

∥∥ ≤ ∥∥λ̄x(ω)− η
∥∥

for all x ∈ X, with equality only if x = x̂. 2

This can be interpreted as follows: If the actual output is

y(t) = C(t)x(t) + d(t) ,

where d(·) represents an unknown disturbance, then the estimate x̂ provides the
state that would have produced this output under the assumption that d was
as small as possible.

Exercise 6.3.2 Let Σ be a continuous-time linear system with outputs, and
pick σ < τ ∈ R. Consider the observability Gramian

Wo(σ, τ) :=
∫ τ

σ

Φ(s, σ)∗C(s)∗C(s)Φ(s, σ) ds .

Show: Σ is observable in [σ, τ ] if and only if Wo(σ, τ) has rank n, and, in
that case, the operator that computes the initial state x from the observation
η(t) = C(t)Φ(t, σ)x is given by:

x = M0η = Wo(σ, τ)−1

∫ τ

σ

Φ(s, σ)∗C(s)∗η(s) ds .

(This is a dual to Exercise 3.5.5.) 2

Analytically-Varying Systems

If (A,B,C) is so that A and C have real-analytic entries on some interval
I = [σ, τ ], and if t0 ∈ I is an arbitrary point in that interval, then observability
on [σ, τ ] is equivalent to

rank


C0(t0)
C1(t0)

...
Ck(t0)

 = n for some k , (6.15)

where, inductively on i,
C0(t) := C(t)

and
Ci+1(t) := −Ci(t)A(t)− d

dt
Ci(t)

for t ∈ I. This is simply what results from applying the criterion in Corollary
3.5.18 to the adjoint system. The negative sign in the first term on the right
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hand side comes from the adjoint equation. Equivalently, multiplying Ci by
(−1)i, one could take

Ci+1(t) = Ci(t)A(t) +
d

dt
Ci(t)

for i ≥ 1.

Remark 6.3.3 Of course, the above rank condition can also be obtained di-
rectly, simply by observing that, if y = Cx and ẋ = Ax, then in the analytic
case y ≡ 0 if and only if all its derivatives vanish at t0, but these derivatives are

y(i)(t0) = Ci(t0)x(t0) ,

and unobservability is equivalent to the existence of some x(t0) 6= 0 such that
this happens. 2

Remark 6.3.4 More generally, if Σ is a linear system with outputs and the
entries of B are continuous functions of time, one may define the adjoint as a
system with outputs

(−A(t)∗, C(t)∗, B(t)∗)

with the same state space, control-value set Y, and output-value set U. Since
(Σ∗)∗ = Σ, one can also state the adjointness result as: Σ is controllable if and
only if Σ∗ is observable. 2

6.4 Linearization Principle for Observability

This section provides a result showing that, if a linearization is observable, then
the original system is locally observable in a suitable sense.

Definition 6.4.1 The topological system Σ is locally observable about the
state x0 ∈ X if there exists some neighborhood V of x0 such that every state in
V different from x0 is distinguishable from x0. 2

Theorem 26 Assume that Σ is a continuous-time system over R of class C1,
and let Γ = (ξ, ω) be a trajectory for Σ on an interval I = [σ, τ ]. Then a
sufficient condition for Σ to be locally observable about x0 = ξ(σ) is that Σ∗[Γ]
be observable on [σ, τ ].

Proof. We first remark a general fact about continuous-time linear systems.
We claim that, if Σ is a linear system which is observable on [σ, τ ], then there
exist t1, . . . , tn ∈ [σ, τ ] and integers i1, . . . , in such that the mapping

x 7→ (Ci1(t1)Φ(t1, σ)x, . . . , Cin(tn)Φ(tn, σ)x)



6.4. Linearization Principle for Observability 281

is one-to-one, where Cj is the jth column of C. This can be shown as follows.
Assume inductively that we have constructed subspaces X = K0, . . . ,Kr, times
t1, . . . , tr ∈ [σ, τ ], and integers i1, . . . , ir, such that for r > 0

Kr = {x | Ci1(t1)Φ(t1, σ)x = . . . = Cir (tr)Φ(tr, σ)x = 0}

and so that Ki has dimension n − i for each i. If r = n, then we have already
obtained the desired ti’s. Otherwise, pick any nonzero x ∈ Kr. By observability,
there is some t ∈ [σ, τ ] so that C(t)Φ(t, σ)x 6= 0 and hence some column, say
the jth, of this which is nonzero. Letting tr+1 := t and ir+1 := j provides the
induction step. For r = n the claim follows. Apply this remark to the system
Σ∗[Γ] to obtain t1, . . . , tn and i1, . . . , in.

Consider now the mapping

β : X → Rn : x 7→
(
λσ,t1x,i1

(ω1), . . . , λ
σ,tn
x,in

(ωn)
)
,

where ωj is the restriction of ω to the interval [σ, tj) and the subscript ij indicates
the ijth coordinate of λσ,tjx . The differential of this mapping, evaluated at x0,
can be obtained by looking at each component. Consider any mapping of the
type

X → R : x 7→ λσ,tx,i(ω) ,

for any control ω. Its differential at x0 is the composition of the partial differ-
ential of the mapping α in Theorem 1 (p. 57) with respect to x, evaluated at
(x0, ω), with the differential of the ith coordinate of h, that is, the mapping

x 7→ Ci(t)Φ(t, σ)x

for the linearization.
We conclude that the differential of β is one-to-one, by construction of the

tj ’s and the ij ’s. Thus, from the Inverse Function Theorem, the map β is
one-to-one in a neighborhood of x0, as wanted.

Of course this condition is far from necessary, as the example

ẋ = 0, y = x3

(and x0 = 0) shows.

Remark 6.4.2 There is a higher order test for observability as well. Here we
only present a brief outline of this test. Assume given a continuous-time system
affine in controls,

ẋ = g0(x) +
m∑
i=1

gi(x)ui ,

where we assume that all vector fields (that is, vector functions) gi are of class
C∞. Consider the vector space spanned by the set of all functions of the type

Lgi1
. . . Lgik

hj(x) (6.16)
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over all possible sequences i1, . . . , ik, k ≥ 0, out of {0, . . . ,m} and all j =
1, . . . , p, where Lgα = ∇α.g for any function α and any vector field g. This
is called the observation space O associated to the system. We say that two
states x1 and x2 are separated by O if there exists some α ∈ O such that
α(x1) 6= α(x2). One can prove that if two states are separated by O then they
are distinguishable. A sketch of the argument is as follows. Assume that x1

is indistinguishable from x2 and consider a piecewise constant control which
is equal to u1 on [0, t1), equal to u2 on [t1, t1 + t2), . . . , and equal to uk on
[t1 + . . .+ tk−1, t1 + . . .+ tk). For small enough ti’s this control is admissible for
both x1 and x2, and by indistinguishability we know that the resulting output at
time t = t1 + . . .+ tk is equal for both. In general, we denote the jth coordinate
of this output value by

hj(t1, t2, . . . , tk, u1, u2, . . . , uk, x) (6.17)

if the initial state is x. It follows that the derivatives with respect to the ti’s
of this output are also equal, for x1 and x2, for every such piecewise constant
control. One may prove by induction that

∂k

∂t1 . . . ∂tk

∣∣∣∣
t1=t2=...=0

hj (t1, t2, . . . , tk, u1, u2, . . . , uk)

= LX1LX2 . . . LXk
hj(x)

where Xl(x) = g0(x)+
∑m
i=1 u

l
igi(x). This expression is a multilinear function of

the uli’s, and a further derivation with respect to these control value coordinates
shows that the generators in (6.16) must coincide at x1 and x2. In the analytic
case, separability by O is necessary as well as sufficient, because (6.17) can be
expressed as a power series in terms of the generators (6.16).

The observability rank condition at a state x0 ∈ X is the condition that the
dimension of the span of

{∇Lgi1
. . . Lgik

hj(x0) | i1, . . . , ik ∈ {0, . . . ,m}, j = 1, . . . p}

be n. An application of the Implicit Function Theorem shows that this is
sufficient for the distinguishability of states near x0. For more details, see, for
instance, [185], [199], and [311]. 2

Exercise 6.4.3 Give an example of a system of class C∞ with X = U = Y = R
which is observable but for which O does not separate. 2

Exercise 6.4.4 Let ẋ = f(x), y = h(x) be a smooth continuous-time system
with no controls. Assume that f(0) = 0 and h(0) = 0. Relate the observability
rank condition to the observability of the linearization about (0, 0). 2
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6.5 Realization Theory for Linear Systems

Motivated by the discussion in Sections 3.3 and 6.2, it becomes of interest to
study triples of matrices (A,B,C) over a field K,

A ∈ Kn×n , B ∈ Kn×m , C ∈ Kp×n ,

corresponding to linear time-invariant systems with outputs, and it is unam-
biguous to call such a triple “controllable” or “observable,” meaning that the
corresponding discrete-time and (for K = R or C) continuous-time systems have
that property. The dimension of the triple is the number n, and m and p are
the number of inputs and outputs, respectively. We denote by

Sn,m,p

the set of all such (A,B,C)’s, and we use

Sc,on,m,p

for the set of controllable and observable ones. Note that for K = R or C, Sc,on,m,p
is an open dense subset of Sn,m,p, in the topology for

Kn×n ×Kn×m ×Kp×n

obtained when identifying this space with Kn(n+m+p).
Assume that (A,B,C) is so that rankO(A,C) = r and pick a decomposition

as in Equation (6.8), where T ∈ GL(n). Write

B̃ := T−1B =
(
B1

B2

)
and consider the pair (A1, B1). If this is not controllable, we can decompose it
via Lemma 3.3.3. Let S1 ∈ GL(r) be so that

S−1
1 A1S1 =

(
A11 A12

0 A22

)
and S−1

1 B1 =
(
B11

0

)

and pick S :=
(
S1 0
0 I

)
∈ GL(n). Letting Q := TS, the following useful

decomposition results:

Lemma 6.5.1 For any triple (A,B,C) there exists some Q ∈ GL(n) so that

Q−1AQ =

A11 A12 0
0 A22 0
A31 A32 A33


as well as

Q−1B =

B11

0
B31

 and CQ = (C11 C12 0 )
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for some matrices A11, . . ., and the triple

(A11, B11, C11)

is controllable and observable.

Proof. The pair (A11, B11) is controllable by construction, so it only remains
to establish observability. Since

Or

((
A11 A12

0 A22

)
, (C11 C12 )

)
= (Or(A11, C11) ∗ ) ,

one only needs to show that the matrix on the left has rank r. By construction,
however, the pair there is similar to the pair (A1, C1), which was already known
to be observable, so the result follows.

Lemma/Exercise 6.5.2 With the notations in Lemma 6.5.1,

CAiB = C11A
i
11B11

for all i = 0, 1, 2, . . . . 2

Definition 6.5.3 The triple (A,B,C) is canonical if it is controllable and
observable. 2

For instance, the triple (A11, B11, C11) in the above construction is canonical.
One also calls a finite dimensional time-invariant discrete-time or continuous-
time system Σ a canonical system if the corresponding triple is.

A sequence
A = {Ai, i = 1, 2, . . .} ,

where Ai ∈ Kp×m, i = 1, 2, . . . for some fixed p and m, is a Markov sequence,
and the Ai’s are its Markov parameters. From Lemmas 2.4.6 and 2.7.13, the
problem of realizing a discrete-time time-invariant linear behavior or a continu-
ous-time time-invariant integral behavior is equivalent to the algebraic problem
of factoring a Markov sequence as in (2.18), that is

Ai = CAi−1B for all i > 0 .

We say that a triple (A,B,C) for which this factorization holds is a realization
of A; if there is a realization, A is realizable.

From Lemmas 6.5.1 and 6.5.2 it follows that:

Corollary 6.5.4 The Markov sequence A is realizable if and only if there exists
a canonical triple realizing it. 2

Thus, for any (continuous-time or discrete-time finite dimensional) time-in-
variant linear system Σ, there exists a canonical system Σc having the same
behavior as Σ. Next we study when a given sequence A is realizable, and we
show that canonical realizations are essentially unique.
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Realizability

Given a Markov sequence A and any pair of positive integers s, t, the (s, t)-th
block Hankel Matrix associated to A is the matrix over K:

Hs,t(A) :=


A1 A2 · · · At
A2 A3 · · · At+1

...
... · · ·

...
As As+1 · · · As+t−1

 (6.18)

of size ps×mt made up of st blocks, whose i, jth block is Ai+j−1.
For any triple (A,B,C) and each k we consider the matrices Ok as in equa-

tion (6.6) as well as the reachability matrices

Rk(A,B) = [B,AB, . . . , Ak−1B]

(so that Rn = R). The main relations between these matrices and Hankel
matrices are as follows:

Lemma 6.5.5 The triple (A,B,C) realizes A if and only if

Os(A,C)Rt(A,B) = Hs,t(A) (6.19)

for all s and t. 2

Corollary 6.5.6 If (A,B,C) realizes A, then

rankHs,t(A) ≤ max{rankOs(A,C), rankRt(A,B)} ≤ n

for all s, t. 2

Note that if the sequence A is realizable by the triple (A,B,C), then also

Os(A,C)ARt(A,B) = H1
s+1,t , (6.20)

the submatrix of Hs+1,t formed by dropping the first block row.
A triple is canonical precisely if both O(A,C) = On(A,C) and R(A,B)

have rank n. In that case, there exist two matrices O#(A,C) and R#(A,B)
such that

O#(A,C)O(A,C) = R(A,B)R#(A,B) = I . (6.21)

We use the notation “#” to emphasize that in the particular case of K = R
or C one could use the respective pseudoinverses, though many other one-sided
inverses exist.

Corollary 6.5.7 If (A,B,C) realizes A and (A,B,C) is a canonical triple, then

rankHs,t(A) = n

whenever s, t ≥ n.



286 6. Outputs

Proof. Using one-sided inverses satisfying (6.21), O(A,C)R(A,B) = Hn,n(A)
implies that

I = O#(A,C)Hn,n(A)R#(A,B) ,

so Hn,n(A) must have rank ≥ n, and the conclusion follows.

Definition 6.5.8 Let (A,B,C) and (Ã, B̃, C̃) be two triples in Sn,m,p. Then
(A,B,C) is similar to (Ã, B̃, C̃), denoted

(A,B,C) ∼ (Ã, B̃, C̃)

if
T−1AT = Ã , T−1B = B̃ , and CT = C̃

for some T ∈ GL(n). 2

This is an equivalence relation, and the Markov sequences realized by any
two similar triples are the same. The main result given below implies that,
under a minimality assumption, the converse also holds; namely, if two minimal
triples realize the same Markov sequence, then they must be similar.

Equivalence corresponds to a change of variables in the state space. Note
that Lemma 6.5.1 provides a particularly important decomposition under simi-
larity.

Definition 6.5.9 The n-dimensional triple (A,B,C) is minimal if any other
triple (Ã, B̃, C̃) realizing the same Markov sequence A must have dimension at
least n. 2

Minimality is in principle hard to check, since it involves comparisons with all
other possible realizations of the same Markov sequence. The next result shows
that this property is equivalent to being canonical and hence can be checked
directly in terms of the data describing the system; we use the statement to
summarize all relevant properties of realizations.

Theorem 27 Assume that A is a Markov sequence. Then the following prop-
erties hold:

1. If there is a realization of A, then there is also a canonical realization.

2. A realization of A is minimal if and only if it is canonical.

3. Any two minimal realizations of A must be similar.

Proof. Statement 1 was given earlier as Corollary 6.5.4. We now prove state-
ment 2.

Let (A,B,C) be a canonical triple of dimension n. By Corollary 6.5.7,
rankHn,n(A) = n. It follows from Corollary 6.5.6 that every other realization
has dimension at least n, so the triple is minimal.
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On the other hand, if (A,B,C) is minimal, then it must be canonical, since
otherwise from Lemma 6.5.2 and the construction in Lemma 6.5.1 it would
follow that the triple (A11, B11, C11) has lower dimension and realizes the same
Markov sequence.

Next we establish statement 3. Assume that (A,B,C) and (Ã, B̃, C̃) both
realize A and are minimal, so in particular they must have the same dimension.
Denote

R = R(A,B) , R̃ = R(Ã, B̃) , O = O(A,C) , Õ = O(Ã, C̃)

and note that
OR = ÕR̃ and OAR = ÕÃR̃

because of Equations (6.19) and (6.20) applied with s = t = n. Let R̃#, . . ., be
one-sided inverses as in Equation (6.21), for each of the triples. Then with

T := RR̃# =
(
Õ#O

)−1

it follows that T−1AT = Ã. Applying Equation (6.19) with s = n, t = 1, and
observing that R1 = B, R̃1 = B̃, we also obtain that T−1B = B̃. Finally,
applying Equation (6.19) with s = 1, t = n we obtain the remaining equality
CT = C̃.

In terms of realizations of discrete-time time-invariant linear behaviors and
continuous-time time-invariant integral behaviors, the Theorem asserts that
canonical realizations exist if the behavior is realizable, and they are unique
up to a change of basis in the state space.

Remark 6.5.10 If two controllable triples are similar, then the similarity must
be given by the formulas obtained in the proof of Theorem 27, so in particular
similarities between canonical systems are unique. This is because if T is as in
Definition 6.5.8, then necessarily

T−1AiB = ÃiB̃

for all i, so it must hold that T−1R = R̃, and therefore

T = RR̃# .

In particular, this means that the only similarity between a canonical system
and itself is the identity. In the terminology of group theory, this says that the
action of GL(n) on triples is free. 2

Theorem 27 leaves open the question of deciding when a realization exists;
this is addressed next.

Definition 6.5.11 The rank of the Markov sequence A is

sup
s,t

rankHs,t(A) . 2
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Remark 6.5.12 In terms of the infinite Hankel matrix which is expressed in
block form as

H(A) =


A1 A2 · · · At · · ·
A2 A3 · · · At+1 · · ·
...

... · · ·
...

...
As As+1 · · · As+t−1 · · ·
...

... · · ·
...

...


one may restate the definition of rank as follows.

The rank of an infinite matrix such as H(A) is, by definition, the dimension
of the column space of H(A), which is seen as a subspace of the space K∞

consisting of infinite column vectors (x1, x2, x3, . . .)′ with entries over K, with
pointwise operations.

When this rank is finite and less than n, all columns are linear combinations
of at most n − 1 columns, and therefore all submatrices of H(A) must have
rank less than n; this implies that A must have rank less than n. Conversely,
we claim that if A has rank less than n, then the rank of the infinite matrix
H(A) is less than n. If this were not to be the case, there would be a set of
n independent columns c1, . . . , cn of H(A). If so, let Mi be the i × n matrix
obtained by truncating each column cj at the first i rows. Then some Mi has
rank n: Consider the nonincreasing sequence of subspaces

Qi := kerMi ⊆ Kn

and let Q := ∩Qi; by dimensionality, there is some k so that Qk = Q, and if
x ∈ Q then Mix = 0 for all i means that x is a linear relation between the cj ’s,
so x = 0. This means that Qk = 0 and so Mk has rank n as desired. Let s, t be
such that Mk is a submatrix of Hs,t. Then

rankA ≥ rankHs,t ≥ rankMk = n ,

contradicting rankA < n.
The conclusion is that the rank of A is equal to the rank (possibly infinite)

of H(A). 2

Theorem 28 The Markov sequence A is realizable if and only if it has finite
rank n. In addition, if this holds, then:

(a) There is a canonical realization of dimension n.

(b) rankHn,n = n.

Proof. If there is a realization of dimension k, then it follows from Corollary
6.5.6 that A has rank at most k, and in particular the necessity statement is
obtained. We show next that ifA has rank n, then there is some rank n canonical
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realization; this will establish property (a) as well as sufficiency. Property (b)
is then a consequence of Corollary 6.5.7.

For the construction of the canonical realization, it is convenient to first
generalize the notion of realizability to allow for infinite dimensional triples.
In general, we consider objects (X, A,B,C) consisting of a vector space X and
linear maps A : X → X, B : Km → X, and C : X → Kp, and say that A is
realizable by (X, A,B,C) if

C ◦Ai−1 ◦B = Ai

for all i. These objects can be identified to discrete-time time-invariant linear
systems; when X is finite dimensional, choosing a basis on X provides a triple
realizing A.

Now given any Markov sequence A, we let X0 denote the space K∞ intro-
duced in Remark 6.5.12. Note that the shift operator

σ :


x1

x2

x3
...

 7→


x2

x3

x4
...


is linear on X0. Let A be defined as σp, the shift by p positions. Let B : Km →
X0 be defined on the natural basis as follows:

Bej := jth column of H(A)

and let C : X0 → Kp be the projection on the first p coordinates.
We claim that (X0, A,B,C) is a realization of A. Consider any i ≥ 0 and any

j = 1, . . . ,m. Then CAiBej is the vector consisting of the entries in positions
ip + 1, . . . , ip + p of the jth column of H(A), that is, the jth column of Ai+1,
as wanted.

The abstract realization just obtained is observable, in the sense that

∞⋂
i=0

kerCAi = 0 ,

since for each i the elements of kerCAi are precisely those vectors whose entries
in positions ip + 1, . . . , ip + p all vanish. The desired canonical realization will
be obtained by restricting to an A-invariant subspace of X0; this restriction will
also be observable, since the kernels of the restrictions still must intersect at
zero.

Let X be the subspace of X0 spanned by all the iterates AiBej , over all i, j.
This is A-invariant by definition; we denote the restriction of A to X again as
A. Moreover, X contains the image of B, so we may consider B as a map from
Km into X; similarly, we restrict C to X and denote it also by C. We claim
next that this space equals the column space of H(A). Here the Hankel pattern
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becomes essential: Every column of H(A) is of the form AiBej for some i and
j; namely, the im + jth column (1 ≤ j ≤ m) is the same as AiBej , for each
i ≥ 0.

We conclude that (X, A,B,C) realizes A, where X is the column space of
H(A) and therefore is n-dimensional.

The criterion in Theorem 28 is of interest because it allows us to check
realizability, in the sense that one may look at Hankel matrices of increasing
size and if a realization exists it will eventually be found. If a realization does
not exist, however, there is no way of knowing so by means of this technique.

If one is interested merely in investigating the existence of realizations, as
opposed to studying minimality, the problem can be reduced to the scalar case
(m = p = 1), which in turn belongs to the classical theory of linear difference
equations:

Exercise 6.5.13 Given any Markov sequence A, introduce the pm sequences
corresponding to each coordinate, that is,

Aij := (A1)ij , (A2)ij , (A3)ij , . . .

for each i = 1, . . . , p and j = 1, . . . ,m. Show, not using any of the results just
developed, that A is realizable if and only if each Aij is. 2

Exercise 6.5.14 Calculate a canonical realization, and separately calculate the
rank of the Hankel matrix, for each of these examples with m = p = 1:

1. The sequence of natural numbers 1, 2, 3, . . . .

2. The Fibonacci sequence 0, 1, 1, 2, 3, 5, 8, . . . . 2

6.6 Recursion and Partial Realization

An alternative characterization of realizability is through the concept of recur-
sive sequences. We shall say that A is a recursive Markov sequence if there exist
a positive integer n and scalars α1, . . . , αn such that

Ak+n+1 = αnAk+n + αn−1Ak+n−1 + . . .+ α2Ak+2 + α1Ak+1 (6.22)

for all k ≥ 0; in this case A is said to satisfy a recursion of order n.

Proposition 6.6.1 The Markov sequence A is realizable if and only if it is
recursive.

Proof. If (A,B,C) realizes A, let

χ
A
(s) = sn − αns

n−1 − . . .− α1
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so that by the Cayley-Hamilton Theorem

An = αnA
n−1 + . . .+ α1I .

Multiplying this last equation by CAk on the left and by B on the right, the
recursion (6.22) results. Conversely, if there is a recursion of order n, all columns
of the infinite Hankel matrix must be linear combinations of the first nm columns
(that is, the columns appearing in the first n blocks), so the matrix has finite
rank and therefore A is realizable.

Corollary 6.6.2 If A is a Markov sequence of finite rank n, then A ≡ 0 if and
only if

A1 = A2 = . . . = An = 0 .

Proof. By Theorem 28 there exists a realization of dimension n, and therefore,
by the proof of the Proposition, there is a recursion of order n. Recursively, all
Ai = 0.

Corollary 6.6.3 If A1 and A2 are two Markov sequences of finite ranks n1 and
n2, respectively, then A1 = A2 if and only if

A1
i = A2

i , i = 1, . . . , n1 + n2 .

Proof. The sequence A := A1−A2 = {A1
i −A2

i } has rank at most n := n1+n2,
as follows by considering its realization:(

A1 0
0 A2

) (
B1

B2

)
(C1 −C2 )

where (Ai, Bi, Ci) is a realization of Ai of dimension ni. Then Corollary 6.6.2
gives the result.

Thus, sequences of rank ≤ n are uniquely determined by their first 2n
Markov parameters.

There is a direct construction of a realization from the recursion (6.22) and
the Markov sequence. This is as follows. Let Hk

n+k,n be the matrix obtained by
dropping the first k blocks of rows from Hn+k,n(A), that is, the matrixAk+1 · · · Ak+n

... · · ·
...

Ak+n · · · Ak+2n−1


including the case k = 0, where this is just Hn,n(A). Then (6.22) implies

AHk
n+k,n = Hk+1

n+k+1,n (6.23)
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for all k ≥ 0, where

A :=


0 I 0 . . . 0
0 0 I . . . 0
...

...
...

. . .
...

0 0 0 . . . I
α1I α2I α3I . . . αnI

 (6.24)

analogously to the controller form in Definition 5.1.5, except that this is now a
block matrix. Each block has size p × p, and the matrix A is of size np × np.
Equation (6.23) implies that

AiHn,n(A) = Hi
n+i,n

for all i ≥ 0, and so

( I 0 · · · 0 ) AiHn,n(A)


I
0
...
0

 = Ai+1 (6.25)

for all i ≥ 0. Letting
C := ( I 0 · · · 0 ) (6.26)

and

B := Hn,n(A)


I
0
...
0

 =


A1

A2
...
An

 , (6.27)

there results a realization of A of dimension np. Since On(A,C) = I:

Lemma 6.6.4 The system (A,B,C) given by (6.24), (6.27), and (6.26) is an
observable realization of A. 2

This is often called an observability form realization of A.

Remark 6.6.5 Let A be any recursive Markov sequence. Consider the trans-
posed sequence

A′ := A′1,A′2, . . . .
This satisfies a recursion with the same coefficients αi’s. For these coefficients we
let (A,B,C) be the observability form realization of A′. Since CAi−1B = A′i for
all i, also B′(A′)i−1C ′ = Ai for all i, and the system (A′, C ′, B′) is a controllable
realization of A. We have obtained the controllability form realization of
A:

A =


0 0 · · · 0 α1I
I 0 · · · 0 α2I
0 I · · · 0 α3I
...

...
. . .

...
...

0 0 · · · I αnI

 B =


I
0
0
...
0

 C = (A1 A2 · · · An )
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of dimension mn. 2

Corollary 6.6.6 If p = 1 or m = 1, the minimal possible order of a recursion
equals the rank of A. Furthermore, there is a unique such minimal order recur-
sion, and its coefficients are those of the (common) characteristic polynomial of
canonical realizations of A.

Proof. The proof of Proposition 6.6.1 shows that, for arbitary m, p, if there is a
realization of dimension n, then there is a recursion of order n. Conversely, in the
cases p = 1 or m = 1 there is always a realization of dimension equal to the order
of any given recursion, namely the observability form or the controllability form
realization, respectively. The second assertion follows from the constructions.

Remark 6.6.7 Observability form realizations are in general not controllable,
except if p = 1. In this case, if (α1, . . . , αn) give a minimal recursion then by
Corollary 6.6.6 this realization must be minimal. In fact,

Rn(A,B) = Hn,n ,

which has rank n. Of course, for p > 1 it is possible to reduce any such realiza-
tion to a controllable one using the Kalman decomposition. 2

Exercise 6.6.8 Show by providing a counterexample that the hypothesis that
either p = 1 or m = 1 cannot be dropped in the first assertion on Corollary
6.6.6. 2

Given any finite sequence A1,A2, . . . ,Ar, this is always part of a realizable
Markov sequence, since

A1,A2, . . . ,Ar, 0, 0, . . . , 0, . . .

has finite rank. More interesting is the following fact. Given any finite sequence
A1,A2, . . . ,Ar, whenever s+ t ≤ r+1 we can consider the Hankel matrices Hs,t

obtained using formula (6.18).

Lemma 6.6.9 Assume that A1,A2, . . . ,A2n are 2nmatrices in Kp×m for which

rankHn,n = rankHn+1,n = rankHn,n+1 = n . (6.28)

Then there exists a (unique) Markov sequenceA of rank n whose first 2nMarkov
parameters are A1,A2, . . . ,A2n.

Proof. From the equality rankHn,n = rankHn+1,n it follows that the last p
rows of Hn+1,n must be linear combinations of the rows of Hn,n. This means
that there must exist p× p matrices

Ci , i = 1, . . . , n
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such that
Aj = C1Aj−1 + . . .+ CnAj−n (6.29)

for each j = n+ 1, . . . , 2n. Similarly, rankHn,n = rankHn,n+1 implies that the
last m columns of Hn,n+1 must be linear combinations of the columns of Hn,n.
So there must also exist m×m matrices

Di , i = 1, . . . , n

such that
Aj = Aj−1D1 + . . .+Aj−nDn (6.30)

for each j = n+ 1, . . . , 2n.
We now define Aj for j > 2n recursively using the formula (6.29), and let

A be the Markov sequence so obtained. It follows from this definition that all
rows of H(A) are linearly dependent on the first pn rows. So A has rank at
most pn; we next show that its rank is in fact just n. For this, it is enough
to establish that (6.30) holds for all j > 2n as well, since this will then imply
that all columns depend linearly on the first nm columns, and therefore that
the rank of H(A) is the same as the rank of Hn,n, which is n. By induction on
j,

Aj+1 =
n∑
i=1

CiAj+1−i

=
n∑
i=1

Ci

n∑
l=1

Aj+1−i−lDl

=
n∑
l=1

(
n∑
i=1

CiAj+1−i−l

)
Dl

=
n∑
l=1

Aj+1−lDl ,

as desired.
Uniqueness follows from the fact that any other extension would agree in its

first 2n parameters and hence would have to be the same, because of Corollary
6.6.3.

The previous result can be used to give an explicit description of the quotient
space obtained when identifying triples up to similarity. Let Mn,m,p denote the
set

{(A1, . . . ,A2n) | rankHn,n = rankHn+1,n = rankHn,n+1 = n} .

Note that this can be thought of as a subset of K2nmp, and as such it is a set
defined by polynomial equalities and inequalities. Let

β : Sc,on,m,p →Mn,m,p
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be the “behavior” function

(A,B,C) 7→ (CB, . . . , CA2n−1B) .

That β indeed maps into Mn,m,p follows from Theorem 28 (p. 288). Moreover,
from Lemma 6.6.9 we know that β is onto. From the uniqueness result, we also
know that, if

β(A,B,C) = β(Ã, B̃, C̃) ,

then (A,B,C) and (Ã, B̃, C̃) are two canonical triples realizing the same Markov
sequence and so, by Theorem 27 (p. 286), Part 3, that these two triples are
similar. This discussion can be summarized as follows.

Corollary 6.6.10 The map β induces a bijection between the quotient space
Sc,on,m,p/ ∼ and Mn,m,p. 2

Exercise 6.6.11 Let K = R or C. Let Mn,m,p have the topology induced
by K2nmp, and let Sc,on,m,p/ ∼ be given the quotient topology, when Sc,on,m,p is
thought of as a subspace of Kn(n+p+m). Show that β induces a homeomorphism
on the quotient space. (Hint: Establish first that the realization given in the
proof of Theorem 28 can be made to be locally continuous on the sequence. This
is done by observing that, by Cramer’s rule after choosing a set of n linearly
independent columns of Hn,n, the entries of the operator A can be taken to be
rational on the coefficients of the Markov parameters. This provides a covering
of Mn,m,p by open subsets V and continuous mappings ρ : V → Sc,on,m,p such
that βρ is the identity.) 2

Remark 6.6.12 (This remark uses some concepts from differential geometry.)
In the case when K = R (or the complex case) one can show that the quotient
space Sc,on,m,p/ ∼ has a differentiable manifold structure under which the natural
projection is smooth. This fact can be established constructively, by exhibiting
an explicit set of charts for this quotient manifold, or one can use a general
theorem on group actions, the quicker path which we choose here. Consider the
action of GL(n) on Sc,on,m,p,

T.(A,B,C) := (T−1AT, T−1B,CT ) ,

seen as a smooth action of a Lie group on a manifold (Sc,on,m,p is an open subset of
Rn(n+m+p)). This action is free (see Remark 6.5.10). According to Proposition
4.1.23 in [2], the quotient will have a differentiable manifold structure for which
the quotient mapping Sc,on,m,p → Sc,on,m,p/ ∼ is a smooth submersion, provided
that the graph of the similarity relation is closed and that the action is proper.
Moreover, in this case the natural map

Sc,on,m,p → Sc,on,m,p/ ∼

defines a principal fibre bundle (same reference, Exercise 4.1M). Properness of
the action means that the following property must hold: Whenever {Σi} is a
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convergent sequence of triples and {Ti} is a sequence of elements of GL(n) for
which {Ti.Σi} is a convergent sequence of triples, the sequence {Ti} must have a
convergent subsequence. So we must prove that the action is closed and proper.

Assume that the sequences {Σi} and {Ti} are as in the above paragraph,
and let Σ′i := Ti.Σi for each i. By assumption, there are systems Σ and Σ′ so
that

Σi → Σ and Σ′i → Σ′ .

We use primes and subscripts to denote the matrices A,B,C for the various
triples. The triples Σ and Σ′ must realize the same Markov sequence, since this
is true of the corresponding pairs (Σi,Σ′i) and the sequence’s elements depend
continuously on the triple. Therefore the matrix

T = R(R′)#

provides a similarity between these two triples. Observe that R(i) (the n-step
reachability matrix for the triple Σi) converges to R. Moreover, and this is the
critical observation, one may also assume that (R′

(i))
#, the one-sided inverse

of the n-step reachability matrix for the triple Σ′i, also converges to (R′)#.
The reason for this latter fact is that one may pick such a one-sided inverse
continuously about any given system: Just use Cramer’s rule after choosing
a set of n linearly independent columns of R′ (these columns remain linearly
independent for triples near the triple Σ′). We conclude that

Ti = R(i)(R′
(i))

# → T

because of uniqueness of the similarity between two minimal systems (Remark
6.5.10). This establishes properness. (In fact, we proved that the sequence Ti
itself is convergent, rather than merely a subsequence.)

The proof of closeness is even easier. We need to see that, if

Σi ∼ Σ′i for all i

and
Σi → Σ , Σ′i → Σ′ ,

then necessarily Σ and Σ′ are similar. This is immediate from the uniqueness
Theorem, because by continuity these two triples must give rise to the same
Markov sequence. 2

Corollary 6.6.10, Exercise 6.6.11, and Remark 6.6.12 provide only a very
brief introduction to the topic of families of systems and more specifically to
moduli problems for triples. Much more detailed results are known; For instance,
Sc,on,m,p/ ∼ has a natural structure of nonsingular algebraic variety consistent
with the differentiable manifold structure given above, for K = R,C.
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6.7 Rationality and Realizability

We now characterize realizability of a Markov sequence in terms of the ratio-
nality of an associated power series.

Consider the set of all semi-infinite sequences

ak, ak+1, . . . , a0, a1, a2, a3, . . . , al, . . .

formed out of elements of K. The starting index k may be negative or positive
but it is finite; however, the sequence may be infinite to the right. We think of
these sequences as formal Laurent series in a variable s−1:

∞∑
i=k

ais
−i ,

where ai ∈ K for each i. If the sequence is not identically zero and k is the
smallest integer so that ak 6= 0, then the series has order k. If k ≥ 0, this is just
a formal power series in the variable s−1. If all coefficients ai, i > 0 vanish, this
is simply a polynomial on s. Let K((s−1)) denote the set of all such Laurent
series.

The set K((s−1)) has a natural vector space structure over K, corresponding
to coefficientwise operations:(∑

ais
−i
)

+
(∑

bis
−i
)

:=
∑

(ai + bi)s−i , (6.31)

but the use of the power series notation also suggests the convolution product(∑
ais

−i
)
.
(∑

bis
−j
)

:=
∑

cls
−l , (6.32)

where for each l ∈ Z
cl :=

∑
i+j=l

aibj

is a finite sum because there are at most finitely many nonzero coefficients with
negative i and j. With these operations, K((s−1)) forms a ring. It is an integral
domain, that is, the product of two nonzero sequences cannot be zero, because if
k1 and k2 are the orders of these sequences, then the product has order k1 + k2.
(In fact, since K is a field, it can be shown that K((s−1)) is also a field, but this
is not needed in what follows.)

More generally, we consider series whose coefficients are matrices of a fixed
size:

∞∑
i=k

Ais
−i ,

where Ai ∈ Kp×m for all i. The sum and product given by formulas (6.31) and
(6.32) are still well defined (assuming that sizes match), where now each Ai,
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Bj and Cl is a matrix. The usual distributivity and associativity properties of
matrix product hold. We let Kp×m((s−1)) denote the set of all matrix Laurent
series with fixed p and m.

A series W (s) ∈ Kp×m((s−1)) will be said to be rational if there exist a
monic polynomial

q(s) = sn − αns
n−1 − . . .− α1 (6.33)

and a matrix polynomial

P (s) = P0 + P1s+ . . .+ Phs
h (6.34)

in Kp×m[s] such that
qW = P

(which is also written as W = q−1P , or P/q). For instance, any series having
only finitely many terms is rational, since

Aks
k + . . .+A0 +A1s

−1 + . . .+Als
−l

can be written as

1
sl

(Aksk+l + . . .+A0s
l +A1s

l−1 + . . .+Al) .

For another example consider the scalar series

1 + s−1 + s−2 + . . .+ s−k + . . . ,

which is rational since it equals s/(s− 1).
We associate to each Markov sequence A = (A1,A2,A3, . . .) its generating

series

WA(s) :=
∞∑
i=1

Ais−i .

In terms of this we may state another criterion for realizability:

Proposition 6.7.1 A Markov sequence is realizable if and only if its generating
series is rational.

Proof. Because of Proposition 6.6.1, we must simply show that WA is rational
if and only if A is recursive.

Note first that, in general, if W = q−1P is rational and has order ≥ 1 and
q is as in (6.33), then the polynomial P in (6.34) can be taken to be of degree
at most n − 1, since all terms in qW corresponding to sh, h ≥ n, must vanish.
So rationality of WA is equivalent to the existence of elements α1, . . . , αn in K
and matrices P0, . . . , Pn−1 over K such that

(sn − αns
n−1 − . . .− α1)

( ∞∑
i=1

Ais−i
)

= P0 + P1s+ . . .+ Pn−1s
n−1 . (6.35)
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If such an equation holds, then comparing coefficients of s−k−1 results in

Ak+n+1 = αnAk+n + αn−1Ak+n−1 + . . .+ α2Ak+2 + α1Ak+1

for each k ≥ 0, so the sequence is recursive. Conversely, if this equation holds
one may just define the matrices Pi by

Pj := An−j −
n−j−1∑
i=1

αi+j+1Ai j = 0, . . . , n− 1 , (6.36)

i.e., the equations that are derived from (6.35) by comparing the coefficients of
1, s, . . . , sn−1.

The proof shows that the minimal degree of a possible denominator q equals
the minimal order of a recursion satisfied by A.

Corollary 6.7.2 If m = 1 or p = 1 and WA = P/q with q monic of degree
equal to the rank of A, then q is the (common) characteristic polynomial of the
canonical realizations of A.

Proof. We know from Corollary 6.6.6 that for m or p equal to 1 the coefficients
of a minimal recursion are those of the characteristic polynomial. The q in
the statement must be a denominator of minimal degree, since a lower degree
polynomial would give rise to a lower order recursion and therefore to a lower
dimensional realization. From the above construction, this polynomial then
corresponds to a minimal recursion.

Exercise 6.7.3 Show that, if m = p = 1 and if WA = P/q with P of degree
≤ n−1 and q of degree n, then A has rank n if and only if P and q are relatively
prime. (Hint: Use Corollary 6.6.6 and the fact that K((s−1)) forms an integral
domain.) 2

Remark 6.7.4 One can show directly that realizability implies rationality, as
follows. Elements of Kp×m((s−1)) can be identified naturally with p ×m ma-
trices over the ring K((s−1)), and this identification preserves the convolution
structure. Under this identification, rational elements are precisely those that
correspond to matrices all whose entries are rational. In particular, the matrix
(sI − A)−1, the inverse over K((s−1))n×n, is rational. On the other hand, it
holds that

(sI −A)−1 =
∞∑
i=1

Ai−1s−i

from which it follows that the series

C(sI −A)−1B =
∞∑
i=1

CAi−1Bs−i =
∞∑
i=1

Ais−i

is rational if realizability holds. The minimal dimension of a realization is also
called the McMillan degree of the corresponding rational matrix. 2
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Remark 6.7.5 When K = R or C, one may use complex variables techniques
in order to study realizability. Take for simplicity the case m = p = 1 (otherwise
one argues with each entry). If we can write WA(s) = P (s)/q(s) with degP <
deg q, pick any positive real number λ that is greater than the magnitudes of all
zeros of q. Then, WA must be the Laurent expansion of the rational function
P/q on the annulus |s| > λ. (This can be proved as follows: The formal equality
qWA = P implies that the Taylor series of P/q about s = ∞ equals WA, and
the coefficients of this Taylor series are those of the Laurent series on |s| > λ.
Equivalently, one could substitute z := 1/s and let

q̃(z) := zdq(1/z) , P̃ (z) := zdP (1/z) ,

with d := deg q(s); there results the equality q̃(z)W (1/z) = P̃ (z) of power
series, with q̃(0) 6= 0, and this implies that W (1/z) is the Taylor series of P̃ /q̃
about 0. Observe that on any other annulus λ1 < |s| < λ2 where q has no
roots the Laurent expansion will in general have terms in sk, with k > 0, and
will therefore be different from WA.) Thus, if there is any function g which
is analytic on |s| > µ for some µ and is so that WA is its Laurent expansion
about s = ∞, realizability of A implies that g must be rational, since the Taylor
expansion at infinity uniquely determines the function. Arguing in this manner
it is easy to construct examples of nonrealizable Markov sequences. For instance,

A = 1,
1
2
,

1
3!
,

1
4!
, . . .

is unrealizable, since WA = e1/s−1 on s 6= 0. As another example, the sequence

A = 1,
1
2
,
1
3
,
1
4
, . . .

cannot be realized because WA = − ln(1− s−1) on |s| > 1. 2

Input/Output Equations

Rationality and realizability can also be interpreted in terms of high-order dif-
ferential or difference equations satisfied by input/output pairs corresponding
to a given behavior.

The input/output pairs of the behavior Λ are by definition the possible pairs
(ω, λ̄(ω)). For each ω ∈ U[σ,τ) in the domain of the behavior, this is a pair
consisting of a function in U[σ,τ) and one in Y[σ,τ ].

Assume from now on that Λ is a time-invariant continuous-time integral
behavior with analytic kernel

K(t) =
∞∑
k=0

Ak+1
tk

k!
(6.37)

(assume K is entire, that is, the series converges for all t), where A = A1,A2, . . .
is a Markov sequence over K = R or C. Observe that whenever ω is r− 1-times
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(continuously) differentiable the corresponding output function λ̄(ω) is r-times
differentiable; such a pair (ω, λ̄(ω)) is of class Cr.

The behavior Λ is said to satisfy the i/o equation

y(n)(t) =
n−1∑
i=0

αi+1y
(i)(t) +

n−1∑
i=0

Piu
(i)(t) , (6.38)

where α1, . . . , αn ∈ K and P0, . . . , Pn−1 ∈ Kp×m, if this equation is satisfied
by every i/o pair u = ω, y = λ̄(ω) of Λ of class Cn−1, for all t ∈ [σ, τ). The
nonnegative integer n is called the order of the i/o equation. (For n = 0 the
equation is y(t) = 0.)

It is a basic fact in linear system theory that the existence of an i/o equation
is equivalent to rationality, and hence to realizability by a finite dimensional
linear time-invariant system.

Proposition 6.7.6 The behavior Λ satisfies (6.38) if and only if WA = q−1P ,
where q and P are as in Equations (6.33) and (6.34), with the same αi’s and
Pi’s.

Proof. We first make some general observations. If K is as in (6.37), then

K(r)(t) =
∞∑
k=0

Ak+r+1
tk

k!

for each r = 0, 1, . . . . If, in addition, A is known to satisfy the order-n recursion

Ak+n+1 =
n∑
j=1

αjAk+j (6.39)

for all k ≥ 0, then

K(n)(t) =
∞∑
k=0

n∑
j=1

αjAk+j
tk

k!

=
n∑
j=1

αj

∞∑
k=0

Ak+j
tk

k!

=
n∑
j=1

αjK
(j−1)(t)

for all t.
On the other hand, for each i/o pair (ω, η) of class Cn−1 one concludes by

induction from

η(t) =
∫ t

σ

K(t− µ)ω(µ) dµ
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that

η(r)(t) =
r∑
i=1

Aiω(r−i)(t) +
∫ t

σ

K(r)(t− µ)ω(µ) dµ (6.40)

for each r = 0, . . . , n. In particular,

η(n)(t) =
n∑
i=1

Aiω(n−i)(t) +
n∑
j=1

αj

∫ t

σ

K(j−1)(t− µ)ω(µ) dµ (6.41)

if A satisfies the above recursion. Since also

n−1∑
i=0

αi+1η
(i)(t) =

n−1∑
i=0

αi+1

[
i∑
l=1

Alω(i−l)(t) +
∫ t

σ

K(i)(t− µ)ω(µ) dµ

]
,

it follows that when a recursion exists

η(n)(t) −
n−1∑
i=0

αi+1η
(i)(t)

=
n∑
i=1

Aiω(n−i)(t) −
n−1∑
i=0

αi+1

i∑
l=1

Alω(i−l)(t)

=
n−1∑
j=0

(
An−j −

n−j−1∑
i=1

αi+j+1Ai

)
ω(j)(t) (6.42)

for all t.
We conclude from Equation (6.42) that if qWA = P , which implies that both

Equations (6.39) and (6.36) hold, then also the i/o equation (6.38) is valid.
Conversely, assume that (6.38) is true for all i/o pairs of class Cn−1. Pick

any arbitrary vectors v0, . . . , vn−1 ∈ Km, and any interval [σ, τ), and for these
let ω be the control on [σ, τ) defined by

ω(t) :=
n−1∑
i=0

vi
(t− σ)i

i!
.

Using again (6.40), the i/o equation at time t = σ gives that

A1vn−1 + . . .+Anv0 =
n−1∑
i=0

αi+1(A1vi−1 + . . .+Aiv0) +
n−1∑
i=0

Pivi

must hold. Since these vectors were arbitrary, one may compare coefficients and
equation (6.36) results. It also follows by differentiating (6.38) that

y(n+k+1)(t) =
n−1∑
i=0

αi+1y
(i+k+1)(t) +

n−1∑
i=0

Piu
(i+k+1)(t)
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for all k ≥ 0 and pairs of order Cn+k. Applied in particular to the constant
controls ω ≡ v0, v0 arbitrary, and evaluating at t = σ, the recursion (6.39)
results, and we know then that qWA = P , as desired.

A similar result holds for discrete-time systems. A linear time-invariant
discrete-time behavior is said to satisfy the i/o equation of order n

y(t+ n) =
n−1∑
i=0

αi+1y(t+ i) +
n−1∑
i=0

Piu(t+ i) (6.43)

if this equation holds for each i/o pair with ω ∈ U[σ,τ) and each σ ≤ t ≤ τ − n.

Lemma/Exercise 6.7.7 The discrete-time time-invariant behavior Λ satisfies
(6.43) if and only if WA = q−1P , where q and P are as in Equations (6.33) and
(6.34), with the same αi’s and Pi’s. 2

Exercise 6.7.8 Refer to Exercise 3.2.12. (Take all constants equal to one, for
simplicity.)

(a) Using y = h as the output, find an i/o equation of order 4 and the transfer
function of the input/output behavior of Σ.

(b) Repeat the computation taking instead x3 = φ̇ as the output; why is a
transfer function with denominator of degree two obtained this time? Find
a two-dimensional realization of the new i/o behavior. 2

Exercise 6.7.9 Refer to Exercise 3.2.13, and take for simplicity M = m = F =
g = l = 1.

(a) Using y = x1 = δ as the output, find an i/o equation of order 4 and the
transfer function of the input/output behavior of Σ.

(b) Repeat the computation taking instead x3 = φ as the output; show that
now there is an i/o equation of order three. Find a three-dimensional
realization of this i/o behavior. 2

6.8 Abstract Realization Theory*

There is an abstract theory of realization, which is of interest especially in the
case of realizability by finite systems. We restrict attention here to complete
time-invariant behaviors; unless otherwise stated, throughout this section Λ
denotes a fixed such behavior. Accordingly, we wish to study realizations of Λ by
time-invariant initialized complete systems (Σ, x0). The realizability condition
is that

λ0,t
Σ,x0(ω) = λ0,t(ω)

* This section can be skipped with no loss of continuity.
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for all t ∈ T+ and each ω ∈ U[0,t). We drop the superscripts 0, t and/or the
subscripts Σ and x0 on the left when they are clear from the context.

The first observation is that, at this level of abstraction, every behavior is
realizable. To see this, consider the set

Ω :=
⋃
T∈T+

U[0,T )

and the map
φΩ(τ, σ, ν, ω) := νωT−σ

corresponding to concatenation. That is, if

ω ∈ U[σ,τ) and ν ∈ U[0,T ) ,

then this is the control equal to ν on [0, T ) and equal to

ω(t− T + σ)

if t ∈ [T, T + τ − σ).

Lemma/Exercise 6.8.1 The data (T ,Ω,U, φ) define a complete time-invari-
ant system. 2

We add the output function

hλ : Ω → Y : ω 7→ λ(ω)

and the initial state x0 = �. Since φΩ(t, 0, �, ω) = ω for all ω defined on intervals
of the form [0, t), it follows that

hλ(φΩ(t, 0, �, ω)) = hλ(ω) = λ(ω) ,

and the following is established:

Lemma 6.8.2 The initialized system with outputs

ΣΩ,Λ := (T ,Ω,U, φΩ,Y, hλ, �)

is a realization of λ. This system is complete, time-invariant, and reachable
from the state x0 = �. 2

Of course, the size of the state space of this system is huge, since it merely
memorizes all inputs. A much more interesting realization results when one
identifies indistinguishable states. The construction needed is more general,
and it applies to arbitrary complete time-invariant systems, as follows.

Let Σ = (T ,X,U, φ,Y, h) be any time-invariant complete system with out-
puts. Consider the space

X̃ := X/ ∼
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consisting of all equivalence classes under indistinguishability. For each σ ≤ τ
in T+, each equivalence class [x], and each ω ∈ U[σ,τ) let

φ̃(τ, σ, [x], ω) := [φ(τ, σ, x, ω)] ,

that is, pick an arbitrary element in the equivalence class, apply the transitions
of Σ, and then see in which equivalence class one lands. This map is well defined
in the sense that the result is independent of the particular element [x]. In other
words, for every x, z ∈ X so that x ∼ z and every ω, also x1 := φ(τ, σ, x, ω) and
z1 := φ(τ, σ, z, ω) are indistinguishable. This is clear from the fact that, if ν is
a control distinguishing x1 and z1, then the concatenation ων distinguishes x
and z. Similarly, the map

h̃([x]) := h(x)

is well defined because indistinguishable states give rise in particular to identical
instantaneous outputs.

This allows us to define a system

Σ̃ := (T , X̃,U, φ̃,Y, h̃)

called the observable reduction of Σ. It satisfies that

h̃(φ̃(τ, σ, [x], ω)) = h̃([φ(τ, σ, x, ω)]) = h(φ(τ, σ, x, ω))

for all ω and x, so in particular with initial state

x̃0 := [x0]

it realizes the same behavior as (Σ, x0), for each fixed x0 ∈ X. It is indeed
observable, since [x] ∼ [z] implies

h(φ(τ, σ, x, ω)) = h̃(φ̃(τ, σ, [x], ω)) = h̃(φ̃(τ, σ, [z], ω)) = h(φ(τ, σ, z, ω))

for all ω, and therefore [x] = [z]. Finally, note that, if the original system Σ is
reachable from a state x0, then the observable reduction is reachable from [x0].
Summarizing:

Lemma 6.8.3 For each system Σ and each x0 ∈ X:

1. Σ̃ is observable.

2. If Σ is reachable from x0, then Σ̃ is reachable from x̃0.

3. The i/o behaviors of (Σ, x0) and (Σ̃, x̃0) coincide. 2

An initialized system (Σ, x0) is a canonical system if it is reachable from
x0 and observable. This terminology is consistent with that used for linear
systems, when applied with initial state x0 = 0, since reachability from the
origin is equivalent to complete controllability in that case.
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Given any behavior Λ, let ΣΛ be the observability reduction of the system
ΣΩ,Λ in Lemma 6.8.2. This is again reachable (from �̃), and by construction
is also observable (as well as time-invariant and complete). We conclude as
follows:

Theorem 29 The initialized system with outputs (ΣΛ, �̃) is a complete, time-
invariant, canonical realization of λ. 2

Our next objective is to show that canonical realizations are unique up to
a relabeling of states. Assume given two initialized systems (Σi, x0

i ). A system
morphism

T : (Σ1, x
0
1) → (Σ2, x

0
2)

is by definition a map
T : X1 → X2

such that Tx0
1 = x0

2,

T (φ1(τ, σ, x, ω)) = φ2(τ, σ, T (x), ω)

for all ω ∈ U[σ,τ) and all x ∈ X, and h(x) = h(T (x)) for all x ∈ X. It is a system
isomorphism if there exists another system morphism S : (Σ2, x

0
2) → (Σ1, x

0
1)

such that the compositions T ◦ S and S ◦ T are the identity on X2 and X1,
respectively. Since at this set-theoretic level a map is invertible if and only if it
is one-to-one and onto, it follows easily that T is an isomorphism if and only if
the underlying map T : X1 → X2 is bijective.

Theorem 30 Let (Σ1, x
0
1) and (Σ2, x

0
2) be two (complete, time-invariant) ini-

tialized systems with output. Assume that Σ1 is reachable from x0
1, Σ2 is observ-

able, and they realize the same behavior. Then there exists a system morphism
T : (Σ1, x

0
1) → (Σ2, x

0
2). Furthermore:

1. There is a unique such morphism.

2. If Σ2 is reachable from x0
2, then T is onto.

3. If Σ1 is observable, then T is one-to-one.

4. If both systems are canonical, then T is an isomorphism.

Proof. Consider the set G consisting of all pairs (x1, x2) ∈ X1 × X2 for which

h1(φ1(τ, σ, x1, ω)) = h2(φ2(τ, σ, x2, ω)) ∀σ ≤ τ,∀ω ∈ U[σ,τ)

(indistinguishable but in different state spaces). We claim that G is the graph
of a system morphism.

First note that, if (x1, x2) and (x1, x
′
2) are both in G, then the definition of

G forces x2 and x′2 to be indistinguishable, so by observability it follows that
x2 = x′2, which means that G is the graph of a partially defined map. Its domain
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is all of X1: by reachability, given any x1 ∈ X1 there exists some control ω′ so
that

φ1(σ, 0, x0
1, ω

′) = x1

and we define x2 := φ2(σ, 0, x0
2, ω

′); then for all ω ∈ U[σ,τ),

h1(φ1(τ, σ, x1, ω)) = λ(ω′ω) = h2(φ2(τ, σ, x2, ω)) ,

which shows that (x1, x2) ∈ G. We have proved that G is the graph of a map
T : X1 → X2.

To see that T defines a morphism, observe that (x0
1, x

0
2) ∈ G, by definition of

G and the fact that the behaviors coincide, and also that for each (x1, x2) ∈ G
necessarily h1(x1) = h2(x2) (from the case σ = τ in the definition of G). Finally,
consider any ω ∈ U[σ,τ) and let for i = 1, 2

x̂i := φi(τ, σ, xi, ω)

so we need to show that (x̂1, x̂2) ∈ G, too. This follows trivially from the
definition of G and the semigroup property.

For any morphism T0, if (x1, x2) is in the graph of T0, then also

(φ1(τ, σ, x1, ω), φ2(τ, σ, x2, ω))

is in the graph, for all ω; it follows that also

h1(φ1(τ, σ, x1, ω)) = h2(φ2(τ, σ, x2, ω))

for all ω, so (x1, x2) ∈ G. This means that the graph of T0 is included in G,
which implies T = T0, establishing the uniqueness claim.

Finally, if Σ2 is reachable, then an argument totally analogous to that used to
prove that T is defined everywhere shows that T must be onto, and an argument
like the one used to show that T is single-valued gives that T is one-to-one if
Σ1 is observable. When both systems are canonical, the previous conclusions
show that T must be bijective. Alternatively, the Theorem can be applied twice,
resulting in a T : Σ1 → Σ2 and an S : Σ2 → Σ1; the compositions T ◦S and S◦T
are system morphisms, and since the identities I : Σ1 → Σ1 and I : Σ2 → Σ2 are
morphisms, too, the uniqueness statements imply that the compositions equal
the identity.

Thus, just as in the linear case, one may conclude that every behavior is
realizable by a canonical system, and canonical realizations are unique. No
finiteness statements have been made yet, however.

Remark 6.8.4 One can in fact obtain many of the results for the linear theory
as consequences of the above abstract considerations. For instance, take the
proof of the fact that canonical realizations of linear behaviors must be unique
up to a linear isomorphism. Assume that two systems are given, with the same
spaces U,Y, which are assumed to be vector spaces over a field K, that the state
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spaces X1,X2 are also vector spaces, and that the maps φi and hi are linear in
(x, ω) and x, respectively. Furthermore, we assume that the initial states are
zero. Then we claim that the set G is a linear subspace, which implies that
the unique morphism T must correspond to a linear map X1 → X2. Indeed, if
(x1, x2) and (z1, z2) are in G and if k ∈ K, then linearity gives that

h(φ1(τ, σ, x1 + kz1, ω)) = h(φ1(τ, σ, x1,0)) + kh(φ1(τ, σ, z1, ω))
= h(φ2(τ, σ, x2,0)) + kh(φ2(τ, σ, z2, ω))
= h(φ2(τ, σ, x2 + kz2, ω)) ,

which implies that (x1 + kz1, x2 + kz2) ∈ G. In particular, if both systems are
canonical, then G is the graph of a linear isomorphism.

Arbitrary linear isomorphisms are not very interesting when considering in-
finite dimensional linear systems. For example, in the context of systems whose
state spaces Xi are Banach spaces, the output value set Y is a normed space,
and the maps φi and hi are assumed to be bounded (continuous) linear opera-
tors, one may want to conclude that the morphism T given by the Theorem is
bounded, too. This is an easy consequence of the above proof: It is only nec-
essary to notice that G must be closed (because of the assumed continuities),
so by the Closed Graph Theorem (see, for instance, [399], Theorem 4.2-I) the
operator T must indeed be continuous. If both systems are canonical, T−1 is
also bounded, by the same argument. 2

We now turn to minimality. A minimal system will be one for which

cardX = n <∞

and with the property that any other system realizing the same behavior must
have a state space of cardinality at least n.

Lemma 6.8.5 A (time-invariant, complete, initialized) system is minimal if
and only if it is canonical.

Proof. Assume that Σ is minimal. If it is not observable, then its observable
reduction (cf. Lemma 6.8.3) realizes the same behavior and has fewer states, a
contradiction. If it is not reachable from its initial state x0, then the restriction
to R(x0) gives a system with the same behavior and fewer states.

Conversely, assume that Σ is canonical. If it is not minimal, then there
exists another realization Σ′ of lower cardinality. Reducing if necessary by
observability or reachability as in the above paragraph, we may assume that
Σ′ is canonical. By the isomorphism Theorem given above, Σ and Σ′ must be
isomorphic, contradicting the cardinality assertion.

Note that the proof also shows that, if there exists any realization with finite
cardinality, then there is a canonical one of finite cardinality.
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Example 6.8.6 We consider again the parity check example discussed in Ex-
ample 2.3.3. In particular, we shall see how to prove, using the above results,
the last two claims in Exercise 2.3.4. The behavior to be realized is λ(τ, 0, ω) ={

1 if ω(τ − 3) + ω(τ − 2) + ω(τ − 1) is odd and 3 divides τ > 0
0 otherwise

and we take the system with

X := {0, 1, 2} × {0, 1}

and transitions

P((i, j), l) := (i+ 1 mod 3, j + l mod 2)

for i = 1, 2 and
P((0, j), l) := (1, l) .

The initial state is taken to be (0, 0), and the output map has h(i, j) = 1 if
i = 0 and j = 1 and zero otherwise. (The interpretation is that (k, 0) stands for
the state “t is of the form 3s + k and the sum until now is even,” while states
of the type (k, 1) correspond to odd sums.) This is clearly a realization, with 6
states. To prove that there is no possible (time-invariant, complete) realization
with less states, it is sufficient to show that it is reachable and observable.

Reachability follows from the fact that any state of the form (0, j) can be
obtained with an input sequence j00, while states of the type (1, j) are reached
from x0 using input j (of length one) and states (2, j) using input j0.

Observability can be shown through consideration of the following controls
ωij , for each (i, j):

ω01 := �, ω00 := 100, ω10 := 10, ω11 := 00, ω21 := 0, ω20 := 0 .

Then, ω01 separates (0, 1) from every other state, while for all other pairs (i, j) 6=
(0, 1),

λ(i,j)(ωαβ) = 1

if and only if (i, j) = (α, β). 2

Exercise 6.8.7 Let Λ be any time-invariant complete behavior and let ∼ be
the following equivalence relation on Ω:

ω ∼ ω′ ⇔ λ(ων) = λ(ω′ν) ∀ν

(to be more precise, one should write the translated version of ν). This is the
Nerode equivalence relation. Prove that λ admits a finite-cardinality realization
if and only if there are only finitely many equivalence classes under the Nerode
relation. (Hint: It only takes a couple of lines, using previous results.) 2
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The result in the Exercise can be interpreted in terms of generalized Hankel
matrices. Consider the matrix with rows and columns indexed by elements of
Ω, and with λ(ων) in position (ω, ν). Then finite realizability is equivalent to
this matrix having only finitely many rows, and the number of different rows is
equal to the cardinality of the state space of a minimal realization. This is in
complete analogy to the linear case.

6.9 Notes and Comments

Basic Observability Notions

The concept of observability originates both from classical automata theory
and from basic linear systems. The material on final-state observability can
be generalized to certain types of infinite systems, which in the continuous-
time case give, because of Proposition 6.1.9, results about observability (see, for
instance, [358] and [384]).

The text [52] has an extensive discussion of the topic of multiple experiments,
final-state determination, and control for finite systems. Also, [97] addresses
the observability question for such systems. In the context of VLSI design a
central problem is that of testing circuits for defects, and notions of observability
appear; see, for instance, [148] and the references therein.

Observability of Time-Invariant Systems

The concept of observability, its duality with controllability for linear systems,
and the notion of canonical realization, all arose during the early 1960s. Some
early references are [155], [215], and [320].

In fact, Kalman’s original filtering paper [214] explicitly mentions the du-
ality between the optimization versions of feedback control (linear-quadratic
problem) and observer construction (Kalman filtering). The term “canonical”
was used already in [217], where one can find reachability and observability de-
compositions. For related results on duality of time-varying linear systems, see
[435].

For more on the number of experiments needed for observability, and in par-
ticular Exercise 6.2.3, see, for instance, [97], [125], and especially [156]. See also
[6] for continuous-time questions related to this problem. Results on observabil-
ity of recurrent “neural” nets (the systems studied in Section 3.8, with linear
output y = Cx) can be found in [14].

In the form of Exercise 6.2.12 (which, because of the simplifying assumption
that the numbers ωi are distinct, could also have been easily proved directly),
one refers to the eigenvalue criterion for sampling as Shannon’s Theorem or the
Sampling Theorem. It gives a sufficient condition to allow reconstruction of the
signal η and is one of the cornerstones of digital signal processing. The result
can be generalized, using Fourier transform techniques, to more general signals
η, containing an infinite number of frequency components.



6.9. Notes and Comments 311

It is possible to develop a large amount of the foundations of time-invariant
systems based on the notion of observables associated to a system; see [373].

Linearization Principle for Observability

Often one refines Definition 6.4.1 to require that states be distinguishable with-
out large excursions. One such possibility is to ask that for each neighborhood
W of x0 there be a neighborhood V so that every state in V is distinguishable
from x0 using a control that makes the resulting trajectory stay in W . This
is more natural in the context of Lyapunov stability, and can be characterized
elegantly for continuous-time smooth systems; see, for instance, [185] and [365].
Other nonlinear observability references are, for instance, [5], [7], [28], [139], and
[310].

Realization Theory for Linear Systems

There are papers on realization of time-varying linear systems that use tech-
niques close to those used for the time-invariant case. See, for instance, [235]
and [434].

Recursion and Partial Realization

See, for instance, [180], [181], [192], [395], and the many references therein, as
well as the early paper [225], for further results on families of systems.

Small perturbations of the Markov parameters will result in a nonrealizable
sequence, since all of the determinants of the submatrices of H are generically
nonzero. In this context it is of interest to look for partial realizations, in which
only a finite part of the sequence is matched; this problem is closely related to
classical mathematical problems of Padé approximation. Lemma 6.6.9 is one
result along these lines; see, for instance, [19] and the references therein, for
a detailed treatment of partial realization questions and relations to problems
of rational interpolation. The problem can also be posed as one of optimal
approximation of Hankel operators; see the by now classical paper [3]. In ad-
dition, the procedures that we described are numerically unstable, but various
modifications render them stable; a reference in that regard is [110]. A recursive
realization procedure is given in [18], which permits realizations for additional
data to make use of previous realizations.

Since a Markov sequence is specified in terms of an infinite amount of data,
one cannot expect to solve completely the question of realizability unless some
sort of finite description is first imposed. It is known however that, for arbitrary
“computable” descriptions, the problem of deciding realizability is undecidable
in the sense of logic, that is, there is no possible computer program that will
always correctly determine, given a description of a Markov sequence, whether
a realization exists; see, for instance, [356].
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Rationality and Realizability

The ideas of realization and relations to input/output equations go back at
least to the nineteenth century, in the context of using integrators to solve
algebraic differential equations; see [400] as well as the extensive discussion in
[212], Chapter 2. The relations between rationality and finite Hankel rank are
also classical (for the scalar case) and go back to the work of Kronecker (see
[152]).

Algebraic techniques for studying realizations of linear systems were empha-
sized by Kalman; see, for instance, [220], [221], and [223], as well as [228] for
relations to econometrics.

Proposition 6.7.6 could also be proved using Laplace transform techniques;
we used a direct technique that in principle can be generalized to certain nonlin-
ear systems. For these generalizations, see, for instance, [360] and [421], which
establish that certain types of i/o behaviors satisfy polynomial equations

E(y(t+ n), y(t+ n− 1), . . . , y(t), u(t+ n− 1), . . . , u(t)) = 0 (6.44)

(or E(y(n)(t), y(n−1)(t), . . . , y(t), u(n−1)(t), . . . , u(t)) = 0) if and only if they are
realizable, for discrete-time and continuous-time systems, respectively. In the
nonlinear case, however, not every “causal” i/o equation necessarily gives rise
to an i/o behavior, and this in turn motivates a large amount of research on
such equations; see, for instance, [408]. Some authors, motivated by differential-
algebraic techniques, have suggested that realizability should be defined in terms
of i/o equations; see especially [141] and the references therein.

The reference [272] discusses i/o equations for nonlinear systems in the con-
text of identification problems. Related material is also presented in [307], which
uses i/o equations (6.44) in which E is not linear, nor polynomial, but instead
is given by iterated compositions of a fixed scalar nonlinear function with lin-
ear maps. Numerical experience seems to suggest that such combinations are
particularly easy to estimate using gradient descent techniques, and they are in
principle implementable in parallel processors. The name “neural network” is
used for this type of function E, because of the analogy with neural systems:
the linear combinations correspond to dendritic integrations of signals, and the
scalar nonlinear function corresponds to the “firing” response of each neuron,
depending on the weighted input to it.

Realization and i/o equations can also be studied in a stochastic context,
when u(0), u(1), . . . in (6.43) are random variables. In that case, especially
if these variables are independent and identically distributed, (6.43) describes
what is called an ARMA or autoregressive moving average model for the stochas-
tic process, in the stochastic systems and statistics literature. (The outputs
form a time series, and the realization is a Markov model for the series.) See,
for instance, the “weak” and “strong” Gaussian stochastic realization problems
studied, respectively, in [131], [132], [222], [409], and [10], [11], [280], and the
related [344].
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Abstract Realization Theory

It is possible to develop a unified theory of realization for discrete-time finite
systems and linear finite dimensional systems, in the language of category the-
ory; see, for instance, [22]. There are also many other approaches to realization
theory, for instance for nonlinear systems evolving on manifolds in continuous-
time ([199], [383], and [389]) or in discrete-time ([203]), systems on finite groups
([75]), polynomial discrete-time ([360]) and continuous-time ([38]) systems, bi-
linear systems ([66], [198], [359], and [382]), or infinite-dimensional linear sys-
tems ([316], [437], and [438]). The goal in these cases is to study realizations
having particular structures —such as linear realizations when dealing with lin-
ear behaviors— and to relate minimality (in appropriate senses) to various no-
tions of controllability and observability. It is also possible to base a realization
theory on generalizations of Hankel matrix ideas to bilinear and other systems;
see, for instance, [137] and [138], as well as applications of these ideas in [96].
One also may impose physical constraints such as in the study of Hamiltonian
control systems in [106] and [204].

In principle, the complete i/o behavior is needed in order to obtain a real-
ization. However, if the system is “mixing” enough, so that trajectories tend
to visit the entire state space, one may expect that a single long-enough record
will be sufficient in order to charaterize the complete behavior. In this sense one
can view the recent work identifying dynamics of chaotic systems from obser-
vation data (see, e.g., [85] and [130]) as closely related to realization theory (for
systems with no controls), but no technical connections between the two areas
have been developed yet.
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Chapter 7

Observers and Dynamic
Feedback

Section 1.6 in Chapter 1 discussed the advantages of using integration in order
to average out noise when obtaining state estimates. This leads us to the topic
of dynamic observers. In this chapter, we deal with observers and with the
design of controllers for linear systems using only output measurements.

7.1 Observers and Detectability

In this section we first discuss briefly the construction of observers for continu-
ous-time linear systems and then study the more basic questions raised by this
procedure. The next subsection can be skipped if desired, as all results are
proved later, but it provides the intuitive ideas underlying everything else.

Motivational Discussion

Consider the time-invariant continuous-time system

ẋ = Ax+Bu

y = Cx

and the problem of reconstructing the state x(t) from the measurements y(t).
One solution to this problem when (A,C) is observable is to apply the optimal
integral operator M used in Theorem 25 (p. 279). For each fixed interval, let us
say of the form [0, T ], this provides the state x(0) that produced a given output
function y(·) on that interval. From the knowledge of x(0) and the control u(·),
one may then recover the entire state trajectory.

In a sense, this is an “open-loop” procedure, and it has the same disad-
vantages that open-loop control has. For instance, if there is a possibility that
the state could change due to unmeasured disturbances acting on the system,

315
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it is necessary to repeat the estimation procedure. Just as in the discussion
about the advantages of feedback control, one can argue that a recursive esti-
mation procedure —in which the estimates are updated continuously, as more
observations are received— is often more useful. Again, as in that case, the
advantages of recursive estimation could be quantified if a model incorporating
disturbances is used. In fact, in analogy to the solution to the linear-quadratic
problem (Chapter 8), it turns out that this type of estimation is indeed opti-
mal with respect to certain optimization criteria. But again, as with feedback
control, we take here the direct route of simply posing recursive estimation as
a problem to be studied in itself.

One obvious way to obtain an estimate for the state of the above linear
system is to start with a model

ż(t) = Az(t) +Bu(t)

of the system, initialized at any state, to which the same controls are applied.
If we are lucky enough that x(0) = z(0), then it will follow that the solutions
coincide for all t, and a perfect estimate will be maintained. But of course the
problem is that x(0) is unknown; the only information available about x is the
measurement y. We argue then as follows. The quantity

d(t) := Cz(t)− y(t)

measures the discrepancy between the actual measured value and the output
value that would result if our estimate z were indeed the correct state. This
error can be computed from the available data, so it can be used to influence the
dynamics of z. To keep matters simple, we restrict attention to linear functions
of the error. That is, we propose an estimator

ż(t) = Az(t) +Bu(t) + Ld(t) ,

where L is a p × n matrix still to be decided upon. Let e(t) := z(t) − x(t) be
the difference between the actual and estimated state trajectories. Immediately
from the equations for x and z we conclude that the differential equation

ė(t) = (A+ LC)e(t)

holds for e. If it is possible to choose a matrix L so that A + LC is Hurwitz,
then e converges to zero for all initial conditions. In terms of x and z, this
means that, whatever the initial state and the initial estimate, the estimation
error decreases asymptotically, in fact at an exponential rate. Since the matrix
A+LC is Hurwitz if and only if A′+C ′L′ is, such an L can be found whenever
the pair (A′, C ′) is asymptotically controllable, and in particular if (A,C) is
observable. The rest of this section will only expand on this simple construction,
showing that if the pair (A′, C ′) is not asymptotically controllable then nonlinear
estimators cannot work either, and will pose the definitions in a somewhat more
abstract context, applying to general systems. Relatively little is known as yet,
however, about estimators for nonlinear systems.
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Asymptotic Observability

Let Σ be a time-invariant complete system with outputs and assume that Σ
is topological (Definition 3.7.1), that is, X is a metric space and paths depend
continuously on initial states. Assume that u0 ∈ U, y0 ∈ Y, and the state
x0, are such that (x0, u0) is an equilibrium pair and h(x0) = y0. (Recall that
by equilibrium pair we mean that for every t ∈ T+, φ(t, 0, x0, ω0) = x0 when
ω0 ≡ u0.) Consider the set

X0 := {x ∈ X | λ0,t
x (ω0) = y0 for all t ∈ T+} ,

the set of states indistinguishable from x0 when using identically u0 controls.
This set is invariant under such controls ≡ u0, so there is a well defined system
Σ0 (which depends on the particular u0, y0 that was picked) with state space
X0, control-value space {u0}, and whose transition map is the restriction of φ.
This is a classical dynamical system (no inputs nor outputs).

Definition 7.1.1 The time-invariant complete system Σ is asymptotically
observable (with respect to x0, u0, y0) if Σ0 is globally asymptotically stable
(with respect to x0). 2

In informal terms, this is the property that, if a state gives rise to an output
constantly equal to y0 when the constant control u0 is applied, then the resulting
trajectory must converge to x0 (and if the initial state started near x0, it never
goes very far). The more standard terminology (at least for linear systems) is
to say that the system is detectable.

Let Σ be a linear (finite dimensional) system over K = R or C. We say
simply that Σ is asymptotically observable (or equivalently, detectable) if it is
so with respect to

x0 = 0 u0 = 0 y0 = 0 .

In this case Σ0 is the linear system

ẋ = Ax

or in discrete-time x+ = Ax, evolving on the state space O, where O is the set
of states indistinguishable from 0, the same as the kernel of O(A,C). Thus,
detectability means precisely that

Cξ(t) ≡ 0 ⇒ ξ(t) → 0

for all solutions of ẋ (or x+) = Ax. In terms of the observability decomposition
in Equation (6.8), Cξ ≡ 0 implies that the first r components of such a solution
ξ must be identically zero (since the pair (A1, C1) is observable), and therefore
detectability is simply the requirement that A3 be a Hurwitz (or convergent)
matrix. We conclude:
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Lemma 7.1.2 For linear time-invariant continuous-time or discrete-time sys-
tems, (A,C) is asymptotically observable if and only if (A′, C ′) is asymptotically
controllable. 2

Note that the Hautus condition for asymptotic controllability becomes that
(A,C) is asymptotically observable if and only if

rank
[
λI −A
C

]
= n ∀ λ ∈ C,Reλ ≥ 0

for continuous-time systems, and similarly (with the condition now being for
|λ| ≥ 1) in discrete-time.

Observers

Still, Σ denotes an arbitrary complete time-invariant system with outputs. An
observer Σ̂ for Σ (more precisely, this should be called a “final-state asymptotic
observer”) is a system that produces an estimate of the current state of Σ based
on past observations. At any instant, the inputs to Σ̂ are the current inputs
and outputs of Σ, and the estimate is obtained as a function of its state and the
current observation.

Definition 7.1.3 A (strong) observer for Σ consists of a (time-invariant and
complete) system Σ̂ having input value space

U× Y

together with a map
θ : Z × Y → X

(where Z is the state space of Σ̂) so that the following property holds. For each
x ∈ X, each z ∈ Z, and each ω ∈ U[0,∞), we let ξ be the infinite path resulting
from initial state x and control ω, that is,

ξ(t) = φ(t, 0, x, ω|[0,t))

for all t ∈ T+, and write η(t) = h(ξ(t)); we also let ζ be the infinite path resulting
from initial state z and control (ω, η) for the system Σ̂,

ζ(t) = φ̂(t, 0, z, (ω|[0,t), η|[0,t))) ,

and finally we write
ξ̂(t) := θ(ζ(t), η(t)) .

Then it is required that, for every x, z and every ω,

d
(
ξ(t), ξ̂(t)

)
→ 0 as t→∞ (7.1)
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(global convergence of estimate) as well as that for each ε > 0 there be some
δ > 0 so that for every x, z, ω

d (x, θ(z, h(x))) < δ ⇒ d
(
ξ(t), ξ̂(t)

)
< ε for all t ≥ 0 (7.2)

(small initial estimate results in small future errors). 2

y
Σ

u
xΣ,θ

Figure 7.1: Observer.

By a linear observer for a linear (time-invariant, finite dimensional) system
Σ we mean a linear system Σ̂ together with a linear map θ.

Theorem 31 Assume that Σ is a linear system (finite dimensional, time-in-
variant, over R or C). Then the following properties are equivalent:

1. There is an observer for Σ.

2. There is a linear observer for Σ.

3. Σ is asymptotically observable (i.e., detectable).

Proof. Note that Property 2 implies Property 1. We prove that 3 implies 2.
For this, it is only necessary to take Σ̂ of the form

ż [or z+] = (A+ LC)z +Bu− Ly , (7.3)

as discussed earlier, and θ(z, y) := z. By Proposition 5.5.6 and Lemma 7.1.2,
there is always a choice of L that insures that A+LC is a Hurwitz or convergent
matrix, respectively. Since for every initial x, z and control ω one has that
e(t) := z(t)− x(t) satisfies

ė [or e+] = (A+ LC)e ,

an observer results.
Conversely, assume that Property 1 holds. Pick an observer and let z be any

initial state. We claim first that, if

ζ(t) = φ̂(t, 0, z, (0,0)) ,

then θ(ζ(t),0) → 0. This is because of Property (7.1) applied to the trajectory
ω ≡ 0, ξ ≡ 0 of Σ. Now let ξ be any trajectory corresponding to the control
ω ≡ 0 for which Cξ(t) ≡ 0, as in the definition of detectability. Since ζ is the
same as when ξ ≡ 0, it follows that again θ(ζ(t),0) → 0, so (7.1) now implies
that ξ(t) → 0.
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Remark 7.1.4 When the system Σ is discrete-time and observable, one may
pick a matrix L so that A + LC is nilpotent, by the Pole-Shifting Theorem.
Thus, in that case a deadbeat observer results: The estimate becomes exactly
equal to the state after n steps. 2

Note that the above construction results in an observer of dimension equal
to that of the original system. In general, one may also construct reduced order
observers, in the following sense. Assume for simplicity that C has rank p. Then,
—after, if necessary, changing variables in the state space and the output-value
space— one may assume that

C = ( I 0 ) . (7.4)

This means that p components of x can be measured instantaneously, which
leads one to expect that an observer of dimension n−p will exist. The following
exercise establishes that fact.

Exercise 7.1.5 Let Σ be a detectable continuous-time time-invariant system,
with C of the form in Equation (7.4). Show that there exists a linear observer
of dimension n − p. (Hint: Argue as follows. First write the equations of Σ in
block form

ẋ1 = A11x1 +A12x2 +B1u

ẋ2 = A21x1 +A22x2 +B2u ,

so that y = x1 and note that the pair (A22, A12) is again detectable —this takes
one line to prove. Next think of the second equation as defining a system whose
input is A21x1 +B2u, and consider an observer

q̇ = (A22 + LA12)q − LA12x2 +A21x1 +B2u

for it. The reason that this does not yet provide a solution is that it involves
the term LA12x2, which is not a measured quantity. However, an equation for
z := q + Lx1 can be derived, that does not contain any such term. Fill in the
details and write explicitly the form of the observer (Σ̂, θ).) 2

The form of the observer in the proof of Theorem 31 is the most general
possible if one insists that θ(z, y) = z:

Exercise 7.1.6 Assume that Σ = (A,B,C) is a continuous-time linear system
admitting a linear observer

ż = A0z +B0u+Ny

with θ(z, y) = z. Show that it must be the case that B0 = B, A0 = A − NC,
and that A0 must be a Hurwitz matrix. 2
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Remark 7.1.7 Consider the observer constructed in the proof of Theorem 31,
say in continuous-time. The rate of convergence to zero of the error e(t) will
be controlled by how negative the real parts of the eigenvalues of A + LC are.
In order for this convergence to be fast, L must be large in magnitude. If the
observation y has been corrupted by noise, say y = Cx+ d, where d cannot be
measured by the observer, then the error equation becomes

ė(t) = (A+ LC)e(t)− Ld(t) ,

which tends to remain large if d is persistent and L is large. What this means
is that there is a trade-off in achieving small error: large L may be needed for
fast convergence if there is no noise, but small L amplifies less the effect of
noise. This trade-off can be formulated precisely as an optimization problem.
A Kalman filter is an observer that has been optimized with respect to uncer-
tainty in observations as well as, if desired, state disturbances. Mathematically,
the problem of designing Kalman filters turns out to be reducible, by duality,
to a linear quadratic optimal control problem, and has been one of the most
successfully applied parts of control theory. A deterministic version is provided
in Section 8.3. 2

7.2 Dynamic Feedback

We turn now to the question of stabilizing systems based only on output mea-
surements. As the discussion in Section 1.2 regarding proportional-only control
illustrated, direct output feedback alone in general is not sufficient.

Example 7.2.1 As an example of the insufficiency of output feedback, take
the system

ẋ1 = x2

ẋ2 = u

with output map y = x1. Even though this system is controllable and observ-
able, we claim that there exists no possible continuous function

k : R → R

that depends only on y and stabilizes in the sense that, for each x = (x1, x2)
and every solution ξ = (ξ1, ξ2) of

ẋ1 = x2

ẋ2 = k(x1)

with ξ(0) = x, the solution is defined for all t ≥ 0 and ξ(t) → 0. If any such k
existed, we could consider the smooth (“energy”) function

V (x) := x2
2 − 2

∫ x1

0

k(a) da ,



322 7. Observers and Dynamic Feedback

which is constant along all trajectories. Since all trajectories converge to the
origin by assumption, it follows that V must be constant and hence equal ev-
erywhere to V (0) = 0, contradicting V (0, 1) = 1. 2

Exercise 7.2.2 Show that, if A has zero trace and if CB = 0, then A+BFC
(the matrix obtained by feeding u = Fy to ẋ = Ax + Bu, y = Cx) cannot be
Hurwitz for any F . 2

This section deals with the use of dynamic feedback, that is, the control of
systems using other systems (as opposed to static feedback laws). As discussed
in Chapter 1, this can be interpreted, in the continuous-time case when con-
tinuous-time systems are used as controllers, as the use of feedback laws that
involve integrals of the observations. In order to avoid technical problems that
arise only for nonlinear systems, and because the results to be presented apply
mainly in the linear case, we again restrict attention to complete and time-in-
variant systems Σ.

We start by defining the interconnection of two systems with output Σ1 and
Σ2. It is understood that both time sets must be the same. Subscripts i are
used to indicate objects associated with system Σi.

Definition 7.2.3 Let Σ1 and Σ2 be two systems, and let

ki : Y1 × Y2 → Ui , i = 1, 2

be two maps. We say that the interconnection of Σ1 and Σ2 through k1

and k2 is well-posed if for each (x1, x2) ∈ X1×X2 there exist unique functions

ξi : [0,∞) → Xi , i = 1, 2

such that, with the notations

ηi(t) := hi(ξi(t))
ωi(t) := ki(η1(t), η2(t))

it holds that ξi = ψi(xi, ωi) for i = 1, 2. 2

Recall that ξi = ψi(xi, ωi) means that ξi(t) = φi(t, 0, xi, ωi|[0,t)) for all t ∈
T+.

Lemma/Exercise 7.2.4 If the above interconnection is well-posed, then defin-
ing X := X1 × X2 and

φ(t, 0, (x1, x2)) = (ξ1(t), ξ2(t))

results in a complete time-invariant system Σ with no controls. 2
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k

k

1

2

u1

u2y2

y1
Σ1

Σ2

Figure 7.2: Interconnection of two systems.

We call the system in Lemma 7.2.4 the interconnection of Σ1 and Σ2 with
connecting maps k1, k2. When Σ1 and Σ2 are topological, this interconnection
is a topological system (with the product metric on X1×X2) if the functions ξi
in Definition 7.2.3 depend continuously on (x1, x2) uniformly on compact time
intervals. In this case, we say that the interconnection is topologically well-posed.

For continuous-time systems Σ1 and Σ2 and any maps k1, k2, well-posedness
means that solutions of

ẋ1 = f1(x1, k1(h1(x1), h2(x2)))
ẋ2 = f2(x2, k2(h1(x1), h2(x2)))

must exist and be unique for all initial states and all t. If the systems as well
as k1 and k2 are of class C1, then uniqueness always holds, and the only issue is
completeness. Topological well-posedness is also automatic in that case.

When the system Σ2 has just one state, we can ignore the argument η2 in
k1, since it is constant, as well as the function ξ2 (see Figure 7.3). Then a well-
posed interconnection is nothing more than an output feedback law u = k(y)
for which the closed-loop system is complete.

k

y
Σ

u

Figure 7.3: Static feedback case of interconnection.

If Σ1 and Σ2 are discrete-time systems, the interconnection is always well
defined, as the corresponding difference equations always have a solution.

Definition 7.2.5 Let Σ1 be a topological system, and pick any x0
1 ∈ X. The

system Σ1 is dynamically stabilizable (with respect to x0
1) by (Σ2, x

0
2, k1, k2),

where Σ2 is a topological system, if the interconnection of Σ1 and Σ2 through
k1, k2 is topologically well-posed and is globally asymptotically stable with respect
to (x0

1, x
0
2). 2
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For instance, any controllable linear system with C = I can be dynamically
stabilized with a linear Σ2 of dimension 0 and k1 linear. The next result shows
that, when C 6= I but the system is observable, one still can obtain stabiliz-
ability. The idea is very simple: If u = Fx stabilizes the system, then we feed
u = Fz, where z is an estimate of x calculated by an observer.

By a linear stabilizer (Σ2, x
0
2, k1, k2) for a (continuous-time or discrete-time)

system Σ1 we mean that Σ2 is a (continuous-time or discrete-time, respectively)
system, that both maps ki are linear, and that x0

2 = 0.

Theorem 32 Assume that Σ1 is a linear system (finite dimensional, time-in-
variant, over R or C). Then the following properties are equivalent:

1. There is a dynamic stabilizer for Σ1 (with respect to x0 = 0).

2. There is a dynamic linear stabilizer for Σ1 (with respect to x0 = 0).

3. Σ1 is asymptotically controllable and asymptotically observable.

Proof. We first prove that Property 1 implies Property 3 for any system (not
necessarily linear). More precisely, assume that the interconnection of Σ1 and Σ2

through k1, k2 is topologically well-posed and asystable with respect to (x0
1, x

0
2),

and let
y0
i := hi(x0

i ) and u0
i := ki(y0

1 , y
0
2) i = 1, 2 .

Since (x0
1, x

0
2) is an equilibrium point for the interconnection, it follows that

(x0
i , u

0
i ) is an equilibrium pair for the system Σi. Then the claim is that Σ1 must

be asymptotically controllable to x0
1 and detectable with respect to x0

1, u
0
1, y

0
1 .

(An analogous statement holds for Σ2, of course.) Asymptotic controllability is
immediate from the definitions, so we prove the detectability statement.

Consider any state x ∈ X1 indistinguishable from x0
1 when using identically

u0
1 controls, and let ξ1 := ψ(x, ω0

1) be the resulting infinite time path. Let
ξ2 ≡ x0

2. We claim that (ξ1, ξ2) must be a trajectory of the interconnection.
This is true by the uniqueness statement in the definition of well-posedness;
observe that η1 ≡ y0

1 because of the indistinguishability assumption on x and
that η2 ≡ y0

2 . Thus, (ξ1, ξ2) converges to (x0
1, x

0
2), which implies that also ξ1

converges to x0
1, as wanted. Moreover, if x starts near x0

1, then (ξ1, ξ2) remains
uniformly near (x0

1, x
0
2), again by asymptotic stability of the interconnection, so

ξ1 remains near x0
1.

We have proved that the system Σ is detectable with respect to x0
1, u

0
1, y

0
1 .

When, as in the statement of the Theorem, Σ1 is a linear system and x0 = 0,
and using that y0

1 = k1(0) = 0, we have then that the following property holds
(using for definiteness the continuous-time case, but the discrete-time argument
is exactly the same): for every state trajectory ξ(t) so that ξ̇ = Aξ + Bu0

1 and
Cξ(t) ≡ 0, necessarily ξ(t) → 0 as t → ∞. On the other hand, (0, u0

1) is an
equilibrium pair, so 0 ≡ A0 + Bu0

1, which implies that Bu0
1 = 0. Thus it is

also true that for every state trajectory ξ(t) so that ξ̇ = Aξ and Cξ(t) ≡ 0,
necessarily ξ(t) → 0 as t → ∞, and this means that the system is detectable
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with respect to 0, 0, 0, which is what we mean when we say that the linear
system Σ1 is asymptotically controllable.

It is only left to show that, for linear systems, Property 2 follows from
Property 3. Let (A,B,C) be the triple associated to Σ1 and pick matrices
F,L such that A + BF and A + LC are both Hurwitz (in continuous-time) or
convergent (in discrete-time). Pick k2(y1, y2) = y1 and k1(y1, y2) = y2, and the
system Σ2 defined by

(A+ LC +BF,−L,F )

so that the resulting interconnection is the linear system with no controls and
“A” matrix equal to(

A BF
−LC A+ LC +BF

)
= T−1

(
A+BF BF

0 A+ LC

)
T

where

T =
(
I 0
−I I

)
.

It follows that the interconnection is asymptotically stable.

y
Σ

u
xΣ

F

Figure 7.4: Observer/controller configuration in proof of Theorem 32.

Exercise 7.2.6 Let Σ1 be a continuous-time system of class C1,

ẋ = f(x, u), y = h(x) ,

and assume that (0, 0) is an equilibrium pair and h(0) = 0. Let Σ∗ be the
linearization about the zero trajectory, and assume that Σ∗ is asymptotically
controllable and asymptotically observable. Show that then there exist matrices
F,D,E (of suitable sizes) such that the origin of

ẋ = f(x, Fz)
ż = Dz + Eh(x)

is locally asymptotically stable. This corresponds to a notion of local dynamic
stabilizability. 2

Exercise 7.2.7 Refer to Exercise 3.2.12. Take all constants equal to one, for
simplicity.



326 7. Observers and Dynamic Feedback

(a) Using y = h as the output, find a dynamic feedback stabilizer for Σ.

(b) Show that there is no static output feedback u = Fy which stabilizes the
system.

(c) (Optional) Show that it is possible to find a stabilizing feedback law for
this example which depends only on h and φ, i.e., there are coefficients
µ, ν so that with u = µh + νφ the closed-loop system is stable. (This is
of interest in practice, because h and φ can easily be measured with an
altimeter and gyro, respectively.) 2

Exercise 7.2.8 Refer to Exercise 3.2.13, and take for simplicity M = m = F =
g = l = 1.

(a) Using y = x1 = δ as the output, find a dynamic feedback stabilizer for Σ.

(b) Using both x1 and x3 as measured (see Exercise 6.2.6, part (c)) and as-
suming instead m = 0, find a dynamic feedback stabilizer.

(c) (Optional) Show that for no possible “proportional feedback” control law
u = fx = αx1 + βx3 is the closed-loop system stable. (You may want to
use the fact, easily proved, that a monic polynomial can be Hurwitz only
if all its coefficients are strictly positive.) 2

7.3 External Stability for Linear Systems

There are many nonequivalent definitions possible for the concept of stability of
i/o behaviors. Rather than dealing with these in a general setting, however, we
study only the linear (finite dimensional) case, in which all definitions coincide.

Let Λ be either a linear time-invariant discrete-time behavior or a linear
time-invariant continuous-time integral behavior (Definitions 2.4.3 and 2.7.8,
respectively), with K = R or C. Let K be the impulse response of Λ. In the
discrete-time case, this is a Markov sequence; in continuous-time it is a matrix
of functions K ∈ L∞,loc

p×m (0,∞). For each ω ∈ U[0,∞) (locally essentially bounded
in the continuous-time case), we can consider the infinite time output η ∈ Y[0,∞)

produced by ω,
η(t) := λ(t, 0, ω|[0,t)) .

Consistently with the discussion in Remark 2.2.2, we will denote this function
η as λ̄(ω). Formulas (2.17) and (2.27) say that

λ̄(ω) = K ∗ ω ,

where ∗ denotes convolution in discrete-time or continuous-time. Note that in
continuous-time, λ̄(ω) ∈ L∞,loc

p (0,∞).
For notational simplicity when giving unified statements for continuous-time

and discrete-time, for each integer r we let L∞r denote not just the set of essen-
tially bounded measurable functions [0,∞) → Kr (K = R or C, depending on
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whether we are looking at real or complex systems), but also the set (l∞)r of
all sequences

η = y0, y1, y2, y2, . . .

of vectors in Kr satisfying

‖η‖∞ := sup
i≥0

‖yi‖ <∞ .

In general, λ̄(ω) is not necessarily in L∞p even if ω ∈ L∞m . When it is, we may
view λ̄ as an operator

λ̄ : L∞m → L∞p .

This operator is continuous with respect to the essential supremum norms if
and only if it is bounded, that is, if there is some constant γ so that∥∥λ̄(ω)

∥∥
∞ ≤ γ ‖ω‖∞

for all ω. In that case, one says that the behavior Λ is uniformly bounded-
input bounded-output, or UBIBO for short.

For an impulse response K, we let ‖K‖1 denote its (possibly infinite) L1

norm. By this we mean ∫ ∞

0

‖K(t)‖ dt

in continuous-time, or
∞∑
i=1

‖Ki‖

in discrete-time, where ‖·‖ denotes the operator norm in Kp×m induced by
Euclidean norm. We say that the impulse response is integrable if ‖K‖1 < ∞;
this is equivalent to the requirement that each entry Kij(·) of K be an integrable
function.

Lemma 7.3.1 The behavior Λ is UBIBO if and only if its impulse response K
is integrable.

Proof. Sufficiency follows from the fact that∥∥λ̄(ω)
∥∥
∞ ≤ ‖K‖1 ‖ω‖∞

for all ω. To establish necessity, take any fixed i, j; we will prove that Kij is
integrable. Pick any T > 0 and let ω be defined as follows. The coordinates
different from j are identically zero, and the jth coordinate is

ωj(t) := signKij(T − t)

for all t ∈ [0, T ] and zero otherwise (with the convention sign 0 = 0). Then the
ith coordinate of η = λ̄(ω) satisfies (in continuous-time)

ηi(T ) =
∫ T

0

|Kij(t)| dt
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and similarly in discrete-time. Since the behavior is UBIBO, also

|ηi(T )| ≤ ‖η‖∞ ≤ γ ‖ω‖∞ ≤ γ ,

which implies that ‖Kij‖1 ≤ γ <∞, as wanted.

One of the most useful facts about stable systems is that decaying inputs
produce decaying outputs:

Lemma 7.3.2 If Λ is UBIBO, then limt→∞ ω(t) = 0 implies that

lim
t→∞

λ̄(ω)(t) = 0 .

Proof. Assume that ω → 0, let η := λ̄(ω), and pick any ε > 0. We wish
to find a T such that ‖η(t)‖ < ε for all t > T . The calculations will be done
for continuous-time, but the discrete-time case is entirely analogous. Denoting
α := ‖ω‖∞ and γ := ‖K‖1, there is some T0 so that

‖ω(t)‖ ≤ ε

2γ

for all t ≥ T0 and ∫ ∞

T0

‖K(t)‖ dt ≤ ε

2α
.

We pick T := 2T0; with this choice, for each t > T it holds that

‖η(t)‖ ≤ α

∫ T0

0

‖K(t− τ)‖ dτ +
ε

2γ

∫ t

T0

‖K(t− τ)‖ dτ

= α

∫ t

t−T0

‖K(τ)‖ dτ +
ε

2γ

∫ t−T0

0

‖K(τ)‖ dτ ≤ ε ,

as desired.

From now on, let Σ be any (finite dimensional, time-invariant) discrete-time
or continuous-time system Σ = (A,B,C) over K = R or C. We shall say that Σ
is internally stable if A is a convergent or Hurwitz matrix, respectively. Given
any such system, we let ΛΣ be its i/o behavior, and WΣ the generating series
associated to its Markov sequence.

Proposition 7.3.3 If Σ is internally stable, then ΛΣ is UBIBO.

Proof. In continuous-time, each entry of the matrix K(t) = CetAB is a sum of
terms of the form tleλt, with all λ having negative real parts, and this implies
that K is integrable. In discrete-time, Ki = CAi−1B, and terms of the form
tlλi appear, |λ| < 1, so the same is true.

The following characterization of asymptotic observability will be useful be-
low.
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Lemma 7.3.4 The system Σ is detectable if and only if the following property
holds: For each solution ξ of ẋ = Ax (or x+ = Ax),

Cξ(t) −→
t→∞

0 =⇒ ξ(t) −→
t→∞

0 .

Proof. The property clearly implies detectability (Cξ(t) ≡ 0 ⇒ ξ(t) → 0).
Conversely, assume that Σ is detectable and let

ż [orx+] = (A+ LC)z +Bu− Ly (7.5)

be an observer constructed as in the proof of Theorem 31 (p. 319), where A+LC
is a Hurwitz or convergent matrix, respectively. Assume that Cξ(t) → 0. We
consider the system (7.5) with output z, and apply, to this system, Proposition
7.3.3 and Lemma 7.3.2. We conclude that the solution ζ of (7.5) with

y(t) = Cξ(t) , u ≡ 0 , and ζ(0) = 0

must satisfy ζ(t) → 0. Since, by definition of observer, ξ(t) − ζ(t) → 0, the
conclusion follows.

A converse of Proposition 7.3.3 is provided by the following result:

Theorem 33 If Σ is canonical and ΛΣ is UBIBO, then Σ is internally stable.

Proof. We provide details only for continuous-time, as the discrete-time case
is similar. Pick any solution ξ of ẋ = Ax, and let x0 := ξ(1). We need to see
that ξ(t) → 0. By controllability of Σ, there is some control ω on [0, 1] steering
0 to x0. We extend ω by ω(t) = 0 for t > 1; note that

Cξ(t) = λ̄(ω)(t)

for all t > 1. Since ΛΣ is UBIBO and ω(t) → 0, necessarily Cξ(t) → 0. By
Lemma 7.3.4 it follows that ξ → 0, using detectability of Σ.

Finally, one can characterize these properties in terms of rational represen-
tations:

Proposition 7.3.5 The behavior ΛΣ is UBIBO if and only if there exists a
rational representation WΣ = q−1P in which q is a Hurwitz (or convergent, in
discrete-time) polynomial.

Proof. Without loss of generality, we may assume that Σ is canonical (other-
wise pick a canonical realization). If ΛΣ is UBIBO, then Σ must be internally
stable; since q may be chosen as the characteristic polynomial of A, it can be
chosen to be Hurwitz or convergent, respectively. Conversely, if there is such
a representation, then there is at least one realization that is internally stable.
For instance, the observability form realization has a characteristic polynomial
equal to qp, and hence this is an internally stable realization.
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Exercise 7.3.6 Prove that “Σ is asymptotically controllable and asymptoti-
cally observable” is sufficient (instead of assuming that Σ is canonical) in The-
orem 33. 2

Exercise 7.3.7 Give an example of a linear system that is not internally stable
but whose behavior is UBIBO. 2

Exercise 7.3.8 Consider the following “non-uniform BIBO” property: For
each bounded ω, λ̄(ω) is also bounded (that is, λ̄ induces an operator L∞m → L∞p ,
but this is not necessarily continuous). Show that for every Σ as above, ΛΣ is
UBIBO if and only if it satisfies this property. (Hint: Just read the above
proofs.) 2

Exercise 7.3.9 Refer to Exercise 3.2.12. Take all constants equal to one, for
simplicity. Using y = h as an output, show that the i/o behavior of Σ is not
UBIBO. Find an explicit input that produces a diverging output (when Σ starts
at the zero state). 2

Exercise 7.3.10 Repeat problem 7.3.9 for the example in Exercise 3.2.13, tak-
ing M = m = F = g = l = 1. Use y = x1 = δ as the output. 2

Exercise 7.3.11 Denote by K the class of functions [0,∞) → [0,∞) which are
zero at zero, strictly increasing, and continuous, by K∞ the set of unbounded
K functions, and by KL the class of functions [0,∞)2 → [0,∞) which are of
class K on the first argument and decrease to zero on the second argument. A
continuous-time time-invariant system ẋ = f(x, u) with state space X = Rn
and control-value space U = Rm is said to be input-to-state stable (ISS) if there
exist a function β ∈ KL and a function γ ∈ K∞ so that the following property
holds: For each T > 0, if ω is a control on the interval [0, T ] and ξ is a solution
of ξ̇ = f(ξ, ω) on the interval [0, T ], then

‖ξ(T )‖ ≤ max
{
β
(
‖ξ(0)‖ , T

)
, γ (‖ω‖∞)

}
. (7.6)

Show:

1. Every ISS system is complete (i.e., every input is admissible for every
state). (Hint: Use Proposition C.3.6.)

2. For ISS systems, if ω is any input on [0,∞) which is bounded (respectively,
converges to zero as t→∞), and if ξ solves ξ̇ = f(ξ, ω), then ξ is bounded
(respectively, converges to zero as t→∞).

3. If a system is ISS, then it is internally stable, in the sense that the system
with no inputs ẋ = f(x, 0) is globally asymptotically stable (with respect
to the origin).
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4. A continuous-time time-invariant linear system is ISS if and only if it is
internally stable. Moreover, for such systems one may always find β of
the form β(r, t) = c1e

−αtr and γ of the form γ(r) = c2r, for some positive
constants c1, c2, and α.

5. Show that internal stability does not imply ISS for nonlinear systems, by
giving an example of a system for which the origin is globally asymptot-
ically stable for ẋ = f(x, 0) but for which there exists a bounded control
ω and an unbounded solution of ξ̇ = f(ξ, ω).

6. If a system is ISS, then it has finite nonlinear gain, meaning that there
exists a function γ ∈ K∞ so that the following property holds: If ω is any
input on [0,∞) which is bounded, and if ξ solves ξ̇ = f(ξ, ω), then

lim
t→∞

‖ξ(t)‖ ≤ γ (‖ω‖∞) . (7.7)

(The function γ is then called a nonlinear gain.) 2

Exercise 7.3.12 A continuous-time time-invariant system with outputs (but
no inputs) ẋ = f(x), y = h(x), having state space X = Rn, and output-value
space Y = Rp, is said to be output-to-state stable (OSS) if there exist a function
β ∈ KL and a function γ ∈ K∞ (terminology is as in Exercise 7.3.11) so that
the following property holds: For each T > 0, if ξ is a solution of ξ̇ = f(ξ) on
the interval [0, T ], and η(t) = h(ξ(t)) for t ∈ [0, T ], then

‖ξ(T )‖ ≤ max
{
β
(
‖ξ(0)‖ , T

)
, γ (‖η‖∞)

}
. (7.8)

Show:

1. A continuous-time time-invariant linear system is OSS if and only if it is
detectable.

2. In general, a system may be detectable (with respect to x0 = 0 and y0 = 0)
yet not be OSS. 2

7.4 Frequency-Domain Considerations

The classical way to treat linear time-invariant finite dimensional systems is via
frequency-domain techniques. In this section we briefly sketch some of the basic
concepts of that approach, mainly in order to make the reader familiar with
terminology and elementary facts. No attempt is made to cover this vast area
in any detail. We restrict attention to continuous-time systems, though similar
results can be derived for the discrete-time case.

Let Λ be a realizable linear time-invariant behavior of integral type over
K = R, and let K be its impulse response. Realizability means that there are
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matrices A,B,C so that

K(t) = CetAB =
∞∑
j=0

CAjB
tj

j!

for all t ≥ 0. Write Aj := CAj−1B, j = 1, 2, . . . for the associated Markov
sequence and W for its associated generating series. Pick any real number σ
larger than the norm of the matrix A; then

∞∑
j=0

‖Aj+1‖
tj

j!
e−σt ≤ ‖C‖ ‖B‖ e(‖A‖−σ)t (7.9)

is integrable, and in particular∫ ∞

0

K(t)e−σt dt < ∞

holds. Moreover, because of (7.9), the convergence

N∑
j=0

Aj+1
tj

j!
e−st →

∞∑
j=0

Aj+1
tj

j!
e−st

is dominated, for each fixed complex number s with Re s > σ, so we conclude
using the formula ∫ ∞

0

tje−st dt =
j!
sj+1

that ∫ ∞

0

K(t)e−st dt =
∞∑
j=1

Ajs−j = W (s) (7.10)

for all such s, when W is seen as a Taylor expansion about infinity.
In general, consider any measurable matrix function F defined on [0,∞) and

of exponential growth, by which we mean that ‖F‖ is locally integrable and

‖F (t)‖ e−σt → 0 as t→ +∞

for some σ ∈ R. For any such F , one defines its Laplace transform as the
(matrix) function of a complex variable s,

F̂ (s) :=
∫ ∞

0

F (t)e−st dt .

This is well defined, and is analytic, for all s with Re s > σ, if σ is as above.
For instance, K̂ is defined whenever σ is larger than the real part of every
eigenvalue of A. Observe that, writing W = q−1P in rational form, we conclude
from Equation (7.10) and Remark 6.7.5 that the matrix of rational functions

H(s) := q(s)−1P (s)
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and K̂(s) coincide wherever they are both defined, and W is the Taylor expan-
sion at infinity of this rational matrix. From now on we will not distinguish
between H, W , and K̂(s).

Since, for any two scalar functions of exponential growth,

k̂ ∗ w = k̂ ω̂ ,

it follows, applying this formula to each coordinate, that for each input function
ω of exponential growth the corresponding output η satisfies

η̂(s) = W (s) ω̂(s) .

For this reason one calls W the transfer matrix (or, in the particular case m =
p = 1, the transfer function) of the system (A,B,C) (or of the behavior Λ):
Its value at each “complex frequency” s characterizes the i/o behavior of the
system at that frequency. In classical electrical engineering design, one often
starts with a desired frequency behavior (for instance, the requirement that large
frequencies be attenuated but low frequencies be relatively unaffected) and one
builds a system in such a manner that the transfer matrix satisfies the desired
properties. The following easy remark shows how each frequency is affected.

Lemma 7.4.1 Assume that Λ is UBIBO. Pick any real number ω and any two
integers l = 1, . . . , p and j = 1, . . . ,m. Consider the control

u(t) = sinωt vj

(vj= canonical jth basis vector in Rm) on [0,∞). Let η(t) be the lth coordinate
of the corresponding output on [0,∞), and write

W (iω)lj = reiϕ

in polar form. Then,
η(t)− r sin(ωt+ ϕ) → 0

as t→∞.

Proof. Since the behavior is stable, K(t) is integrable, so∥∥∥∥∫ ∞

t

K(τ)vjeiω(t−τ) dτ

∥∥∥∥ ≤
∫ ∞

t

‖K(τ)‖ dτ → 0

as t→∞. Therefore,∫ t

0

K(τ)vjeiω(t−τ) dτ − eiωt
∫ ∞

0

K(τ)vje−iωτ dτ → 0 .

Thus, the imaginary part of this difference goes to zero, too, as desired.
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Remark 7.4.2 Introducing more terminology from electrical engineering, for
the case m = p = 1, one calls the modulus r of W (iω) the gain at frequency ω
and its argument ϕ, taken in the interval [−π, π), the phase shift at frequency
ω. Inputs at the corresponding frequencies are shifted and amplified according
to these parameters. The system exhibits phase lag at a frequency if ϕ < 0
and phase lead if ϕ > 0. The steady-state output corresponding to sinωt is
r sin(ωt + ϕ). The Bode plot or Bode diagram consists of graphs of gain and
phase as functions of ω ≥ 0 on a logarithmic scale. A large number of qualitative
properties of the rational function W (s) can be deduced immediately from such
plots, even on the basis of partial information. 2

Exercise 7.4.3 Let m = p = 1. Assume that W (s) = b
s+a is an asymptotically

stable but unknown transfer function (a, b real > 0). Suppose that the steady-
state output corresponding to the input sin t is

√
2 sin(t− π/4). (That is, there

is a −45◦ phase shift and an amplification of
√

2.) Find W (s). 2

Exercise 7.4.4 Let m = p = 1. Show that if Λ is UBIBO, then the output
corresponding to u ≡ 1 converges to W (0). (The quantity W (0) is accordingly
called the dc gain of the system, the gain corresponding to a nonalternating or
“direct current” input.) 2

Observe that, in general, if a control ω has exponential growth, then the
solution of

ξ̇ = Aξ +Bω

again has exponential growth, as is clear from the variation of parameters for-
mula. Since ξ̇ is a linear combination of Aξ and Bω, it also has exponential
growth, and an integration by parts shows that its transform is sξ̂(s)− ξ(0). If
ξ(0) = 0, we conclude that

sξ̂(s) = Aξ̂(s) +Bω̂

and therefore that
η̂ = C(sI −A)−1Bω̂

for the output, consistent with the equality W = K̂. Laplace transform tech-
niques are useful in developing a “calculus” for systems over R or C, though
one could also use the formal power series approach of Section 6.7 to obtain
analogous results (with the advantage that they then are valid over arbitrary
fields of coefficients).

Interconnections

Consider two systems Σ1 = (A1, B1, C1) and Σ2 = (A2, B2, C2) and a linear
interconnection as in Definition 7.2.3:

ẋ1 = A1x1 +B1(F11C1x1 + F12C2x2)
ẋ2 = A2x2 +B2(F21C1x1 + F22C2x2)
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seen as a system of dimension n1+n2 and no inputs or outputs. (The connecting
maps are k1 = (F11, F12) and k2 = (F21, F22).)

We assume that Σ1 is controllable and observable, and we wish to study the
possible linear systems Σ2 providing dynamic stabilization, that is, making the
interconnection asymptotically stable. For each such possible system Σ2, we
may consider a new interconnection in which F22 = 0, F21 = I, and F12 = I,
since one can redefine A2 as A2 + B2F22C2, B2 as B2F21, and C2 as F12C2.
Since a noncanonical system can always be replaced by a canonical one, we will
look for canonical systems Σ2. Therefore, the problem becomes one of finding,
for the given system Σ1, a canonical system Σ2 and a matrix F so that

ẋ1 = A1x1 +B1(FC1x1 + C2x2)
ẋ2 = A2x2 +B2C1x1

is asymptotically stable. For any such interconnection, we introduce external
inputs as follows:

ẋ1 = A1x1 +B1(F (C1x1 + u2) + C2x2 + u1) (7.11)
ẋ2 = A2x2 +B2(C1x1 + u2) (7.12)

seen as a system of dimension n1 + n2, input space Rm1+m2 , and outputs

y =
(
C1x1

C2x2

)
.

When the inputs are kept at zero and the outputs are ignored, this is the same
as the above interconnection.

Lemma/Exercise 7.4.5 If each of the systems Σi is canonical, then the system
(7.11-7.12) is also canonical. 2

u1

yΣ

Σ

1 11

2

e

u2
y2 2e

F

Figure 7.5: Interconnection, after simplifications.

From this and the equivalences between the UBIBO property and internal
stability, one concludes that the problem of characterizing the linear dynamic
stabilizers of a controllable and observable system Σ1 is equivalent to the prob-
lem of finding systems Σ2 and matrices F so that the interconection in the
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present input/output sense is UBIBO. One then may work with the correspond-
ing transfer matrices W1 of Σ1 (of size p×m) and W2 of Σ2 (of size m× p), as
illustrated next.

Consider the initial state (0, 0) of (7.11-7.12) and take any two inputs ω1, ω2

of exponential growth. Let ξ1, ξ2 be the resulting trajectories, and let η1 = Cξ1
and η2 = Cξ2 be the corresponding outputs. Observe that

η̂2 = W2ê2 ,

where
e2 := η1 + ω2 ,

and
η̂1 = W1ê1 ,

where
e1 := Fe2 + η2 + ω1 .

Note that boundedness of η1 and η2 is equivalent to boundedness of e1 and e2,
when ω1 and ω2 are bounded. It is more convenient to work with e1, e2 rather
than η1, η2. We write W instead of W1, and we let

V (s) := F +W2(s) ,

thought of as a matrix of rational functions. Thus, the following equations are
satisfied by the Laplace transforms of all signals:

ê1 = ω̂1 + V ê2

ê2 = ω̂2 +Wê1 .

The matrix W is strictly proper, that is, its entries are rational functions van-
ishing at infinity. On the other hand, V is in general only proper, that is, each
of its entries can be written as p/q with the degree of p not greater than the
degree of q. The product VW is again strictly proper, so as matrices of rational
functions,

I − VW and I −WV

are invertible (the determinant is 1 as |s| → ∞). Thus, the above equations can
be solved to obtain (

ê1
ê2

)
= Wcl

(
ω̂1

ω̂2

)
,

where the “closed loop transfer matrix” Wcl is the proper matrix of rational
functions (of size (m+ p)× (m+ p))(

(I − VW )−1 (I − VW )−1V
(I −WV )−1W (I −WV )−1

)
. (7.13)

We say that Wcl is stable if all of its entries are rational functions with no poles
on Re s ≥ 0. We have then:
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Proposition 7.4.6 The canonical system Σ2 and feedback matrix F stabilize
the above interconnection if and only if Wcl is stable.

Proof. Stability of the interconnection is equivalent to the requirement that
e1, e2 be bounded for all bounded ω1, ω2; we need to show that this is equivalent
to stability ofWcl. If the latter were strictly proper, the equivalence would follow
from Proposition 7.3.5. We need only to see then that the proper case can be
reduced to the strictly proper one. In general, every proper matrix U(s) can be
written as U1(s) + U0, where U0 is constant and U1 is strictly proper with the
same poles as U . (To see this, one writes each entry as the sum of a constant
and a proper rational function, after performing a polynomial division.) Let K
be so that U1 is the transform of K. What we need to show is that the i/o
behavior with impulse response K is UBIBO if and only if the operator norm
of ω 7→ K ∗ ω + U0ω is finite. But this norm differs from the one induced by
convolution by K at most by the finite amount ‖U0‖.

Since every proper V can be written, after division, in the form F + W2,
with W2 strictly proper, and in turn any such W2 can be realized as the transfer
matrix of a canonical linear system, the problem of characterizing all stable
interconnections can be restated simply as:

Find all proper V so that Wcl is stable.

The next section studies this problem for the case m = p = 1.

7.5 Parametrization of Stabilizers

We now specialize to the scalar case, m = p = 1, in order to avoid having to
deal with the theory of stable factorizations of rational matrices. Most of what
follows, however, can be developed in far more generality.

To summarize, the algebraic problem that we need to solve is as follows:
Given a strictly proper rational function w(s), find all those proper rational
functions v(s) such that all three rational functions

(1− vw)−1 (1− vw)−1v (1− vw)−1w (7.14)

are stable. Stability of a rational function w means that w is analytic on

C+ := {s | Re s ≥ 0} ,

while properness is equivalent to the property that the limit

w(∞) := lim
|s|→∞

w(s)

exists (and is finite) and strict properness to w(∞) = 0. Our objective is to
parametrize the set of all v stabilizing a given w. The most convenient way to
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do this is through the study of the basic properties of the set RH∞ of proper
stable rational functions (the notation stands for real-rational Hardy space). We
think of this set as a ring, when the pointwise operations for functions are used.
The main technical fact that we need about this space is given in the following
Lemma; it is a consequence of the somewhat more general fact —which we do
not prove— that RH∞ is a Euclidean domain.

Two elements f, g ∈ RH∞ are said to be coprime if they have no common
zeros in C+ and at least one of them is not strictly proper (in other words, f
and g have no common zeros in C+ ∪ {∞}). As with polynomials, coprimeness
is equivalent to a “Bezout” type identity:

Lemma 7.5.1 The functions f, g ∈ RH∞ are coprime if and only if there exist
α̃, β̃ ∈ RH∞ such that

α̃f + β̃g = 1 . (7.15)

Proof. Since all functions are analytic on C+ and bounded at infinity, Equation
(7.15) implies that f and g can have no common zeros in C+∪{∞}. Conversely,
assume that they are coprime. It is convenient to use the bilinear mapping
z := (s − 1)/(s + 1) sending C+ into the unit complex disk D and its inverse
s := (1 + z)/(1 − z). Given any rational function w, we consider the rational
functions

ŵ(z) := w

(
1 + z

1− z

)
w̃(s) := w

(
s− 1
s+ 1

)
.

Note that if w = w1w2 + w3 then ŵ = ŵ1ŵ2 + ŵ3, and similarly for .̃ Further-
more, ˜̂w = ˆ̃w = w for all w, and w ∈ RH∞ ⇐⇒ ŵ ∈ S, where S is the set of
all rational functions that have no poles in D. Coprimeness of f, g is equivalent
to the requirement that f̂ and ĝ have no common zeros in D. The problem is
then reduced to showing that, given any two a, b ∈ S with no common zeros in
D, there must exist α, β ∈ S so that αa+ βb = 1.

Write a = p1/q1 and b = p2/q2 as quotients of relatively prime polynomials
so that p1 and p2 have no common zeros in D. Let d be the GCD of the
polynomials pi and find a linear combination d = α0p1 + β0p2 with polynomial
coefficients. Note that d has no zeros in D because its zeros are the common
zeros of p1 and p2. Therefore

α :=
α0q1
d

and β :=
β0q2
d

are as desired.

By a coprime fractional representation for a rational function w we mean
a pair of coprime f, g ∈ RH∞ such that w = f/g. Any w admits such a
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representation: If w = p/q as a quotient of relatively prime polynomials and if
k is the maximum of the degrees of p and q, then we may write

w =
p/(s+ 1)k

q/(s+ 1)k

in coprime form. Observe that whenever w is strictly proper and w = f/g with
f, g ∈ RH∞ necessarily f = gw is strictly proper, too.

If w = f/g and v = n/d, then the conditions for stabilizability involving
(7.14) can be restated as the requirement that all three elements

gd

r

gn

r

fd

r
(7.16)

be in RH∞, where r := gd− fn. Observe that fn/r = gd/r − 1 is in RH∞ if
and only if gd/r is. Thus, fn/r can be added to the list (7.16).

The main result is as follows. Given any w, we write it first in coprime form
and find α, β as in Lemma 7.5.1.

Theorem 34 Let w = f/g be strictly proper, and let α, β ∈ RH∞ be so that
αf + βg = 1. Then the rational functions v stabilizing w are precisely the
elements of the form

v =
µg − α

µf + β
, µ ∈ RH∞ (7.17)

Proof. Assume first that v is of this form. Since w is strictly proper, f is, too;
thus, βg = 1 − αf implies that β(∞) 6= 0. We conclude that the denominator
µf+β in (7.17) is nonzero, so the expression is well defined as a rational function,
and in particular it is not zero at infinity so that v is proper. (Observe that v
is in general not stable, however.) Consider the elements

n := µg − α , d := µf + β

of RH∞, and note that

r = gd− fn = g(µf + β)− f(µg − α) = αf + βg = 1 .

Since their numerators are in RH∞, it follows that all of the elements of the
list (7.16) are in RH∞, which proves that v defined by formula (7.17) indeed
stabilizes.

Conversely, assume that v stabilizes, and write v = n/d in coprime form.
Let r := gd− fn; we claim that r is a unit in RH∞, i.e., 1/r ∈ RH∞. Indeed,
if γ, δ are so that γn+ δd = 1, then

1
r

=
1
r

(αf + βg) (γn+ δd) =
αγfn

r
+
αδfd

r
+
βγgn

r
+
βδgd

r
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is in RH∞, because each term is (by the assumption that v stabilizes). We
may then redefine n := n/r and d := d/r, so that without loss of generality we
assume from now on that gd− fn = 1. We then have the equation(

α β
−n d

) (
f
g

)
=

(
1
1

)
(7.18)

from which it follows, multiplying by the cofactor matrix, that

µ

(
f
g

)
=

(
d −β
n α

) (
1
1

)
=

(
d− β
n+ α

)
,

where µ = αd+βn ∈ RH∞ is the determinant of the matrix in (7.18). Therefore
d = µf + β and n = µg − α, as wanted.

Example 7.5.2 As a trivial illustration, take the system ẋ = u, y = x. Its
transfer function is w = 1/s, which admits the coprime fractional representation

w =
1/(s+ 1)
s/(s+ 1)

,

and we may pick α = β = 1. According to the Theorem, every possible stabilizer
is of the form

v =
µs/(s+ 1)− 1
µ/(s+ 1) + 1

=
µs− s− 1
µ+ s+ 1

,

with µ ranging over all possible µ ∈ RH∞. Such v’s are guaranteed to be proper
and to stabilize. For instance, for µ = 0 one obtains v = −1, which corresponds
to the obvious stabilizing law u = −y. 2

The usefulness of Theorem 34 is in the fact that it characterized all stabilizers
in terms of a free parameter. Once such a parametrization is obtained, further
design objectives can be translated into requirements on the parameter. In
this sense it is useful to note that the closed-loop transfer matrix can also be
computed easily; with the notations of the Theorem, one has

Wcl =
(
gd gn
fd gd

)
= µ

(
fg g2

f2 fg

)
+
(
gβ −αg
fβ gβ

)
,

which is an affine expression µW1 +W0 on µ.

Exercise 7.5.3 With the above notations, show that, for any desired closed-
loop transfer matrix W = Wcl, there will be a solution if and only if one can
write (

1 0
−w 1

)
(W −W0) =

(
a b
0 0

)
with ag2 = bfg, and both of these rational functions are in RH∞. 2
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Exercise 7.5.4 Prove that, in general, µ is uniquely determined by v. That is,
each possible v appears exactly once in the parametrization. 2

Exercise 7.5.5 It is not totally trivial to find the coefficients α and β as in
Equation (7.15). Show how to obtain these coefficients starting with any partic-
ular stabilizer. (A stabilizer can be itself obtained from state space techniques,
for instance.) 2

Exercise 7.5.6 Find all stabilizers for w = 1/s2. Are there any that are con-
stant? 2

Nyquist Criterion

There is a graphical test for stability that is standard in engineering practice
and which helps in finding stabilizers. Again for simplicity of exposition we
restrict to the case m = p = 1 and to stabilization by constant feedback. Before
presenting the main result, we need to review some basic complex analysis facts.

Assume that f is a rational function having no poles or zeros on a simple
closed curve C. Assume in addition that C is oriented clockwise (to respect
engineering conventions). Then

1
2πi

∫
C

f ′(s)
f(s)

ds = PC − ZC , (7.19)

where ZC (respectively, PC) is the number of zeros (respectively, poles) of f in
the region bounded by C (counted with multiplicities). Consider also the curve
Γ := f(C), with the induced orientation. Changing variables, the integral (7.19)
is the same as

1
2πi

∫
Γ

dξ

ξ
.

In turn, this last integral is the index of Γ with respect to the origin, that is,
the number of counterclockwise encirclements of 0 by the oriented curve Γ. We
let cw (Γ, p) denote the number of clockwise encirclements of the point p by the
curve Γ. Therefore, cw (Γ, 0) = ZC − PC .

Now assume that f is proper and has no poles or zeros on the imaginary axis
iR. Let Γ be the image of the curve iR ∪ {∞}, seen as an oriented curve in the
Riemann sphere (transversed on the imaginary axis from negative to positive
imaginary part). Let P+ and Z+ be the numbers of poles and of zeros of f on
the half-plane C+; then

cw (Γ, 0) = Z+ − P+ . (7.20)

(We could also argue directly in terms of the complex plane: The curve Γ is the
closure of f(iR), which is the same as the union of f(iR) and the point f(∞),
seen as an oriented curve, with the orientation induced by transversing iR from
−i∞ to +i∞. The numbers P+ and Z+ are equal to the respective numbers in
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the region bounded by the curve Cr, for all large enough r, where Cr consists of
the interval [−ir, ir] of the imaginary axis and the semicircle of radius r centered
at the origin and on the right-hand plane (see Figure 7.6); on the other hand,
the image f(Cr) approaches the image of iR, since all values on the semicircle
approach f(∞), so the index is the same.)

ir

-ir

Figure 7.6: The path Cr.

We are ready to apply these considerations to the stabilization problem. We
will deal with stabilization by constant feedback, that is, v = k is a constant
rational function.

Lemma/Exercise 7.5.7 Assume that w is rational and that v = k 6= 0 is a
constant. Then the poles of the entries of Wcl (that is, the elements in the list
(7.14),) are precisely the zeros of w − 1

k . 2

We call the zeros of w− 1
k that are in C+ the unstable closed-loop poles (for

the system that results when using v = k as a stabilizer) and the poles of w in
C+ the unstable open-loop poles. Thus, v = k stabilizes w if and only if there
are no unstable closed-loop poles.

Let w be a strictly proper rational function. We assume that w has no poles
in iR (the general case can be treated similarly, simply by modifying the curve
using a detour about the poles). Denote by Γ the closure of the image of iR
(transversed from −i∞ to +i∞) under w. The following result is often referred
to as the Nyquist criterion:

Theorem 35 For each k 6= 0 such that 1
k /∈ Γ,

cw (Γ,
1
k

) = number of unstable closed-loop poles

− number of unstable open-loop poles .

Proof. First note that cw (Γ, 1
k ) = cw (Γk, 0), where Γk is the image of iR

under f(s) = w− 1
k (since Γk is just a translate of Γ). Note that f has no zeros

or poles on iR, by the assumptions on w and k. Since f is proper, Equation
(7.20) applies to Γk.



7.5. Parametrization of Stabilizers 343

Figure 7.7: Nyquist diagram for Example 7.5.9.

Corollary 7.5.8 If w is stable, then for each k 6= 0 such that 1
k /∈ Γ, the

closed-loop system with v = k is stable if and only if cw (Γ, 1
k ) = 0. 2

Observe that when 1
k ∈ Γ necessarily w − 1

k has a zero in iR, so the closed-
loop system is unstable. And for k = 0 one has the same stability as w. Thus,
the above criterion and its corollary completely determine the range of k’s for
which stability holds. To apply these results, one plots w(iω), ω ∈ R+ and then
one obtains Γ by symmetry (since w is real, w(−iω) = w(iω)). Unless w ≡ 0,
there will be a finite number of points where the curve Γ crosses the real axis.
These points determine a finite set of open intervals in each of which the index
is constant. For each such interval (a, b), the condition 1

k ∈ (a, b) provides a
characterization of the number of closed-loop poles when using the feedback law
u = ky.

Example 7.5.9 Take the transfer function

w(s) =
s− 1

(s+ 1)2(s+ 2)2
,

which is clearly stable. A computer plot reveals that the index is constant on
each of the intervals (approximately)

(−∞,−1/4) (−1/4,−0.1034) (−0.1034, 0) (0, 0.14923) (0.14923,+∞)
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(see Figure 7.7), where it is 0, 1, 3, 2, 0, respectively. We conclude that −4 <
k < 6.7 gives the range of stability, and that there are 3 unstable closed-loop
poles when k < −9.671, 1 when k ∈ (−9.671,−4), and two such poles when
k > 6.7. 2

7.6 Notes and Comments

Observers and Detectability

Asymptotic observability is obviously a necessary condition that must be satis-
fied if there is any hope of even asymptotically final-state distinguishing the state
x0 from other states. Any algorithm that uses only the output measurements
will not be able to differentiate between x0 and states in X0 if the input hap-
pens to be constanly equal to u0. So unless these states already converge to x0,
there is no possibility of consistent estimation. For linear systems, detectability
as defined here turns out to be equivalent to the existence of observers, but in
the general nonlinear case a stronger definition is required (see, for instance,
[361]). Observers can be seen as a deterministic version of Kalman filters, intro-
duced originally in [214] and [229]; the deterministic treatment seems to have
originated with work of J.E. Bertram and R.W. Bass, but the first systematic
treatment was due to Luenberger in the early 1960s; see [287] for references and
more details. The construction of reduced order observers in Exercise 7.1.5 is
taken from [287], who followed [159].

The terminology “strong” in Definition 7.1.3 is meant to emphasize that
the observer must provide estimates for all possible controls, and starting at
arbitrary initial states. It is possible —and even desirable— to weaken this
definition in various ways, by dropping these requirements. For linear systems,
all reasonable definitions (even requiring that there be some initial state for the
observer that results in converging estimates when the zero control is applied to
the original system) are equivalent in the sense that the existence of an observer
of one type implies the existence of observers of the other types. For nonlinear
systems, these different notions are of course not equivalent; see, for instance,
[87]. Some references on observer construction for nonlinear systems are [87],
[164], [209], and [253]. There are technical reasons for not making the definition
slightly more general and allowing θ to depend on ω(t): This would mean that
the instantaneous value of ξ̂(t) may not be well defined when dealing with con-
tinuous-time systems, as there ω is in general an arbitrary measurable function.

Dynamic Feedback

The design of dynamic controllers using a combination of an observer and a state
feedback law is a classical approach. It turns out that even optimal solutions,
when the (linear quadratic) problem is posed in the context of stochastic con-
trol, also have this separation property. For nonlinear stabilization using such
techniques, see, for instance, [416] and [419]. For linear systems over rings, see,
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for instance, [129] and [246]; for infinite dimensional linear systems, see [201]
and the references given therein.

External Stability for Linear Systems

The topic of external stability for linear infinite dimensional and for nonlinear
systems has been the subject of much research. The books [115], [414], and
[422] provide further results and references, and [410] was an influential early
paper.

The notion of input-to-state stability (ISS) has recently become central to
the analysis of nonlinear systems in the presence of disturbances. The definition
is from [370]; for recent results see [376]. In the latter reference, it is shown that
a system is ISS if and only if it is internally stable, complete, and has a finite
nonlinear gain. The textbook [259] discusses at length applications of ISS and
related properties to practical nonlinear feedback design problems. The “dual”
notion of OSS is given in [377], where a generalization to systems with inputs as
well as outputs (“input/output-to-state stability” or IOSS) is also considered.

For questions of i/o stability versus stability in a state-space setting for
infinite dimensional linear systems see, e.g., [285], [324], and [439].

Frequency Domain Considerations

There is a very large number of textbooks dealing with complex variables tech-
niques for the analysis of linear systems. A modern presentation of some of these
facts, together with references to a bibliography too extensive to even attempt
to partially list, can be found in [144].

Parametrization of Stabilizers

See, for instance, [417] and [145] for detailed developments of the theory of
parametrizations of stabilizing compensators. Theorem 34 is due to Youla and
coworkers, and was given in [441]. In its version for arbitrary m, p it is the ba-
sis of many of the recent developments in multivariable linear control. Recently
there have been attempts at generalizing such parametrizations to nonlinear sys-
tems as well as obtaining the associated coprime factorizations; see, for instance,
[116], [171], [172], [258], [370], [398], and [412].
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Chapter 8

Optimality: Value Function

Chapter 3 dealt with the abstract property of controllability, the possibility of
using inputs in order to force a system to change from one state to another.
Often, however, one is interested not merely in effecting such a transition, but
in doing so in a “best” possible manner. One example of this was provided in
that chapter, when we calculated the control of minimal norm that achieved a
given transfer, in a fixed time interval.

The general optimal control problem concerns the minimization of some
function

F (ξ, ω)

of trajectories, the cost function or performance index. (Or, one may want
to maximize instead a “utility” function F , but this amounts to minimizing
the cost −F .) The performance index F might incorporate energy costs, or
the length of time that a control takes to perform a desired objective, and the
optimization may be subject as well to constraints such as maximum allowed
magnitudes of controls. Of course, ξ and ω must be related by the system’s
equation, for instance

ξ̇ = f(ξ, ω)

in continuous-time.
In broad terms, it is possible to classify the theoretical study of optimal

control into two major approaches: dynamic programming, and variational
methods. (We include in this second category the Pontryagin Maximum, or
“Minimum”, Principle.) Both approaches rely upon a transformation of a dy-
namic optimization into a set of static optimization problems, one for each time
instant, together with a differential (or difference) equation. This equation in-
volves the state, as well as an auxiliary quantity which serves to link the static
problems. In dynamic programming, the auxiliary information is encoded into
an instantaneous cost associated to a current state. In variational approaches,
one works, instead, with a Lagrange multiplier.

347
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In dynamic programming , the central role is played by the value function
or Bellman function (named after Richard Bellman, who pioneered the use of
the technique). This is the function V (t, x) that provides, for any given state
x at any given time t, the smallest possible cost among all possible trajectories
starting at this event. The main observation is that along any optimal trajec-
tory it must hold that the initial cost plus the cost of a single transition add up
to the remaining optimal cost. In discrete-time, there results a recursive, easily
programmed method for optimization, with a multi-stage optimization reduced
to a sequence of single-stage minimizations. In continuous-time, the recursion
becomes a differential equation in time, that is to say, a partial differential
equation for V (t, x), called the Hamilton-Jacobi-Bellman equation (HJB). In
general, this PDE is very hard to solve, and no solutions exist unless one allows
a generalized notion of solution. In the case of linear systems with quadratic
costs, the value function is quadratic in x, and because of this, the HJB equa-
tion reduces to an ordinary differential equation, the Riccati matrix differential
equation, which can be readily solved numerically.

In variational or multiplier methods (in modern control theory, Pontryagin’s
Maximum, or Minimum, Principle (PMP)), one introduces a function p = p(t),
as a “Lagrange multiplier” for the optimization problem, and, roughly speaking,
studies the critical points of (in continuous-time):

F (ξ, ω) + 〈p, ξ̇ − f(ξ, ω)〉 ,

seen as a function of the state ξ(·), the control ω(·), and the multiplier p(·). (In
the Hamiltonian formulation of classical mechanics, p is the vector of generalized
momenta.) Setting derivatives to zero, one may in principle solve for ω(t) as a
function of x(t) and p(t), and in addition one obtains a differential equation for
the pair of vector functions (ξ, p).

Each of the two approaches has its advantages and disadvantages. Dynamic
programming-based techniques, when applicable, often result in solutions in
feedback form, which is highly desirable in applications, but the most general
theorems tend to state only sufficiency conditions for optimality of a proposed
solution. On the other hand, variational techniques tend to require less assump-
tions about the system and are thus more generally applicable, but they lead
only to necessary conditions. Variational methods are the subject of Chapter 9.

The main objective of this chapter is to discuss the dynamic programming,
or value function, approach, and in particular the application to linear systems
with quadratic costs (“LQ problems”). For LQ problems, both methods lead
to the same solution, but the discussion in terms of dynamic programming is
somewhat easier. The first section discusses dynamic programming in general
abstract terms. That section may be skipped, and the reader may proceed
directly to Section 8.2, which discusses linear systems. However, the optional
section explains the general context in which to understand the linear result,
in particular the Riccati matrix differential equation. After that, we treat the
infinite-time (steady-state) LQ problem. The chapter closes with an infinite-
horizon problem stated in nonlinear terms.
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As a final introductory remark, we note that the study of optimal control
theory is important for reasons other than optimality itself. For nonlinear sys-
tems, it is often difficult to find any controls whatsoever that help achieve a
desired transfer. Optimal control offers a systematic approach to search for
these controls, an approach that can be used as the basis of numerical methods.

8.1 Dynamic Programming*

We first make some general remarks about abstract optimization problems.
Given a system Σ and a function taking nonnegative real values

Q : Dφ → R+ ,

which we shall call the trajectory cost function, we read

Q(τ, σ, x, ω)

as “the cost of the trajectory produced by the control ω ∈ U[σ,τ) if we start at
state x.” The following additivity property is assumed to hold for Q, for each
triple of times t1 ≤ t2 ≤ t3, and each (x, ω) ∈ Dt1,t3 :

Q(t3, t1, x, ω) = Q(t2, t1, x, ω|[t1,t2)) +Q(t3, t2, φ(t2, t1, x, ω|[t1,t2)), ω|[t2,t3))
(8.1)

so that in particular it holds for the empty control that

Q(t, t, x, �) = 0

for all t and x.
The main examples are as follows. If Σ is a discrete-time system

x+ = P(t, x, u) ,

then for any given function

q : T × X× U → R+ (8.2)

(with T = Z) we associate the trajectory cost Q defined by Q(τ, τ, ·, �) ≡ 0 and

Q(τ, σ, x, ω) :=
τ−1∑
i=σ

q(i, ξ(i), ω(i)) ,

where ξ := ψ(x, ω). If instead Σ is a continuous-time system

ẋ = f(x, u)

* This section can be skipped with no loss of continuity.
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and there is given a function (8.2) (with T = R), we may consider the trajectory
cost

Q(τ, σ, x, ω) :=
∫ τ

σ

q(s, ξ(s), ω(s)) ds ,

where ξ is as above. In order for this expression to be well defined we may
assume for instance that q(t, x, u) is continuous on all of its arguments. We
refer to the function q, in both the continuous-time and discrete-time cases, as
the instantaneous cost.

Assume that in addition to the trajectory costQ there is also given a function

p : X → R+ ,

which we will call the terminal cost function. Then we define on Dφ,

J (τ, σ, x, ω) := Q(τ, σ, x, ω) + p(ξ(τ)) ,

where ξ = ψ(x, ω), the total cost function.
The problem we wish to study is:

Given a system Σ, a trajectory cost function Q and a final cost
function p, a pair of times σ < τ , and a state x0, find a control
ω ∈ U[σ,τ) admissible for x0 which minimizes J (τ, σ, x0, ω).

More precisely, we want to study existence and uniqueness of, as well as algo-
rithms for constructing, such controls. We call the data

Σ,Q, p, σ, τ (OCD)

a set of optimal control data. When an initial state x0 is given together with
(OCD), one has an optimal control problem. (As discussed earlier, more general
problems can also be studied, for instance by adding final state constraints. In
this chapter, we only deal with problems of the above type, however.)

Dynamic Programming

The dynamic programming approach is easier to understand in discrete-time,
even though it applies equally well for continuous-time systems. In particular,
it is worth describing first how it arises in the purely combinatorial case of
automata theory.

Finite Systems

Assume that both X and U are finite in problem (OCD), and that Σ is a dis-
crete-time system. Denote by

N := card (X), M := card (U)
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the cardinalities of X and U, and let

k := τ − σ .

For simplicity of notations, we assume that Σ is complete, that is, the local
transitions P(t, x, u) are defined for all possible (t, x, u). If this is not the case,
one can modify the arguments to follow in an obvious manner in order to avoid
undefined transitions.

The most naive attack on the optimization problem would consist of an
enumeration of all possible controls ω ∈ U[σ,τ), thought of as sequences

u1, . . . , uk

of elements of U, followed by the calculation of the complete trajectory (k steps)
corresponding to such a control starting at initial state x0, and the computation
of its associated cost. Since there are Mk such sequences, this results in the
order of

kMk

evaluations of P and of the instantaneous cost. (Actually, slightly more com-
putation is needed for the calculation of the final cost and for the comparisons
needed to find the minimum among all resulting trajectories.)

Alternatively, one could argue as follows. We shall construct inductively in
time, backward from τ toward σ, two functions

V : [σ, τ ]× X → R+

and
K : [σ, τ)× X → U

called, respectively, the Bellman function and an optimal feedback law, such that
the following properties hold:

1. For each s ∈ [σ, τ ] and each x ∈ X,

V (s, x) = min
ω
J (τ, s, x, ω) . (8.3)

2. For each s ∈ [σ, τ) and each x ∈ X, if ξ is the solution on [s, τ ] of the
difference equation

ξ(l + 1) = P(l, ξ(l),K(l, ξ(l))) l = s, s+ 1, . . . , τ − 1 (8.4)
ξ(s) = x

(the closed-loop equation) and we define

ν(l) := K(l, ξ(l)) , (8.5)

then this control solves the optimization problem starting at (s, x), that
is,

V (s, x) = J (τ, s, x, ν) . (8.6)
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Observe that once these functions are obtained, the original problem

min
ω
J (τ, σ, x0, ω)

is also solved, but in the process one also obtained solutions for all other initial
states as well, a characteristic that is useful in applications, as discussed later.

We now show how to inductively obtain V and K. We start by defining the
boundary value

V (τ, x) := p(x) ,

which obviously satisfies (8.3). Assume now that V already has been defined
for all (s, x) such that

t < s ≤ τ ,

and K has been defined for t < s < τ , in such a way that the above properties
hold. We now extend the definition to all pairs of the form (t, x), as follows.

Given any such (t, x) compute the minimum

V (t, x) := min
u∈U

[q(t, x, u) + V (t+ 1,P(t, x, u))] (8.7)

and let K(t, x) be defined as any u that minimizes this expression.
We must establish that with these definitions V and K satisfy the above

properties. Let ω0 ∈ U[t,τ) be optimal from (t, x),

J (τ, t, x, ω0) = min
ω
J (τ, t, x, ω) . (8.8)

By cost additivity,

J (τ, t, x, ω0) = q(t, x, u0) + J (τ, t+ 1,P(t, x, u0), ω1) , (8.9)

where we are denoting u0 := ω0(t) and ω1:= restriction of ω0 to the interval
[t+ 1, τ). The dynamic programming principle states that ω1 is optimal for the
problem after time t+ 1, i.e.,

J (τ, t+ 1,P(t, x, u0), ω1) = V (t+ 1,P(t, x, u0)) . (8.10)

This is proved by contradiction: If false, then there is some ν so that

J (τ, t+ 1,P(t, x, u0), ν) < J (τ, t+ 1,P(t, x, u0), ω1)

from which it follows that the concatenation ω ∈ U[t,τ) of u0 and ν has cost

J (τ, t, x, ω) = q(t, x, u0) + J (τ, t+ 1,P(t, x, u0), ν) < J (τ, t, x, ω0) ,

which contradicts (8.8). We conclude from (8.7), (8.9), and (8.10) that

V (t, x) ≤ min
ω
J (τ, t, x, ω) .
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To prove equality it will be sufficient to prove that, if we solve (8.4)-(8.5) with
initial time t, then (8.6) holds.

Let ν be as in (8.5); we write it as the concatenation of u0 := K(t, x) and
some ω1 ∈ U[t+1,τ). By inductive hypothesis, since ω1 is defined by the closed-
loop equation starting at P(t, x, u0), it follows that ω1 is optimal, that is, (8.10)
holds. Therefore

J (τ, t, x, ν) = q(t, x, u0) + V (t+ 1,P(t, x, u0)) .

On the other hand, u0 = K(t, x) was defined by the property

q(t, x, u0) + V (t+ 1,P(t, x, u0)) = min
u∈U

[q(t, x, u) + V (t+ 1,P(t, x, u))]

= V (t, x) ,

so (8.6) holds, as desired.
It is instructive to compare the computational effort involved in this solution

method with that in the naive approach. A larger amount of storage may be
required for intermediate results since, unless a “general formula” is obtained for
V and K, all values must be tabulated. We ignore this (extremely important)
aspect and concentrate on a rough count of the number of operations needed.

Basically, one must perform for each t ∈ [σ, τ) and each x ∈ X the mini-
mization in equation (8.7). This takes of the order of M = card (U) operations,
and it must be done kN times. Finally, a forward pass to solve the closed-loop
equation is necessary, which takes an additional O(k) operations. In all, the
number of operations is

O(kNM)

operations as opposed to the
O(kMk)

needed in the enumerative approach. (If the problem had been to solve for
all initial states x, then this expression would instead be O(kNMk).) One
typical situation is that in which continuous state and input spaces Rn and
Rm are quantized by using h values in each coordinate, and the transition map
is defined on the discretized values by evaluating P at a midpoint and then
truncating the result. In this case N = hn and M = hm, so the estimates are

O(khmk) and O(khm+n) ,

Often m and n may be small but k and h are large, in which case the advantage
of the second (dynamic programming) approach is evident. However, since the
second expression is exponential in n and m, it is clear that for large n or m the
computational effort required even by dynamic programming may be prohibitive
(the “curse of dimensionality”).

Example 8.1.1 Sometimes the minimum in equation (8.7) can be computed
in closed form, in which case dynamic programming does provide an especially
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useful technique. For instance, consider the problem of minimizing the quadratic
cost

τ−1∑
l=σ

ω(l)2 + ξ(τ)2

for the one-dimensional linear time-invariant system

x+ = ax+ u .

Such linear systems with quadratic cost are the subject of this chapter, and a
general solution will be given later. But it is useful to compute explicitly with
one example. Here q(t, x, u) = u2 and p(x) = x2, so we must solve the partial
difference equation

V (t, x) = min
u
{u2 + V (t+ 1, ax+ u)} (8.11)

with boundary condition V (τ, x) = x2. At t = τ the function V is quadratic in
x, and inductively it is clear from (8.11) that, if V (t + 1, ·) is quadratic in x,
then V (t, ·) also is. So we look for a sequence of numbers πt such that

V (t, x) = πtx
2

satisfies (8.11). Minimizing

u2 + π(ax+ u)2

as a function of u gives a unique minimum of
π

1 + π
a2x2

at
u = − π

1 + π
ax .

Thus, there is a simple recursion

πt :=
πt+1

1 + πt+1
a2 , πτ := 1 ,

and the feedback law
K(t, x) := − πt+1

1 + πt+1
ax

provides the desired optimal control. 2

One advantage of dynamic programming over other optimization techniques
is that it provides automatically a feedback law. In actual control implemen-
tations, this feedback law is stored, rather than the optimal control sequence
obtained in the forward pass of the algorithm (solving (8.4)). The practical
benefits of feedback control were discussed in Chapter 1. Another advantage of
dynamic programming is that it is easy to modify it to account for state and
control constraints.



8.1. Dynamic Programming* 355

Exercise 8.1.2 Consider the discrete-time time-invariant one dimensional sys-
tem with X = R, transitions

x+ = x+ u ,

and control value space the nonnegative reals:

U = R+ .

With q(t, x, u) := u2, p(x) := x2, σ = 0, and τ = 3, find V (t, x) for all x and
t = 0, 1, 2 using the dynamic programming technique. Next guess a general
formula for arbitrary t, σ, τ and establish its validity. 2

Exercise 8.1.3 Develop an approach to the general discrete-time problem, say
for simplicity with finite X and U, which relies on a forward rather than backward
first pass. To each event (t, x) you will have to associate a “cost until now”
together with a pointer to a triple (t − 1, z, u) for which P(t − 1, z, u) = x.
Observe that this solution technique does not provide a feedback law for the
system. 2

The General Principle

The dynamic programming ideas in principle can be applied to arbitrary sys-
tems. We develop here the basic facts.

Definition 8.1.4 Let Σ,Q, p, σ, τ be a set of optimal control data (OCD). The
Bellman function (or value function, or optimal cost-to-go) associated
to this data is the function

V (t, x) := inf{J (τ, t, x, ω) | (τ, t, x, ω) ∈ Dφ} (8.12)

defined on [σ, τ ]× X and with values in R+ ∪ {+∞}. 2

We make the convention that V (t, x) = +∞ when the set of controls on [t, τ)
admissible for x is empty. Note that V (τ, x) = p(x) for all x.

The finite problem studied earlier had the following desirable property:

For each (t, x) there is a control ω so that V (t, x) = J (τ, t, x, ω)

In other words, the “inf” in (8.12) is in fact achieved as a minimum. In order not
to have to repeat the statement of this property, we shall say that the Bellman
function of (OCD) is achieved if this happens. A control ω for which the above
property holds will be called optimal (for the event (t, x)). The corresponding
ξ = ψ(x, ω) is an optimal path and (ξ, ω) is an optimal trajectory.

Lemma 8.1.5 The following properties hold for any data (OCD), for each s, t
such that σ ≤ t ≤ s ≤ τ , and each x ∈ X:

1. For all ω so that (s, t, x, ω) ∈ Dφ,

V (t, x) ≤ Q(s, t, x, ω) + V (s, φ(s, t, x, ω)) . (8.13)
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2. If the Bellman function is achieved, then

V (t, x) = Q(s, t, x, ω|[t,s)) + V (s, φ(s, t, x, ω|[t,s))) (8.14)

for any ω optimal for (t, x).

It follows that

V (t, x) = min{Q(s, t, x, ω) + V (s, φ(s, t, x, ω))} , (8.15)

where the minimum is taken over all ω so that (s, t, x, ω) ∈ Dφ.

Proof. Assume that s, t, x, ω are given. Pick any ε > 0. We prove that

V (t, x) ≤ Q(s, t, x, ω) + V (s, φ(s, t, x, ω)) + ε . (8.16)

Since ε is arbitrary, (8.13) will follow. By definition of V (s, φ(s, t, x, ω)), there
exists some control ν on [s, τ) so that

J (τ, s, φ(s, t, x, ω), ν) < V (s, φ(s, t, x, ω)) + ε

(if V (s, φ(s, t, x, ω)) = ∞, then there is nothing to prove, so we may assume that
this is finite). Let ω′ be the concatenation of ω and ν. Since ω′ is admissible
for the state x, it follows by definition of V (t, x) that

V (t, x) ≤ J (τ, t, x, ω′) = Q(s, t, x, ω) + J (τ, s, x, ν) ,

and this gives the inequality (8.16).
We now consider the second part of the Lemma. Let ω be optimal for (t, x).

The equality (8.14) holds, by additivity of the cost, if the last term is instead

J (τ, s, φ(s, t, x, ω|[t,s)), ω|[s,τ)) ,

so it is only necessary to see that the restriction of ω to [s, τ) must be optimal.
This is precisely the conclusion of the dynamic programming principle, as in the
discrete case, since if this restriction were not to be optimal, then the concate-
nation of some other control on [s, τ) with its first part ω|[t,s) would provide a
control for (t, x) with less cost.

The next Lemma states essentially that the above properties characterize the
Bellman function; it is a verification principle in the sense that, if a function V
and controls ω are shown to satisfy the Lemma, then one has verified optimality.

Lemma 8.1.6 Given a set of optimization data (OCD), assume that

Ṽ : [σ, τ ]× X → R

is any function so that the following properties hold:
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1. For each s, t such that σ ≤ t ≤ s ≤ τ and each x ∈ X,

Ṽ (t, x) ≤ Q(s, t, x, ω) + Ṽ (s, φ(s, t, x, ω)) (8.17)

for all ω on [t, s) admissible for x;

2. for each s, t such that σ ≤ t ≤ s ≤ τ and each x ∈ X there exists some
control ω̃ such that

Ṽ (t, x) = Q(s, t, x, ω̃) + Ṽ (s, φ(s, t, x, ω̃)) ; (8.18)

and

3. the boundary condition
Ṽ (τ, x) = p(x) (8.19)

holds for all x.

Then it must hold that the Bellman function is achieved and V = Ṽ .

Proof. Fix any t, x. As a particular case of the first property and using the
boundary condition one concludes for any admissible ω on [t, τ) that

Ṽ (t, x) ≤ Q(τ, t, x, ω) + p(φ(τ, t, x, ω)) = J (τ, t, x, ω) .

By the second property and an analogous argument there is at least some ω̃ so
that

Ṽ (t, x) = J (τ, t, x, ω̃) ,

so the function Ṽ must be the Bellman function for the problem, and the ex-
istence of the controls ω̃ implies that this is achieved (with the respective ω̃’s
being optimal).

The Continuous-Time Case

Let us turn now to a continuous-time system Σ (Definition 2.6.4 in Chapter 2)

ẋ = f(t, x, u)

over K = R for which f is assumed to be continuous on t. First we will outline
the derivations; rigorous proofs are given later.

We assume given optimal control data (OCD) for this system, where

q : R× X× U → R+ and p : X → R+

are both continuously differentiable. These give rise, as above, to the perfor-
mance criterion or cost

J (τ, σ, x, ω) :=
∫ τ

σ

q(η, ξ(η), ω(η)) dη + p(ξ(τ))
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to be minimized for any given x, where ξ = ψ(x, ω).
The conclusions of Lemma 8.1.5 provide infinitesimal information about the

variation of V , as follows. Equation (8.14) says that, for each optimal control
for (t, x),

V (t, x) =
∫ s

t

q(η, ξ(η), ω(η)) dη + V (s, ξ(s))

for all s. Thus, the Bellman function evaluated along an optimal trajectory,

V (s, ξ(s)) ,

is absolutely continuous and has derivative

dV (s, ξ(s))
ds

= −q(s, ξ(s), ω(s))

almost everywhere. That is, along an optimal trajectory the instantaneous de-
crease in the Bellman function is equal to (minus) the instantaneous cost.

Because dV (s, ξ(s))/ds = Vs + Vxξ̇, we can also write this equation (using
the argument t instead of s):

Vt(t, x) = −q(t, x, ω(t))− Vx(t, x)f(t, x, ω(t)) , (8.20)

provided that the partial derivatives make sense. (In interpreting the equation,
note that the gradient Vx of V with respect to x is a row vector.) Along
arbitrary trajectories, equation (8.13) suggests that the Bellman function will
decrease less fast than the instantaneous cost, giving the inequality

Vt(t, x) ≥ −q(t, x, ν(t))− Vx(t, x)f(t, x, ν(t)) (8.21)

for every other (not necessarily optimal) control ν. (Both sides of (8.13) are
equal at s = t, so at least for small enough s− t one expects that the derivatives
with respect to s will satisfy the same inequality, implying (8.21); this is made
precise in the proof of the Proposition below.) Note that only the value of the
control at the given time t appears in this inequality and in the equality (8.20).
If the Bellman function is achieved and if there is enough smoothness, both of
(8.20) and (8.21), together with the natural boundary condition on V , can be
summarized by the equation:

Vt(t, x) = −minu∈U{q(t, x, u) + Vx(t, x)f(t, x, u)}, V (τ, x) = p(x) (HJB)

called the Hamilton-Jacobi-Bellman equation associated to the optimal con-
trol data.

The significance of (HJB) lies in its reducing the problem to an optimization
at each stage (find u that minimizes, for each fixed (t, x), and solve the partial
differential equation for V ), in a manner totally analogous to the discrete-time
case.
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Note that in the discrete-time case one has instead the following discrete
HJB equation or dynamic programming equation:

V (t, x) = minu∈U{q(t, x, u) + V (t+ 1,P(t, x, u))}, V (τ, x) = p(x) (DPE)

as a specialization of (8.15). Observe that (DPE) is an equation that evolves
backward in time; for differential equations this time reversal is reflected in the
negative sign in Equation (HJB).

Definition 8.1.7 Let (OCD) be optimal control data for a continuous-time sys-
tem. We say that there is a smooth solution (of the optimal control problem
associated to this data) if the following properties are satisfied:

• The Bellman function V is of class C1 for (t, x) ∈ [σ, τ ]× X, and

• for each event (t, x) ∈ [σ, τ ]× X there is a continuous control ω such that

V (t, x) = J (τ, t, x, ω) .

In particular, the Bellman function is achieved. 2

The main facts are summarized by the next two results.

Proposition 8.1.8 Assume that there is a smooth solution of the problem
(OCD) on [σ, τ ]. Then,

(i) The Bellman function V satisfies the (HJB) equation for all (t, x) ∈ (σ, τ)×
X; and

(ii) if (ξ, ω) is any optimal trajectory and ω is continuous, then at all pairs
(t, x) = (t, ξ(t)) along this trajectory, the minimum in (HJB) is attained
at ω(t).

Proof. The final condition V (τ, x) = p(x) holds by definition of V . Equation
(8.20) holds at each (t, x) along any optimal trajectory corresponding to a con-
tinuous control, because of the assumed differentiability of V and the preceding
arguments. Therefore, in order to establish (ii) it is only necessary to show that

Vt(t, x) + Vx(t, x)f(t, x, u) + q(t, x, u) ≥ 0 (8.22)

for every control value u, at any given (t, x). Consider any such u and let ωε be
the control with constant value u on the interval [t, t + ε]. For small enough ε
this is admissible for x, and by (8.13),

g(ε) := V (t+ ε, φ(t+ ε, t, x, ωε))− V (t, x) +
∫ t+ε

t

q(η, ξ(η), u) dη ≥ 0

along ξ = ψ(x, ωε) for every ε > 0. It follows that g′(0) ≥ 0, which implies
(8.22).
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To prove (i), it is only needed to show that every possible (t, x) ∈ (σ, τ) ×
X appears as part of an optimal trajectory. But this fact is an immediate
consequence of the assumption that the problem (OCD) has a smooth solution,
when applied to the initial event (t, x).

The best possible situation is that in which the minimization problem in
the (HJB) equation has a unique solution as a function of Vx and the rest of
the data, at each (t, x). In order to consider this situation, we introduce the
Hamiltonian associated to the optimal control problem,

H(t, x, u, λ) := q(t, x, u) + λ′f(t, x, u)

seen as a function of (t, x, u) ∈ [σ, τ ] × X × U and λ ∈ Rn. Thus, the above
situation arises when

min
u
H(t, x, u, λ)

exists and is achieved at a unique u for each fixed (t, x, λ). Actually, we will be
interested in the case where this unique minimum is continuous as a function of
(t, x, λ), that is, when there is a continuous function

α : [σ, τ ]× X× Rn → U (8.23)

satisfying
min
u
H(t, x, u, λ) = H(t, x, α(t, x, λ), λ) ,

and this is the unique minimum:

q(t, x, α(t, x, λ)) + λ′f(t, x, α(t, x, λ)) < q(t, x, v) + λ′f(t, x, v) (8.24)

for all
(t, x, λ) ∈ [σ, τ ]× X× Rn

and all
v ∈ U so that v 6= α(t, x, λ) .

But even then, this solution when substituted into the system may not result
in an admissible control. We need for that one more definition:

Definition 8.1.9 Let Σ be a system and let I be an interval in T . A function

k : I × X → U

is an admissible feedback law on I if for each µ ∈ I and each x ∈ X there
exists a unique trajectory (ξ, ω) on J = {t| t ∈ I, t ≥ µ} such that

ξ(µ) = x

and
ω(t) = k(t, ξ(t))

for almost all t ∈ J . In that case ω is called the closed-loop control starting
at (µ, x). 2
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As a trivial example, k(t, x) := x is admissible on [0,∞) for the linear system
ẋ = u since there exist solutions of ẋ = x defined for all initial states and times,
but the feedback k(t, x) := x2 is not admissible for this system on the interval
[0, 2], since solutions do not exist on that interval for ẋ = x2 and x(0) = 1.

We summarize next the conclusions of the infinitesimal version of the veri-
fication result, Lemma 8.1.6, together with the converse provided by the above
Proposition:

Theorem 36 Let (OCD) be optimal control data, and assume that

• there is some continuous function α as in (8.23) satisfying (8.24);

• there is given a continuously differentiable function V on [σ, τ ]×X so that

k(t, x) := α(t, x, V ′x(t, x))

is an admissible feedback on [σ, τ ].

Then, the following two statements are equivalent:

1. V satisfies the HJB equation on (σ, τ)× X, which can now be written as

q(t, x, k(t, x)) + Vx(t, x)f(t, x, k(t, x)) + Vt(t, x) = 0 ,
V (τ, x) = p(x) .

2. There is a smooth solution of the optimization problem, V is the Bellman
function, and for each (µ, x) ∈ [σ, τ ] × X the closed-loop control starting
at (µ, x) is the unique optimal control for (µ, x).

Proof. That (2) implies (1) follows from Proposition 8.1.8. We now prove the
converse, using the verification Lemma 8.1.6.

Pick any σ < t < s < τ and any x, and let ν be the closed-loop control
starting at (t, x) up to time s. Let ω be any control on [t, s] that is admissible
for x. Denote ξ := ψ(x, ω) and consider the function B(η) := V (η, ξ(η)) on
[t, s]. This is absolutely continuous, and its derivative is

Vt(η, ξ(η)) + Vx(η, ξ(η)) f(η, ξ(η), ω(η)) ,

which, since V satisfies the HJB equation, is the same as

Vx(η, ξ(η)).{f(η, ξ(η), ω(η))− f(η, ξ(η), k(η, ξ(η))} − q(η, ξ(η), k(η, ξ(η)) .

This last expression is, because of property (8.24), greater than or equal to

−q(η, ξ(η), ω(η)) ,

and equal to this when ω = ν. So

V (s, ξ(s))− V (t, x) ≥ −
∫ s

t

q(η, ξ(η), ω(η)) dη
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with equality when ω = ν. By continuity on t and s, the same inequality holds
even if t = σ or s = τ . So the hypotheses in Lemma 8.1.6 hold. We conclude
that ν is indeed optimal for (µ, x), and it is continuous because α is.

Finally, we prove the uniqueness statement. Assume that ω differs from ν on
a set of positive measure. Then dB/dη is strictly greater than −q(η, ξ(η), ω(η))
on this set, and hence it follows that

V (t, x) < J (τ, t, x, ω)

and thus ω cannot be optimal.

Remark 8.1.10 A particular situation in which a function α such as required
in the hypothesis of Theorem 36 will exist is as follows. Assume that the system
Σ is affine in the control, meaning that

f(t, x, u) = A(t, x) +B(t, x)u ,

where A is an n-vector, and B is an n × m matrix, of C1 functions of (t, x).
This happens for instance if we are dealing with continuous-time linear systems
(with A(t), B(t) continuously differentiable), in which case A(t, x) = A(t)x and
B(t, x) = B(t).

Assume also that the instantaneous cost is quadratic in u, meaning that we
can write

q(t, x, u) = u′R(t, x)u+Q(t, x) ,

where R and Q are continuously differentiable functions of (t, x), Q is nonneg-
ative for all (t, x), and R is an m × m symmetric positive definite matrix for
all (t, x). We then may “complete the square” and write (omitting arguments
(t, x))

u′Ru+ λ′Bu =
(
u+

1
2
R−1B′λ

)′
R

(
u+

1
2
R−1B′λ

)
− 1

4
λ′BR−1B′λ

for each (t, x, λ) ∈ [σ, τ ] × X × Rn. It follows that the unique minimum of the
Hamiltonian

q(t, x, u) + λ′f(t, x, u)

with respect to u is given by

α(t, x, λ) := −1
2
R−1B′λ .

Note that this defines a continuous (in fact, differentiable) function α. 2

A special case of the situation discussed in Remark 8.1.10 is that of con-
tinuous-time linear systems ẋ = A(t)x + B(t)u over K = R, when we want to
minimize a quadratic cost with q(t, x, u) := u′R(t)u+x′Q(t)x, and p(x) := x′Sx.
(Here R, Q, and S are matrix functions, S constant, of appropriate sizes.) We
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should expect the Bellman function, if it exists, to be quadratic in x. (Intu-
itively, we argue as follows. For given initial (µ, x), and any given control ω, we
get the state evolution ξ(t) = Φ(t, µ)x+

∫ t
µ

Φ(t, s)B(s)ω(s)ds, and when substi-
tuted back into the cost J (µ, τ, x, ω), this cost becomes quadratic on ω and on
the initial state x. As a function of ω, we then expect that there will be a unique
minimum for each x, and that this minimum will be achieved at an ω which de-
pends linearly on x. When this minimum is substituted in the cost function, we
get finally a (homogeneous) quadratic function of x.) Thus we expect to be able
to write V (x) = x′Px, for some symmetric matrix P , from which it follows that
the gradient of V is linear on x: Vx(x) = 2x′P . But then, the feedback law in
Theorem 36 (p. 361) becomes k(t, x) = α(t, x, V ′x(t, x)) = −R(t)−1B(t)′P (t)x ,
which is linear in x. Substituting in the dynamics of Σ, we get the closed-loop
equations (omitting all t arguments): ẋ = (A + BF )x, F = −R−1B′P . This
is again a linear system, so it is complete. Thus k is an admissible feedback
law. In summary, if V is quadratic, then the optimal controls are induced by
linear feedback. Moreover, it turns out, the HJB equation for V (t, x) = x′P (t)x
is equivalent to an ordinary (not partial) differential equation on the matrix
function P , the Riccati Differential Equation.

In order to allow the study of the linear case by itself, we next discuss it in a
self-contained manner; however, the previous discussion explains the motivation
for the steps to be taken. We return to the general continuous-time nonlinear
case in Section 8.5.

8.2 Linear Systems with Quadratic Cost

We consider continuous-time linear systems (with K = R):

ẋ(t) = A(t)x(t) +B(t)u(t) . (8.25)

We assume that A and B are measurable essentially bounded (m.e.b.). Also
given are three matrices of functions R,Q, S such that:

• R is an m × m symmetric matrix of m.e.b. functions, Q is an n × n
symmetric matrix of m.e.b. functions, and S is a constant symmetric
n× n matrix;

• For each t, R is positive definite;

• For each t, Q is positive semidefinite; and

• S is positive semidefinite.

For each pair of real σ ≤ τ numbers, each state x ∈ Rn, and each measurable
essentially bounded input ω : [σ, τ ] → Rm, we define:

J (τ, σ, x, ω) :=
∫ τ

σ

ω(s)′R(s)ω(s) + ξ(s)′Q(s)ξ(s) ds + ξ(τ)′Sξ(τ) ,
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where ξ(t) = φ(t, σ, x, ω) for all t ∈ [σ, τ ]. The problem that we wish to study
is this one:

For each pair of times σ < τ and state x0, find a control ω which
minimizes J (τ, σ, x0, ω).

Any control ω with this property will be said to be optimal for x0 on the interval
[σ, τ ].

Assume σ < τ have been fixed. We denote

V (t, x) := inf{J (τ, t, x, ω) | ω : [σ, τ ] → Rm m.e.b. } (8.26)

for each t ∈ [σ, τ ] and x ∈ Rn. This is called the value or Bellman func-
tion associated to the optimization problem. If a control ω0 which minimizes
J (τ, t, x0, ω) exists, then V (t, x0) = J (τ, t, x0, ω0).

Let F : [σ, τ ] → Rm×n be m.e.b.. For each t0 ∈ [σ, τ ] and x0 ∈ Rn, consider
the solution x(t) of

ẋ(t) = [A(t) +B(t)F (t)]x(t) , x(t0) = x0

which is obtained when using the feedback law u(t) = F (t)x(t) with the sys-
tem (8.25), starting from state x0 at time t0. The control ω(t) = F (t)x(t) is
called the F -closed-loop control starting at (t0, x0).

The main result will be as follows.

Theorem 37 Pick any σ < τ . Then there exists an absolutely continuous
symmetric n× n matrix function P (t), defined for t ∈ [σ, τ ], which satisfies the
matrix Riccati Differential Equation on [σ, τ ]:

Ṗ = PBR−1B′P − PA−A′P −Q , P (τ) = S (RDE) .

Let
F (t) := −R(t)−1B(t)′P (t) . (8.27)

Then the F -closed-loop control starting at (σ, x0) is the unique optimal control
for x0 on the interval [σ, τ ]. Moreover,

V (t, x) = x′P (t)x

for all t ∈ [σ, τ ] and x ∈ Rn.

The main technical step is to establish the conclusions under the assumption
that P exists:

Lemma 8.2.1 Pick any σ < τ . Suppose that there exists a matrix function
P (t) as in the statement of Theorem 37. Then, with F (t) = −R(t)−1B(t)′P (t),
the F -closed-loop control starting at (σ, x0) is the unique optimal control for x0

on the interval [σ, τ ], and V (t, x) = x′P (t)x for all t ∈ [σ, τ ] and x ∈ Rn.
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We will provide two independent proofs of this Lemma. The first proof
is short and uses a simple algebraic computation. The second proof is much
longer, but it has the merit of being conceptual and to generalize to large classes
of nonlinear systems (it is a particular case of the approach discussed in Sec-
tion 8.1). Before providing these proofs, we show how the Theorem follows from
the Lemma.

We must show for that purpose that the final-value problem (RDE) has a
solution on all of the interval [σ, τ ]. Then it will follow that the resulting P must
be symmetric, since its transpose P (t)′ solves the same final value problem and
solutions of (locally Lipschitz) ODE’s are unique.

Consider the final-value problem Ṗ = PBR−1B′P−PA−A′P−Q, P (τ) = S,
on the interval I = [σ, τ ]. Let P (·) be its maximal solution, defined on some
interval J ⊆ I which is open relative to I. We wish to prove that J = I. Pick
any σ′ ∈ J . Since there does exist a solution of (RDE) on the interval [σ′, τ ],
we may apply Lemma 8.2.1 to the optimal control problem on the restricted
interval [σ′, τ ], and conclude that V (t, x) = x′P (t)x is the Bellman function for
the corresponding problem on that interval. Pick any x ∈ Rn and any t ∈ [σ′, τ ].
Then,

0 ≤ V (t, x) ≤ J (τ, t, x,0)

= x′Φ(τ, t)′
{∫ τ

t

Φ(s, τ)′Q(s)Φ(s, τ)ds+ S

}
Φ(τ, t)x .

In particular, this applies when t = σ′. As functions of t ∈ [σ, τ ], both Φ(τ, t)
and the expression in braces {. . .} are bounded. Thus, there is some constant
K > 0 such that

0 ≤ x′P (σ′)x ≤ K ‖x‖2

for all x ∈ Rn. Since the norm of the symmetric and nonnegative matrix P (σ′)
equals the largest possible value of x′P (σ′)x, ‖x‖ = 1, we conclude that

‖P (σ′)‖ ≤ K .

Therefore, the maximal solution P (·) stays in some compact subset of the set
of all real n × n matrices. By Proposition C.3.6 (applied to the time-reversed
equation), it follows that P is defined everywhere, that is, J = I, as we wanted
to show. This completes the proof of Theorem 37, under the assumption that
Lemma 8.2.1 holds.

First Proof of Lemma 8.2.1
Suppose that P satisfies (RDE). Pick any initial state x0 and any control

ω : [σ, τ ] → Rm, let ξ(t) = φ(t, σ, x0, ω), and consider the time derivative
of the function ξ(t)′P (t)ξ(t) (defined almost everywhere). Using (RDE) and
ξ̇ = Aξ +Bω, we have:

(ξ′Pξ)· = (ω +R−1B′Pξ)′R(ω +R−1B′Pξ)− ω′Rω − ξ′Qξ .
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Integrating, we conclude:

J (τ, σ, x0, ω) = x0′P (σ)x0 +∫ τ

σ

(
ω(s) +R−1(s)B(s)′P (s)ξ(s)

)′
R
(
ω(s) +R−1(s)B(s)′P (s)ξ(s)

)
ds .

From this equality, it is clear that the unique minimum-cost control is that
one making ω(s) + R−1(s)B(s)′P (s)ξ(s) ≡ 0, and that the minimum cost is
x0′P (σ)x0.

Second Proof of Lemma 8.2.1
Assume that P satisfies (RDE). Denote, for each t, x, V (t, x) := x′P (t)x.

(Of course, we do not know yet that V is indeed the value function, but the
notation should not cause confusion.) We also write:

q(t, x, u) := u′R(t)u+ x′Q(t)x , p(x) := x′Sx ,

and
k(t, x) := F (t)x , f(t, x, u) := A(t)x+B(t)u .

Since Vx(t, x) = 2x′P (t) and

x′[PBR−1B′P − 2PA−Q]x = x′
[
PBR−1B′P − PA−A′P −Q

]
x ,

the property that P satisfies (RDE) translates into the fact that V satisfies the
following Hamilton-Jacobi-Bellman partial differential equation:

Vt(t, x) + q(t, x, k(t, x)) + Vx(t, x)f(t, x, k(t, x)) = 0 , V (τ, x) = p(x) .

We need next this observation:
Claim: Let R be any m ×m symmetric positive definite matrix, B ∈ Rn×m,
and λ ∈ Rn. Then the minimum value of u′Ru + λ′Bu over all u ∈ Rm is
achieved at the unique point u = − 1

2R
−1B′λ .

Proof of claim: We just “complete the square”:

u′Ru+ λ′Bu =
(
u+

1
2
R−1B′λ

)′
R

(
u+

1
2
R−1B′λ

)
− 1

4
λ′BR−1B′λ .

In particular, when λ′ = Vx(t, x) = 2x′P (t), this implies that

u = −1
2
R(t)−1B(t)′λ = F (t)x = k(t, x)

minimizes q(t, x, u)+Vx(t, x)f(t, x, u). Thus the Hamilton-Jacobi-Bellman equa-
tion translates into:

Vt(t, x) + min
u∈Rm

{q(t, x, u) + Vx(t, x)f(t, x, u)} = 0 (8.28)

with the boundary condition V (τ, x) = p(x). (This is the form of the usual
HJB equation associated to the minimization of a cost criterion

∫ τ
σ
q(t, x, u)dt+
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p(x(τ)) for a general system ẋ = f(t, x, u), cf. Section 8.1. For linear systems
with quadratic cost, saying that a quadratic-in-x function V = x′Px solves
the HJB equation is exactly the same as saying that P satisfies the RDE.) Yet
another way of stating these facts is by means of this pair of equations:

Vt(t, x) + Vx(t, x)f(t, x, k(t, x)) = −q(t, x, k(t, x)) (8.29)
Vt(t, x) + Vx(t, x)f(t, x, u) > −q(t, x, u) ∀u 6= k(t, x) , (8.30)

understood as being true for almost all t ∈ [σ, τ ] (namely those t for which Ṗ (t)
exists) and all x ∈ Rn.

Pick any x0 ∈ Rn. We must prove that the F -closed-loop control starting
at (σ, x0) is optimal. Call this control ω and let ξ be the corresponding state
trajectory. Let α(t) := V (t, ξ(t)), and observe that

α(τ) = p(ξ(τ)) (8.31)

because V satisfies the boundary condition V (τ, x) = p(x). Equation (8.29)
implies that α̇(t) = −q(t, ξ(t), ω(t)), from which, integrating and using Equa-
tion (8.31) we conclude that

p(ξ(τ)) = α(σ)−
∫ τ

σ

q(t, ξ(t), ω(t)) dt = V (σ, x0)−
∫ τ

σ

q(t, ξ(t), ω(t)) dt

and therefore V (σ, x0) = J (τ, σ, x0, ω).
To show that V is the value function and that ω is the unique optimal control

for x0 on the interval [σ, τ ], we must verify that V (σ, x0) < J (τ, σ, x0, ω) for all
other controls ω. So pick any other ω : [σ, τ ] → Rm, and let ξ(t) = φ(t, σ, x0, ω)
be the solution of ξ̇(t) = f(t, ξ(t), ω(t)) with ξ(σ) = x0. If it were the case that
ω(t) = k(t, ξ(t)) for almost all t ∈ [σ, τ ], then ξ would satisfy ξ̇ = f(t, ξ, k(t, ξ)),
so by uniqueness of solutions ξ = ξ, and thus ω = ω, which is a contradiction.
Therefore we know that ω(t) 6= k(t, ξ(t)) for all t in some subset I ⊆ [σ, τ ] of
positive Lebesgue measure. Write β(t) := V (t, ξ(t)). We have that

β(τ) = p(ξ(τ)) (8.32)

because V satisfies the boundary condition V (τ, x) = p(x). Equation (8.30)
implies that β̇(t) > −q(t, ξ(t), ω(t)) for all t ∈ I and β̇(t) = −q(t, ξ(t), ω(t)) for
all other t, so integrating and using Equation (8.32) we conclude that

p(ξ(τ)) > β(σ)−
∫ τ

σ

q(t, ξ(t), ω(t)) dt = V (σ, x0)−
∫ τ

σ

q(t, ξ(t), ω(t)) dt

and therefore V (σ, x0) < J (τ, σ, x0, ω), as desired.
The linear quadratic problem solved above is often called the standard reg-

ulator problem. The solution of the Riccati equation is computed numerically.
Note that, by symmetry, one must integrate a system of n(n+1)/2 simultaneous
nonlinear differential equations. Typically, only the limiting solution, described
later, is computed.
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Remark 8.2.2 Note that the matrices P (t), though symmetric, are not neces-
sarily positive definite. For instance, if

S = 0 and Q ≡ 0 ,

then J is always minimized by ω ≡ 0, and the optimal cost is therefore

V (t, x) ≡ 0

so that P ≡ 0. Equivalently, the matrix P ≡ 0 solves the Riccati equation
(RDE) when S = Q ≡ 0. 2

Exercise 8.2.3 Consider the regulator problem for the system (with n = m =
1) on [0, 1], ẋ = u, with Q = R = 1, S = 0. Find explicitly the form of the
optimal feedback k(t, x). 2

Exercise 8.2.4 (Optimal servo problem.) Many problems of interest can be
reduced to the standard regulator problem. One of these is the servo problem
defined as follows. The objective is to have the output y(t) = C(t)x(t) of
a linear system with outputs Σ closely follow a desired reference signal r(t).
Mathematically, we wish to minimize, for given x and r(·), a cost J (σ, τ, x, ω)
which here equals∫ τ

σ

{
ω(t)′R(t)ω(t) + (C(t)ξ(t)− r(t))′Q(t) (C(t)ξ(t)− r(t))

}
ds

+(C(τ)ξ(τ)− r(τ))′ S (C(τ)ξ(τ)− r(τ)) ,

where (ξ, ω) is the trajectory with ξ(σ) = x. In one version of this problem, one
assumes that r(t) is produced by a linear control generator, that is, r is itself
the output of a continuous-time linear system with outputs (and no controls),
say

ż(t) = A0z(t)
r(t) = C0z(t) .

Assuming that R(t) is positive definite and Q(t) is positive semidefinite for all
t, show how to find a solution for this problem, and show that the solution is
unique. (Hint: Introduce a large linear system, whose state space consists of
all pairs

(
x
z

)
. Apply the regulator results to this extended system. The optimal

feedback will be a function of t, x, and z.) 2

Remark 8.2.5 It may appear that restricting to signals which are outputs of
linear systems is not very interesting. On the contrary, many signals of interest
can be so represented. For instance, any polynomial of degree d can be obtained
as the output (for a suitable initial state) of a system with y(d+1) ≡ 0, for
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instance the output of the system of dimension d+ 1 and

A =



0 1 0 . . . 0 0
0 0 1 . . . 0 0
0 0 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 1
0 0 0 . . . 0 0

 , C = (1, 0, . . . , 0) .

In practice, z(t) itself is not directly available to the controller, so it must be
estimated in order to apply the solution obtained in the above problem. For
instance, in the case of polynomial signals as in this example, estimation of z(t)
could be done by derivation of the reference signal r(t), or by algorithms using
observer theory (see later) that do not involve differentiation. 2

Exercise 8.2.6 It is sometimes of interest to consider costs that penalize cor-
relations between input and state variables, that is, to include a cross-term of
the type ω(t)′L(t)ξ(t) in q. (For instance, it may be physically undesirable to
apply a negative u1 when x2 is positive, in which case we can add a term such
as −ρω1(t)ξ2(t) for some large ρ > 0.) Specifically, assume that

q(t, x, u) = (u′ x′)
(
R L
L′ Q

)(
u
x

)
,

where R(·) is positive definite and where the composite matrix (possibly time-
varying) (

R L
L′ Q

)
is positive semidefinite. Show that Theorem 37 (p. 364) remains valid in this
case, with a slightly modified feedback law and Riccati equation. (Hint: Reduce
to the case L = 0 by completing the square.) 2

Exercise 8.2.7 Obtain an analogue of Theorem 37 (p. 364) for linear discrete-
time systems with costs of the type

τ−1∑
k=σ

{ω(k)′R(k)ω(k) + ξ(k)′Q(k)ξ(k)}+ ξ(τ)′Sξ(τ) .

(The Riccati equation is now of course a difference equation; its right-hand side
is a bit more complicated than before.) 2

Hamiltonian Formulation

In general, a Hamiltonian matrix (of size 2n) is a 2n × 2n real matrix H that
satisfies

H ′J + JH = 0 ,
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where

J =
(

0 −I
I 0

)
(8.33)

and I is the n-dimensional identity matrix. Equivalently, H has the form

H =
(
M L
N −M ′

)
for some symmetric N and L and arbitrary M .

In particular, we associate to the matrix functions A,B,R,Q the matrix
function

H :=
(

A −BR−1B′

−Q −A′
)
,

which is a Hamiltonian-matrix valued function H(t), t ∈ [σ, τ ]. The following
fact is proved by a straightforward computation:

Lemma 8.2.8 Let ξ, ω be a pair consisting of an optimal trajectory, start-
ing from a state ξ(σ) = x0, and the corresponding optimal control ω(t) =
−R(t)−1B(t)′P (t)ξ(t) on the interval [σ, τ ]. Then:

d

dt

(
ξ
λ

)
= H

(
ξ
λ

)
, ξ(σ) = x0 , λ(τ) = Sξ(τ) (8.34)

where λ(t) := P (t)ξ(t). 2

Thus, along optimal trajectories, the vector (ξ(t)′, λ(t)′)′ solves the two-point
boundary value problem (8.34). This is the form of the “maximum principle”
statement of optimality; we show next that in this way one obtains a unique
characterization of the optimal trajectory:

Lemma 8.2.9 For each A,B,Q,R, S (m.e.b. entries), there is a unique solution
of the two-point boundary value problem (8.34).

Proof. Existence has been proved (use the optimal trajectory and λ ≡ Pξ). We
must show uniqueness. For that, it will be sufficient to show that every solution
of the two-point boundary value problem (8.34) is a solution of the following
initial value problem:

µ̇ = Hµ , µ(σ) =
(

x0

P (σ)x0

)
. (8.35)

Let P (·) be the solution of (RDE), and consider the unique solution on the
interval [σ, τ ] of the following matrix linear differential equation:

Ẋ = (A−BR−1B′P )X , X(τ) = I . (8.36)
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We let Λ(t) := P (t)X(t) and

Ψ(t) :=
(
X(t)
Λ(t)

)
, so that Ψ(τ) =

(
I
S

)
.

A simple calculation using that P satisfies (RDE) and X satisfies (8.36) shows
that this 2n by n matrix function solves the corresponding matrix Hamiltonian
differential equation:

Ψ̇ = HΨ .

Now pick any solution µ(t) = (ξ(t)′, λ(t)′)′ of the two-point boundary value
problem (8.34). Observe that µ(τ) is in the kernel of the n by 2n matrix [S , −I]
and that the columns of Ψ(τ) are n linearly independent vectors in this (n
dimensional) kernel. Thus, there is some vector q ∈ Rn so that µ(τ) = Ψ(τ)q.
Since p = µ − Ψq satisfies ṗ = Hp, p(τ) = 0, it follows that µ ≡ Ψq. Thus, in
particular, ξ(σ) = X(σ)q, and also

λ(σ) = Λ(σ)q = P (σ)X(σ)q = P (σ)ξ(σ) ,

which is the claim that had to be proved.

Remark 8.2.10 Observe that the first n rows of Ψ(t), that is, X(t), form a
nonsingular matrix for each t, since X(t) is a fundamental matrix associated
to ẋ = (A − BR−1B′P )x. Since, by definition, Λ(t) = P (t)X(t) for all t, we
conclude that

P (t) = Λ(t)X(t)−1

for all t. This provides a way to solve the nonlinear differential equation (RDE):
first solve the final value problem Ψ̇ = HΨ, Ψ(τ) = [I, S′]′, partition as Ψ =
[X ′,Λ′]′, and then take P = ΛX−1. 2

8.3 Tracking and Kalman Filtering*

We now study a problem of output tracking, and, as an application, a deter-
ministic version of Kalman filtering.

Tracking Under Disturbances

A problem which arises often is that of finding controls so as to force the output
of a given system to track (follow) a desired reference signal r(·). We also allow
a disturbance ϕ to act on the system.

Let Σ be a linear system (over K = R) with outputs

ẋ = A(t)x+B(t)u+ ϕ(t), y = C(t)x ,

* This section can be skipped with no loss of continuity.
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where ϕ is an Rn-valued fixed m.e.b. function. Assume given an Rp-valued
fixed m.e.b. function r. We consider a cost criterion:

J (τ, σ, x0, ω, ϕ, r) :=
∫ τ

σ

ω(t)′R(t)ω(t) + e(t)′Q(t)e(t) dt + ξ(τ)′Sξ(τ) ,

where ξ̇ = Aξ +Bω, ξ(σ) = x0, and e := Cξ − r is the tracking error. As in the
quadratic optimal control problem, it is assumed that:

• R is anm×m symmetric matrix of m.e.b. functions, Q is a p×p symmetric
matrix of m.e.b. functions, and S is a constant symmetric n× n matrix;

• for each t, R is positive definite;

• for each t, Q is positive semidefinite; and

• S is positive semidefinite.

The problem is, then, that of minimizing J , for a given disturbance ϕ, reference
signal r, and initial state, by an appropriate choice of controls. Observe that
in the special case when ϕ ≡ r ≡ 0 this is a standard linear-quadratic problem,
with “Q” matrix equal to C ′QC (cost imposed on outputs). For ϕ ≡ 0 and r
arbitrary, we have a tracking problem; for r ≡ 0 and ϕ arbitrary a problem of
regulation under disturbances.

u y -

r

e

Figure 8.1: Tracking problem.

This problem of tracking under disturbances can be reduced to an optimal
control problem for a linear system with quadratic costs, as follows. The idea
is very simple: add a constant state xn+1 ≡ 1, allowing the incorporation of ϕ
into A and of r into Q. We do that next.

On the interval [σ, τ ] we consider the system (with no outputs)

ẋ = Ãx+ B̃u ,

where

Ã :=
(
A ϕ
0 0

)
and B̃ :=

(
B
0

)
have sizes (n + 1) × (n + 1) and (n + 1) ×m, respectively. We also introduce
the associated cost

J̃ (τ, σ, x̃0, ϕ, ω) :=
∫ τ

σ

ω(t)′R(t)ω(t) + ξ̃(t)′Q̃(t)ξ̃(t) dt + ξ̃(t)′S̃ξ̃(t) ,
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where tildes on x0, ξ are used to indicate vectors and vector functions of dimen-
sion n+ 1. The new matrices are defined as

Q̃ :=
(
C ′QC −C ′Qr
−r′QC r′Qr

)
S̃ :=

(
S 0
0 0

)
(from now on, we drop arguments t whenever clear from the context). In terms
of these data,

J̃ (τ, σ, x̃0, ω) = J (τ, σ, x0, ω, ϕ, r)

for each x0, ω, where x̃0 := (x0, 1)′. Note that the resulting problem will have
time-dependent costs even if the original system was time-invariant and the
matrices Q,R were constant. The matrices Q̃ and S̃ are still semidefinite; in
the case of Q̃ this is a consequence of the formula

(z′ a) Q̃(t)
(
z
a

)
= (Cz − ar(t))′Q(Cz − ar(t)) ,

which holds for each z ∈ Rn and each a ∈ R.
Minimizing J̃ with initial states of the form x̃0 = (x0, 1)′, for the system

(Ã, B̃), provides a solution to the tracking problem. This is achieved using the
results earlier in the Chapter. Let P̃ be the solution of the Riccati Differential
Equation (RDE) on page 364,

˙̃
P = P̃ B̃R−1B̃′P̃ − P̃ Ã− Ã′P̃ − Q̃ , P̃ (τ) = S̃ ,

which one knows exists on all of [σ, τ ], by Theorem 37 (p. 364). This solution
can be partitioned as

P̃ =
(
P β
β′ α

)
(all functions of t), where P is n×n and α is scalar. In terms of these data, the
(RDE) takes the form of the set of equations

Ṗ = PBR−1B′P − PA−A′P − C ′QC , P (τ) = S (8.37)

which is itself the Riccati equation for the optimization problem that results
when ϕ ≡ r ≡ 0 and can be computed independently of the particular r and ϕ
of interest, together with

β̇ = −(A+BF )′β + C ′Qr − Pϕ , β(τ) = 0 (8.38)

and
α̇ = β′BR−1B′β − r′Qr − 2ϕ′β , α(τ) = 0 , (8.39)

where we denoted
F := −R−1B′P
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just as in the standard optimal control problem. For an initial state of the form
x̃0 = (x0, 1)′ the optimal path satisfies ˙̃x = (Ã+ B̃F̃ )x̃, which gives

ẋ = (A+BF )x−BR−1B′β , x(σ) = x0 , (8.40)

and the optimal control u = −R−1B̃′P̃ x̃ can be written in the form

u = Fx−R−1B′β (8.41)

while the optimal cost is

(x̃0)′P̃ (σ)′x̃0 = (x0)′P (σ)′x0 + 2(x0)′β(σ) + α(σ)

(this is the only place where α appears). Note the form of the solution: The
tracking signal and the disturbance drive the system (8.38), which is a system
that is formally adjoint to the closed-loop system obtained for no tracking, and
the state β of this adjoint system in turn appears as an extra term in the closed-
loop system. When r ≡ 0 and ϕ ≡ 0, also α ≡ β ≡ 0, and the solution to the
standard regulator problem is recovered.

The discussion can be summarized as follows.

Theorem 38 Assume that A,B,C,Q,R, S are matrix functions as above, and
let σ < τ . Then the solution of the final-value problem (8.37) exists on [σ, τ ].
Given any m.e.b. functions ϕ and r on this interval, and any x0, solve (8.38)
and (8.40) to obtain x(·) and β(·) on [σ, τ ]. Then the control u defined by (8.41)
has the property that it minimizes∫ τ

σ

{u′Ru+ (Cx− r)′Q(Cx− r)} dt + x(τ)′Sx(τ)

subject to ẋ = Ax+Bu+ϕ, x(σ) = x0, among all measurable essentially bounded
controls, and is the unique such control. Moreover, the minimum value of this
integral is given by

x0P (σ)x0 + 2(x0)′β(σ) + a ,

where a = −
∫ τ
σ

(β′BR−1B′β − r′Qr − 2ϕ′β)dt. 2

Remark 8.3.1 If S is positive definite, then the matrix P (σ) —which depends
on the data A,B,R,Q,C but not on the particular x0, ϕ, and r— is also positive
definite. This can be proved as follows. Assume that

(x0)′P (σ)x0 = 0

for some nonzero x0, and consider the tracking problem with ϕ ≡ r ≡ 0. The
optimal cost is zero, since β = α ≡ 0, so the cost along the optimal trajectory
(ξ, ω) vanishes: ∫ τ

σ

{ω′Rω + ξ′C ′QCξ} dt + ξ(τ)′Sξ(τ) ≡ 0 ,
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which implies ω ≡ 0 and ξ(τ) = 0 by positive definiteness of R and S. In
conclusion, one has a solution of

ξ̇ = Aξ

for which ξ(τ) = 0, which implies ξ ≡ 0, so x0 = ξ(0) = 0, as wanted. 2

Exercise 8.3.2 Let σ < τ and assume that Q is positive definite and (A,C)
is observable on [σ, τ ] (but S is merely semidefinite). Show that one can again
conclude that P (σ) is positive definite. 2

(Deterministic) Kalman Filtering

Let (A,B,C) be a time-varying continuous-time linear system as in the previous
section, and let Q,R, S be m.e.b. matrix functions of sizes n × n, m ×m, and
n× n, respectively. Now we assume that both S and R(·) are positive definite.

The problem to be considered in this section is as follows: For any given
m.e.b. function y on an interval [σ, τ ], minimize the expression∫ τ

σ

{
ω(t)′R(t)ω(t) +

(
C(t)ξ(t)− y(t)

)′
Q(t)

(
C(t)ξ(t)− y(t)

)}
dt + ξ(σ)′Sξ(σ)

(8.42)
over the set of all possible trajectories (ξ, ω) of ξ̇ = Aξ +Bω on [σ, τ ].

Remark 8.3.3 This problem is a minor variation of the tracking problem (with
no disturbances, that is, with ϕ ≡ 0) considered in Theorem 38 (p. 374). The
only differences are in the imposition of an initial as opposed to a final state
cost and —more importantly— the fact that the minimization is to be carried
out over all possible trajectories, not merely among those that start at a fixed
initial state. The motivation for studying this question is as follows. Consider
the system

ẋ = Ax+Bu, x(σ) = x0

y = Cx+ v ,

where the functions u and v are thought of as independent and unknown pertur-
bations affecting the system, and the initial state x0 is unknown. The function
y represents an observation of y on the interval [σ, τ ], and it is desired to obtain
an estimate of the state trajectory, and in particular of the final state x(τ),
based on this observation. Moreover, one wishes to obtain the “best possible”
estimate, where “best” is taken to mean the one for which the disturbances u
and v, as well as the initial state x0, would have been as small as possible. The
matrices S, Q, and R are used to quantify the relative weighting to be given
to each component of the uncertainty. For instance, if it is known that the
measurement noise v on some component of the output is very large compared
to other components and to the uncertainty in the initial state and the state



376 8. Optimality: Value Function

noise, then one should tend to assign less value to these observations, that is,
the corresponding entries of Q should be taken small.

The same question can be interpreted in statistical terms, and then it is more
properly called the Kalman filtering problem. In that version, u(·) and v(·) are
independent white noise processes and x0 is a random vector, all assumed to be
Gaussian distributed and zero mean. With R,Q, and S being, respectively, the
inverses of the covariance matrices of u,v, and x0, the minimization problem
that we posed is equivalent to that of finding the minimum variance estimate
of x given the observations y (a conditional mean). The cost function (8.42) is
the likelihood function of the problem. The terminology “filtering” reflects the
goal of filtering-out the noise in order to recover the state x(·), interpreted as
the signal of interest, from the measured signal y. (Actually, we solve what is
called the “smoothing” problem first.) 2

Reduction to Tracking Problem

The filtering problem is reduced to the tracking problem (with ϕ ≡ 0) by first
reversing time, so that the cost is imposed on the final state, and then minimiz-
ing over all possible solutions to the tracking problem, over all possible initial
states. Finally, and most importantly, a recursive form of the solution is derived,
which allows updates of the state estimate as new measurements are taken. Let

R̃(t) := R(τ + σ − t) , Q̃(t) := Q(τ + σ − t) ,

C̃(t) := C(τ + σ − t) , r(t) := y(τ + σ − t)

and
Ã(t) := −A(τ + σ − t) , B̃(t) := −B(τ + σ − t)

for all t ∈ [σ, τ ], for any given y. For each trajectory (ξ, ω) of (A,B),

ξ̃(t) := ξ(τ + σ − t) , ω̃(t) := ω(τ + σ − t)

provide a trajectory of (Ã, B̃) and conversely.
In terms of these data, one can write (8.42) as∫ τ

σ

{
ω̃(t)′R̃(t)ω̃(t) +

(
C̃(t)ξ̃(t)− r(t)

)′
Q̃(t)

(
C̃(t)ξ̃(t)− r(t)

)}
dt + ξ̃(τ)′Sξ̃(τ) ,

(8.43)
and the problem becomes that of minimizing (8.43) over all trajectories of
(Ã, B̃). For each fixed x̃0 this minimum is provided by Theorem 38 (p. 374).
We use tildes for the solution of the corresponding Riccati equation:

˙̃
P = P̃ B̃R̃−1B̃′P̃ − P̃ Ã− Ã′P̃ − C̃ ′Q̃C̃ , P̃ (τ) = S̃ . (8.44)

The other relevant equations are, then:

˙̃
β = P̃ B̃R̃−1B̃′β̃ − Ã′β̃ + C̃ ′Q̃r , β̃(τ) = 0 (8.45)
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and, with
F̃ = −R̃−1B̃′P̃ ,

then
˙̃x = (Ã+ B̃F̃ )x̃− B̃R̃−1B̃′β̃ , x̃(σ) = x̃0 (8.46)

is the optimal path. Also from the Theorem it follows that the cost along this
trajectory is

(x̃0)′P̃ (σ)x̃0 + 2(x̃0)′β̃(σ) + a , (8.47)

where a is a constant that does not depend on x0. Minimizing the expression
for x0 will provide the minimum for the desired problem. By Remark 8.3.1,
P̃ (σ) is invertible, so (8.47) equals(

x̃0 + P̃ (σ)−1β̃(σ)
)′
P̃ (σ)

(
x̃0 + P̃ (σ)−1β̃(σ)

)
− β̃(σ)′P̃ (σ)−1β̃(σ) + a ,

which admits the unique minimum

x̃0 = −P̃ (σ)−1β̃(σ) . (8.48)

This gives a solution to the observation problem: First solve for P̃ and β̃, then
for x̃ using the initial condition (8.48), and finally, reversing time, obtain P, β, x.
The details are as follows.

Consider the equations:

Ṗ = −PBR−1B′P − PA−A′P + C ′QC . P (σ) = S (8.49)

β̇ = −PBR−1B′β −A′β − C ′Qy , β(σ) = 0 (8.50)

as well as
F = −R−1B′P

and
ẋ = (A−BF )x+BR−1B′β , x(τ) = −P (τ)−1β(τ) . (8.51)

Theorem 39 Assume that (A,B,C) is a continuous-time linear system with
outputs, R and S are positive definite as above, and all entries of A,B,C,R,Q
are m.e.b.. Then, the solutions of (8.49) and of (8.50) exist on each interval
[σ, τ ].

Given any m.e.b. function y on any interval [σ, τ ], let ξ(·) be the solution
of (8.51) on this interval. Then, there exists some ω(·) so that (ξ, ω) is the
unique trajectory minimizing (8.42). 2

Observe that the final state x(τ) for the optimal solution can be obtained
by solving the differential equations for P and β and using simply x(τ) =
−P (τ)−1β(τ). Thus this value x(τ), the “filtered” estimate of the state, can be
computed “online” on increasing time intervals (increasing τ). One can even
avoid the matrix inversion, resulting in a recursive estimate, as follows.
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Recursive Formulas for State Estimate

With the previous notations, we let

Π(t) := P−1(t)

for all t ∈ [σ, τ ]. Consider the vector

z(t) = −Π(t)β(t)

for t ∈ [σ, τ ]. It follows from the above discussion that z(t) is the same as the
final state x(t) for the optimization problem restricted to [0, t].

From the fact that Π̇ = −ΠṖΠ, substituting Ṗ from (8.49), and using that
ΠP = I, we conclude that Π satisfies the Filtering Riccati Differential Equation,
or “dual RDE”,

Π̇ = ΠA′ +AΠ−ΠC ′QCΠ +BR−1B′ , Π(σ) = S−1 . (FRDE)

Furthermore, from (FRDE) and (8.50) we conclude that

ż = (A−ΠC ′QC)z + ΠC ′Qy, z(σ) = 0 .

With the notation
L := −ΠC ′Q ,

this can also be written as

ż = Az + L[Cz − y], z(σ) = 0 (8.52)

which is the final form of the equation for z. We can sumarize as follows:

Theorem 40 Assume that (A,B,C) is a continuous-time linear system with
outputs, R and S are positive definite as above, and all entries of A,B,C,R,Q
are m.e.b.. Then, the solution of (FRDE) exists on each interval [σ, τ ].

Given any m.e.b. function y on any interval [σ, τ ], let ζ(·) be the solution
of (8.52) on this interval. Let (ξ, ω) be the unique trajectory minimizing (8.42).
Then, ζ(τ) = ξ(τ). 2

Remark 8.3.4 Equation (8.52) has the form of the observer derived earlier, in
Chapter 7. (The control does not appear, but see Exercise 8.3.9 below.) Thus,
the Kalman filter is an observer where the matrix L has been chosen using an
optimization criterion (see Remark 7.1.7). Note also that (FRDE) can be solved
independently of the particular observations; in applications one often precom-
putes the form of Π. Alternatively, one may solve the differential equation online
—since (FRDE) is an initial-value rather than a final-value problem, it is pos-
sible to solve for Π(τ), for increasing values of τ , as observations are received.
Similarly, the estimate z(τ) can be computed recursively for increasing values
of τ , using (8.52), and at each τ it provides the best estimate of x(τ) based on
the observations {y(t), t ∈ [σ, τ ]}. 2
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Exercise 8.3.5 Derive explicit formulas for the control ω and the correspond-
ing optimal cost in the filtering Theorem. 2

Example 8.3.6 Consider the problem of estimating an unknown constant x0

subject to additive noise, that is, estimating

y = x0 + v

from
y(t) , t ≥ 0 .

We take the system
ẋ = 0 , y = x+ v

and choose S = 1, Q = q > 0, and R arbitrary (since B = 0, we may take
m = 1 and R = 1; all formulas including R have B as a factor, so they vanish
anyhow). A large q should be used if v is expected to be small compared to
the uncertainty in x0, and vice versa (recall Remark 8.3.3). There results the
equation

Π̇ = −Π2q , Π(0) = 1 ,

so
Π(t) =

1
1 + qt

,

and from here the estimator

ż(t) =
1

t+ 1/q
(y(t)− z(t)) .

Note that for q large (small noise) and t small, the solutions approach y very
quickly, consistent with the intuition that the measurements are very reliable.
On the other hand, for q small (large noise), z changes slowly, again as expected:
More measurements are needed before an accurate estimate is obtained. 2

Exercise 8.3.7 Compute explicitly the optimal filter for the case of

ẋ = u , y = x+ v

and
R = S = 1 , Q = q > 0 .

Analyze the behavior of the filter for q large or small. 2

Exercise 8.3.8 Consider the case when B = 0, Q = I, and S approaches
zero. Show that the formulas for least-squares observation in Section 6.3 can
be recovered from the results in this section. (Hint: The equation for P̃ can
be solved with final condition zero, and its solution at the initial time can be
expressed directly in terms of the Wronskian W .) 2
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Exercise 8.3.9 Consider the problem of minimizing the same cost (8.42) over
the set of all trajectories of the system

ξ̇ = Aξ +Gu+Bω ,

where u is a known control on [σ, τ ]. Show that the minimum is achieved through
the solution of

ż = Az + L[Cz − y] +Gu, z(σ) = 0 ,

where L is the same as before. (Hint: Simply convert the original problem

into an estimation problem for ˙̃
ξ = Aξ + Bω, where ξ̃ := ξ − x and x satisfies

ẋ = Ax+Gu.) 2

8.4 Infinite-Time (Steady-State) Problem

We next consider the case of optimal controls for costs functions as earlier, but
now for the problem on an infinite interval. To simplify, and because this is the
most interesting case when τ = ∞ anyway, we assume from now on that the
systems being considered are time-invariant and that the matrices R,Q are also
independent of t. Thus, without loss of generality, we can restrict attention to
the case of optimization on the interval [0,∞). The problem to be studied is,
then:

For the system
ẋ = Ax+Bu ,

and any given initial state x at time t = 0, find a control ω on [0,∞)
such that the cost (possibly infinite)

J∞(x, ω) :=
∫ ∞

0

{ω(t)′Rω(t) + ξ(t)′Qξ(t)} dt (8.53)

is minimized among all such controls.

It is again assumed that R > 0 and Q ≥ 0. We define the Bellman function
as in the finite interval case, and similarly the notions of optimal control and
optimal trajectory.

It will be shown that, under controllability assumptions guaranteeing that
the cost can be made finite, a solution again exists and can be computed via
an algebraic equation obtained as a limit of the Riccati differential equation.
The assumption that R > 0 insures that the problem is well-posed, in that no
coordinate of the control is “free” of cost. Under the extra assumption that Q is
positive definite rather than merely semidefinite, finiteness of the integral along
an optimal trajectory will imply that ξ(t) must converge to zero, that is, the
optimum system will be stabilized by the optimal control law.

Consider the matrix Riccati equation (RDE) on the interval

(−∞, 0]
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but with the final condition
P (0) = 0 .

A solution P (·) exists on this interval. This is because a solution exists on each
interval [σ, 0] as follows from Theorem 37 (p. 364), and by the ODE Uniqueness
Theorem these solutions must coincide on their common domain.

Let Π(t) := P (−t). Thus, Π(t) satisfies for t ≥ 0 the equation

Π̇ = −ΠBR−1B′Π + ΠA+A′Π +Q , Π(0) = 0 . (8.54)

Equivalently, we may by time invariance consider the Riccati equation (RDE)
on each interval [0, t], with final condition P (t) = 0; then Π(t) is the same as
the value P (0) for the corresponding solution. It follows that for each x ∈ Rn
and each τ > 0,

x′Π(τ)x = Vτ (0, x) ,

where Vτ is the Bellman function for the optimization problem of minimizing
(8.53) but only over the finite interval [0, τ ].

Take any pair µ > τ ≥ 0, and let ν be optimal for the interval [0, µ] and
initial state x. Then,

x′Π(µ)x = Vµ(0, x) = J (µ, 0, x, ν)

= J (τ, 0, x, ν|[0,τ)) +
∫ µ

τ

{ν(t)′Rν(t) + ξ(t)′Qξ(t)}dt

≥ Vτ (0, x) = x′Π(τ)x .

This holds for all x, so
Π(µ) ≥ Π(τ) (8.55)

in the sense of the partial ordering of symmetric matrices (“P ≥ Q” means that
x′Px ≥ x′Qx for all x).

We prove next that, if the system is controllable, then there is a limit Π for
Π(t) as t → ∞, and will use this fact in order to prove that there are optimal
controls for the infinite time problem and that the optimal cost is given by the
quadratic form x′Πx.

Lemma 8.4.1 Assume that Σ is controllable and let R and Q be as above.
Then the limit

Π := lim
t→∞

Π(t)

exists. Moreover, Π satisfies the algebraic Riccati equation

ΠBR−1B′Π−ΠA−A′Π−Q = 0 (ARE)

Proof. Fix any x ∈ Rn. We first remark that controllability implies that there
is some ω such that

J∞(x, ω) <∞ .
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Indeed, let ω1 be any control with

φ(1, 0, x, ω1) = 0

and consider the control ω on [0,∞) that is equal to ω1 for t ∈ [0, 1] and is
identically zero for t > 1. Then,

J∞(x, ω) =
∫ 1

0

{ω1(t)′Rω1(t) + ξ(t)′Qξ(t)}dt <∞ .

It follows that, for each τ > 0,

x′Π(τ)x = Vτ (0, x) ≤ J (τ, 0, x, ω|[0,τ)) ≤ J∞(x, ω) . (8.56)

Thus,
{x′Π(τ)x}

is not only nondecreasing in τ (equation (8.55)) but it is also bounded above.
Thus,

lim
τ→∞

x′Π(τ)x

exists, for each fixed x. Let lij be the limit obtained when x = ei+ej , and li the
limit for x = ei, where ei is the ith canonical basis element in Rn, i = 1, . . . , n.
Then, for each pair i, j, using that Π(t) is symmetric for each t:

Π(t)ij = e′iΠ(t)ej =
1
2
[(ei + ej)′Π(t)(ei + ej)− e′iΠ(t)ei − e′jΠ(t)ej ]

converges to
1
2
[lij − li − lj ] .

So a limit Π exists, as desired. Since Π(t) satisfies (8.54),

lim
t→∞

(d/dt)(x′Π(t)x)

also exists for each x, and hence this limit must be zero. It follows that

x′
[
ΠBR−1B′Π−ΠA−A′Π−Q

]
x = 0

for all x. Symmetry of the matrix in brackets [. . .] implies that (ARE) must
hold.

From equation (8.56), which holds for any control ω, we conclude that

x′Πx ≤ J∞(x, ω)

for all ω. When ν is the closed-loop control on the interval [0,∞) corresponding
to the feedback law

k(t, x) := −Fx
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with
F := R−1B′Π

and starting at ξ(0) = x, we have, substituting ω = ν = −R−1B′Πξ into (8.53),
that

J∞(x, ν) =
∫ ∞

0

ξ(t)′(ΠBR−1B′Π +Q)ξ(t) dt .

On the other hand,

(d/dt)(ξ(t)′Πξ(t)) = −ξ(t)′(ΠBR−1B′Π +Q)ξ(t) ,

because Π satisfies (ARE). It follows that

J∞(x, ν) = x′Πx− lim
t→∞

ξ(t)′Πξ(t) ≤ x′Πx ≤ J∞(x, ω̃)

for all ω̃ (and, in particular, for ν). Thus,

• ν is optimal;

• x′Πx is the Bellman function for this problem;

• J∞(x, ν) <∞; and

• limt→∞ ξ(t)′Πξ(t) = 0.

We now prove that ν is the unique optimal control. Let

α(t) := ξ(t)′Πξ(t)

computed along any arbitrary trajectory (ξ, ω) on [0,∞) such that ξ(0) = x for
which ω 6= ν. Completing the square, one verifies just as in the finite-time case
that the minimum of

v′Rv + 2x′Π[Ax+Bv]

is achieved only at
v = −R−1B′Πx .

That is,

ω′Rω + α̇ ≥
(
R−1B′Πξ

)′
R
(
R−1B′Πξ

)
+ 2ξ′Π

(
A−BR−1B′Π

)
ξ

for all t, and equality cannot hold almost everywhere since that would mean
that ω = −R−1B′Πξ, which we assumed was not the case.

Using this as well as the fact that Π satisfies (ARE), we conclude that

α̇(t) ≥ −ω(t)′Rω(t)− ξ(t)′Qξ(t) ,

with strict inequality on a set of nonzero measure. Integrating, there exists
some τ > 0 such that

x′Πx <
∫ τ

0

{ω(t)′Rω(t) + ξ(t)′Qξ(t)}dt+ ξ(τ)′Πξ(τ) . (8.57)
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Consider z := ξ(τ) and the control

ω̄(t) := ω(t+ τ) , t ≥ 0 .

Since z′Πz is the value of the Bellman function at z, the last term in (8.57) is
majorized by J∞(z, ω̄). By time invariance,

J (τ, 0, x, ω) + J∞(z, ω̄) = J∞(x, ω) ,

which is therefore strictly larger than x′Πx. This shows that the control ω
cannot be optimal, and the uniqueness statement follows.

Theorem 41 Consider the infinite time problem defined by Σ, R,Q, and as-
sume that Σ is controllable. Then there exists for each x ∈ Rn a unique optimal
control, given by the closed-loop control corresponding to the (constant) feedback

F := −R−1B′Π ,

where Π is the solution of the ARE obtained by the above limiting process. Fur-
ther, if in addition

Q is positive definite,

then
Π is also positive definite,

and for any solution of the closed-loop system

ξ̇ = (A+BF )ξ

necessarily
lim
t→∞

ξ(t) = 0 .

Proof. We proved the first part above. Assume now that Q > 0. Once we
prove that Π > 0, as we proved already that

ξ(t)′Πξ(t) → 0

for all trajectories, it will follow also that ξ(t) → 0, as desired.
Since Π is the increasing limit of the matrices Π(t), it will be sufficient to

prove that Π(t) is positive definite for all t > 0. Consider the solution Π(·) of
the differential equation (8.54). Fix any x 6= 0. Let β(t) := x′Π(t)x. Then

β̇(0) = x′Qx > 0

and β(0) = 0, from which it follows that

β(t) > 0

for all small t > 0. Since β is nondecreasing, it follows that x′Π(t)x > 0 for all
t.
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Exercise 8.4.2 Show that Theorem 41 (p. 384) is valid if one replaces “Σ is
controllable” by “Σ is asycontrollable.” Point out exactly where in the proof
the weaker hypothesis can be used. 2

Given any controllable system Σ, we may always consider the optimal control
problem with

R = I , Q = I .

Then Theorem 41 can be applied in this case, and we conclude in particular,
using Proposition C.5.1:

Corollary 8.4.3 If Σ is a controllable time-invariant linear continuous-time
system over K = R, then there exists an m×n real matrix F such that A+BF
is a Hurwitz matrix. 2

The above Corollary is, of course, also a consequence of the Pole-Shifting
Theorem, which establishes a far stronger result. Next we consider a discrete-
time analogue; its proof follows the same steps as in the continuous-time case.

Lemma/Exercise 8.4.4 Consider the infinite time problem of minimizing

J∞(x, ω) :=
∞∑
t=0

{ω(t)′Rω(t) + ξ(t)′Qξ(t)} ∈ R+

⋃
{+∞}

for a discrete-time linear time-invariant system Σ. Assume that

• Σ is controllable;

• R is positive definite;

• Q is positive semidefinite.

Then there exists for each x ∈ Rn a unique optimal control, given by the closed-
loop control corresponding to the (constant) feedback

F := −(R+B′ΠB)−1B′ΠA ,

where Π is the solution of the following discrete-time algebraic Riccati equation
obtained as a limit of solutions of appropriate finite-time problems (cf. Exercise
8.2.7):

Π = A′[Π−ΠB(R+B′ΠB)−1B′Π]A+Q (DARE)

Further, if in addition
Q is positive definite,

then
Π is also positive definite,

and for any solution of the closed-loop system

ξ+ = (A+BF )ξ
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necessarily
lim
t→∞

ξ(t) = 0 .

holds. 2

Exercise 8.4.5 Prove, without using the Pole-Shifting Theorem: If Σ is a con-
trollable time-invariant linear discrete-time system over K = R, then there exists
an m× n real matrix F such that A+BF is a convergent matrix. 2

Numerical Computation of Solutions of ARE

Solutions of the ARE can be obtained as limits of solutions of the differential
equation or by other numerical techniques. One of the latter is based on the
following considerations.

As done earlier, we consider the Hamiltonian matrix:

H :=
(

A −BR−1B′

−Q −A′
)
. (8.58)

The next problem shows that finding solutions of the Riccati equation (ARE)
is equivalent to finding certain invariant subspaces of this matrix. In general,
associated to any matrices A,N,L we may consider the following equation gen-
eralizing (ARE):

−ΠLΠ−ΠA−A′Π +N = 0 (8.59)

to be solved for an n× n matrix Π.

Exercise 8.4.6 Consider the map

α : Rn×n → Gn(R2n) , Π 7→ col
(
I
Π

)
,

where Gn(R2n) is the set of all n-dimensional subspaces of R2n (the “G” stands
for Grassman manifold) and where “col” denotes column space. Prove the
following facts:

1. α is one-to-one.

2. The image of α restricted to solutions of (8.59) is exactly the set of n-

dimensional H-invariant subspaces of the form col
(
I
P

)
for some P .

3. If Π is a solution of Equation (8.59), then the restriction of H to α(Π) has

matrix A+ LΠ in the basis given by the columns of
(
I
Π

)
.

4. The matrix Π is symmetric iff α(Π) is a Lagrangian subspace. (A La-
grangian subspace V of R2n is one for which x′Jy = 0 for all x, y ∈ V ,
where J is the matrix in Equation (8.33).)
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Conclude that, if H is as in (8.58), the symmetric real solutions of the Riccati
equation are in one-to-one correspondence with the LagrangianH-invariant sub-
spaces of R2n which have an onto projection into the first n coordinates. 2

It follows from this exercise that in principle one can compute solutions of
(ARE) by spectral analysis ofH. In particular, ifH has n eigenvectors v1, . . . , vn
with the property that, if we partition the 2n× n matrix (v1, . . . , vn) as(

X
Y

)
,

with each of X and Y being an n× n matrix, then X is nonsingular. It follows
that Y X−1 is a (not necessarily symmetric) solution of the ARE.

In general, there is more than one solution of the ARE, even for positive
definite Q. However, as we shall prove below, there is only one positive definite
solution Π, which is then necessarily (for Q > 0) the one needed for the solution
of the optimal control problem.

We proved above that A+BF is Hurwitz when Π is the solution of the ARE
obtained as the limit of the Π(t) and F = −R−1B′Π. This property holds in
fact for any positive definite solution of the ARE, as proved next.

Lemma 8.4.7 Assume that Π is a positive definite solution of the ARE and
that Q is also positive definite. Then, defining F := −R−1B′Π, the closed-loop
matrix Acl = A+BF is Hurwitz.

Proof. Manipulation of the ARE shows that

A′clΠ + ΠAcl = −Q−ΠBR−1B′Π .

Thus, Π is a positive definite solution of a Lyapunov matrix equation

A′clΠ + ΠAcl = Q1

and Q1 is negative definite, since it is of the form −Q − Q2 with Q positive
definite and Q2 semidefinite. We proved earlier that the existence of such a
solution implies that Acl must indeed be Hurwitz. It is always instructive to
provide alternative proofs, so we establish this directly as follows.

Let λ be any eigenvalue of Acl, and let v be any corresponding eigenvector.
Then,

Aclv = λv , v∗A′cl = λ̄v∗ .

Multiplying the Lyapunov equation on the left by v∗ and on the right by v,

Reλ =
1
2
(λ+ λ̄) = (

1
2
)
v∗Q1v

v∗Πv
< 0

from which we conclude that A is Hurwitz.
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Exercise 8.4.8 (Infinite gain margin of LQ feedback.) As above, suppose that
Π is a positive definite solution of the ARE and that Q is also positive definite.
Pick any ρ ∈ [1/2,∞) and let F := −ρR−1B′Π. Show that the closed-loop
matrix Acl = A+BF is Hurwitz. 2

The result in Lemma 5.7.18 is needed in the next proof. This states that the
operator

L : Rn×n → Rn×n , L(X) := MX +XN .

is invertible if both M and N are Hurwitz.

Corollary 8.4.9 If Σ is controllable and R,Q are both positive definite, then
there is exactly one positive definite solution Π of the ARE.

Proof. Assume that two such solutions Π1,Π2 exist. Equating the two corre-
sponding equations, there results the equality MX +XN = 0, where

M = (A−BR−1B′Π2)′

N = A−BR−1B′Π1

X = Π1 −Π2 .

Thus, X is in the kernel of the operator L introduced above. By Lemma 8.4.7,
both M and N are Hurwitz. It follows from Lemma 5.7.18 that L is one-to-one,
so X = 0, as wanted.

Example 8.4.10 Take the system

ẋ = 3x+ 4u

and the problem of minimizing ∫ ∞

0

x2 + u2 dt .

Then the (ARE) is simply

16π2 − 6π − 1 = 0 ,

and it has the two roots π = 1/2 and π = −1/8. The unique positive one is the
first, and this results then in the optimal feedback law

u = −2x

and the closed-loop system
ẋ = −5x ,

which clearly has a Hurwitz matrix. Alternatively, one may form the Hamilto-
nian matrix (

3 −16
−1 −3

)
,
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which has eigenvalues ±5 and corresponding eigenvectors(
−8
1

)
and

(
2
1

)
,

which, when taking the quotient of the second coordinate over the first, give
again the two solutions 1/2,−1/8. 2

Exercise 8.4.11 For the same system ẋ = 3x+ 4u consider instead the cost∫ ∞

0

u2 dt .

Show that here there is also a unique positive definite solution of the Riccati
equation, but this is not the one giving rise to the optimal feedback law. Explain
why none of the results given earlier are contradicted by this example. 2

The proof of Lemma 8.4.7 involved the fact that the Riccati equation can
be rewritten as a Lyapunov equation for the closed-loop matrix. Another, basi-
cally equivalent, relation between the two equations is that Lyapunov equations
appear as partial differentials of the Riccati equation with respect to Π. More
precisely, if we think of the left-hand side of the (ARE) as defining a map

ρ(A,B,Q,R, P ) := PBR−1B′P − PA−A′P −Q

whose domain is the set of all controllable pairs (A,B) and positive definite
symmetric Q,R, P (as an open subset of a suitable Euclidean space), then, for
any Π0 for which

ρ(Π0) = 0

it follows that
ρ(Π0 + P ) = − [PAcl +A′clP ] + o(‖P‖) (8.60)

for all P . By Corollary 8.4.9 there is, for each (A,B,Q,R) as above, a unique
solution of (ARE), that is, there is a function α so that

ρ(A,B,Q,R, α(A,B,Q,R)) = 0

identically.

Exercise 8.4.12 (Delchamp’s Lemma) Prove that α is differentiable (in fact,
real-analytic) by showing that equation (8.60) holds and applying the Implicit
Function Theorem. Conclude that there exists a C1 (and even analytic) function

β : Scn,m → Rn×m

that assigns to each controllable system (A,B) a feedback matrix F = β(A,B)
such that A+BF is Hurwitz. 2



390 8. Optimality: Value Function

Finally, for the filtering problem too, when the system is time-invariant and
R,Q are also independent of t, it is useful to consider the limit of the solution Π
of (FRDE) as t→∞. The gain matrix L = −ΠC ′Q is often called the steady-
state Kalman gain and the filter equation (8.52) with this gain (now itself a
time-invariant observer) the steady-state Kalman filter.

Exercise 8.4.13 Show that, if (A,C) is observable, then Π := limt→∞ Π(t)
exists and that it satisfies the dual algebraic Riccati equation

AΠ + ΠA′ −ΠC ′QCΠ +BR−1B′ = 0 .

(Hint: Use duality.) 2

8.5 Nonlinear Stabilizing Optimal Controls

Theorem 41 shows that the solution of the steady-state linear-quadratic optimal
control problem can be expressed in the feedback form u = −R−1B′Πx, where
Π solves the Algebraic Riccati Equation, and, furthermore, this feedback law
stabilizes the system. We discuss briefly a partial generalization, to nonlinear
continuous-time time-invariant systems, of these facts. Just as the material in
Section 8.4 represents an infinite-time version of the finite-time optimal control
problem in Section 8.2, the results discussed here are closely related to those
in Section 8.1. However, we derive the results in a direct and self-contained
manner.

In this section, we work with a continuous-time time-invariant system

ẋ = f(x, u)

(over K = R). We assume that 0 ∈ X. For each state x ∈ X, we let Ωx denote
the class of all “stabilizing” controls, meaning by definition the set of locally
essentially bounded

ω : [0,∞) → U

with the property that the solution ξ(t) = φ(t, x, ω) is defined for all t ≥ 0 (that
is, ω is admissible for x), and

lim
t→∞

ξ(t) = 0 .

The objective is to minimize, over all ω ∈ Ωx, the cost

J∞(x, ω) :=
∫ ∞

0

q(ξ(s), ω(s)) ds ,

where (ξ, ω) is the trajectory with ξ(0) = x. The function

q : X× U → R+

is assumed to be continuous.
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In all the results to be described, we assume given a continuously differen-
tiable function

V : X → R , V (0) = 0 .

This function will play the role of a value or Bellman function, as well as a
Lyapunov function for a closed-loop system. Given such a function V , for each
(x, u) ∈ X× U we denote

V̇ (x, u) := ∇V (x) · f(x, u) .

Proposition 8.5.1 Suppose that

V̇ (x, u) + q(x, u) ≥ 0 for all (x, u) ∈ X× U (8.61)

and that a path (ξ, ω), with ξ(0) = x0 and ω ∈ Ωx0 , is so that

V̇ (ξ(t), ω(t)) + q(ξ(t), ω(t)) = 0 for almost all t ≥ 0 . (8.62)

Then, V (x0) is the optimal cost from x0, and ω is an optimal control, i.e.:

V (x0) = J∞(x0, ω) = min
ν∈Ωx0

J∞(x0, ν) . (8.63)

Proof. Consider any ν ∈ Ωx0 , and let ζ(t) := φ(t, x0, ν). Since V (ζ(t)) is
absolutely continuous, we can write, using (8.61):

V (ζ(t))−V (x0) =
∫ t

0

d

ds
V (ζ(s))ds =

∫ t

0

V̇ (ζ(s), ν(s))ds ≥ −
∫ t

0

q(ζ(s), ν(s))ds

for all t ≥ 0, from which we conclude that

V (x0) ≤ V (ζ(t)) +
∫ t

0

q(ζ(s), ν(s)) ds .

Taking limits as t → ∞, and using ζ(t) → 0 and continuity of V at zero, we
obtain

V (x0) ≤
∫ ∞

0

q(ζ(s), ν(s)) ds = J∞(x0, ν) .

The same arguments, for ν = ω and using (8.62), give V (x0) = J∞(x0, ω).

From this, we conclude immediately that the (infinite-time) Hamilton-Jacobi
equation is sufficient for optimality:

Corollary 8.5.2 Suppose that k : X → U is so that

∀x, u V̇ (x, k(x)) + q(x, k(x)) = min
u∈U

{
V̇ (x, u) + q(x, u)

}
= 0 (HJB)

and that a path (ξ, ω), with ξ(0) = x0 and ω ∈ Ωx0 , is so that ω(t) = k(ξ(t)) for
all t. Then, V (x0) is the optimal cost, and ω is an optimal control, from x0. 2
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Theorem 42 Let k : X → U be locally Lipschitz and so that (HJB) holds.
Assume that X = Rn, V is proper and positive definite, and q(x, u) > 0 whenever
x 6= 0 (for all u). Then, for each state x0, the solution of ξ̇ = f(ξ, k(ξ)),
ξ(0) = x0 exists for all t ≥ 0, the control ω(t) = k(ξ(t)) is optimal, and V (x0)
is the optimal value from x0. Moreover, V is a global Lyapunov function for the
closed-loop system.

Proof. Solutions exist locally, since k is locally Lipschitz. Since V̇ (x, k(x)) =
−q(x, k(x)) < 0 whenever x 6= 0, V is a Lyapunov function for the closed-loop
system. In particular, a solution exists as stated, and its limit is zero as t→∞,
so ω ∈ Ωx0 . The claim now follows from Corollary 8.5.2.

We now specialize to C1 control-affine systems

ẋ = f(x) +
m∑
i=1

uigi(x) = f(x) +G(x)u

as in Equation (2.34) (but writing here f instead of g0)) with X = Rn, U =
Rm, and f(0) = 0. We suppose from now on that V is twice continuously
differentiable, in addition to being positive definite and proper, and that

q(x, u) = u′R(x)u+Q(x)

where Q is a continuous function, positive for all x 6= 0, and R is a symmetric
n× n matrix of C1 functions of x, positive definite for each x. We denote

LGV (x) := ∇V (x)G(x) = (Lg1V (x), . . . , Lgm
V (x))

and introduce the following algebraic equation:

∀x Q(x) + LfV (x) − 1
4
LGV (x)R(x)−1 (LGV (x))′ = 0 . (8.64)

Corollary 8.5.3 Assume that (8.64) holds, and define

k(x) := −1
2
R(x)−1 (LGV (x))′ . (8.65)

Then, the conclusions of Theorem 42 hold.

Proof. Just as in Remark 8.1.10, we may complete squares to show that (8.65)
minimizes the Hamilton-Jacobi expression, i.e., in this special case:

k(x) = argmin
u

{LfV (x) + LGV (x)u+ u′R(x)u+Q(x)} .

Note that k is locally Lipschitz, in fact C1, because V was assumed to be C2.
We are only left to verify the “= 0” part of (HJB), i.e.

k(x)′R(x)k(x) + Q(x) + LfV (x) + LGV (x)k(x) = 0 .
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But this is simply (8.64).

Note that an even more special case is that when R(x) = I for all x. Then

k(x) := −1
2

(LGV (x))′ ,

which happens to be (up to a factor 1/2) the stabilizing feedback used in damp-
ing control (cf. Lemma 5.9.1). Equation (8.64) reduces, in this case, to:

∀x Q(x) + LfV (x) − 1
4

m∑
i=1

[Lgi
V (x)]2 = 0 .

Exercise 8.5.4 Show that for linear systems and quadratic V , Equation (8.64)
reduces to the Algebraic Riccati Equation (ARE) given in Lemma 8.4.1. 2

Exercise 8.5.5 Suppose that we drop the requirement that Q be positive def-
inite, asking merely semidefiniteness, but we add, instead, the assumption that
k, defined by formula (8.65), globally stabilizes the system. Show that we can
still conclude that V is the value function and that the feedback u = k(x) gives
the optimal controls. 2

Exercise 8.5.6 Consider the following system (with n = m = 1): ẋ = xu, and
take the problem of minimizing∫ ∞

0

1
8x

4 + 1
2u

2 dt

among all controls making x(t) → 0 as t → ∞. Show that there is a solution,
given in feedback form by a quadratic feedback k(x) = −cx2, for some c > 0.
(Hint: Use as a guess a quadratic V (x) = px2. Find the appropriate p by
solving the HJB equation.) 2

Exercise 8.5.7 Generalize Exercise (8.5.6) to ẋ = uAx, a system of dimension
n and scalar inputs, with A having all eigenvalues with positive real part, and the
cost q(x, u) = 1

8 (x′Qx)2+ 1
2u

2, where Q is a positive definite constant symmetric
matrix. Show that also here one obtains a quadratic feedback solution. 2

Exercise 8.5.8 (Infinite gain margin of LQ feedback; see also Exercise 8.4.8.)
Suppose that V is a C2 function which satisfies (8.64). Pick any ρ ∈ [1/2,∞) and
let k(x) := −ρR(x)−1 (LGV (x))′. Show that ẋ = f(x) + G(x)k(x) is globally
asymptotically stable with respect to the origin. 2

Exercise 8.5.9 Provide an example of a smooth system ẋ = f(x, u) and a
smooth cost q(x, u) so that (1) for each x0 there is some ω ∈ Ωx0 so that
J∞(x0, ω) <∞, but (2) the conclusions of Theorem 42 are false. In fact, show
that any no-drift system ẋ = G(x)u with rankG(0) = m < n which satisfies the
Lie Algebra Accessibility Rank Condition, together with any q, gives rise to such
a counterexample. (Hint: Use Exercise 5.9.20, noting that k given by (8.65)
must be smooth.) 2
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Exercise 8.5.10 Find the value function V and the optimal feedback solution
for the problem of minimizing

∫∞
0
x2 + u2dt for the scalar system ẋ = x2 + u.

(Hint: The HJB equation is now an ordinary differential equation, in fact, a
quadratic equation on the derivative of V .) 2

Exercise 8.5.11 Suppose that LfV (x) ≤ 0 for all x and that ẋ = f(x)+G(x)u
is globally stabilized by u = − (∇V (x) ·G(x))′, as in Proposition 5.9.1. Show
that u = k(x) is an optimal feedback, and V is the value function, for some
suitably chosen cost. (Hint: Let Q(x) := −LfV (x) + 1

2 LGV (x) (LGV (x))′,
which gives (8.64) for which R? Use Exercise 8.5.5.) 2

8.6 Notes and Comments

Dynamic Programming

The dynamic programming approach gained wide popularity after the work of
Bellman; see, for instance, [41]. Almost every optimization or optimal control
textbook contains numerous references to papers on the topic.

The Continuous-Time Case

A central problem in optimal control is the study of existence and smoothness
properties. The question of existence often can be settled easily on the basis of
general theorems; what is needed is the continuous dependence of J on ω, with
respect to a topology on the space of controls which insures compactness. For
bounded inputs and systems linear on controls, Theorem 1 (p. 57), part 2(ii),
together with compactness in the weak topology, achieves this purpose. For
more general systems, analogous results hold provided that one generalizes the
notion of control to include “relaxed controls.” See, for instance, [134], [188],
[266], or any other optimal control textbook; here we only proved results for a
very special class of systems and cost functions, and for these existence can be
established in an ad hoc manner.

Continuity of controls, and smoothness of Bellman functions, are a much
more delicate matter. It turns out that many problems of interest result in a
nonsmooth V . The regular synthesis problem in optimal control theory studies
generalizations of the results that assumed smoothness to cases where V is
piecewise smooth in appropriate manners. See, for instance, [134] for more on
this topic, as well as [50] and [386]. An alternative is to generalize the concept
of solution of a partial differential equation: The notion of viscosity solution
provides such a possibility, cf. [102]; or the related approach based on proximal
subgradients can be used, cf. [93].

(Deterministic) Kalman Filtering

A purely deterministic treatment was pursued here so as not to require a large
amount of preliminary material on stochastic processes. On the other hand,
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a probabilistic study is more satisfactory, as the cost matrices have a natural
interpretation and formulas can be obtained that quantify the accuracy of the
estimator (its covariance is given in fact by the solution to the Riccati equation).

There are excellent textbooks covering Kalman filtering, such as [108] or,
for more of an engineering flavor, [16] and [263]. A good reference for practical
implementation issues, as well as a detailed derivation in the discrete-time case,
is provided by [153]. A very elegant discussion of the discrete-time problem is
given by [86], from the point of view of recursive least-squares.

Much has been done regarding nonlinear filtering problems; for some of the
theoretical issues involved see, for instance, [209], [293], [312], and the references
therein.

Historically, the Kalman filter, introduced for discrete-time in [214] and for
continuous-time in [229], appeared in the context of the general problem of
“filtering” a signal corrupted by noise. As compared to older Wiener filtering
ideas, the Kalman filter modeled the signal of interest as the state trajectory of
a linear system driven by white noise. This allowed a highly computable method
of solution as well as extensions to nonstationary processes (time-varying state
models) and nonlinear systems.

The optimal estimation and optimal control problems can be combined into
the stochastic optimal control problem of minimizing a cost criterion for a system
such as the one in Exercise 8.3.9, by suitable choice of controls u, on the basis
of noisy observations; the solution to this “LQG” problem —“linear quadratic
Gaussian problem,” when all noises are assumed to be Gaussian processes— can
be obtained from the solutions of the two separate deterministic linear quadratic
and linear filtering problems, in much the same fashion as output stabilizers were
obtained by combining observers and optimal state feedback laws; see [16] and
[263], for instance.

Linear Systems with Quadratic Cost

The treatment of the Linear Quadratic Problem started with Kalman’s seminal
paper [215]. The literature generated by this problem is immense, as many vari-
ants and numerical approaches have been tried. Two excellent texts that deal
with such issues are [16] and [263]. The paper [423] discusses many important
issues about Riccati equations, including the indefinite case, of interest in game
theory as well as in modern H∞ optimization.

The infinite-dimensional linear case also has been studied in detail; see, for
instance, [113] and [133].

Infinite-Time Problems

The computation of solutions to the ARE via Hamiltonian matrices was first
suggested by [288] and [322] for the case of distinct eigenvalues; see [212], Section
3.4, for a discussion and many references to numerical techniques associated to
this approach.
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The result in Exercise 8.4.12 is from [112] (see also [64]).
It is interesting but not very surprising that quadratic problems for linear

time-invariant systems give rise to linear solutions (a linear feedback law). When
other criteria are used, or when “robust” design is desired, nonlinear or time-
varying controllers may be superior, even for linear time-invariant systems. This
type of question is explored in [244], [245], and related papers.

Substantial activity has taken place recently on the topic ofH∞ optimization,
dealing with a different optimization criterion than the linear-quadratic problem.
This criterion, which corresponds to the minimization of an operator norm from
external “disturbances” to outputs, is of great engineering interest. A book
reference is [145], and recent research, resulting in a reduction to a Riccati
equation problem, is surveyed in [124]. That reference also shows how the linear-
quadratic problem can be viewed as a minimization problem in an input/output
context. The norm itself can be computed numerically; see, for instance, [59].

Nonlinear Stabilizing Optimal Controls

The main sense in which the nonlinear results given in Section 8.5 differ from
the linear case is in the need to assume that V exists. For linear systems, the
ARE always has a solution (under the appropriate controllability conditions). In
order to obtain necessary and sufficient results, one must introduce generalized
solutions of various types (viscosity, proximal); see for instance [93] and the
many references provided therein.



Chapter 9

Optimality: Multipliers

As described in the introduction to Chapter 8, an alternative approach to opti-
mal control relies upon Lagrange multipliers in order to link static optimization
problems. In this chapter, we provide a brief introduction to several selected top-
ics in variational, or multiplier-based, optimal control, namely: minimization of
Lagrangians (and the associated Hamiltonian formalism) for open input-value
sets, the basic result in the classical Calculus of Variations seen as a special
case, some remarks on numerical techniques, and the Pontryagin Minimum (or
Maximum, depending on conventions) Principle for arbitrary control-value sets
but free final state. The area of nonlinear optimal control is very broad, and
technically subtle, and, for a more in-depth study, the reader should consult the
extensive literature that exists on the subject.

9.1 Review of Smooth Dependence

It is worthwhile at this point to review some of the main conclusions of Theo-
rem 1 (p. 57). Consider the system

ẋ = f(x, u) ,

under the standard assumption that f : X × U → X is C1 in x, and that f ,
as well as its Jacobian matrix of partial derivatives fx with respect to x, are
continuous on x, u (cf. Equations (2.22 and (2.23)). The state-space is an open
subset X of Rn, and U is a metric space. These conclusions characterize the
partial derivatives of the final value of the solution, that is x(τ), with respect to
the initial state x(σ) and the input u(·) applied during an interval [σ, τ ]. Here
we restate the relevant facts in terms of Jacobians with respect to x(σ) and
directional derivatives with respect to u(·); Theorem 1 (p. 57) provides a more
general statement concerning joint continuous differentiability.

Recall that LU(σ, τ) (or L∞m (σ, τ), in the special case U = Rm) denotes the
set of measurable essentially bounded maps ω : [σ, τ ] → U, where “essentially

397
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bounded” means that there is some compact subset C = Cω ⊆ U such that
ω(t) ∈ C for almost all t ∈ [σ, τ ], and we say that an input ω ∈ LU(σ, τ) is
admissible for the state x0 if the solution of the initial value problem

ξ̇(t) = f(ξ(t), ω(t)) , ξ(σ) = x0

is well-defined on the entire interval [σ, τ ], and we denote, in that case,

φ(·, σ, x0, ω) = ξ(·) .

For future reference, we now summarize the main needed facts.

Corollary 9.1.1 (of Theorem 1 (p. 57)). Let ω̃ ∈ LU(σ, τ) be admissible for
the state x0, and write x̃(t) = φ(t, σ, x0, ω̃). Denote

A(t) = fx(x̃(t), ω̃(t)) (9.1)

for each t ∈ [σ, τ ], and let Φ(·, ·) be the fundamental solution matrix associated
to A(·):

∂Φ(t, r)
∂t

= A(t)Φ(t, r) , Φ(r, r) = I (9.2)

for each t, r ∈ [σ, τ ].
Consider the map

Θ : x 7→ φ(τ, σ, x, ω̃) . (9.3)

Then, Θ is well-defined and continuously differentiable in a neighborhood of x0,
and its Jacobian evaluated at x0 is

Θ∗(x0) = Φ(τ, σ) . (9.4)

Suppose that, in addition, the control-value set U is an open subset of Rm
and that f : X× U → Rn is continuously differentiable, and let

B(t) = fu(x̃(t), ω̃(t)) . (9.5)

Take any fixed input µ ∈ LU(σ, τ), and consider the map:

β : (−h0, h0) → Rn : h 7→ φ(τ, σ, x0, ω̃ + hµ) . (9.6)

This map is well-defined for some h0 > 0, is continuously differentiable, and

dβ

dh
(0) =

∫ τ

σ

Φ(τ, s)B(s)µ(s) ds . (9.7)

More generally, if µ1, . . . , µr ∈ LU(σ, τ), the r-parameter map

β(h1, . . . , hr) := φ(τ, σ, x0, ω̃ + h1µ1 + . . .+ hrµr) .

has Jacobian

β∗(0) =
(∫ τ

σ

Φ(τ, s)B(s)µ1(s) ds , . . . ,
∫ τ

σ

Φ(τ, s)B(s)µr(s) ds
)
. 2
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9.2 Unconstrained Controls

When control-value sets are open, various facts about optimal control can be
easily derived by finding critical points of appropriate functions, with the use,
if necessary, of Lagrange multipliers. In this section, we pursue this line of
thought. So we take here U ⊆ Rm open and f : X × U → Rn continuously
differentiable.

Assume given three C1 functions

q : X× U → R , p : X → R , K : X → Rr ,

to be used, respectively, to denote the instantaneous cost along trajectories, a
cost on final states, and a set of r constraints on final states. Also fix an initial
state x0 ∈ X and a time interval [σ, τ ] on which the optimization is to be carried
out. The cost function associated to this problem is as follows:

J (ω) :=
∫ τ

σ

q(xω(s), ω(s)) ds + p(xω(τ)) ,

where xω(·) := φ(·, σ, x0, ω) and we define J (ω) := +∞ if ω is not admissible
(for the initial state x0). The optimization problem of that of finding

min {J (ω) | ω ∈ LU(σ, τ) admissible, K(xω(τ)) = 0} .

For example, a quadratic cost along trajectories, as in the classical linear-
quadratic problem, would be one of the form q(x, u) = x′Qx+u′Ru. A problem
in which we want to impose that the final state be a desired target xf is included
by letting K(x) = x − xf ; on the other hand, K ≡ 0 covers the problem of
minimizing with no final state constraints. Other special cases of interest, to
be discussed separately, are those in which there is no final cost (i.e, p ≡ 0) or
there is no “Lagrangian” (q ≡ 0).

Definition 9.2.1 The control ω̃ is optimal for x0 if it is admissible for x0

and has the property that J (ω̃) ≤ J (ω) for all those admissible ω for which
K(xω(τ)) = 0. 2

Since the domain of J is open, when K ≡ 0 first-order necessary conditions
for optimality are obtained by asking that any ω̃ minimizing J must be a
critical point of J , i.e. that we have a zero differential at that input: J∗[ω̃] = 0.
In the case in which constraints are present, the Lagrange multiplier rule can
be employed. This program can be carried out in elementary terms, with no
recourse to the Lagrange multiplier rule in infinite-dimensional spaces; we do so
next.

Recall the classical Lagrange multiplier rule, applied to a differentiable func-
tion f : O → R, where O is an an open subset of Euclidean space: if f
achieves a local minimum (or maximum) on O subject to the differentiable
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constraints g1(y) = ... = gr(y) = 0 at the point ỹ, and if the Jacobian G∗(ỹ) of
G = (g1, . . . , gr)′ at ỹ has rank r, then there exists some r-vector ν so that the
function f + ν′G has a critical point at ỹ. If, instead, the Jacobian has rank
less than r, then the rows of G∗(ỹ) are linearly dependent, and therefore there
is some nonzero r-vector ν so that ν′G∗(ỹ) = 0, which means that 0.f+ν′G has
a critical point at ỹ. One can summarize both cases in one statement, namely,
that there are a scalar ν0 ∈ {0, 1} and a vector ν ∈ Rn, not both zero, such that
the function ν0f + ν′G has a critical point at ỹ. (Example: The minimum at
y = 0 of f(y) = y under the constraint y2 = 0; here one must take ν0 = 0.)
We next introduce, for our control problem, a condition corresponding to the
Jacobian G∗(ỹ) having rank r.

Let ω̃ ∈ L∞m (σ, τ) be admissible for x0, write x̃(t) = xeω(t) = φ(t, σ, x0, ω̃),
let A(·) and B(·) be as in Equations (9.1) and (9.5), and let Φ be as in Equa-
tion (9.2).

With respect to the given function K : X → Rr, we will say that the lin-
earization along ω̃ is output controllable if{

K∗(x̃(τ))
∫ τ

σ

Φ(τ, s)B(s)µ(s) ds
∣∣∣∣ µ ∈ L∞m (σ, τ)

}
= Rr .

Equivalently, there must exist r inputs µ1, . . . , µr so that the r vectors{
K∗(x̃(τ))

∫ τ

σ

Φ(τ, s)B(s)µ1(s) ds , . . . , K∗(x̃(τ))
∫ τ

σ

Φ(τ, s)B(s)µr(s) ds
}

(9.8)
form a basis in Rr. Observe that, in particular, K∗(x̃(τ)) ∈ Rr×n must have
rank r, and the vectors in Rn{∫ τ

σ

Φ(τ, s)B(s)µ1(s) ds , . . . ,
∫ τ

σ

Φ(τ, s)B(s)µr(s) ds
}

(9.9)

must be linearly independent. If there are no final-state constraints (r = 0,
K ≡ 0), linearized output controllability holds by definition. (The condition will
only play a role when using Lagrange multipliers.)

Remark 9.2.2 One may interpret linearized output controllability in terms of
the time-varying linear system that has the above A(·) and B(·) in its state
equations, as well as an output function given by the evaluation of the Jacobian
of K along the given trajectory: C(t) := K∗(x̃(t)). The condition says that
every possible output value is achievable at time τ . 2

We now derive a necessary condition for an extremum. To make the proof
more transparent, it is convenient to take first the special case when q ≡ 0, and
later to extend the result to the general case.

Lemma 9.2.3 Suppose q ≡ 0. Assume that ω̃ ∈ LU(σ, τ) is optimal for x0.
Then, there exist a scalar ν0 ∈ {0, 1} and a vector ν ∈ Rr, not both zero, so
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that the solution λ : [σ, τ ] → Rn of the adjoint equation λ̇(t) = −A(t)′λ(t) with
final value

λ(τ) =
(
ν0 p∗(x̃(τ)) + ν′K∗(x̃(τ))

)′
satisfies

λ(t)′B(t) = 0

for almost all t ∈ [σ, τ ]. If, in addition, the linearization along ω̃ is output
controllable, then one may take ν0 = 1.

Proof. We first treat the case of no final-state constraints (r = 0, no “K”, and
output controllability is by definition satisfied). Take any fixed µ ∈ LU(σ, τ),
and consider the map β(h) := φ(τ, σ, x0, ω̃ + hµ), as in Equation (9.6). As

p(β(0)) = p(x̃(τ)) = J (ω̃) ≤ J (ω̃ + hµ) = p(β(h))

for all h near zero, and p ◦ β is differentiable, it follows that

0 =
d(p ◦ β)
dh

(0) = p∗(x̃(τ))
dβ

dh
(0) =

∫ τ

σ

p∗(x̃(τ))Φ(τ, s)B(s)µ(s) ds .

Since µ was arbitrary, this means that

p∗(x̃(τ))Φ(τ, t)B(t) = 0

for almost all t. Since
∂Φ(τ, t)
∂t

= −Φ(τ, t)A(t) , (9.10)

λ(t) = (p∗(x̃(τ))Φ(τ, t))′ solves λ̇(t) = −A(t)′λ(t) and has λ(τ) = p∗(x̃(τ))′.
Now we treat the case when there are constraints (r > 0). There is some

integer 1 ≤ ` ≤ n and inputs µ1, . . . , µ` so that the following property holds:
for every µ ∈ LU(σ, τ), the vector

∫ τ
σ

Φ(τ, s)B(s)µ(s) ds is a linear combination
of {∫ τ

σ

Φ(τ, s)B(s)µ1(s) ds, . . . ,
∫ τ

σ

Φ(τ, s)B(s)µ`(s) ds
}
. (9.11)

To see this, we consider the subspace{∫ τ

σ

Φ(τ, s)B(s)µ(s) ds
∣∣∣∣ µ ∈ LU(σ, τ)

}
⊆ Rn

(which is the reachable set from the origin for the linearized system along (x̃, ω̃)):
if this space is {0}, we pick ` := 1 and take any input as µ1; otherwise, we let `
be the dimension of the space and pick a set of inputs so that the states in (9.11)
form a basis.

Consider now the map

β(h1, . . . , h`) := φ(τ, σ, x0, ω̃ + h1µ1 + . . .+ h`µ`) ,
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which is defined on some open neighborhood O of 0 in R`. We consider the
compositions p ◦ β and K ◦ β as maps O → R. Using h to denote vectors
(h1, . . . , h`)′, we have that

(p ◦ β)(0) = p(x̃(τ)) = J (ω̃) ≤ J (ω̃ + h1µ1 + . . .+ h`µ`) = (p ◦ β)(h)

for all those h ∈ O for which (K ◦ β)(h) = 0. Furthermore, the Jacobian of
K ◦ β at h = 0 is K∗(x̃(τ))β∗(0), and a formula for the Jacobian β∗(0) is given,
in turn, in the last part of the statement of Corollary 9.1.1. It follows that the
columns of the r × ` Jacobian matrix (K ◦ β)∗(0) are given by the vectors{
K∗(x̃(τ))

∫ τ

σ

Φ(τ, s)B(s)µ1(s) ds , . . . , K∗(x̃(τ))
∫ τ

σ

Φ(τ, s)B(s)µ`(s) ds
}
.

(9.12)
The Lagrange multiplier rule (in the form discussed earlier) provides a nec-

essary condition for a local extremum of p◦β at h = 0 subject to the constraint
(K ◦ β)(h) = 0: There exist a scalar ν0 ∈ {0, 1} and a vector ν ∈ Rr, not
simultaneously zero, such that

∂ (ν0 p ◦ β + ν′K ◦ β)
∂hi

(0) = 0 , i = 1, . . . , ` .

That is,

0 = (ν0 p+ ν′K)∗(x̃(τ))
∫ τ

σ

Φ(τ, s)B(s)µi(s) ds , i = 1, . . . , ` .

Pick any µ ∈ LU(σ, τ). Since, for each µ,
∫ τ
σ

Φ(τ, s)B(s)µ(s) ds can be expressed
as a linear combination of the vectors

∫ τ
σ

Φ(τ, s)B(s)µi(s) ds, we conclude that∫ τ
σ

(ν0p+ ν′K)∗(x̃(τ))Φ(τ, s)B(s)µ(s) ds = 0 for all u ∈ LU(σ, τ). So

(ν0 p+ ν′K)∗ (x̃(τ))Φ(τ, t)B(t) = 0

for almost all t. As with the case r = 0, Equation (9.10) says that λ(t) =
((ν0p+ ν′K)∗(x̃(τ))Φ(τ, t))′ solves λ̇(t) = −A(t)′λ(t) and has the desired final
value.

Finally, assume that r > 0 and that the output controllability condition
holds. Then, there exist inputs µ1, . . . , µr so that the vectors in Equation (9.8)
span Rr. Thus, also the vectors in Equation (9.9) are linearly independent, so
we can add if necessary inputs µr+1, . . . , µ` (for some integer r ≤ ` ≤ n) so
that µ1, . . . , µ` form a generating set as above, and we use these inputs when
defining β. Since the first r columns of the r× ` matrix (K ◦β)∗(0) are given by
the vectors in Equation (9.8), (K ◦ β)∗(0) has full rank r. Then, the Lagrange
rule applies in the form usually stated, for nonsingular constraints, and one may
indeed pick ν0 = 1.
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Remark 9.2.4 One interpretation of the Lemma is as follows. Let R de-
note the set of states reachable from the origin in the interval [σ, τ ], for the
linear system defined by A(t), B(t) (the linearization along (ω̃, x̃)); that is,
R = {

∫ τ
σ

Φ(τ, s)B(s)µ(s) ds, µ ∈ L∞m (σ, τ)}. Then, the vector (ν0p+ν′K)∗(x̃(τ))
must be orthogonal to the subspace R ⊆ Rn. 2

Now we treat the general case, when there is a nonzero Lagrangian term q
in the cost function. At this point, it is useful to introduce the Hamiltonian
function associated to the optimal control problem, defined by

H(x, u, η0, η) := η0q(x, u) + η′f(x, u)

and seen as a function of X× U× R× Rn → R.

Theorem 43 Assume that ω̃ ∈ LU(σ, τ) is optimal for x0. Then, there exist a
scalar ν0 ∈ {0, 1} and a vector ν ∈ Rr,

(ν0, ν) 6= (0, 0) ,

so that the solution λ : [σ, τ ] → Rn of the final-value problem

λ̇(t) = −ν0 qx(x̃(t), ω̃(t))′ − A(t)′λ(t) , λ(τ) =
(
ν0 p∗(x̃(τ)) + ν′K∗(x̃(τ))

)′
(9.13)

is so that
∂H
∂u

(x̃(t), ω̃(t), ν0, λ(t)) = 0 (9.14)

for almost all t ∈ [σ, τ ]. If, in addition, the linearization along ω̃ is output
controllable, then the same conclusion holds with ν0 = 1.

Proof. We reduce this problem to the one treated in Lemma 9.2.3. For that
purpose, we introduce the system ẋ# = f#(x#, u) with state-space R × X ⊆

Rn+1 which, when writing x# =
(
x0

x

)
, has equations

ẋ0 = q(x, u)
ẋ = f(x, u)

(with same input value space U). We also think of K as a function on R × X

that depends only on the last n coordinates, that is, we let

K#(x#) := K(x) .

It is clear that the output controllability condition holds for the extended system
if it holds for the original one.

To define a minimization problem for the extended system, we let

p#

(
x0

x

)
:= x0 + p(x) and q# ≡ 0 ,
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and consider the initial state

x0#
:=

(
0
x0

)
.

We write J# for the associated cost function. Observe that an input ω is
admissible for x0 if and only if it is admissible for x0# because, once that the
equation for x has been solved, x0(τ) can be obtained by integration: x0(τ) =∫ τ
σ
q(x(s), ω(s)) ds. Moreover, the definitions imply that

J#(ω) = J (ω)

for all ω. Therefore, ω̃ is a minimizing input for J#, and we can thus apply
Lemma 9.2.3 to it.

Let ν0 ∈ R, ν ∈ Rr, and λ# : [σ, τ ] → Rn+1 be as in the conclusions of the
Lemma, for the extended system. Observe that

A#(t)′ =
(

0 0
qx(x̃(t), ω̃(t))′ A(t)′

)
and B#(t) =

(
qu(x̃(t), ω̃(t))

B(t)

)
.

As p#
∗ = (1 , p∗) and K#

∗ = (0 , K∗), the final condition on λ# is:

λ#(τ) =
(
ν0p

#
∗ (x̃(τ)) + ν′K#

∗ (x̃(τ))
)′ =

(
ν0(

ν0p∗(x̃(τ)) + ν′K∗(x̃(τ))
)′) .

We partition

λ#(t) =
(
λ0(t)
λ(t)

)
.

Comparing the last n coordinates provides the final value λ(τ) shown in (9.13).
Moreover, the differential equation λ̇#(t) = −A#(t)λ#(t) gives that λ0 ≡ ν0
and that λ satisfies the differential equation in (9.13). Finally, λ#(t)′B#(t) = 0
implies that

0 = λ#(t)′B#(t) = ν0qu(x̃(t), ω̃(t)) + λ(t)′B(t) = Hu(x̃(t), ω̃(t), ν0, λ(t))

for almost all t.

Theorem 43 provides a necessary condition for arbitrary local extrema of
J . As in elementary calculus, it cannot distinguish between (local) minima and
maxima of J ; higher-order derivatives may be used for that purpose (see also
the maximum principle, below).

Exercise 9.2.5 Show that, along any optimal trajectory for which ω̃ is differen-
tiable, the function t 7→ H(x̃(t), ω̃(t), ν0, λ(t)) must be constant. (The constancy
of H(x̃(t), ω̃(t), ν0, λ(t)) holds, in fact, even if ω̃ is not necessarily differentiable,
but the proof is a bit harder.) 2
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Exercise 9.2.6 Provide a version of the Theorem that applies to time-varying
systems (and time-dependent costs), that is, ẋ = f(t, x, u), and q = q(t, x, u).
You may assume that f and q are continuously differentiable. (Hint: Easy from
the Theorem; you only need to extend the system in a certain way, and then
“unpack” the resulting equations.) 2

Exercise 9.2.7 A problem for which q ≡ 0 is often called a Meyer problem of
optimal control (this follows similar terminology used in the calculus of varia-
tions). A Lagrange problem, in contrast, is one for which p ≡ 0. (The general
problem which we considered, incidentally, is sometimes called a “Bolza” prob-
lem.) The main idea which was used in deriving Theorem 43 from Lemma 9.2.3
was the observation that every Lagrange problem can be recast as a Meyer
problem. Show that, conversely, every Meyer problem can be reformulated as
a Lagrange problem, in such a manner that optimal controls are the same, for
every possible initial state. (You may assume that p ∈ C2.) 2

Exercise 9.2.8 An optimal control ω̃ is abnormal if it is impossible to obtain
the conclusions of Theorem 43 with ν0 = 1. That is, for each λ(·) satisfy-
ing (9.13) and (9.14), necessarily ν0 = 0. Show that ẋ = u2, x(0) = x(1) = 0,
U = [−1, 1], q(x, u) = u, p = 0, leads to an abnormal optimal control. 2

One particular case of interest for the Theorem is as follows. The notations
are as earlier.

Corollary 9.2.9 Assume that ω̃ is optimal for x0, that the linearization along
ω̃ is controllable, and that r = n and the map K : X → Rn has a nonsingular
Jacobian K∗(x̃(τ)) at the final state. Then, there exists a solution λ : [σ, τ ] →
Rn of the adjoint equation

λ̇(t) = −qx(x̃(t), ω̃(t))′ − A(t)′λ(t) (9.15)

so that Hu(x̃(t), ω̃(t), 1, λ(t)) = 0 for almost all t ∈ [σ, τ ].

Proof. We need only to check the output controllability condition. But

K∗(x̃(τ))
{∫ τ

σ

Φ(τ, s)B(s)µ(s) ds
∣∣∣∣ µ ∈ L∞m (σ, τ)

}
= Rn

holds because the first matrix is nonsingular and the space {. . .} is, by assump-
tion, equal to Rn.

This corollary applies, in particular, when the final state is specified to be a
given x = xf . We let in that case K(x) = x−xf , so K has full rank at every state
(Jacobian is the identity). Observe that, in contrast with Theorem 43, we did
not specify a condition on λ(τ). There is no information to be gained by asking
that λ(τ) = (p∗(x̃(τ)) + ν′K∗(x̃(τ)))′ for some ν, because of nonsingularity of
K∗(x̃).
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Writing as Hamiltonian Equations

An elegant way of packaging the conclusions of Theorem 43 is by means of
Hamiltonian equations, as follows: if ω̃ is optimal for x0, then there is a solution
(x(·), λ(·)) of the following two-point boundary-value problem:

ẋ = Hλ(x, ω̃, ν0, λ)′ , x(σ) = x0 , K(x(τ)) = 0

λ̇ = −Hx(x, ω̃, ν0, λ)′ , λ(τ) =
(
ν0p∗(x(τ)) + ν′K∗(x(τ))

)′
and, along this solution, it must hold that Hu(x(t), ω̃(t), ν0, λ(t)) ≡ 0. (And, if
the linearization along ω̃ is output controllable, ν0 = 1.)

Two special cases merit separate statements. The first is the one when no
terminal constraints are imposed. Then the above equations reduce to:

ẋ = Hλ(x, ω̃, 1, λ)′ , x(σ) = x0

λ̇ = −Hx(x, ω̃, 1, λ)′ , λ(τ) =
(
p∗(x(τ))

)′
and Hu(x(t), ω̃(t), 1, λ(t)) ≡ 0. (Linearized output controllability holds by defi-
nition, if r = 0.)

The other special case is the one when the final state is specified to be a
given x = xf (i.e., K(x) = x − xf). Then, any optimal control ω̃ for which
the linearization along ω̃ is controllable must be such that there is a solution
(x(·), λ(·)) of

ẋ = Hλ(x, ω̃, 1, λ)′ , x(σ) = x0 , x(τ) = xf

λ̇ = −Hx(x, ω̃, 1, λ)′

and, again, Hu((x(t), ω̃(t), 1, λ(t)) ≡ 0. (Linearized output controllability con-
dition holds; cf. Corollary 9.2.9.)

Systems Affine in Controls, Quadratic Costs

An interesting class of systems consists of those that are affine in controls, that
is,

f(x, u) = F (x) +G(x)u

for some n-vector function F and some n×m matrix function G. (This is as in
Equations (4.18), (4.22), and (5.10), but we write here F instead of g0; note that
linear systems have this form, with F a linear function and G constant.) For
such systems, it is natural to consider costs along trajectories that are quadratic
in u:

q(x, u) = u′R(x)u+Q(x)

for some m ×m symmetric matrix function R(x) and a scalar function Q(x).
Because of the general assumptions made on f and q, we have that F , G, R,
and Q are (at least) continuously differentiable. In this context, we will say that
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q is regular if it is quadratic in u and R(x) is nonsingular for each x ∈ X, and,
in that case, we introduce the map

M : X× Rn → Rn : (x, η) 7→ qx(x, ρ(x, η))′ + fx(x, ρ(x, η))′η

where ρ(x, η) := − 1
2R(x)−1G(x)′η. (For example, if R and G are independent

of x then M(x, η) = −Q∗(x)− F∗(x)η.)

Proposition 9.2.10 Assume that ω̃ ∈ LU(σ, τ) is optimal for x0, with respect
to the system ẋ = F (x)+G(x)u, where q is quadratic in u and regular, and that
the linearization along ω̃ is output controllable. Then, there are a vector ν ∈ Rr
and an absolutely continuous function λ : [σ, τ ] → Rn, such that (x, λ) = (x̃, λ)
is a solution of the following system of 2n differential equations:

ẋ = F (x)− 1
2
G(x)R(x)−1G(x)′λ , x(σ) = x0 (9.16)

λ̇ = −M(x, λ) , λ(τ) =
(
p∗(x(τ)) + ν′K∗(x(τ))

)′
. (9.17)

Moreover, if F , G, R, and Q are of class Ck, k = 1, 2, . . . ,∞, or (real-)analytic,
then ω̃ must be of class Ck, or analytic, respectively.∗

Proof. As Hu(x, u, 1, η) = 2u′R(x)+η′G(x) for all vectors u, x, η, the equation
Hu = 0 can be solved for u, to give u = −(1/2)R(x)−1G(x)′η. Therefore,

ω̃(t) = −1
2
R(x̃(t))−1G(x̃(t))′ λ(t) . (9.18)

This expression for ω̃ may then be substituted into the differential equations
for x and λ, giving the two-point boundary-value problem in Equations (9.16)
and (9.17). The function M has one less degree of differentiability than the data
defining the problem. Thus, the set of 2n differential equations has a right-hand
side of class Ck−1 on x and λ. It follows that (x̃, λ) is of class Ck in t (and
is analytic, in the analytic case); cf. Theorem 1 (p. 57). Thus, from Equation
(9.18), we obtain the same differentiability for ω̃.

Remark 9.2.11 Recall that the proof of kth order differentiability in the Ck

case is very easy: suppose that z is an absolutely continuous function that solves
ż = W (z). Assume that z has been shown, by induction, to be of class Ck in t.
Then, provided that W is of class Ck, W (z(t)) is of class Ck in t, from which
it follows that ż is of class Ck, from which we conclude that z is in fact of class
Ck+1. 2

The next two problems show that Theorem 43 (p. 403) provides the same
characterizations as, respectively, the Linear-Quadratic problem treated in Sec-
tion 8.2, and the least-squares problem covered in Theorem 5 (p. 109), when
costs and constraints are appropriately defined.

∗That is to say, eω is almost everywhere equal to a function that has those properties.
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Exercise 9.2.12 Consider the optimal control problem for a linear time-invar-
iant system ẋ = Ax+ Bu with quadratic costs, that is, q(x, u) = u′Ru+ x′Qx
and p(x) = x′Sx, where R,S,Q are symmetric matrices, Q and S are both
positive semidefinite, and R is positive definite. We assume that there are no
final-state constraints, K ≡ 0. Let P (·) be the solution of the matrix Riccati
differential equation Ṗ = PBR−1B′P − PA − A′P − Q with final condition
P (τ) = S. Consider the solution (x(·), λ(·)) of the two-point boundary value
problem obtained in Theorem 43 (p. 403). Show that λ(t) = 2P (t)x(t) for all
t ∈ [σ, τ ]. (Hint: You may want to make use of Lemmas 8.2.8 and 8.2.9 — with
these, the proof takes only a few lines.) 2

Exercise 9.2.13 Consider the optimal control problem for a linear time-invar-
iant controllable system ẋ = Ax + Bu with quadratic cost q(x, u) = ‖u‖2 and
p(x) ≡ 0. Assume now that, in addition to the initial state x0, a final state xf is
also specified. Write λ(t) = Φ(τ, t)′ν, for some vector ν ∈ Rn, and solve Hu = 0
for ω̃(t) in terms of λ(t). Next substitute this expression into the differential
equation for x̃ and use the form of the solution to solve for ν in terms of x0

and xf . At this point, you will have an explicit expression for ω̃. Compare with
Theorem 5 (p. 109). 2

Example 9.2.14 Consider the system with X = R3, U = R2, and equations:

ẋ1 = u1

ẋ2 = u2

ẋ3 = x1u2 .

(This is an example of a completely controllable system for which no contin-
uous feedback stabilization is possible, and is a small simplification of Exam-
ple 5.9.16; see also Exercises 4.3.14 and 4.3.16. The unsimplified equations
could be used too.) Consider the problem of minimizing the control energy
J (u) =

∫ τ
σ

1
2 ‖u(s))‖

2
ds, with initial and final states fixed (K(x) = x−xf). We

claim that every optimal control must be of the form

u(t) = a

(
cos(αt+ b)
− sin(αt+ b)

)
(9.19)

for some a, b, α ∈ R. (We will not address the converse question of when such a
control is optimal.) To prove this, take any optimal control u(·). If u ≡ 0, then
u is of the form (9.19), with a = 0 and b, α arbitrary. (Observe that the control
u ≡ 0 is, obviously, the unique optimal control in the interval [σ, τ ] that takes
x0 to itself.) So we assume from now on that u(·) = (u1(·).u2(·))′ is optimal
and u 6≡ 0.

We first show that the linearization along the corresponding trajectory x(·) =
φ(·, σ, x0, u) is controllable. We have, along this trajectory, the linearized system
matrices:

A(t) =

 0 0 0
0 0 0

u2(t) 0 0

 and B(t) =

 1 0
0 1
0 x1(t)

 .
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Observe that B(t) happens to be absolutely continuous, in this example, because
x1 is. Let B0 := B and B1 := AB0 − Ḃ0; then,

(B0 , B1) =

 1 0 0 0
0 1 0 0
0 x1(t) u2(t) u1(t)


This matrix cannot have rank < 3 for almost all t ∈ [σ, τ ], because u 6≡ 0. There-
fore, the linearized system described by (A(t), B(t)) is controllable, by Corol-
lary 3.5.18. (The statement of that result requires that A and B be smooth, but
smoothness is not required when only first derivatives are evaluated. The argu-
ment in that case is in fact easy enough that it is worth giving here: if the lin-
earized system would not be controllable, then there would be some vector p 6= 0
such that p′Φ(τ, t)B(t) = 0 for almost all t ∈ [σ, τ ]. Thus, since Φ(τ, t)B(t) is ab-
solutely continuous, also − d

dtp
′Φ(τ, t)B(t) = p′Φ(τ, t)A(t)B(t)−p′Φ(τ, t)Ḃ(t) ≡

0, from which it would follow that q(t)′(B0(t), B1(t)) ≡ 0 for q(t) = Φ(τ, t)′p 6= 0,
so (B0(t), B1(t)) would have rank < 3 for almost all t.)

Since we are dealing with the constraint K(x) = x−xf and the linearization
is controllable, we have linearized output controllability (arguing as in Corol-
lary 9.2.9), and we are in the situation of Proposition 9.2.10. Thus we know
that u(t) is analytic in t, and we have that, for some solution λ of λ̇ = −A(t)′λ,

u1(t) = −λ1(t) and u2(t) = −λ2(t)− λ3(t)x1(t) .

Moreover, λ2 and λ3 are constant; we let λ3(t) ≡ α. Using that λ̇1(t) = −αu2(t),
we have then that

u̇1(t) = αu2(t) and u̇2(t) = −αu1(t) .

Therefore u must have the form (9.19). 2

9.3 Excursion into the Calculus of Variations

Let X be an open subset of Rn. By a curve we will mean a Lipschitz continuous
map x : [σ, τ ] → X. Let

q : X× Rn → R

be a given C2 function. As a Lipschitz continuous x is absolutely continuous
and has an essentially bounded derivative ẋ, the integral

∫ τ
σ
q(x, ẋ) dt is well-

defined for any curve. Suppose also given an interval [σ, τ ] and a point x0 ∈ X.
The following is the classical problem in the calculus of variations:

minimize the integral
∫ τ
σ
q(x, ẋ) dt over all curves x : [σ, τ ] → X with x(σ) = x0.

This is the “endpoint-unconstrained” problem. In addition, one often considers
also the problem in which a terminal constraint

x(τ) = xf ,
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where xf is prespecified, is imposed; we will call this the “endpoint-constrained”
problem.

Example 9.3.1 Consider the problem of finding the (Lipschitz continuous)
y : [0, 1] → R>0 that joins the points (0, 1) and (1, y1) and has the prop-
erty that, when its graph is revolved around the x-axis, there results a sur-
face of minimal area. From elementary calculus, the surface in question has
area A =

∫ 1

0
2πy

√
1 + (dy/dx)2dx. Thus, the minimization problem is the

endpoint-constrained problem for which σ = 0, τ = 1, x0 = 1, xf = y1, and
q(x, ẋ) := x

√
1 + ẋ2 (the constant factor 2π is irrelevant). 2

We call a curve x̃ : [σ, τ ] → X, with x̃(σ) = x0, optimal if
∫ τ
σ
q(ω̃, ˙̃x) dt ≤∫ τ

σ
q(x, ẋ) dt for every x : [a, b] → X with x(σ) = ξ. For the endpoint-constrained

problem, we ask that x̃(τ) = xf and that
∫ τ
σ
q(ω̃, ˙̃x) dt ≤

∫ τ
σ
q(x, ẋ) dt for every

x : [σ, τ ] → X with x(τ) = xf .
Both versions (xf free, or specified,) are (very) special cases of the optimal

control problem treated earlier. Indeed, we consider the system ẋ = u, evolv-
ing on the state space X and with U = Rm. Note that there is a one-to-one
correspondence between curves and controls, since ẋ = u (and an absolutely
continuous function has an essentially bounded derivative if and only if it is
Lipschitz). We introduce the same cost q, thought of as a function q(x, u), and
p ≡ 0. For the endpoint-constrained problem, we let K(x) = x − xf . Admissi-
bility of a control ω amounts to asking that the solution xω remains in X, and
a control ω̃ is optimal for x0 in the sense of optimal control if and only if the
corresponding trajectory x̃ is optimal in the variational sense.

From Theorem 43 (p. 403), then, we may conclude as follows.

Corollary 9.3.2 If a curve x̃ is optimal for the endpoint-unconstrained prob-
lem, then qu(x̃(t), ˙̃x(t)) is absolutely continuous,

d

dt
qu(x̃(t), ˙̃x(t)) = qx(x̃(t), ˙̃x(t)) (9.20)

for almost all t ∈ [σ, τ ], and

qu(x̃(τ), ˙̃x(τ)) = 0 . (9.21)

If the curve x̃ is optimal for the endpoint-constrained problem, then the function
qu(x̃(t), ˙̃x(t)) is absolutely continuous, and Equation (9.20) holds for almost all
t.

Proof. Take first the unconstrained case (K ≡ 0, so we can take ν0 = 1).
Theorem 43 (p. 403) says that there is an absolutely continuous solution of
λ̇ = (−qx)′ (note that A(t) ≡ 0), with boundary condition λ(τ) = 0, such that
Hu(x̃(t), ˙̃x(t), 1, λ(t)) ≡ 0. Here we have H(x, u, 1, η) := q(x, u)+η′u, so Hu ≡ 0
means that λ = (−qu)′ along x̃. Therefore, (d/dt)(qu) = −λ̇′ = qx, as claimed,
and the boundary condition λ(τ) = 0 gives qu = 0 at the endpoint.
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Now consider the endpoint-constrained problem, that is, K(x) = x − xf .
The linearization of ẋ = u along any trajectory is again ẋ = u and is therefore
controllable, so that Corollary 9.2.9 applies. The same equation then results.

The differential equation (9.20)

d

dt
qu = qx ,

satisfied along optimal curves, is called the Euler or Euler-Lagrange equation
associated to the variational problem. If x̃ is of class C2, then it solves the
equivalent second-order differential equation:

quuẍ + quxẋ − qx = 0 . (9.22)

Remark 9.3.3 Observe that in the endpoint-unconstrained case one has the
boundary conditions x(σ) = x0 and (qu)|t=τ = 0. In the endpoint-constrained
case, instead, the boundary conditions are x(σ) = x0 and x(τ) = xf . Thus
the “right” number of boundary conditions are imposed, and one may expect,
under appropriate technical assumptions, to have only a discrete number of
solutions. The Euler-Lagrange equation is merely a necessary condition that
must be satisfied by an optimal curve. If an optimal curve is known to exist,
and if the Euler-Lagrange equation (and boundary conditions) lead to a unique
solution, then this solution must be the optimal one. We do not treat here
existence questions; there is a vast literature on the subject. 2

Example 9.3.4 Consider the problem of minimizing
∫ 1

0
ẋ2 + x2 dt, x(0) = 0,

x(1) = 1. That is, q(x, u) = u2 + x2. We have qu = 2u, qx = 2x. So the
Euler-Lagrange equation, which must be satisfied for any possible minimizing
x̃, is dẋ/dt = x. This means that ˙̃x must be absolutely continuous and (a.e.)
ẍ = x. So x̃(t) = aet + be−t, for some constants a, b. The boundary conditions
give that x̃(t) = 1

sinh 1 sinh t. 2

Exercise 9.3.5 For each of the following problems, solve the Euler-Lagrange
equation (with appropriate boundary conditions).

1.
∫ π
0
x2 − ẋ2 dt, x(0) = x(π) = 0.

2.
∫ π
0

4ẋ2 + 2xẋ− x2 dt, x(0) = 2, x(π) = 0.

3.
∫ 1

0
cos ẋ dt, x(0) = 0. (Find only solutions x(·) that are continuously

differentiable.)

4.
∫ 1

0

√
1 + ẋ2 dt, x(0) = a, x(1) = b, where a and b are any two constants.

In the last problem, after you have solved it, explain why the solution should
have been obvious. 2
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Note that, in Example 9.3.4, the equation ẍ = x tells us that ¨̃x must be
absolutely continuous, so a third derivative exists almost everywhere, and, with
an inductive argument, we obtain that all derivatives must exist. Of course,
differentiability is also clear once the solution in terms of sinh is obtained, and
this solution makes it clear that x̃ is even a real-analytic function of time. This
is a fairly general fact, which we discuss next.

We restrict our attention, for simplicity of exposition, to the one-dimensional
case, n = 1.

The variational problem is said to be regular if

quu(x, u) > 0 for all (x, u) ∈ X× R .

For instance, in Example 9.3.4, q(x, u) = u2 + x2, so quu = 2, and regularity
holds.

Lemma 9.3.6 Suppose that the problem is regular and that q ∈ Ck, for some
k ∈ {2, ...,∞}. Then every solution of the Euler-Lagrange equation, and hence
every optimal curve, is (at least) of class Ck on t ∈ (σ, τ). If q is real-analytic,
then every such solution is analytic as well.

Proof. Consider the following map:

α : X× R → X× R : (x, u) 7→ (x, qu(x, u)) .

At each point, the Jacobian of α is(
1 0
qux quu

)
,

which has full rank = 2. Therefore, for each two pairs (x0, u0) ∈ X × R and
(x0, p0) ∈ X× R such that α(x0, u0) = (x0, p0) there is some mapping γ : D →
X × R, defined on some open neighborhood D of (x0, p0), with the properties
that γ(x0, p0) = (x0, u0) and

α(γ(x, p)) = (x, p)

for all (x, p) ∈ D (Inverse Function Theorem). Moreover, γ has the same degree
of regularity as qu, so γ is of class Ck−1 (and is analytic if q is analytic). If we
write γ = (γ1, γ2), the map γ2 : D → R is so that

qu(x, γ2(x, p)) = p

for each (x, p) ∈ D. Furthermore, since for each fixed x ∈ X, the map u 7→
qu(x, u) is one-to-one (because its derivative is everywhere positive), we have
that, for each (x, p) ∈ D, u = γ2(x, p) is the only solution in R (not merely in a
neighborhood of u0) of the equation qu(x, u) = p.

Now let x = x̃ be any solution of the Euler-Lagrange equation. Pick any
t0 ∈ (σ, τ). Write

p(t) = qu(x(t), ẋ(t)) (9.23)
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for all t, and let x0 := x(t0), u0 := ẋ(t0), and p0 := p(t0). Let γ be a function
as above, defined on some neighborhood D of (x(t0), p(t0)). Since both x and p
are (absolutely) continuous (in the case of p, this is asserted in Corollary 9.3.2),
there is some neighborhood I of t0 so that (x(t), p(t)) ∈ D whenever t ∈ I.
Therefore, for all t ∈ I, we can solve Equation (9.23) for ẋ(t) using γ2:

ẋ(t) = γ2(x(t), p(t)) . (9.24)

So we have that (x(t), p(t)) is a solution, on the interval I, of the system of
differential equations

ẋ = γ2(x, p)
ṗ = qx(x, γ2(x, p)) ,

(the second one is the Euler-Lagrange equation). Thus, (x, p) has one more
degree of regularity than γ2 and qu, namely k continuous derivatives (and is
analytic, in the analytic case); cf. Propositions C.3.11 and C.3.12.

Corollary 9.3.7 For a regular problem, every solution of the Euler-Lagrange
equation, and hence every optimal curve, satisfies

q(x(t), ẋ(t)) − ẋ(t) qu(x(t), ẋ(t)) ≡ c (9.25)

for some constant c.

Proof. We simply compute d
dt (q − ẋqu) = −ẋ (quuẍ+ quxẋ− qx), and remark

that this vanishes, because of Equation (9.22).

Remark 9.3.8 We introduced two notions of regularity, one for scalar varia-
tional problems and another one for optimal control problems with quadratic
costs (cf. Proposition 9.2.10). It is possible to provide a common generalization
for both results, in terms of the Hessian with respect to u of the cost function
q and a one-to-one condition on its gradient. However, the two cases that we
presented are the ones most commonly used, and are the easiest to check. 2

Example 9.3.9 We now study the Euler-Lagrange equation for the problem
of minimal surfaces of revolution (cf. Example 9.3.1). That is, we consider the
problem, on X = R>0,∫ 1

0

x
√

1 + ẋ2 dt , x(0) = 1 , x(1) = y1 .

Let x be a solution of the Euler-Lagrange equation. Since

quu =
x

(1 + u2)3/2
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is real-analytic and positive, we have a regular problem, and x(·) is real-analytic.
Equation (9.25) gives

x = c
√

1 + ẋ2 ,

for some constant c which, because x(0) = 1, must satisfy 0 < c ≤ 1. From

ẋ2 =
(x
c

)2

− 1 (9.26)

it follows that
ẋẍ =

1
c2
xẋ .

We will assume that it is not the case that ẋ ≡ 0 (which can only happen if
x ≡ c, and thus y1 = 1). So, by analyticity, there is some nonempty open
interval where

ẍ =
1
c2
x

and hence there are constants α1, β1 so that

x(t) = α1 cosh (t/c) + β1 sinh (t/c)

on that interval. By the principle of analytic continuation, x must have this
form on the entire interval. The initial condition x(0) = 1 implies that α1 = 1,
and (9.26) evaluated at t = 0 gives (β1/c)2 = (1/c)2 − 1 and hence β1 =
±
√

1− c2 ∈ (−1, 1). Pick d ∈ R so that

tanh d = β1 ,

which implies that cosh d = 1/c. Then (using cosh(z + y) = cosh z cosh y +
sinh z sinh y),

x(t) =
cosh (t cosh d+ d)

cosh d
. (9.27)

Every minimizing curve must be of this form.
We must, however, meet the second boundary condition: x(1) = y1. This

can be done if and only if one can solve

y1 =
cosh (cosh d+ d)

cosh d

for d, which requires y1 to be sufficiently large (approximately > 0.587); in gen-
eral, there may be none, one, or two solutions. (For instance, if y1 = cosh 1,
the solutions are d = 0 and d ≈ −2.3. The integrals

∫ 1

0
x
√

1 + ẋ2dt are, re-
spectively, approximately 1.407 and 1.764. So if a minimizer exists, it must be
x(t) = cosh t. It turns out, but this is harder to prove, that this function is in-
deed the unique global minimizer. Incidentally, the truncated cone obtained for
the straight line x(t) = 1−(1−cosh 1)t, would give an integral of approximately
1.447.)
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Establishing minimality is nontrivial, but is well-studied in the literature.
For small y1, or more generally, for minimization on a large interval (instead of
[0, 1]), it is physically intuitive that the true minimal-area surface will consist
of two disks (at the endpoints), connected by a line. This is not representable
as a graph of a function, which means that there are no minimizing extremals
of the type we have considered. (In control-theoretic terms, the derivatives are
“impulses” and one is led into the area of “impulsive controls”.) 2

9.4 Gradient-Based Numerical Methods

We now present some remarks concerning numerical approaches to the mini-
mization of J (ω). In order to concentrate on the basic ideas, we assume that
there are no endpoint constraints (no K) and also that q ≡ 0 (though this last
simplification can easily be overcome by a system extension, as done in the proof
of Theorem 43). Thus J (ω) = p(xω(τ)), and we assume that p : X → R is C1.
We still assume that U is open and f is differentiable.

Classical iterative techniques start with a control ω1 : [σ, τ ] → U, and
attempt to improve recursively on this initial control, obtaining a sequence
ω1, ω2, . . . so that J (ω1) > J (ω2) > . . .. Of course, just as with any numerical
procedure of this type, it may well be impossible to improve after a certain ωk,
and, even if improvements are always possible, there is no guarantee that the
sequence J (ωk) will converge to the infimum value of J . Here, we concentrate
on the individual recursion step. (In practice, reinitialization is used in order to
restart from another ω1 an iteration which fails to decrease fast enough.)

Suppose, then, that at a certain stage we have a candidate control ω̃ ∈
LU(σ, τ), which is admissible for the initial state x0. We attempt to compute a
perturbation µ ∈ L∞m (σ, τ) with the property that

J (ω̃ + hµ) < J (ω̃) (9.28)

for a sufficiently small “step size” h > 0. Let

β : (−h0, h0) → Rn : h 7→ φ(τ, σ, x0, ω̃ + hµ) (9.29)

be the map considered in Corollary 9.1.1. Then

J (ω̃ + hµ)− J (ω̃) = p(β(h))− p(β(0)) = (p ◦ β)∗(0)h + o(h) ,

will be negative for all small enough h > 0, provided that µ is chosen such that
(p ◦ β)∗(0) < 0. By the chain rule and Equation (9.7), this last derivative is:

p∗(x̃(τ))
∫ τ

σ

Φ(τ, s)B(s)µ(s) ds , (9.30)

where A, B, and Φ are as in Corollary 9.1.1. Thus the objective has been
reduced to:
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find an input µ such that (9.30) is negative.

If this goal can be met, then, for all small h > 0, ω̃ + hµ will be an admissible
control in LU(σ, τ) for the same initial state x0, and thus we will have obtained
a new control which leads to a smaller cost. The process can then be repeated,
after redefining ω̃ := ω̃+ hµ. (Note that, however, in practice, once that such a
µ has been found, one first performs a “line search” over h, a scalar optimization
over the parameter h, in order to minimize J (ω̃+hµ), instead of simply taking
any small enough h.)

Of course, it may be impossible to make (9.30) negative, for instance because
p∗(x̃(τ)) = 0. So we will assume that

p∗(x̃(τ)) 6= 0 .

This is often a reasonable assumption: for instance, if p(x) = ‖x‖2 then this
property will only fail if x = 0, but then, the minimum has already been found.
Furthermore, we assume from now on that the linearization along the trajectory
(x̃, ω̃) is controllable as a time-varying linear system, that is, that the reacha-
bility map for this linearized system,

L : L∞m (σ, τ) → Rn : µ 7→
∫ τ

σ

Φ(τ, s)B(s)µ(s) ds

is onto. Equivalently (cf. Theorem 5 (p. 109)),

W (σ, τ) =
∫ τ

σ

Φ(τ, s)B(s)B(s)′ Φ(τ, s)′ ds

is a positive definite matrix. When this happens, we say that the input ω̃ is
nonsingular for the state x0.

Because of controllability, there exist inputs µ such that

Lµ = −p∗(x̃(τ))′ (9.31)

and any such input helps meet the goal of making (9.30) negative (namely,
the value becomes −‖p∗(x̃(τ))‖2). There are infinitely many solutions µ to
Equation (9.31). One natural choice is the least squares solution, that is, the
unique solution of minimum L2 norm,

µ := −L#p∗(x̃(τ))′ (9.32)

where L# denotes the pseudoinverse operator discussed in Theorem 5 (p. 109).
This gives the formula

µ(t) = −B(t)′ Φ(τ, t)′W (σ, τ)−1 p∗(x̃(τ))′ . (9.33)

When p(x) = ‖x‖2, this choice of µ amounts to a Newton-method iteration for
solving p(x) = 0.
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Another natural choice for the perturbation µ is:

µ := −L∗p∗(x̃(τ))′ (9.34)

where L∗ is the adjoint of L. This gives the formula

µ(t) = −B(t)′ Φ(τ, t)′ p∗(x̃(τ))′ (9.35)

which has the advantage that no matrix inversion is required. With this choice,
we have that Lµ = −LL∗p∗(x̃(τ))′ = −W (σ, τ)p∗(x̃(τ))′. Thus, the expression
in (9.30) becomes

p∗(x̃(τ))
∫ τ

σ

Φ(τ, s)B(s)µ(s) ds = −p∗(x̃(τ))W (σ, τ) p∗(x̃(τ))′ ,

which is negative (because W (σ, τ) is positive definite), so indeed we made a
good choice of perturbation µ. This is, basically, a steepest descent method for
minimizing J .

Exercise 9.4.1 The matrix W (σ, τ) =
∫ τ
σ

Φ(τ, s)B(s)B(s)′Φ(τ, s)′ ds appears
in the computation of the perturbation given by formula (9.33). It would seem
that in order to compute W (σ, τ), one must first solve the differential equation
ẋ = f(x, ω̃), then solve for the fundamental solution Φ of the variational equa-
tion, and, finally, integrate numerically using the formula for W (σ, τ). Such an
approach involves large amounts of storage (values of x̃ to be used in the fun-
damental equation, as well as in B(t), values of Φ, etc). There is an alternative
way of computing W (σ, τ), in “one pass”, however, as follows. Let

A(x, u) = fx(x, u) and B(x, u) = fu(x, u) ,

seen as functions from X× U into Rn×n and Rn×m respectively. Now consider
the following system of n + n2 differential equations for x : [σ, τ ] → X and
Q : [σ, τ ] → Rn×n:

ẋ = f(x, ω̃)
Q̇ = A(x, ω̃)Q+QA(x, ω̃)′ +B(x, ω̃)B(x, ω̃)′ .

Show that the solution of this equation with initial conditions x(σ) = x0 and
Q(σ) = 0 is so that Q(τ) = W (σ, τ). 2

Exercise 9.4.2 Consider the system with X = R3, U = R2, discussed in Ex-
ample 9.2.14. Take the control ω̃ ∈ LU(0, 2π) whose coordinates are

u1(t) ≡ 0 , u2(t) = sin(t) .

Since ω̃ 6≡ 0, it is nonsingular for any initial state x0.
(a) Compute a formula for the pseudoinverse operator L#, when the control ω̃
is used, and x0 is arbitrary.
(b) Provide a formula for the basic recursive “Newton” step in (9.33), when
p(x) = ‖x‖2, and compute two iterates, starting from any nonzero state of your
choice. (You may use h = 1.) 2
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9.5 Constrained Controls: Minimum Principle

Theorem 43 (p. 403) deals exclusively with problems in which the optimal con-
trol takes values in the interior of the constraint set. When the input-value set
is not open, however, it may provide no useful information.

As an illustration, consider the problem of minimizing x(1), for the sys-
tem ẋ = u with U = [−1, 1], when the initial state is x(0) = 0. Obviously,
the optimum is attained with ω̃ ≡ −1, a control which takes boundary val-
ues. If we apply the Theorem, we obtain, letting H(x, u, 1, η) = ηu (note
that we may take ν0 = 1, since there are no constraints on final states), that
Hu(x̃(t), ω̃(t), 1, λ(t)) = λ(t) ≡ 1 (since λ̇ = 0 and λ(1) = 1); thus it is impossi-
ble to satisfy Equation (9.14). Of course, the Theorem could not be applied to
begin with, since U is not open in this example. However, this example already
serves to indicate a possible alternative. The condition Hu = 0 is necessary for
H to have a local extremum with respect to u. If we look at H itself, not its
derivative, we have that, along trajectories, H(x̃(t), ω̃(t), 1, λ(t)) ≡ ω̃(t). Thus
the true solution ω̃ ≡ −1 is obtained if, instead of setting derivatives to zero,
we ask that H(x̃(t), u, 1, λ(t)) should be minimal, among all u ∈ U. This is
what the Minimum (or “Maximum”, depending on sign conventions) Principle
asserts.

In this section, we do not need to assume that f : X×U → Rn is continuously
differentiable nor that the cost functions are differentiable in u. We assume only
that f : X × U → X is C1 in x, and that f , as well as its Jacobian matrix of
partial derivatives fx, are continuous on x, u (here U is a metric space and X an
open subset of some Euclidean space). Similarly, the three functions

q : X× U → R , p : X → R , K : X → Rr

are assumed to be C1 on x and continuous on u. The Hamiltonian is defined
just as before,

H : X× U× R× Rn → R : (x, u, η0, η) 7→ η0q(x, u) + η′f(x, u) .

We only prove a result in the (much) simpler case in which the final state is free
(no final state constraints given by “K”), in which case η0 will evaluate to 1, so
one can also write H = q(x, u) + η′f(x, u).

Theorem 44 (Minimum Principle) Assume that ω̃ ∈ LU(σ, τ) is optimal
for x0. Then, the solution λ : [σ, τ ] → Rn of the final-value problem

λ̇(t) = −qx(x̃(t), ω̃(t))′ − A(t)′λ(t) , λ(τ) =
(
p∗(x̃(τ))

)′ (9.36)

is so that
H(x̃(t), ω̃(t), 1, λ(t)) = min

u∈U
H(x̃(t), u, 1, λ(t)) (9.37)

for almost all t ∈ [σ, τ ].
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Proof. Suppose that ω̃ is optimal, and let x̃(·), A(·), and Φ be as in the proof
of Theorem 43. Just as in that proof, we first establish the case q ≡ 0 and then
derive the general case from it by considering an extended system.

Pick any instant t0 ∈ (σ, τ) such that ˙̃x(t0) exists and ˙̃x(t0) = f(x̃(t0), ω̃(t0));
the set of such t0’s has a complement of zero measure. We will show that
Equation (9.37) holds at t0. Take any element u ∈ U; we must show that

H(x̃(t0), ω̃(t0), 1, λ(t0)) ≤ H(x̃(t0), u, 1, λ(t0)) . (9.38)

For each ε > 0 small enough, we may consider the control ωε defined as
follows:

ωε :=
{
ω̃(t) if t 6∈ [t0 − ε, t0]
u if t ∈ [t0 − ε, t0]

(this is often called a “needle variation” of ω̃ around t = t0). The control ωε
is admissible for x0 provided that ε is small enough. Indeed, by continuity of
φ, there are two neighborhoods O0 and O of x̃(t0), and some ε0 > 0, with the
following properties: (a) if x ∈ O then the restriction of ω̃ to [t0, τ ] is admissible
for x, and (b) if x ∈ O0 then the constant control ω ≡ u on any interval [r, r+ε0]
of length ε0 is admissible for x, and φ(t, r, x, ω) ∈ O for every t ∈ [r, r+ ε0]. We
may, of course, pick O to have compact closure, so that f(x, u) and f(x, ω̃(t))
are bounded whenever x ∈ O and t ∈ [σ, τ ].

Now take any ε ≤ ε0 such that x̃(t0− ε) ∈ O0. It follows that one may solve
with constant control ω ≡ u starting from x̃(t0 − ε) at time t = t0 − ε, and at
time t = t0 the resulting state is in O, so the “tail” of ω̃ is admissible after that
instant. The complete trajectory obtained by concatenating these solutions is
then a solution on the entire interval [σ, τ ].

We denote xε := xωε , that is, xε(t) = φ(t, σ, x0, ωε) for all t ∈ [σ, τ ]. Next
we compare xε(t0) and x̃(t0). We have

xε(t0)−x̃(t0 − ε) =
∫ t0

t0−ε
f(xε(s), u) ds

=
∫ t0

t0−ε
[f(xε(s), u)− f(x̃(t0), u)] ds +

∫ t0

t0−ε
f(x̃(t0), u) ds

= δ1(ε) + ε f(x̃(t0), u)

for some function δ1 which is o(ε) as ε↘0. (Such a δ1 can be obtained as follows.
Let M be an upper bound on the values of ‖f(x, u)‖ and ‖f(x, ω(t))‖ for x ∈ O.
Then, for each s ∈ [t0−ε, t0], ‖xε(s)− x̃(t0 − ε)‖ = ‖xε(s)− xε(t0 − ε)‖ ≤ εM ,
and also ‖x̃(t0)− x̃(t0 − ε)‖ ≤ εM , so ‖xε(s)− x̃(t0)‖ ≤ 2εM . Now let c be a
Lipschitz constant for f(·, u) on O; it follows that we have a bound as above
with δ(ε) := 2cε2M .)

On the other hand, because we took a point t0 where the differential equation
holds (actually, only differentiability from the left is required), we have that

x̃(t0)− x̃(t0 − ε) = ε f(x̃(t0), ω̃(t0)) + δ2(ε)
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where δ2 is also o(ε) as ε↘0. Thus

xε(t0) − x̃(t0) = ε [f(x̃(t0), u)− f(x̃(t0), ω̃(t0))] + δ(ε) (9.39)

where δ = δ1 − δ2 is o(ε).
Consider the map Θ : x 7→ φ(τ, t0, x, ν), where ν is the control ω̃ restricted

to the interval [t0, τ ]; Θ is defined on a neighborhood of x0
0 := x̃(t0), and hence

is defined for xε(t0) when ε is small enough. The first part of Corollary 9.1.1,
applied on the interval [t0, τ ], with respect to the input ν, gives that

Θ(x) = Θ(x0
0) + Θ∗(x0

0) (x− x0
0) + g(

∥∥x− x0
0

∥∥)
= Θ(x0

0) + Φ(τ, t0) (x− x0
0) + g(

∥∥x− x0
0

∥∥) ,
for some function g which is o(r) as r → 0. We substitute x = xε(t0) into this
expression, and use Equation (9.39) as well as the equalities Θ(xε(t0)) = xε(τ)
and Θ(x0

0) = x̃(τ), to obtain as follows:

xε(τ) = x̃(τ) + εΦ(τ, t0) [f(x̃(t0), u)− f(x̃(t0), ω̃(t0))] + o(ε) .

Finally, since p is differentiable, we may also write

p(xε(τ)) = p(x̃(τ)) + p∗(x̃(τ)) (xε(τ)− x̃(τ)) + o(ε)
= p(x̃(τ)) + ε p∗(x̃(τ))Φ(τ, t0) [f(x̃(t0), u)− f(x̃(t0), ω̃(t0))] + o(ε).

Since, by optimality, p(x̃(τ)) = J (ω̃) ≤ J (ωε) = p(xε(τ)), we have that

ε p∗(x̃(τ))Φ(τ, t0) [f(x̃(t0), u)− f(x̃(t0), ω̃(t0))] + o(ε) ≥ 0

for all ε > 0 sufficiently small, so taking ε↘0 we obtain that

p∗(x̃(τ))Φ(τ, t0) [f(x̃(t0), u)− f(x̃(t0), ω̃(t0))] ≥ 0 .

Let λ be the solution of λ̇(t) = −A(t)′λ(t) with final value λ(τ) = (p∗(x̃(τ)))′.
We have proved that

λ(t0)′ [f(x̃(t0), u)− f(x̃(t0), ω̃(t0))] ≥ 0 .

Recall that H(x, v, 1, η) = η′f(x, v) for all v ∈ U. Thus inequality (9.38) indeed
holds.

Now the case of arbitrary q is obtained exactly as in the proof of Theorem 43.
There are no changes in the proof until the last sentence, which is now replaced
by the equality (with the obvious notations):

H#(x̃#(t), u, 1, λ#(t)) = H(x̃(t), u, 1, λ(t))

for all t; the fact that ω̃(t) minimizes H#(x̃#(t), u, 1, λ#(t)) over u ∈ U gives
the desired conclusion.
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9.6 Notes and Comments

The material on optimization and the Calculus of Variations is classical; see,
for instance, [48], [134], [151], [189], [247], [248], [402], [442]. Path minimization
problems were posed and solved at least since classical times (Dido’s problem, to
find a curve of a given length which encloses the largest possible area, appears
in Virgil’s writings). However, the origins of the field may be traced to the
challenge issued “to all mathematicians,” in 1696, by Johann Bernoulli, to solve
the brachystochrone problem: “If in a vertical plane two points A and B are
given, then it is required to specify the orbit AMB of the movable point M, along
which it, starting from A, and under the influence of its own weight, arrives at B
in the shortest possible time.” This problem, which was soon afterwards solved
by Newton, Leibniz, and many other mathematicians of the time (including
Johann and his brother Jakob), gave rise to the systematic study of the Calculus
of Variations. The article [393] explains the historical development, taking the
more general point of view afforded by optimal control theory.

A good reference for the material in Section 9.4 is [78]. Under mild condi-
tions, it is possible to prove that generic controls are nonsingular for every state
x0; see [373] and [374], and the related papers [99] and [100].

Section 9.5 merely skims the surface of the subject of the Minimum (or
Maximum) Principle. In particular, we did not provide a treatment of the more
general case in which final-state constraints K(x) = 0 are present. However, the
form of the result is easy to guess, and we state it precisely here; see [134] for a
proof. Suppose that K : X → Rr is also of class C1. Assume that ω̃ ∈ LU(σ, τ)
is optimal for x0. Then, there exist a scalar ν0 ∈ {0, 1} and a vector ν ∈ Rr, not
both zero, so that the solution λ : [σ, τ ] → Rn of the final-value problem λ̇(t) =
−ν0qx(x̃(t), ω̃(t))′−A(t)′λ(t) with λ(τ) = (ν0p∗(x̃(τ))+ν′K∗(x̃(τ)))′ (cf. (9.13))
is so that H(x̃(t), ω̃(t), ν0, λ(t)) = minu∈UH(x̃(t), u, ν0, λ(t)) for almost all t ∈
[σ, τ ].

It is also possible to give even more general results, for instance, to deal
with mixed initial/final state constraints, as well as non-fixed terminal time and
time-optimal problems. For the latter, one must consider variations in which
a piece of the control is deleted: such shorter controls cannot be optimal, and
the directions generated in this manner lead to an appropriate Hamiltonian.
(The only time-optimal problem considered in this text, cf. Chapter 10, is for
linear systems, and can be developed in a simple and self-contained fashion
using elementary techniques from convex analysis.)

Several extensions of the Maximum Principle have been developed during the
past few years. These provide “high order” tests for optimality, and in addition
permit the study of far more general classes of systems, including those in which
the dynamics does not depend in a Lipschitz continuous manner (or is even
discontinuous) on states. A promising direction, in [390], develops an approach
to generalized differentials (“multidifferentials”), and proposes their use as a
basis for a general nonsmooth version of the maximum principle; references to
the extensive literature on the subject are also found there.
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Chapter 10

Optimality: Minimum-Time
for Linear Systems

We consider time-invariant continuous-time linear systems

ẋ = Ax+Bu (10.1)

with the control-value set U being a compact convex subset of Rm. As usual,
a control is a measurable map ω : [0, T ] → Rm so that ω(t) ∈ U for almost all
t ∈ [0, T ]. We denote by L∞m (0, T ) the set consisting of measurable essentially
bounded maps from [0, T ] into Rm (whenm = 1, just L∞(0, T )) and view the set
of all controls as a subset LU(0, T ) ⊆ L∞m (0, T ). In this chapter, we write simply
LU instead of L∞U , because, U being compact, all maps into U are essentially
bounded.

For each fixed x0 ∈ Rn and T > 0,

αx0,T : L∞m (0, T ) → Rn : ω 7→ eTAx0 +
∫ T

0

e(T−s)ABω(s) ds

is the end-point map or reachability map that sends an input ω into the state
reached from x0 at time T if this input is applied. That is, αx0,T (x0) = x(T ),
where x(·) is the solution of the initial value problem ẋ(t) = Ax(t) + Bω(t),
x(0) = x0. We denote the reachable set in time exactly T from state x0 by

RT (x0) = αx0,T (LU(0, T ))

and let R(x0) :=
⋃
T≥0RT (x0). For any two fixed x0 and xf ∈ R(x0), we wish

to study this problem:

Find a control which takes state x0 to state xf in minimal time.

The study of time-optimal problems for linear systems can be pursued as
a simple application of basic facts from convex analysis, and we do so here.

423
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We restrict attention to the time-invariant case merely in order to make the
presentation as clear as possible. However, it is not difficult to generalize the
material here, with similar proofs, to time-varying linear systems.

10.1 Existence Results

Existence of optimal controls will be easy once we establish the following fact.

Theorem 45 For each x0 ∈ Rn and T ≥ 0, the set RT (x0) is compact and
convex.

Since αx0,T is an affine map, and LU(0, T ) is convex (because U is), it follows
that RT (x0) is convex. The compactness part of Theorem 45 can be proved by
first defining a topology that makes LU(0, T ) compact and then using that αx0,T

is continuous when this topology is used for LU(0, T ). Since the continuous
image of a compact set is compact, this will show compactness of RT (x0). We
will follow this idea, but, in order to make the presentation as elementary as
possible, develop everything in terms of convergence of sequences.

Weak Convergence

Definition 10.1.1 The sequence {ωk} of elements in L∞m (0, T ) is said to con-
verge weakly to ω ∈ L∞m (0, T ), denoted ωk

w→ω, if:∫ T

0

ϕ(s)′ωk(s) ds →
∫ T

0

ϕ(s)′ω(s) ds as k →∞ ,

for each integrable function ϕ : [0, T ] → Rm.† 2

We write
‖ω‖∞ := sup

t∈[0,T ]

‖ω(t)‖

(where ‖ω(t)‖ means Euclidean norm in Rm, and the supremum is interpreted
as essential supremum); this is the infimum of the numbers η with the property
that ‖ω(t)‖ ≤ η for almost all t ∈ [0, T ]. When we say that a sequence {ωk} is
bounded, we mean that there is some η so that ‖ωk‖∞ ≤ η for all k. We prove
later the following result.

Lemma 10.1.2 Every bounded sequence {ωk} in L∞m (0, T ) has some weakly
convergent subsequence.

Lemma 10.1.3 Assume that ω ∈ L∞m (0, T ) and the sequence {ωk} in LU(0, T )
are such that, for each interval J ⊆ [0, T ],∫

J

ωk(s) ds →
∫
J

ω(s) ds as k →∞ .

Then, ω ∈ LU(0, T ).
†Prime indicates transpose.
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Proof. Let L be the intersection of the sets of Lebesgue points in (0, T ) for the
coordinates of ω. Then 1

h

∫ t+h
t

‖ω(s)− ω(t)‖ ds→ 0 as h↘0, for each t ∈ L, so

lim
h↘0

1
h

∫ t+h

t

ω(s) ds = ω(t) ∀ t ∈ L . (10.2)

Pick any t ∈ L. We will show that ω(t) ∈ U. Since the complement [0, T ] \ L
has measure zero, then ω(t) ∈ U for a.a. t.

Choose h > 0. Applying the hypothesis to the interval [t, t+h], and dividing
by the constant h, we have that

qk,h :=
1
h

∫ t+h

t

ωk(s) ds →
1
h

∫ t+h

t

ω(s) ds

as k →∞. If we show that
qk,h ∈ U , (10.3)

then this limit shows (because U is closed) that

1
h

∫ t+h

t

ω(s) ds ∈ U .

As this holds for any h, taking limit as h↘0 and using Equation (10.2), gives
ω(t) ∈ U, as wanted.

We now prove (10.3). Since U is a closed convex set, we can represent U as
an intersection of closed half-spaces, U =

⋂
r∈R{v ∈ Rm | λr ′v ≤ ρr}, where R

is some (in general, infinite) index set. Pick any r ∈ R. Then

λr
′qk,h = λr

′

(
1
h

∫ t+h

t

ωk(s)ds

)
=

1
h

∫ t+h

t

λr
′ωk(s)ds ≤

1
h

∫ t+h

t

ρrds = ρr .

Therefore qk,h ∈ U.

Corollary 10.1.4 If ωk
w→ω and ωk ∈ LU(0, T ) for all k, then ω ∈ LU(0, T ).

Proof. It is enough to show that the hypothesis of Lemma 10.1.3 holds, that
is, that ∫

J

ωk,i(s) ds →
∫
J

ωi(s) ds (10.4)

for each interval J and for each coordinate i = 1, . . . ,m. Fix any such J and
i. Consider the function ϕ(s) = IJ(s)ei, where IJ is the characteristic function
of J and ei is the ith canonical basis vector in Rm. Since

∫ T
0
ϕi,J(s)′ωkds =∫

J
ωk,i(s)ds, and similarly for ω, the convergence (10.4) holds.

Together with Lemma 10.1.2, we will then have:
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Proposition 10.1.5 Every sequence {ωk} of elements in LU(0, T ) has a sub-
sequence which is weakly convergent to some ω ∈ LU(0, T ). 2

In order to prove Lemma 10.1.2, we first provide a simple characterization
of weak convergence of bounded sequences.

Lemma 10.1.6 Let {ωk} be a bounded sequence in L∞(0, T ), and let ω ∈
L∞(0, T ). Suppose that, for each interval J ⊆ [0, T ],∫

J

ωk(s) ds →
∫
J

ω(s) ds as k →∞ .

Then, ωk
w→ω.

Proof. Let ω and {ωk} be as in the statement. Pick a number η so that
‖ωk‖∞ ≤ η for all k. Applying Lemma 10.1.3 with U = [−η, η] ⊆ R, we have
that also ‖ω‖∞ ≤ η. We claim that∫

S

ωk(s) ds →
∫
S

ω(s) ds

for every measurable subset S ⊆ [0, T ]. To see this, pick any ε > 0, and for this
ε pick a finite set of disjoint intervals I1, . . . , I` so that the set Q = I1

⋃
. . .
⋃
I`

satisfies that the symmetric difference Q∆S has measure

meas (Q∆S) <
ε

3η
.

(One can always find such intervals: first cover S by an open set Q0 so that
meas (Q0\S) < ε/2; sinceQ is a union of countably many disjoint open intervals,
it has a subset Q as above so that meas (Q0 \Q) < ε/2.) Pick now a k0 so that

k > k0 ⇒

∣∣∣∣∣
∫
Ij

ωk(s) ds−
∫
Ij

ω(s) ds

∣∣∣∣∣ < ε

3`
, j = 1, . . . , ` .

Then, for each k > k0,
∣∣∫
S
ωk(s) ds−

∫
S
ω(s) ds

∣∣ is bounded by∣∣∣∣∫
Q

ωk(s) ds−
∫
S

ωk(s) ds
∣∣∣∣ +

∣∣∣∣∫
Q

ω(s) ds−
∫
S

ω(s) ds
∣∣∣∣ +

∑̀
i=1

∣∣∣∣∣
∫
Ij

ωk(s) ds−
∫
Ij

ω(s) ds

∣∣∣∣∣ ,
which in turn bounded by η ε

3η+η ε
3η+` ε3` = ε. As ε was arbitrary,

∫
S
ωk(s) ds →∫

S
ω(s) ds.
Next, we claim that∫ T

0

ϕ(s)ωk(s) ds →
∫ T

0

ϕ(s)ω(s) ds (10.5)
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for every simple function ϕ =
∑p
i=1 ciISi

. Indeed,∫ T

0

ϕ(s)ωk(s) ds =
p∑
i=1

ci

∫
Si

ωk(s) ds →
p∑
i=1

ci

∫
Si

ω(s) ds =
∫ T

0

ϕ(s)ω(s) ds .

Finally, we claim that Equation (10.5) holds for every integrable function
ϕ : [0, T ] → R. To see this, pick any ε > 0; there is then a simple func-
tion θ so that

∫ T
0
|θ(s)− ϕ(s)| ds < ε/(4η). (First find a bounded ϕ̄ that ap-

proximates ϕ in L1, and then approximate ϕ̄ uniformly by a simple function.)
Pick k0 so that, for all k > k0,

∣∣∣∫ T0 (θ(s)ωk(s)− θ(s)ω(s)) ds
∣∣∣ < ε/2. Then∣∣∣∫ T0 ϕ(s)ωk(s)−

∫ T
0
ϕ(s)ω(s) ds

∣∣∣ is bounded by∣∣∣∣∣
∫ T

0

(ϕ(s)− θ(s))ωk(s) ds

∣∣∣∣∣ +

∣∣∣∣∣
∫ T

0

(ϕ(s)− θ(s))ω(s) ds

∣∣∣∣∣ +∣∣∣∣∣
∫ T

0

(θ(s)ωk(s)− θ(s)ω(s)) ds

∣∣∣∣∣
≤ 2η

∫ T

0

|θ(s)− ϕ(s)| ds +

∣∣∣∣∣
∫ T

0

(θ(s)ωk(s)− θ(s)ω(s)ds)

∣∣∣∣∣ ≤ ε

for all such k.

Example 10.1.7 Let T > 0, and pick any number ρ ∈ [0, 1]. Define ωk :
[0, T ] → R, k = 1, 2, . . ., by partitioning [0, T ] into k equal intervals, and, in
each such interval, making its average be ρ:

ωk(t) =
{

1 if t ∈
[
iTk , (i+ ρ)Tk

]
, i = 0, . . . , k − 1

0 otherwise .

We claim that
ωk

w→ ρ

(function constantly equal to ρ). If J0 is an interval of the special form[
i
T

k
, (i+ 1)

T

k

]
,

with i ∈ {0, . . . , k − 1}, then
∫
J0
ω(s)ds = ρT/k. So, more generally, if J0 =[

iTk , (i+ p)Tk
]
, with i+ p also in {0, . . . , k − 1},

∫
J0
ω(s)ds = pρT/k =

∫
J0
ρds.

For any interval J , there is some interval J0 ⊆ J of the form
[
iTk , (i+ p)Tk

]
so that J \ J0 has measure less than 2T/k. Therefore,

∣∣∫
J
ωk(s)ds−

∫
J
ρds
∣∣ ≤∫

J\J0
|ωk(s)− ρ| ds→ 0. The claim then follows from Lemma 10.1.6. 2
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Corollary 10.1.8 Assume that ω ∈ L∞m (0, T ), and that the sequence {ωk} in
LU(0, T ), are such that, for each interval J ⊆ [0, T ],∫

J

ωk(s) ds →
∫
J

ω(s) ds as k →∞ .

Then, ω ∈ LU(0, T ) and ωk
w→ω.

Proof. The first conclusion was given in Lemma 10.1.3. The hypothesis means
that

∫
J
ωk,i(s) ds →

∫
J
ωi(s)ds for every interval J and each coordinate i =

1, . . . ,m. Furthermore, since U is bounded, the coordinate sequences {ωk,i} are
bounded. Pick any ϕ ∈ L1

m(0, T ), so each of its coordinates ϕi[0, T ] → R is
integrable. Then ∫ T

0

ϕ(s)′ωk(s) ds =
m∑
i=1

∫ T

0

ϕi(s)′ωk,i(s) ds

converges to
m∑
i=1

∫ T

0

ϕi(s)′ωi(s) ds =
∫ T

0

ϕ(s)′ω(s) ds ,

by Lemma 10.1.6.

Exercise 10.1.9 Let V ⊆ U be so that the convex hull co (V) = U. Show that
for each ω ∈ LU(0, T ) there is some sequence νk

w→ω so that νk(t) ∈ V for all
t ∈ [0, T ]. (Suggestion: you may want to argue as follows. First, show that
ω can be weakly approximated by piecewise constant controls, i.e., of the form∑

finite IJi
ui, for intervals Ji ⊆ [0, T ] and elements ui ∈ U. Next argue that, on

each interval J , a constant control with value u =
∑r
i=1 ρivi, with

∑
ρi = 1,

vi ∈ V, ρi ≥ 0 for all i, can be in turn weakly approximated by controls with
values in V. For this last approximation, you may think first of the special case
r = 2: in that case, the sequence ωk(v1 − v2) + v2 converges to ρv1 + (1− ρ)v2,
if ωk is the sequence constructed in Example 10.1.7.) 2

Proof of Lemma 10.1.2

Assume that ‖ωk‖∞ ≤ η for all k. Define νk(t) :=
∫ t
0
ωk(s)ds. Each element of

the sequence {νk} is Lipschitz continuous with bound η:

‖νk(t1)− νk(t2)‖ ≤
∫ t2

t1

‖ωk(s)‖ ds ≤ η |t1 − t2| , (10.6)

and bounded by ηT . Therefore the sequence {νk} is equibounded and equicon-
tinuous, and the Arzela-Ascoli Theorem can be applied, from which one con-
cludes that it has a convergent subsequence. Without loss of generality, we
assume that νk → ν as k → ∞, for some continuous ν : [0, T ] → Rm. From
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Equation (10.6), taking limits as k → ∞, we have that ν is also Lipschitz
continuous with bound η. Thus ν is absolutely continuous, so there exists an
integrable function ω : [0, T ] → Rm, namely ω = dν/dt, so that ν(t) =

∫ t
0
ω(s)ds

for all t. Since ω is the (a.e.) derivative of ν, and ν is Lipschitz with constant
η, it follows that ω is almost everywhere bounded by η. Thus ω ∈ L∞m (0, T ),
and we are only left to establish that ωk

w→ω. Because of Corollary 10.1.8, it is
enough to show that ∫ b

a

ωk(s)ds→
∫ b

a

ω(s)ds

for all subintervals [a, b] of [0, T ]. Take any such a < b. As∫ b

a

ωk(s)ds = νk(b)− νk(a)

and νk → ν pointwise (even uniformly), we have that
∫ b
a
ωk(s)ds→ ν(b)− ν(a).

Since ω = dν/dt, the last expression is the same as
∫ b
a
ω(s)ds, so the proof is

completed.

Proof of Theorem 45

Convexity is clear, as remarked earlier, because αx0,T is an affine map, and
LU(0, T ) is convex.

We now prove that RT (x0) is compact. Let {xf
k} be a sequence of elements

of RT (x0), and let the controls ωk ∈ LU(0, T ) be so that αx0,T (ωk) = xf
k

for each k. Picking a subsequence, we assume without loss of generality that
ωk

w→ω for some control ω ∈ LU(0, T ). Let xf := αx0,T (ω) ∈ RT (x0). We claim
that xf

k → xf , which will prove that the original sequence has a convergent
subsequence. Indeed, the ith coordinate of xf

k, i = 1, . . . , n, has the form∫ T

0

ϕi(s)′ωk(s) ds ,

where ϕi(t) is the ith row of e(T−t)AB. By weak convergence,∫ T

0

ϕi(s)′ωk(s) ds →
∫ T

0

ϕi(s)′ω(s) ds

as k →∞, and this last is the ith coordinate of xf .

Remark 10.1.10 The reachable sets RT (x0) can be proved to be closed even
for a fairly wide class of nonlinear systems. Consider systems of the type
ẋ = f(x) +

∑m
i=1 uig(x) (that is, affine in controls), where f, g1, . . . , gm are

locally Lipschitz vector fields. We use αx0,T (ω) to denote the solution x(T )
of the differential equation, when the input is u = ω ∈ LU(0, T ) and the ini-
tial condition is x(0) = x0, provided that the solution is defined on the entire
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interval [σ, τ ]. Thus, αω is a map Dx0,T → Rn, where Dx0,T is a subset of
LU(σ, τ) (an open subset in the supremum norm, cf. Theorem 1 (p. 57). As-
sume that Dx0,T = LU(σ, τ). Then the set RT (x0) is compact. Indeed, the
same proof works as in the linear case; the only technical fact needed is that
αx0,T (ωk) → αx0,T (ω) whenever ωk

w→ω, and this follows from Theorem 1.
Observe also that Exercise 10.1.9 allows us to conclude, for any V ⊆ U for

which co (V) = U, that RT (x0) = clos (RT
V (x0)) for all x0 and T , where RT

V (x0)
denotes the set of states reachable from x0 using controls with values in V. 2

Exercise 10.1.11 Consider the nonlinear, affine in controls, system ẋ = x2+u,
with U = [−1, 1] (any other compact convex set U could be used). Show that
there are states x0 and times T for which RT (x0) is not compact. Why does
this not contradict the discussion in Remark 10.1.10? 2

Existence of Time-Optimal Controls

Theorem 46 If xf ∈ R(x0) then there is a control which takes state x0 to state
xf in minimal time.

Proof. Let T be the infimum of the set of nonnegative real numbers

{t |xf ∈ Rt(x0)} .

We need to show that xf ∈ RT (x0). Assume that tk↘T are such that xf ∈
Rtk(x0) for all k. For each k, let ωk be a control steering x0 to xf in time tk.

Let xf
k be the state reached from x0 by restricting ωk to the interval [0, T ].

Each xf
k ∈ RT (x0), and the sequence {xf

k} converges to xf . Indeed, we have

xf − xf
k =

(
eεkA − I

)
xf
k +

∫ εk

0

e(εk−s)ABωk(T + s) ds ,

where we are denoting εk := tk − T , so∥∥xf − xf
k

∥∥ ≤
∥∥eεkA − I

∥∥∥∥xf
k

∥∥ + cεk ,

where c is an upper bound on the possible values of
∥∥etABu∥∥, for t ∈ [0, τ ] and

u ∈ U, and τ is any number majorizing tk for all k. On the other hand,

xf
k = etkAxf +

∫ tk

0

e(tk−s)ABωk(s) ds ,

implies ∥∥xf
k

∥∥ ≤ eτ‖A‖
∥∥xf
∥∥ + cτ ,

so the sequence
∥∥xf

k

∥∥ is bounded. Since
∥∥eεkA − I

∥∥ → 0 as k → ∞, we have
that xf

k → xf .
Since RT (x0) is closed (by the previous lemma), it follows that xf ∈ RT (x0),

as desired.

We call a control that takes x0 to xf in minimal time a time-optimal control.



10.2. Maximum Principle for Time-Optimality 431

Remark 10.1.12 The assumption that U is compact cannot be dropped from
Theorem 46 (p. 430). To see this, consider the one-dimensional system ẋ = u.
If U = [0, 1) then the infimum time for reaching xf = 1 from x0 = 0 is T = 1.
However, 1 6∈ R1(0) (because 1 =

∫ 1

0
ω(s)ds implies

∫ 1

0
(1 − ω(s))ds = 0, but

1−ω(s) ≥ 0 for all s, so ω(s) = 1 for a.a. s, a contradiction). Thus boundedness
by itself is not enough. Neither is being closed, as illustrated with the same
system and U = R, since, for the same xf and x0, one has T = 0 but 1 is not in
R0(0) = {0}. 2

10.2 Maximum Principle for Time-Optimality

We review first an elementary fact from convex analysis. Let C ⊆ Rn be a
convex set and let xf ∈ Rn. The hyperplane

H = {x | η′x = θ}

(where η ∈ Rn is nonzero) is said to separate xf and C if η′z ≤ θ for all z ∈ C
and η′xf ≥ θ. In particular, η′

(
z − xf

)
≤ 0 for all z ∈ C. If there is some such

H, then xf cannot be in the interior of C: otherwise, there is some ε > 0 so
that z := xf + εη ∈ C, and hence

η′
(
z − xf

)
= ε ‖η‖2 > 0 ,

a contradiction. Conversely, assume that xf is not in the interior of a convex set
C. Then there exists a hyperplane separating xf and C; this is a standard result,
see for instance [330], Theorem III.11.6. or [188], Theorem I.9.1 and Corollary
I.9.2. (When xf 6∈ C, this result is a consequence of the Hahn-Banach Theorem,
and is valid for arbitrary locally convex topological vector spaces instead of
merely for subsets of Rn; see e.g. [348], Theorem II.9.2.) We summarize for
future reference:

Lemma 10.2.1 Let C ⊆ Rn be a convex set and xf ∈ Rn. Then, there exists
a hyperplane separating xf and C if and only if xf 6∈ intC. 2

Assume now that H = {x | η′x = θ} separates xf and C and that xf belongs
to C. Any such H is said to be a support hyperplane to C at xf . Since xf ∈ C,
the inequality η′xf ≤ θ holds, so η′xf = θ. In other words, H is a support
hyperplane to C at xf if and only if there is some nonzero vector η ∈ Rn so that
H = {x | η′

(
x− xf

)
= 0} and

η′
(
z − xf

)
≤ 0 ∀ z ∈ C . (10.7)

Any such η ∈ Rn is said to be normal to C at xf . So, from the above Lemma,
we have the following fact, which holds in particular for the sets C = RT (x0),
for every T ≥ 0 and x0 ∈ Rn.
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Lemma 10.2.2 Let C ⊆ Rn be a closed convex set and xf ∈ C. Then xf ∈ ∂C
if and only if there is a normal to C at xf . 2

After these preliminaries, we return to the time-optimal problem.

Lemma 10.2.3 Assume that x0 and xf are two states, and T > 0 is such that,
for some sequence tk↗T ,

xf 6∈ Rtk(x0) (10.8)

for all k. Then xf 6∈ intRT (x0).

Proof. Consider any fixed tk. Since the point xf does not belong to the convex
set Rtk(x0), in particular it is not in its interior, so there is some hyperplane
{x | ηn′x = θn} separating xf and Rtk(x0). Thus, for each k,

ηk
′ (z − xf

)
≤ 0 for all z ∈ Rtk(x0) . (10.9)

As one can multiply each ηk by a positive scalar, we may, and will, assume
without loss of generality that ηk has unit norm. By compactness of the unit
ball in Rn, a subsequence of {ηk}, which we will take to simplify notations
to be again the same sequence, converges to some (unit) vector η. Pick any
z ∈ RT (x0). Let zk → z with zk ∈ Rtk(x0) (for instance, truncate to the
intervals [0, tk] any given control that steers x0 to z in time T , and argue that
zk → z as in the proof of Theorem 46 (p. 430)). Then Equation (10.9) gives
that ηk′

(
zk − xf

)
≤ 0 for all such k. Taking limits as k →∞, Equation (10.7),

with C = RT (x0), results, so by Lemma 10.2.2 the conclusion follows.

States reached with time-optimal controls are in the boundary of the respec-
tive reachable sets:

Corollary 10.2.4 If xf ∈ RT (x0) and T is minimal with this property, then
xf ∈ ∂RT (x0).

Proof. If T = 0 then xf = x0 and R0(x0) = {x0}, and the result is clear. So
take T > 0. Minimality means that property (10.8) holds, for some (in fact,
any) sequence tn↗T . Lemma 10.2.3 then implies that xf 6∈ intRT (x0); since by
assumption xf ∈ RT (x0), the conclusion follows.

A (very) partial converse to the above result, valid for trajectories starting
at x0 = 0, is as follows. The system (10.1), with control-value set U, satisfies
the small-time local controllability (STLC) condition (at x0 = 0) if

0 ∈ intRε(0) ∀ ε > 0 .

It was shown in the proof of Proposition 3.6.3 that a sufficient condition for
STLC is that the following two properties hold:

• the matrix pair (A,B) is controllable;
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• 0 ∈ intU.

Lemma 10.2.5 Assume that the STCL holds and 0 ≤ S < T . Then RS(T ) ⊆
intRT (0).

Proof. Pick any xf =
∫ S
0
e(S−s)ABω(s) ds ∈ RS(T ). Let V be an open subset

of RT−S(0) which contains 0 (STLC assumption). Consider the open set

Q := {eSAv + xf | v ∈ V } .

Since eSA is invertible and V is open, this is an open set as well, and xf ∈ Q
(obtained when v = 0). We claim that Q ⊆ RT (0). Indeed, pick any v ∈ V and
consider the state

z = eSAv + xf = eSAv +
∫ S

0

e(S−s)ABω(s) ds .

This is the state reached from v in time S, when applying control ω, so z ∈
RS(v). Since v ∈ RT−S(0), transitivity of reachability gives that z ∈ RT (0), as
claimed.

This Lemma has the following obvious corollary.

Proposition 10.2.6 Assume that xf ∈ ∂RT (0) and that the STLC is satisfied.
Then T is minimal with the property that xf ∈ RT (0). 2

Remark 10.2.7 For nonzero initial states x0, it may be the case that xf ∈
∂RT (x0) yet T is not minimal for steering x0 to xf , even if the STLC holds.
For example, consider the system ẋ = x + u with U = [−1, 1]. Here R1(1) =
[1, 2e− 1], so 1 ∈ ∂R1(1), but the minimal time for going from 1 to 1 is T = 0,
not T = 1. And even for initial state x0 = 0 the result may fail, if the STLC does
not hold. For an example, take ẋ = u, U = [1, 2], and note that R1(0) = [1, 2],
so 1 ∈ ∂R1(0), but 1 can be reached in time 1/2 from 0. 2

We have the following characterization of boundary points of reachable sets.

Theorem 47 (Maximum Principle for boundary of reachable sets.) Assume
that xf ∈ ∂RT (x0), and that ω̃ is any control steering x0 to xf in time T . Then,
for every normal vector η to RT (x0) at xf , the (necessarily everywhere nonzero)
solution λ of the adjoint linear differential equation

λ̇ = −A′λ , λ(T ) = η (10.10)

satisfies
λ(t)′Bω̃(t) = max

u∈U
λ(t)′Bu (10.11)

for almost all t ∈ [0, T ].
Conversely, suppose that ω̃ is any control steering x0 to xf in time T . As-

sume that there is some nonzero solution λ of Equation (10.10) so that Equa-
tion (10.11) holds for almost all t. Then, xf ∈ ∂RT (x0).
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Proof. Let η be normal to RT (x0) at xf , i.e.,

η′
(
z − xf

)
≤ 0 for all z ∈ RT (x0) . (10.12)

So

η′
∫ T

0

e(T−s)AB (ω(s)− ω̃(s)) ds ≤ 0 (10.13)

for all controls ω ∈ LU(0, T ). That is, it must hold that∫ T

0

λ(s)′B (ω(s)− ω̃(s)) ds ≤ 0 (10.14)

for all ω, where λ(s) := e(T−s)A
′
η is the solution of Equation (10.10).

Let J ⊆ [0, T ] be the set of points where Equation (10.11) fails to hold. Pick
any subset U0 ⊂ U that is dense and countable. From the definition of J , the
continuity of λ(t)′Bu on u, and the density of U0, it follows that for each t ∈ J
there is some ut ∈ U0 so that

λ(t)′Bω̃(t) < λ(t)′But .

We claim that J has measure zero. Otherwise, by countability of U0, there must
exist some fixed element u0 ∈ U0, and some subset J0 of J with nonzero measure,
so that λ(t)′Bω̃(t) < λ(t)′Bu0 for all t ∈ J0. Let ω(t) be the control which
equals u0 whenever t ∈ J0 and equals ω̃(t) elsewhere. Then the integrand in
Equation (10.14) is everywhere nonnegative, and is positive on J0, contradicting
the inequality.

We now prove the converse statement. Let ω̃ steer x0 to xf in time T , and let
λ be a nonzero solution of Equation (10.10) so that Equation (10.11) holds for
almost all t. Consider any other control ω ∈ LU(0, T ). From Equation (10.11),
we know that

λ(t)′Bω̃(t) ≥ λ(t)′Bω(t)

for almost all t ∈ [0, T ]. Therefore,

η′
∫ T

0

e(T−s)AB (ω(s)− ω̃(s)) ds ≤ 0 .

As this is true for any ω, Equation (10.12) holds, that is, η is a normal vector
to RT (x0) at xf .

Corollary 10.2.4 asserts that, if T is the optimal time for reaching xf from
x0, then xf ∈ ∂RT (x0). Thus, we have the following necessary condition for
optimality as a Corollary of Theorem 47.

Theorem 48 (Maximum Principle for time-optimal control of linear systems.)
Assume that ω̃ is a control steering x0 to xf in minimal time T > 0. Then,
xf ∈ ∂RT (x0), and for every normal vector η to RT (x0) at xf , the (necessarily
everywhere nonzero) solution λ of the adjoint linear differential equation (10.10)
satisfies Equation (10.11) for almost all t ∈ [0, T ]. 2
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Definition 10.2.8 The input ω ∈ LU(σ, τ) satisfies the maximum princi-
ple (for the time-optimal control problem) if there is some nonzero solution λ
of Equation (10.10) so that Equation (10.11) holds for almost all t. 2

Another terminology often used is “ω is an extremal”. Observe that the
property means that there exists some nonzero vector η ∈ Rn so that

η′e(T−t)ABω(t) = 0 for almost all t .

An equivalent statement is that there must exist some nonzero vector γ ∈ Rn
so that γ′e−tABω(t) = 0 for almost all t (just use γ = eTA

′
η).

We have proved that a time-optimal control must satisfy the maximum prin-
ciple, and that a control which satisfies the maximum principle must lead to
boundary points. Under additional assumptions, such a control is also time-
optimal, thus having a partial converse to Theorem 48, as follows.

Proposition 10.2.9 Assume that the STLC holds and that either x0 = 0 or
xf = 0. Then, if ω steers x0 to xf in time T , while satisfying the maximum
principle, then ω steers x0 to xf in minimal time T .

Proof. The case x0 = 0 follows from the previous discussion. This is because
Theorem 47 implies that xf ∈ ∂RT (0), and, if the STCL holds, this in turn
implies optimality (cf. Proposition 10.2.6).

We will reduce the case xf = 0 to the case x0 = 0, as follows. First we
introduce (Ã, B̃) := (−A,−B), and show that the STLC (with the same control-
value set U) holds for (Ã, B̃). Next, we remark that, if ω satisfies the maximum
principle and steers x0 into 0, then the new control ν ∈ LU(0, T ) given by

ν(t) := ω(T − t) (10.15)

satisfies the maximum principle with respect to the system ẋ = Ãx + B̃u and
steers 0 into x0 for that system. Applying the previously established case, we
conclude that T is the minimal time for steering x0 to 0, for the new system,
and this is equivalent to T being minimal for the original problem. We now
fill-in the simple details.

To see that the STLC holds for (Ã, B̃), fix any T > 0 and let V be an
open neighborhood of 0 included in RT (0). It will be enough to show that
−e−TAV ⊆ R̃T (0) (reachable set for new system), since −e−TAV is an open set
containing 0. So pick any x0 = −e−TAxf , with xf ∈ V . As xf ∈ RT (0), there is
a control ω ∈ LU(0, T ) so that xf =

∫ T
0
e(T−s)ABω(s)ds. Therefore

x0 =
∫ T

0

es
eAB̃ω(s) ds =

∫ T

0

e(T−r)
eAB̃ν(r) dr ∈ R̃T (0) ,

where we changed variables by r = T − s and defined ν as in Equation (10.15).
Suppose that ω satisfies the maximum principle, that is, there is some

nonzero vector γ so that γ′e−tABω(t) = maxu∈U γ
′e−tABu for all t ∈ J , where
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J is a set so that meas ([0, T ] \ J) = 0. Let ν be as in Equation (10.15). Take
the nonzero vector

γ̃ := −eT eA′γ = −e−TA
′
γ .

Then for each s = T − t ∈ {T − t, t ∈ J}, the maximum principle holds for ν
with respect to the new system:

γ̃′e−s
eAB̃ν(s) = γ′e(T−s)

eABω(T − s) = γ′e−tABω(t)

= max
u∈U

γ′e−tABu = max
u∈U

γ′e(T−s)
eABu = max

u∈U
γ̃′e−s

eAB̃u .
Finally, we remark that if ω is any control steering a state x0 to a state xf ,

then ν defined as in Equation (10.15) steers xf to x0 for the new system (and
vice versa). This is clear either from the explicit formulas for solution, or simply
by noticing that if ẋ = Ax+Bω then z(t) := x(T − t) satisfies ż = Ãz + B̃ν.

Applied to ω ∈ LU satisfying the maximum principle and steering x0 to 0, we
conclude that ν steers 0 to x0 for the new system, and is therefore (case where
initial state is zero) time-optimal. But then T is minimal so that 0 ∈ RT (x0),
since if 0 = αx0,S(ω0) with some S < T then ν0(t) = ω0(S − t) contradicts
optimality of ν.

10.3 Applications of the Maximum Principle

The maximum principle leads us to study, for each nonzero vector γ, the fol-
lowing function:

Mγ : R → Rm : t→ B′e−tA
′
γ .

This is an analytic function of t, and its derivatives at t = 0 are all zero if and
only if γ′AiB = 0 for i = 0, 1, . . ., so:

Lemma 10.3.1 The matrix pair (A,B) is controllable if and only if Mγ 6≡ 0
for each γ 6= 0. 2

Thus, if (A,B) is controllable, and γ 6= 0, Mγ(t) can be zero only for a
discrete set of t’s.

The “bang-bang” principle says that time-optimal controls take the most
advantage of possible control actions at each instant. The name is motivated by
the particular case of an interval U = [u, u], where optimal controls must switch
between the minimal and maximal values u and u. There are various theorems
that make this principle rigorous. The following is the simplest one.

Theorem 49 (Weak bang-bang.) Assume that the matrix pair (A,B) is con-
trollable. Let ω̃ be a control steering x0 to xf in minimal time T > 0. Then,
ω̃ ∈ ∂U for almost all t ∈ [0, T ].
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Proof. For each η ∈ Rn and each t ∈ R, we introduce the following function:

µη,t : U → R : u 7→Mη(t)′u .

Thus µη,t(u) = η′e−tABu for each u.
Note that by the maximum principle, Theorem 48 (p. 434), xf ∈ ∂RT (x0).

Fix any normal vector η to RT (x0) at xf . Then the solution of Equation (10.10),
λ(t) := e(T−t)A

′
η = e−tA

′
γ, where γ := eTA

′
η 6= 0, is so that Equation (10.11)

is satisfied (a.e.). That is

µγ,t(ω̃(t)) = max
u∈U

µγ,t(u) (10.16)

for almost all t ∈ [0, T ]. In general, let q ∈ Rm and consider the function
f : U → R, f(u) = q′u. If f is not identically zero, then every point in U at
which f achieves a maximum relative to U must belong to the boundary of U

(if u ∈ intU, then u + εq ∈ U for some small ε > 0, but then f(u + εq) =
f(u) + ε ‖q‖2 > f(u)). In particular, by Lemma 10.3.1, µγ,t can be the zero
function only for t in a finite set J ⊆ [0, T ]. So ω(t) ∈ ∂U for each t 6∈ J for
which Equation (10.16) holds.

Exercise 10.3.2 Give an example of a pair (A,B) (necessarily, not control-
lable), a convex compact U, and x0, xf , T , and ω̃, so that ω̃ steers x0 to xf in
minimal time T > 0 but ω̃(t) 6∈ ∂U for any t ∈ [0, T ]. 2

For a large class of systems, one can obtain uniqueness.

Definition 10.3.3 The system ẋ = Ax + Bu with control-value set U is nor-
mal∗ if, for each nonzero vector p, for almost all t ∈ R the function µp,t achieves
its maximum at exactly one point of U. 2

In the normal case, given any nonzero vector η ∈ Rn and any T > 0, we
define the control

ω̃η(t) = argmax u∈U µγ,t(u) , (10.17)

where γ := eTA
′
η. The “argmax” in Equation (10.17) is well-defined for almost

all t, and we let ω̃η(t) be any fixed element of U if t is in the set (of measure
zero) where the maximum is not uniquely attained.

The main result for the normal case is as follows.

Theorem 50 Assume that the system (10.1) with control-value set U is normal.
Then, for each two states x0 and xf ∈ R(x0), there is a unique time-optimal
control ω̃ steering x0 to xf .

∗The term “normal” is used in a different manner than for “normal vectors”, but, unfor-
tunately, this is by now standard practice.
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Proof. Let T be minimal with xf ∈ RT (x0). We fix a normal vector η to
RT (x0) at xf , and define ω̃η as in Equation (10.17). We claim that this is the
unique optimal control. Indeed, assume that ω̃ is such that αx0,T (ω̃) = xf . Then
the maximum principle and normality (cf. Equations (10.16) and (10.17)) give
ω̃(t) = ω̃η(t) for almost all t ∈ [0, T ].

Two important special cases of normality are as follows.
A strictly convex set C is a convex set with the property that every sup-

porting hyperplane H to C intersects C at exactly one point. For instance,
any ball in Euclidean space is strictly convex. An equivalent statement for
compact convex C ⊆ Rl is that C is strictly convex iff each nonzero linear func-
tion f : Rl → R achieves its maximum on C at a unique point of C (since
H = {x ∈ Rn | f(x) = maxc∈C f(c)} is a supporting hyperplane to C, and,
conversely, any supporting hyperplane can be represented in this fashion).

We say that U is a hypercube if there are real numbers ui < ui, i = 1, . . . ,m,
so that

U = [u1, u1]× [u2, u2]× . . .× [um, um]

Observe that for any function of the form f(u) = p′u so that p ∈ Rm has all
coordinates pi 6= 0, then f achieves its maximum on U at the unique point
(ũ1, . . . , ũm)′, where

ũi =
{
ui if pi > 0
ui if pi < 0 . (10.18)

Lemma 10.3.4 Assume that either:

1. the pair (A,B) is controllable and U is strictly convex, or

2. each pair (A, bi) (bi is the ith column of B) is controllable and U is a
hypercube.

Then the system (10.1), with control-value set U, is normal.

Proof. By definition of strict convexity, µγ,t achieves its maximum at exactly
one point whenever µγ,t is nonzero; by controllability, this happens for almost
all t. In the hypercube case, we need to guarantee that the coordinates of
p = Mγ(t) = B′e−tA

′
γ are nonzero; but these coordinates are b′ie

−tA′γ, and are
not identically zero because each (A, bi) is controllable, so the unique minimizing
point is given as in Equation (10.18).

It is worth summarizing the conclusions in the hypercube case. Note that
these conclusions apply to all single-input (m = 1) systems, since every closed
convex subset of R is of the form [u, u].

Theorem 51 Suppose that each pair (A, bi) is controllable and that U is a hy-
percube. Then, for each two states x0 and xf ∈ R(x0), there is a unique time-
optimal control ω̃ steering x0 to xf . Moreover, there is a nonzero vector γ ∈ Rn
so that the ith coordinate of ω̃, i = 1, . . . ,m, satisfies

ω̃(t)i =
{
ui if γ′e−tAbi > 0
ui if γ′e−tAbi < 0 (10.19)
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for almost all t ∈ [0, T ]. 2

Given the control ω̃ taking x0 to xf in optimal time, we can always modify
ω̃ on a set of measure zero, so that Equation (10.19) holds for all t in the set

J = {t | γ′e−tAbi 6= 0 for all i = 1, . . . ,m} .

The complement of this set is the union of the sets of zeros of the analytic
functions γ′e−tAbi on the interval [0, T ], so is finite. So we can rephrase our
conclusion by saying that, for the normal hypercube case, optimal controls are
piecewise constant , taking values in the vertices of U, and have a finite number
of possible switches, in the complement of J .

The following is an interesting remark concerning the geometry of reachable
sets.

Proposition 10.3.5 Assume that the system (10.1), with control-value set U,
is normal. Then, for each state x0 and each T > 0, the set RT (x0) is strictly
convex.

Proof. Suppose that H = {x | η′x = θ} is a supporting hyperplane to RT (x0).
Let ω̃η be as in Equation (10.17). Pick any two points x1 and x2 in H

⋂
RT (x0);

we must prove that x1 = x2. Choose two controls ωi so that xi = αx0,T (ωi),
i = 1, 2. Then, because x1 and x2 both belong to ∂RT (x0), and η is normal to
RT (x0) at both x1 and x2, Theorem 47 (p. 433) says that

ω1(t) = ω̃η = ω2(t) ,

so x1 = αx0,T (ω1) = αx0,T (ω2) = x2, as desired.

Scalar Systems

We specialize now to single input systems (m = 1), and write b instead of
B = b1. In general U = [u, u], but we will take, in order to simplify the
exposition, u = −1 and u = 1. We assume that the pair (A, b) is controllable.

For each two states x0 and xf , there is a unique time-optimal control ω̃
steering x0 to xf , and there is a nonzero vector γ ∈ Rn so that

ω̃(t) = sign (γ′e−tAb) (10.20)

for all t 6∈ Sγ,T , where

Sγ,T = {t ∈ [0, T ] | γ′e−tAb = 0}

is a finite set.
Although finite, the sets Sγ,T may have arbitrary cardinalities. For instance,

if we take the harmonic oscillator matrix

A =
(

0 1
−1 0

)
,
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we have

(0 1) e−tA
(

0
1

)
= (0 1)

(
cos t − sin t
sin t cos t

)(
0
1

)
= cos t .

Exercise 10.3.6 Give an example of a controllable system with U = [−1, 1],
having the following property: for each integer k there exists a state xf

k such
that the (unique) minimum-time control steering 0 to xf

k switches sign k times.
(Hint: To prove optimality, use Proposition 10.2.9.) 2

However, there is a case of some interest where a very strong conclusion may
be drawn.

Proposition 10.3.7 Suppose that the matrix A has only real eigenvalues.
Then, for each γ, b, and T , Sγ,T has at most n− 1 elements.

Proof. By an exponential polynomial we will mean a function of the form

P (t) =
k∑
i=1

pi(t)eαit ,

where α1 < α2 < . . . < αk are real numbers and each pi a polynomial. We write
π(P ) :=

∑k
i=1(1 + δi), where δi is the degree of pi. We will prove that any such

P , if not identically zero, can have at most π(P )− 1 (distinct) real zeros. This
will give the result, because, using the Jordan form of A, we know that γ′e−tAb
is an exponential polynomial with π(P ) ≤ n.

We proceed by induction on π(P ). If π(P ) = 1 then P = ceαt has no zeros.
Suppose now that the result has been proved for n. Take P with π(P ) = n+ 1
and not identically zero. Assume that P would have ≥ n+ 1 zeros. Then

P0(t) := e−α1tP (t) = p1(t) +
k∑
i=2

pi(t)e(αi−α1)t

has the same ≥ n+1 zeros. This implies that P ′0 = p′1 + . . . has at least n zeros.
But π(P ′0) ≤ n, so, by the inductive hypothesis, P ′0 ≡ 0. This means that P0 is
constant, and thus P = eαtP0 is either a constant (if α1 = 0) or an exponential
function. In either case, P could not have had ≥ n+ 1 zeros.

An Example

The simplest nontrivial example is the double-integrator system ẍ = u, written
in state-space form: m = 1, U = [−1, 1], n = 2, and matrices

A =
(

0 1
0 0

)
, b =

(
0
1

)
. (10.21)
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This models a mass moving in one dimension, with no friction, and subject to a
force of magnitude at most one in either direction. We know from the previous
results that optimal controls are unique (up to sets of measure zero), and are
bang-bang with at most one sign change (since n − 1 = 1). That is, any time-
optimal control joining a pair of states must necessarily be either constant and
equal to 1 or −1, or it must start at one of these values and then switch (once)
to the other value. For this system, we will solve the problem of time-optimal
control from any state x0 to xf = 0 (that is, we will find the “optimal synthesis”
that specifies optimal controls from each initial point to the origin).

We have, explicitly,

e−tA =
(

1 −t
0 1

)
,

so time-optimal controls all have the form

ω̃(t) = sign (a− ct) (10.22)

for some real numbers a and c which are not both zero (and ω̃(T0) is arbitrary
when a− cT0 = 0, which can happen at most at one point T0 ∈ [0, T ]). So there
are four possibilities for a time-optimal control ω̃ defined on an interval [0, T ]:

• ω̃ ≡ −1

• ω̃ ≡ 1

• for some T0 ∈ (0, T ), ω̃ ≡ −1 on [0, T0) and ω̃(t) ≡ 1 on (T0, T ]

• for some T0 ∈ (0, T ), ω̃ ≡ 1 on [0, T0) and ω̃(t) ≡ −1 on (T0, T ].

Conversely, any control of one of these four types, which steers a state x0 into
0, must be the unique time-optimal control doing so. This is because, first of
all, any such control satisfies the maximum principle (just pick γ = (c, a)′ with
a and c chosen so that a − ct has the right sign, switching at T0 in the two
last cases), and second, because in this case (STLC, control to zero final state),
the maximum principle is a sufficient as well as necessary test (cf. Proposi-
tion 10.2.9). That is, any bang-bang control with at most one switch is optimal,
for this problem.

We let S be the set consisting of all those states which can be steered to
xf = 0 using constant controls. Thus S = S−

⋃
S+, the sets of all points that

can be controlled to zero using u ≡ −1 and u ≡ 1 respectively. To find these
sets, we solve the differential equations ẋ = Ax− b and ẋ = Ax+ b respectively,
both with final value x(t) = 0, obtaining two functions (−∞, 0] → R2, ξ− and
ξ+ respectively:

ξ−(t) =
(
− t2

2
−t

)
, ξ+(t) =

(
t2

2
t

)
.

Hence S− is the half-parabola {(−x2
2/2, x2), x2 ≥ 0} (in the second quadrant)

and S+ is the half-parabola {(x2
2/2, x2), x2 ≤ 0} (fourth quadrant). The set

S = S−
⋃
S+ = {2x1 + x2|x2| = 0}
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splits R2 into two parts, one “under” S and the other one “over” S.

S

u = -1

S

-

+

u = 1

x1

x2

Figure 10.1: Switching surfaces.

We claim the following facts:

• If the initial state x0 is in S+, then the unique time optimal control to
reach 0 is obtained by applying u ≡ 1.

• If the initial state x0 is in S−, then the unique time optimal control to
reach 0 is obtained by applying u ≡ −1.

• If the initial state x0 is “over” the set S, then the unique time optimal
control to reach 0 is obtained by applying u ≡ −1 until the set S+ is
reached, and then switching to u ≡ 1.

• If the initial state x0 is “under” the set S, then the unique time optimal
control to reach 0 is obtained by applying u ≡ 1 until the set S− is reached,
and then switching to u ≡ −1.

Recall that, for this example, every bang-bang control with at most one switch
is optimal, so all we need to do is to show that if we start “over” the set
S and apply u ≡ −1, the trajectory x(·) that results indeed crosses S+ (and
analogously if we start under S). To establish this, one could compute solutions,
but we can also argue as follows: since ẋ2 = −1 < 0, eventually x2(t) becomes
negative. (It could not happen that x(t0) ∈ S− for some t0, since in that case,
solving the equation ẋ = Ax − b backward from t0 gives that x(t) ∈ S− for all
t ≤ t0, because of the definition of S−, contradicting the fact that x(0) = x0 is
not in S.) Once that x2(t) becomes negative, we have that ẋ1(t) = x2(t) < 0,
so trajectories move in a “southwest” direction, with ẋ2 ≡ −1, and hence must
eventually meet S+. The case where we start under S is proved in the same
manner.



10.4. Remarks on the Maximum Principle 443

Exercise 10.3.8 For the above example, take in particular the initial state
x0 = (−1, 0)′. Show that the above synthesis results in the rule “accelerate
at maximum power for the first half of the time and decelerate maximally for
the second half”. Derive this result, for that particular initial state, using
elementary arguments not involving the maximum principle. 2

10.4 Remarks on the Maximum Principle

For fixed x0, we may define the Bellman or value function for the problem of
time-optimal control from x0:

V (xf) := min{T ≥ 0 | xf ∈ RT (x0)} .

This is a function R(x0) → R. (Reversing time, we could also define an anal-
ogous V for the problem of control to x.) Being defined by a minimum, this
function tends not to be differentiable; but when it is, its gradient is a normal
vector as needed for the maximum principle:

Lemma 10.4.1 Assume that V is differentiable at some xf ∈ intR(x0). Let
T := V (xf). Then η = ∇V (xf)′ is normal to RT (x0) at xf .

Proof. We start by establishing the following claim: in general, if V : O →
R is a function defined on an open subset of Rn, C ⊆ Rn is convex, and V
achieves a local maximum relative to C

⋂
O at some point ζ ∈ C

⋂
O, then

∇V (ζ)′(z − ζ) ≤ 0 for all z ∈ C. Pick any z ∈ C, and substitute the vector
h = ε(z−ζ), for any fixed small enough ε ∈ (0, 1], into the expansion V (ζ+h) =
V (ζ) +∇V (ζ)′h+ o(‖h‖). Since ζ +h = εz+ (1− ε)ζ ∈ C, if ε is small enough,
V (ζ + h) ≤ V (ζ) gives

∇V (ζ)′(z − ζ) +
o(ε ‖z − ζ‖)

ε
≤ 0 .

Letting ε→ 0 gives the claim.
Now we apply this general fact with C = RT (x0) and O = intR(x0); note

that V achieves a local maximum at xf because V (z) ≤ T = V (x0) if z ∈
RT (x0).

Remark 10.4.2 When V is not differentiable, it is possible to generalize the
interpretation of ∇V by means of “viscosity” or “subgradient” terms. 2

Exercise 10.4.3 (a) Consider again the double integrator example in Equation
(10.21), with U = [−1, 1], but now provide a solution to the problem of control-
lability from x0 = 0 to an arbitrary state xf ∈ Rn. Justify carefully why your
solutions are indeed optimal, and make an illustration analogous to Figure 10.1.
(b) For the problem in (a), let V (xf) = min{T | xf ∈ RT (0)}. Provide an
explicit formula for the function V . What can you say about differentiability of
V ? 2
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Remark 10.4.4 The maximum principle is not merely useful as a technique
for finding optimal controls or for characterizing their properties. It is also
an extremely useful tool for solving the apparently different problem of simply
finding a control steering one state to another, because it allows one to restrict
the search to a smaller and often more manageable class of controls than all of
L∞. Suppose that we wish to find a control ω, if one exists, that steers a given
initial state x0 to a desired target state xf . Assuming appropriate technical
hypotheses of normality as discussed earlier, if there is a control that works,
then there will be a time-optimal one ω̃, which satisfies the maximum principle.
Define the function m : Rn → U by the formula m(p) := argmax u∈Up

′Bu.
Then, we know that there must be some (as yet unknown) nonzero vector γ ∈ Rn
so that, solving the system of 2n differential equations

ẋ = Ax+Bm(λ) , x(0) = x0

λ̇ = −A′λ , λ(0) = γ ,

one obtains that x(τ) = xf for some τ . Now, a numerical search can be carried
out over the space of possible initial adjoint vectors γ, solving this differential
equation, and testing along solutions whether

∥∥x(t)− xf
∥∥ becomes smaller than

a certain error tolerance. Thus the search has been reduced from a search in
an infinite-dimensional space to searching over a space of dimension n, or, even
better, n−1 (since, without loss of generality, one could take γ to belong to the
unit sphere in Rn). There are technical difficulties to be dealt with, including
the fact that the right-hand side of the equation may not depend continuously
on λ (because m may not), but the idea is nonetheless very powerful. A related
application of the same idea is as a general technique for estimating the bound-
aries of reachable sets RT (x0), which can proceed in the same manner (since
x(t) ∈ Rt(x0) when solutions have been generated in this manner).

A different technique, motivated by bang-bang theorems, is to look for bang-
bang controls, parametrized finitely by switching times, assuming an a priori
bound is known on the number of switches required (as, for instance, in the
cases covered by Proposition 10.3.7). 2

10.5 Additional Exercises

In all exercises, we assume given a linear time-invariant continuous time system
ẋ = Ax+Bu and U compact convex.

Exercise 10.5.1 Assuming STLC holds, let the minimal time function V be
defined as above, for reachability from the initial state x0 = 0. Prove: the level
sets {V (x) = T} are precisely the boundaries of the reachable sets RT (0). 2

Exercise 10.5.2 Let CT (xf) := {x0 | xf ∈ RT (x0)} (set of states that may be
steered to xf in time T and let C(xf) =

⋃
T≥0 CT (xf). Prove:

• If x0 ∈ CT (xf) and T is minimal with this property, then x0 ∈ ∂CT (xf).
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• Assume that x0 ∈ ∂CT (0) and that the STLC is satisfied. Then T is
minimal with the property that x0 ∈ CT (0). 2

Exercise 10.5.3 Let R≤T (x0) :=
⋃

0≤t≤T Rt(x0). Show that, for any x and
T , R≤T (x0) is:
• connected,
• compact,
• but not necessarily convex.

(Hint: (For compactness.) If xf
k ∈ Rtk(x0), you may assume that tk↘T or

tk↘T for some T (why?). Then, restrict or extend controls ωk to [0, T ]. Finally,
use a compactness argument as in the proof that RT (x0) is compact.) 2

Exercise 10.5.4 For any metric space M , we use K(M) to denote the family
of all nonempty compact subsets of M , and define

D(C1, C2) := max
{

max
x∈C1

d(x,C2),max
x∈C2

d(x,C1)
}
.

Show that D defines a metric on K (usually called the Hausdorff metric). Now
consider a linear system ẋ = Ax + Bu and a fixed initial state x0 ∈ Rn. Show
that the mapping T 7→ RT (x0) is continuous as a map from R into K(Rn). 2

Exercise 10.5.5 Consider the undamped harmonic oscillator ẋ1 = x2, ẋ2 =
−x1 + u, with control-value set U = [−1, 1]. Show, for each two states x0, xf :

1. there is a unique control ω̃ steering x0 to xf in minimal time,

2. this control has |u(t)| = 1 for almost all t, and

3. the intervals between sign changes have length π.

Finally, provide a complete description of the optimal controls for the prob-
lem of transferring any state to xf = 0, including a diagram. (Hint: For the
controllability part, recall Exercise 3.6.8.) 2

Exercise 10.5.6 Consider the system ẋ1 = x1 + u, ẋ2 = x2 + u, with control-
value set U = [−1, 1]. Take x0 = (1, 0)′ and xf = (2, 0)′. What is the minimum T
so that xf ∈ RT (x0)? Show that the maximum principle provides no information
whatsoever about a time-optimal control steering x0 to xf . (What property
fails?) Show that there are, in fact, infinitely many controls steering x0 to xf in
minimal time. 2

Exercise 10.5.7 Consider this nonlinear system, with X = R2 and U = [−1, 1]:

ẋ1 = (1− x2
2)u

2

ẋ2 = u .

Show that the system is complete, that is, solutions exist for every initial state
and every control. Show, however, that R1(0) is not a closed set. Why does this
not contradict the discussion in Remark 10.1.10? (Hint: Consider the states
xf
k = α(ωk), where ωk is a control that switches fast between +1 and −1.) 2
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Exercise 10.5.8 (a) Consider a controllable single-input system ẋ = Ax+ bu.
Show that there is some δ > 0 with the following property: for each γ 6= 0, the
function t 7→ γ′e−tAb has at most n− 1 zeros in the interval [0, δ].
(b) Conclude that, for controllable single-input systems, with U = [u, u], there
is some δ > 0 so that, whenever x0 and xf are so that xf can be reached in
time at most δ from x0, the time optimal control steering x0 to xf is piecewise
constant, taking values u or u in at most n intervals.
(c) Conclude further that, if T is the minimum time for steering x0 to xf , then
the time optimal control steering a state x0 to a state xf is piecewise constant,
with at most Tn/δ switches.
(Hint: (For (a).) Assume the property is false on [0, 1/k]. Note that one may
restrict attention to γ’s so that ‖γ‖ = 1. What can be said about the zeros of
derivatives of γ′e−tAb? Take limits k →∞.) 2

10.6 Notes and Comments

Weak convergence as defined here is a particular case of a concept that is stan-
dard in functional analysis. In general, if N is a normed space and N∗ is its
dual (the set of continuous linear functionals N → R), the weak-star topology
on N∗ is the topology defined by the property that a net {x∗k} in N∗ converges
to x∗ ∈ N∗ if and only if x∗k(x) → x∗(x) for all x ∈ N . In particular, we may
take N = L1

m(0, T ), the set of integrable functions ϕ : [0, T ] → Rm with the
norm

∫ T
0
‖ω(s)‖ ds. The space L∞m (0, T ), with the norm ‖·‖∞, can be naturally

identified with the dual of N via

ω(ϕ) :=
∫ T

0

ϕ(s)′ω(s) ds .

Thus, a net ωk (in particular, a sequence) converges to ω in the weak-star sense
if and only if

∫ T
0
ϕ(s)′ωk(s) ds →

∫ T
0
ϕ(s)′ω(s) ds for all integrable functions

ϕ : [0, T ] → Rm. So what we called weak convergence is the same as weak-
star convergence. Alaoglu’s Theorem (see e.g. [98], Theorem V.3.1). asserts
that the closed unit ball in N∗ (or equivalently, any closed ball) is compact in
the weak-star topology. This proves Lemma 10.1.2. However, we provided a
self-contained proof.

In connection with Remark 10.1.12, we note that it is possible to relax the
convexity assumption; see [188], which may also be consulted for many more
results on the material covered in this chapter.

In connection with Remark 10.4.2, the reader is directed to [93].



Appendix A

Linear Algebra

A.1 Operator Norms

If x ∈ Cl, we introduce the Euclidean norm

‖x‖ =
√
|x1|2 + . . .+ |xl|2 .

If A is a complex n×m matrix, by ‖A‖ we denote the operator norm

‖A‖ := max
‖µ‖=1

‖Aµ‖ (A.1)

with respect to the above norm on Cn and Cm.
Numerically, ‖A‖ is just the largest singular value of A, that is, the square

root of the largest eigenvalue λ1 of the Hermitian matrix

Q := A∗A

(where the star indicates conjugate transpose), as discussed later in this Ap-
pendix. If v1 is an eigenvector corresponding to λ1, then ‖Av1‖ = ‖A‖ ‖v1‖. In
particular, when A is a real matrix, v1 can be chosen real, so the same value
‖A‖ is obtained when maximizing just over real vectors µ such that ‖µ‖ = 1.

It is a basic fact from linear algebra that there are positive constants c1, c2,
which depend only on n,m, such that

c1

√∑
i,j

a2
ij ≤ ‖A‖ ≤ c2

√∑
i,j

a2
ij (A.2)

for all such A.
If {Al} is a sequence of matrices (all of the same size n × m), we define

convergence
Al → B

447
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to mean that ‖Al −B‖ → 0. Equivalently, because of (A.2), this means that

(Al)ij → Bij

for each i, j.

A.2 Singular Values

The concepts of singular value and singular value decompositions are very useful
in linear control theory. We develop here the basic facts about these.

Let A be a complex n × l matrix of rank r. Using “∗” to denote conjugate
transpose, let Q := A∗A. Since Q is Hermitian and positive semidefinite, it
admits an orthonormal basis of eigenvectors,

Qvi = λivi , i = 1, . . . , l , (A.3)

where the eigenvalues λi are real,

0 ≤ λl ≤ λl−1 ≤ . . . ≤ λ1 .

Note that rankQ = r, so λr+1 = . . . = λl = 0.
We define σi :=

√
λi for each i = 1, . . . , r. By definition, these are the

singular values of the matrix A. In particular, one often denotes σr as

σmin(A) ,

and this is the smallest singular value of A. When A has full column rank —that
is, kerA = 0, r = l, and Q is nonsingular— ‖Ax‖2 = x∗Qx ≥ σ2

r ‖x‖
2, so

‖Ax‖ ≥ σmin(A) ‖x‖ (A.4)

for all vectors x; so σmin(A) provides a measure of how far A is from being
singular, in the sense of having a nonzero kernel; in fact, as proved below,
this number measures the precise distance to the set of singular matrices. As
‖Ax‖2 = x∗Qx ≤ σ2

1 ‖x‖
2 for all x and ‖Av1‖2 = σ2

1 ‖v1‖
2, the largest singular

value σ1 is the same as the operator norm of A with respect to Euclidean norms
on vectors, as discussed above in Section A.1.

Then, we introduce

ui :=
1
σi
Avi ∈ Cn , i = 1, . . . , r ,

and note that
u∗i uj =

1
σiσj

v∗iQvj =
λj
σiσj

v∗i vj

for each i, j between 1 and r, and therefore that the set

{u1, . . . , ur}
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is orthonormal. By the Gram-Schmidt procedure, we complete this to an or-
thogonal basis of Cn and let

U := (u1, . . . , un)

be the unitary matrix that results from listing all elements of that basis. Note
that, for j ≤ r and any i,

u∗iAvj = σju
∗
i uj =

{
0 if i 6= j
σj otherwise,

and that for every j = r+1, . . . , l the product is zero since vj is in the kernel of
A. Thus, if we define V to be the unitary matrix whose columns are the vectors
vj , j = 1, . . . , l, then U∗AV = Σ, where Σ is the matrix


r l − r

r

σ1

. . .
σr

 0

n− r 0 0

 (A.5)

that is, an n × l matrix whose only nonzero entries are the first r principal
diagonal entries Σii, and these are precisely the singular values of A. One calls
the equality

A = UΣV ∗ (SVD)

a singular value decomposition (SVD) of A. From this, one can also write
A as a sum of rank one matrices

A =
r∑
i=1

σiuiv
∗
i ,

and this sum is itself sometimes called the SVD of A. Note that for real matrices
A, both U and V can be taken to be real, that is, orthogonal matrices, since the
constructions can all be done in that case over R. Singular value decompositions
can be computed efficiently and reliably using any of the standard numerical
packages such as LINPACK.

Exercise A.2.1 Assume that there exist unitary matrices U, V so that A =
UΣV ∗, where Σ is as in (A.5). Prove that the σi’s must be the singular values
of A. 2

Lemma/Exercise A.2.2 Prove that for every matrix A: (i) A, its conjugate
transpose A∗, and its transpose A′ all have the same singular values; and (ii)
for every nonzero λ ∈ C and every i, σi(λA) = |λ|σi(A). 2
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One simple application of SVDs is in computing the Moore-Penrose inverse
or pseudoinverse of A. (Also called the generalized inverse.) This is the matrix

A# := V Σ#U∗ , (A.6)

where Σ# is the l × n matrix


r n− r

r

σ−1
1

. . .
σ−1
r

 0

l − r 0 0


whose only nonzero elements are the inverses of the singular values of A, placed
on the main diagonal. The pseudoinverse solves the general least-squares prob-
lem of finding the vector x of minimum norm among all those vectors minimizing

‖Ax− b‖ .

We claim that x := A#b is the (unique) such minimal solution. Indeed, given
any x and b,

‖Ax− b‖2 = ‖Σy − c‖2 ,
where y := V ∗x and c := U∗b; since x and y have the same norm, because V
is unitary, it is equivalent to minimize as a function of y and then to substitute
again x. But this expression is just

r∑
i=1

|σiyi − ci|2 +
l∑

i=r+1

|ci|2 ,

which is minimized when yi := ci/σi for i = 1, . . . , r. The other coordinates of
y have no influence. Among all such vectors, minimum norm is achieved when
setting all other coordinates of y to zero, that is,

y = Σ#c = Σ#U∗b ,

from which it follows that x = V y = A#b, as claimed.
In the text we deal with pseudoinverses of operators between an infinite

dimensional space and a finite dimensional one, under a full rank assumption
that results in a simpler formula for the pseudoinverse; the next exercise provides
the connection.

Exercise A.2.3 Assume that A has full row rank r = n. Show that, then, the
formula for the pseudoinverse simplifies to

A# = A∗(AA∗)−1 ,

which can be evaluated without computing singular values. (What is the analo-
gous formula when A has full column rank?) In particular, for square matrices
of full rank, A# = A−1. 2



A.2. Singular Values 451

As remarked above, σmin(A) measures how far the matrix A is from being
singular. We now make this precise. As usual, ‖·‖ denotes operator norm.

Lemma A.2.4 For any matrix A of full column rank r = l,

σmin(A) = dist(A, sing) := min{‖∆‖ | ker (A+ ∆) 6= 0} .

Proof. Note that the minimum in the right-hand side of the claim is achieved,
since matrices B with nonzero kernel form a closed set (for instance, defined
by the vanishing of the determinant of B∗B). Let ∆ and x 6= 0 be such that
‖∆‖ = dist(A, sing) and (A + ∆)x = 0. We write A = A + ∆ − ∆ and apply
(A.4) to get:

σmin(A) ‖x‖ ≤ ‖(A+ ∆)x‖ + ‖∆‖ ‖x‖ = ‖∆‖ ‖x‖ ,

from which it follows that

σmin(A) ≤ ‖∆‖ = dist(A, sing) .

Conversely, consider the matrix

∆ := −σmin(A)urv∗r

obtained by replacing all other singular values in (SVD) by zero. Since

A+ ∆ =
r−1∑
i=1

σiuiv
∗
i

has rank less than l,

dist(A, sing) ≤ ‖∆‖ = σmin(A)

and the equality follows.

This result is used in the text in order to obtain characterizations of how
uncontrollable a system is. From Lemmas A.2.4 and A.2.2 we also know that:

Corollary A.2.5 For any matrix A of full row rank r = n,

σmin(A) = min{‖∆‖ | (A+ ∆) is not of full row rank } . 2

A result in a latter section of this Appendix establishes that the singular
values of a matrix, and in particular σmin(A), are continuous functions of the
entries of A, for matrices of any fixed rank.



452 A. Linear Algebra

A.3 Jordan Forms and Matrix Functions

Jordan forms are not very useful numerically but are convenient when estab-
lishing various results. We work here with matrices over C, but the existence of
Jordan forms can be proved over arbitrary algebraically closed fields.

Recall the basic result, which can be found in any elementary linear algebra
book. (We state this in a weaker form than usual; the complete result includes
a uniqueness statement, but this is not needed in the text.)

Proposition A.3.1 For any matrix A ∈ Cn×n there exists an invertible n× n
complex matrix T and there is some integer l ≥ 1 such that T−1AT has the
block structure 

J1 0 · · · 0 0
0 J2 · · · 0 0
...

...
. . .

...
...

0 0 · · · Jl−1 0
0 0 · · · 0 Jl

 (A.7)

where each block Ji is a ki × ki matrix of the form

λ 1 0 · · · 0 0
0 λ 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0
0 0 0 · · · λ 1
0 0 0 · · · 0 λ

 (A.8)

for some eigenvalue λ = λi of A. 2

A matrix of the form (A.8) is a Jordan block (corresponding to the eigenvalue
λ).

Note that the integers ki must add up to n. The same eigenvalue of A may
appear in more than one block, and the multiplicity of each eigenvalue λ is the
same as the sum of those integers ki for which λi = λ. Note that the only
possible eigenvectors of each Jordan block J are those of the form

(α, 0, . . . , 0)′ (A.9)

(prime indicates transpose), so for each eigenvalue λ of J (equivalently, of the
original matrix A) the geometric multiplicity of λ, that is, the dimension of the
λ-eigenspace

ker (λI −A) , (A.10)

is equal to the number of blocks corresponding to λ.
Let f : C → C be any entire function, that is, a function analytic on the

entire plane, and let

f(z) =
∞∑
i=0

aiz
i
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be its expansion at the origin (which has an infinite radius of convergence). For
any square matrix A, we define f(A) by the series

f(A) :=
∞∑
i=0

aiA
i .

This series is convergent, because the inequalities∥∥Ai∥∥ ≤ ‖A‖i

imply that the sequence of partial sums is a Cauchy sequence in Cn×n:∥∥∥∥∥∥
q∑
i=p

aiA
i

∥∥∥∥∥∥ ≤
q∑
i=p

|ai| ‖A‖i ,

and the right-hand side goes to zero because

∞∑
i=0

|ai|ri <∞

for all real numbers r.
Assume that f and g are entire and consider the entire function h := f · g.

Since the Taylor series for h about z = 0 can be computed as the product of
the series of f and g, it follows by substitution that

(fg)(A) = f(A)g(A) (A.11)

for all matrices A. Since fg = gf , it follows also that

f(A)g(A) = g(A)f(A)

for all A and all functions. (Using an integral formula, it is possible to define
f(A) for functions f that are not entire but merely analytic in a neighborhood
of the spectrum of A, in such a way that these properties hold, but we do not
need that more general definition here.)

The following is very easy to establish.

Lemma/Exercise A.3.2 Let f be an entire function and assume that J is of
size k × k and has the form (A.8). Then,

f(J) =



f(λ) f ′(λ) f ′′(λ)
2! · · · f(k−2)(λ)

(k−2)!
f(k−1)(λ)

(k−1)!

0 f(λ) f ′(λ) · · · f(k−3)(λ)
(k−3)!

f(k−2)(λ)
(k−2)!

...
...

...
. . .

...
...

0 0 0 · · · f ′(λ) f ′′(λ)
2!

0 0 0 · · · f(λ) f ′(λ)
0 0 0 · · · 0 f(λ)


. (A.12)
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As a consequence, the Spectral Mapping Theorem is proved: If A is any matrix
with eigenvalues

λ1, . . . , λn

(counted with repetitions), then the eigenvalues of f(A) are the numbers

f(λ1), . . . , f(λn)

(also with repetitions). 2

If v is an eigenvector of A, Av = λv, then Aiv = λiv for all i, so f(A)v =
f(λ)v and v is an eigenvector of f(A), too. From this, or from the Jordan
form, we conclude that the geometric multiplicity of f(λ) with respect to f(A)
is greater than or equal to that of λ with respect to A.

Note that, if B = T−1AT , then also Bi = T−1AiT for all i, so

B = T−1AT ⇒ f(B) = T−1f(A)T (A.13)

for all A, all entire f , and all invertible T . Together with Proposition A.3.1
and Lemma A.3.2 this gives a way of computing f(A) if one has obtained the
Jordan form (A.7): f(A) is of the form TBT−1, where B is a block matrix each
of whose blocks has the form (A.12). In particular, it follows that f(A) = g(A)
if it is only known that f and g, and their respective derivatives of high enough
order, coincide on the spectrum of A.

A particular case of interest is f(z) = etz for any fixed t. Let A be any fixed
(square) matrix. As a function of t,

etA =
∞∑
m=0

1
m!
tmAm (A.14)

converges uniformly on compacts, since∥∥∥∥∥
∞∑
m=k

1
m!
tmAm

∥∥∥∥∥ ≤
∞∑
m=k

1
m!

(|t| ‖A‖)m .

Similarly, taking termwise derivatives of (A.14) results in the series for AetA,
which is also uniformly convergent on t. It follows that

detA

dt
= AetA , (A.15)

so etA solves the matrix differential equation Ẋ = AX. From Lemma A.3.2
together with (A.13) it follows that each entry of etA is a linear combination of
terms of the form

tseλt , (A.16)

where s is a nonnegative integer and λ is an eigenvalue of A.
The following fact is of use when discussing controllability and observability

under sampling.
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Lemma A.3.3 Assume that f is an entire function that is one-to-one on the
spectrum of A, and let λ be an eigenvalue of A for which f ′(λ) 6= 0. Then the
geometric multiplicity of f(λ) with respect to f(A) is the same as that of λ
with respect to A. Moreover, the f(λ)-eigenspace of f(A) is the same as the
λ-eigenspace of A.

Proof. We may assume that A has the form (A.7). Since eigenvectors corre-
sponding to f(λ) are sums of eigenvectors corresponding to the various blocks
f(Ji) for which λi = λ (by the Spectral Mapping Theorem plus the one-to-one
hypothesis), it is enough to show that the geometric multiplicity of f(λ) is one
for the block (A.12), under the hypothesis that f ′(λ) 6= 0. To show this, it is
enough to see that there cannot be any eigenvector that is not of the form (A.9).
But the equation

f(J)


α1

α2
...
αk

 = f(λ)


α1

α2
...
αk


implies (by induction, starting with the (k − 1)st row) that

αk = αk−1 = . . . = α2 = 0 ,

as desired.

Actually, a stronger result holds. If f is as in the Lemma and f ′ does not
vanish at any eigenvalue of A, then A is a function g(f(A)) for some analytic
function g. This can be proved using the Implicit Function Theorem, but re-
quires the definition of analytic (not necessarily entire) functions of a matrix.

Recall that a cyclic n×n matrix F is one for which there exists some vector
v ∈ Cn (a cyclic vector for F ) so that

span {v, Fv, . . . , F kv, . . . , } = Cn . (A.17)

If F is cyclic, then translating it by a multiple of the identity does not affect
cyclicity, that is, for any real number α the matrix F +αI is again cyclic. This
is because, for each k and each vector v,

span {v, Fv, . . . , F kv} = span {v, Fv + αv, . . . , F kv + kαF k−1v + . . . αkv} .
(A.18)

Observe that any Jordan block J is cyclic, using the vector (0, 0, . . . , 0, 1)′.

Exercise A.3.4 Let f be an entire function and assume that J is of size k× k
and has the form (A.8). Assume further that f ′(λ) 6= 0 for each eigenvalue λ of
A. Prove that then f(J) is cyclic. 2
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A.4 Continuity of Eigenvalues

The fact that eigenvalues depend continuously on matrix entries is essential in
understanding many linear systems results, especially those dealing with ro-
bustness, and is useful as well as a technique of proof for matrix identities. In
this section we provide a precise statement of this fact. Since eigenvalues of A
are zeros of the characteristic polynomial of A, and in turn the coefficients of
this characteristic polynomial are continuous functions of the entries of A, it is
sufficient to prove the continuous dependence of zeros on the coefficients of a
(monic) polynomial.

For each complex number λ and real ε, we let Bε(λ) (respectively, Sε(λ)) be
the open disk (respectively, circle) of radius ε centered at λ.

Lemma A.4.1 Let f(z) = zn + a1z
n−1 + . . .+ an be a polynomial of degree n

and complex coefficients having distinct roots

λ1, . . . , λq ,

with multiplicities
n1 + . . .+ nq = n ,

respectively. Given any small enough ε > 0 there exists a δ > 0 so that, if

g(z) = zn + b1z
n−1 + . . .+ bn , |ai − bi| < δ for i = 1, . . . , n , (A.19)

then g has precisely ni roots in Bε(λi) for each i = 1, . . . , q.

Proof. We assume without loss of generality that ε is smaller than all dif-
ferences |λi − λj | /2 for all i 6= j, and denote Si := Sε(λi) for each i. These
circles are disjoint and the interiors contain exactly ni roots of f counted with
multiplicities, so from the Residue Theorem

ni =
1

2πi

∫
Si

f ′(z)
f(z)

dz

(the integral evaluated counterclockwise) for each i.
Consider the polynomial g in (A.19) as a function g(b, z) of b = (b1, . . . , bn)

and z. As such it is continuous, and the same holds for g′(b,z)
g(b,z) provided that

g(b, z) 6= 0. By uniform continuity when z is on the closure of the union of the
disks Bε(λi) and b is near a = (a1, . . . , an), it follows that g(z) 6= 0 on every Si
and ∣∣∣∣f ′(z)f(z)

− g′(z)
g(z)

∣∣∣∣ < 1
ε

when g is as in (A.19) and δ is sufficiently small. But then

1
2πi

∫
Si

g′(z)
g(z)

dz − ni < 1 ,
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which implies that this integral —which is an integer that counts the number
of zeros of g in Bε(λi)— is also equal to ni, and the conclusion of the Lemma
follows.

We now list a few useful but very simple corollaries. The first is just a
restatement of the Lemma.

Corollary A.4.2 Let U be any open subset of C and fix any two nonnegative
integers k ≤ n. Then the set of monic polynomials of degree n having at least
k roots in U is open, when polynomials are topologized by their coefficients as
above. 2

Corollary A.4.3 Let n be any fixed positive integer. For each a = (a1, . . . , an),
let

r1(a) ≤ r2(a) ≤ . . . ≤ rn(a)

be the real parts of the zeros of Pa(z) = zn + a1z
n−1 + . . . + an arranged in

nondecreasing order. Then, as a function Cn → R, each ri is continuous.

Proof. Fix any a and let ri := ri(a) for each i. Let λ1, . . . , λq be the distinct
zeros of Pa, with multiplicities n1, . . . , nq, and arranged so that their real parts
are nondecreasing. Pick any

ε < min
{
|Reλi − Reλj |

2

∣∣∣∣ Reλi 6= Reλj

}
and find δ as in Lemma A.4.1. We claim that

|ri(a)− ri(b)| < ε

for each i whenever all |ai − bi| < δ, which will prove continuity.
Fix any i = 1, . . . , q, and observe that

rni−1+1(a) = . . . = rni(a) = Reλi (A.20)

(denoting n0 := 0). For b close to a, the polynomial Pb has exactly ni roots at
distance less than ε from λi, so the real parts of these ni zeros are at distance
less than ε from Reλi.

Assume that Reλi > Reλj for j = 1, . . . , α, α < i, and that Reλi < Reλj
for j = β, . . . , q, for some β > i. From the choice of ε and the fact that these
real parts are at a distance less than ε from r1(a), . . . , rnα

(a), it follows that

r1(b), . . . , rnα(b)

are at distance larger than ε from rni(a), and the same is true for rj(b), j ≥ β.
Thus, the zeros within distance ε of Reλi are precisely rnα+1(b), . . . , rnβ−1(b),
and in particular

|rj(b)− rj(a)| < ε
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for j = ni−1 +1, . . . , ni. This shows that rj is continuous, for each such j. Since
i was arbitrary, the result holds for all rj ’s.

The same proof of course is applicable if instead of real parts one looks at
magnitudes of zeros.

Corollary A.4.4 For each positive integer n, there exist n continuous functions

λ1, . . . , λn : Cn×n → R

such that λ1(A) ≤ . . . ≤ λn(A) for all A, and if A is Hermitian, λ1(A), . . . , λn(A)
are the eigenvalues of A.

Proof. Just apply the previous corollary to the characteristic polynomial and
use that the eigenvalues are all real when the matrix is Hermitian.

Corollary A.4.5 For each pair of positive integers l and n, there exist l con-
tinuous functions

σ1, . . . , σl : Cn×l → R

such that for each A of rank r ≤ l, σr(A) ≤ . . . ≤ σ1(A) are the singular values
of A. In particular, on matrices of any fixed rank r, σmin(A) is a continuous
function of A.

Proof. Just let σi(A) :=
√
λl−i+1(A∗A), where the λi are the functions in

Corollary A.4.4.

As a different example of the use of Lemma A.4.1, consider the following
fact, which is used in the text. It is typical of the use of continuous dependence
in order to reduce questions about arbitrary matrices to simpler cases.

Proposition A.4.6 Let A and B be two n×n complex matrices, and consider
the linear operator

LA,B : Cn×n → Cn×n : X 7→ AX −XB′ .

Then each eigenvalue of LA,B is of the form

λ− µ

for some eigenvalues λ and µ of A and B, respectively.

Proof. First consider the case of matrices A and B for which all of the possible
n2 differences

λi − µj (A.21)

are distinct, where λ1, . . . , λn and µ1, . . . , µn are, respectively, the eigenvalues
of A and B. In particular, each of A and B has distinct eigenvalues. In this
case there exist two bases of eigenvectors

Avi = λivi , Bwi = µiwi , i = 1, . . . , n .
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Let Xij := viw
′
j for each pair i, j. We claim that these are eigenvectors of LA,B

with corresponding eigenvalues λi − µj . Indeed,

AXij −XijB
′ = Aviw

′
j − vi(Bwj)′ = λiviw

′
j − vi(µjωj)′ = (λi − µj)Xij .

Since there are n2 such eigenvalue/eigenvector pairs, every eigenvalue has the
required form.

We now use continuity on eigenvalues in order to obtain the general result.
Given any two matrices A,B, assume that there is some eigenvalue σ of LA,B
that is not of the form λ− µ. Let ε > 0 be such that

|σ − (λ− µ)| > ε (A.22)

for all eigenvalues λ and µ of A and B, respectively. Pick δ > 0 so that, if
‖Ã−A‖ < δ and ‖B̃−B‖ < δ, then all eigenvalues of Ã (respectively, B̃, L eA, eB)
are at distance less than ε/3 from eigenvalues of A (respectively, B, LA,B).
The Lemma is used here; note that any fixed matrix representation of LA,B is
continuous on A,B.

It is always possible to find a pair (Ã, B̃) so that ‖Ã−A‖ < δ and ‖B̃−B‖ < δ

and all of the n2 differences λ̃i− µ̃j are distinct. (Just perturb the Jordan forms
for A and B.) Using one such pair and applying the conclusion in the special case
proved first, there must exist some eigenvalues λ̃ and µ̃ of Ã and B̃, respectively,
so that ∣∣∣σ − (λ̃− µ̃)

∣∣∣ < ε/3 ,

while at the same time
∣∣∣λ̃− λ

∣∣∣ < ε/3 and |µ̃− µ| < ε/3 for some eigenvalues of
A and B, respectively. This contradicts (A.22).

Corollary A.4.7 The operator LA,B is nonsingular if and only if A and B have
no common eigenvalues.

Proof. By the Proposition, nonsingularity is equivalent to asking that λ−µ 6= 0
for all eigenvalues λ of A and µ of B.

Remark A.4.8 There is another proof of Corollary A.4.7 that does not re-
quire explicitly the result on continuity of eigenvalues. This is based on the
observation that the determinant of LA,B is the same as the resultant of the
characteristic polynomials of A and B, and hence the determinant is zero if and
only if these two polynomials have a common root, that is, if A and B share a
common eigenvalue.

The fact about the resultant is in turn proved as follows. For matrices
A,B so that all the numbers λi − µj are distinct, the first part of the proof
of Proposition A.4.6 shows that the determinant is the product of all of the
terms (λi−µj), that is, the resultant. Since the resultant is a polynomial —and
therefore continuous— function of the entries of A and B, and pairs of matrices
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A,B so that all of the (λi − µj)’s are distinct form a dense subset, the result
follows for all matrices.

This technique is different, and it has the advantage that it extends to arbi-
trary fields, and in fact arbitrary commutative rings. That is, over any commu-
tative ring R the determinant of LA,B , seen as an operator on n × n matrices
over R, is the resultant of χ

A
and χ

B
. This is because any polynomial identity

on matrices that is proved for complex matrices is necessarily true over arbitrary
commutative rings. (Using some algebra: It is only necessary to restrict to the
subring generated by the entries of all matrices appearing in the identity; this
is a quotient of an extension of finite transcendence degree of Z and is therefore
a subring of C. So identities over C project into identities over the ring.) 2

Exercise A.4.9 Prove the Cayley-Hamilton Theorem for complex matrices by
first reducing it to diagonal matrices and using continuity of characteristic poly-
nomials and invariance of the Theorem’s conclusions under matrix similarity.
(As mentioned in Remark A.4.8, this also automatically establishes the Cayley-
Hamilton Theorem over arbitrary commutative rings.) 2



Appendix B

Differentials

This Appendix reviews basic notions of differentiability, first for multivariable
maps and then for maps between normed spaces. The latter are used in the
text in order to characterize linearizations of continuous-time systems.

B.1 Finite Dimensional Mappings

We first recall some basic concepts from multivariable calculus. A mapping

T =

 T1
...
Tn

 : U → V (B.1)

defined on an open subset U ⊆ Rm and with values in an open subset V ⊆ Rn
is said to be k-times differentiable or is of class Ck if each of its components

Ti : U → R

has continuous partial derivatives of order up to k. In the case k = ∞, one says
that T is smooth; when k = 1 one just says differentiable. When k = 0, one
means simply that the map is continuous. When the set U is not necessarily
open, we define smoothness to mean that there is a smooth extension to some
neighborhood of U.

Given T as in (B.1) but over the complexes, that is, with U ⊆ Cm and
V ⊆ Cn, we may also see T as a 2n-vector of real-valued maps, depending on
2m real variables. We shall say that such a T is of class Ck if it is so as a map
over the reals. This should not be confused with analyticity, which corresponds
to differentiability as a function of m complex variables. Everything in this
section will apply to systems over C by consideration of the real-valued systems
of twice the dimension.

461
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The Jacobian of the differentiable map T at the element u0 ∈ U is the matrix

T∗[u0] =
(
∂Ti(u)
∂uj

∣∣∣∣
u=u0

)
,

which is continuous as a function of u0. Continuity of the matrix means that
each entry is continuous, or equivalently continuity of T as a map from U into
Rn×m, when the latter is given the topology that results from listing all coor-
dinates and identifying Rn×m with Rnm. If n = 1, the Jacobian is the same as
the gradient

∇T [u0] =
(
∂T (u)
∂u1

(u0), . . . ,
∂T (u)
∂um

(u0)
)

of T = T1.
The chain rule states that the Jacobian of the composition is the composition

(matrix product) of the Jacobians:

(T ◦ S)∗[u0] = T∗[S(u0)]S∗[u0]

whenever T and S are differentiable and S(u0) is in the domain of T .
One may also think of T∗[u0], for each fixed u0, as a linear mapping from Rm

to Rn, the differential of T at u0. Thus, the Jacobian is nothing more than
the matrix of the differential with respect to standard bases. One advantage of
considering the differential is that it can be defined naturally in infinite dimen-
sional spaces, and we do that below. The generalization will follow from the
following characterization of Jacobians, which can be found in any elementary
analysis book (see, e.g., [121]):

Fact B.1.1 The map T is differentiable if and only if there exists a continuous
function

J : U → Rn×m

such that, for each u0 ∈ U,

lim
u→u0

∥∥T (u)− T (u0)− J(u0)(u− u0)
∥∥

‖u− u0‖
= 0 . (B.2)

If such a J exists, then necessarily J(u0) = T∗[u0]. 2

We are using the notation ‖x‖ for the Euclidean norm

‖x‖ =
√
x2

1 + . . .+ x2
n

of a vector in Euclidean space.
More generally, one applies these concepts for maps between infinite dimen-

sional spaces as follows.
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B.2 Maps Between Normed Spaces

Recall that a normed space N over K = R or C is a vector space over K, together
with a map

N → R, x 7→ ‖x‖ ,

which satisfies the following properties for all x, z ∈ N and k ∈ K:

1. ‖x‖ > 0 if x 6= 0 and ‖0‖ = 0 .

2. ‖kx‖ = |k| ‖x‖ .

3. ‖x+ y‖ ≤ ‖x‖+ ‖y‖ .

A normed space N is a metric space when distance is defined as

d (x, z) := ‖x− z‖ .

If N is complete under this metric, it is a Banach space.
The notion of derivative, and more generally that of a Jacobian of a multi-

variable map, can be generalized to maps between normed spaces. This gener-
alization is based on the interpretation of a Jacobian of a map from Km into Kn

at a point x0 as itself a map from Km into Kn, and it satisfies the basic prop-
erties of derivatives, such as the chain rule. We review here the basic definition
and the main properties that we shall need. More details can be found in any
modern analysis book, e.g., [121].

A continuous mapping
F : O → N2

from an open subset O of a normed space N1 to another normed space N2 is
(Fréchet) differentiable at a point x0 ∈ O iff there is a linear mapping

F∗[x0] : N1 → N2

such that ∥∥F (x)− F (x0)− F∗[x0](x− x0)
∥∥ = o (

∥∥x− x0
∥∥)

as x − x0 → 0. If such a map exists, it is unique and is a bounded operator,
called the differential of F at x0. For each v ∈ N1, F∗[x0](v) is the directional
derivative of F at x0 in the direction of v.

If F has a differential at each point of O, the derivative of F is the mapping

F∗ : O → L(N1, N2), x 7→ F∗[x] ,

where L(N1, N2) is the set of all bounded linear maps from N1 to N2 endowed
with the operator norm. One says that F is of class C1 if this mapping is
continuous. Second derivatives of F are defined via derivatives of F∗, and so on
inductively.
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Remark B.2.1 There is another notion of differentiability which is often use-
ful. The mapping F : O → N2 is Gateaux differentiable at a point x0 ∈ O if
there is a linear bounded operator F∗[x0] : N1 → N2 such that, for each v ∈ N1,∥∥F (x0 + hv)− F (x0)− F∗[x0](hv)

∥∥ = o (h) (B.3)

as h → 0. If F is Fréchet differentiable, then it is also Gateaux differentiable,
with the same F∗[x0]. But Gateaux differentiability is weaker, because the limit
is taken along each direction x − x0 = hv, h → 0, separately. Equation (B.3)
says that the mapping

β : I → N2 : h 7→ F (x0 + hv)

(defined on some interval (−h0, h0) about zero) is differentiable at h = 0, and
has β̇(0) = F∗[x0](v). 2

Provided that dimN1 ≥ dimN2, we say that the map F has full rank at x0

if F is a submersion there, i.e., if it is differentiable and F∗[x0] is onto.
We shall need to apply the Implicit Function Theorem to differentiable map-

pings. In general, various technical conditions are needed in order for the Theo-
rem to hold for maps among infinite dimensional spaces. However, in the cases
of interest to us, one of the spaces is finite dimensional, so there is no difficulty.
We start with the Rank Theorem.

Theorem 52 Assume that F : O → N2 is of class C1 and of full rank at x0,
and let y0 := F (x0). Assume further that N2 is finite dimensional. Then there
exists an open neighborhood V ⊆ N2 of y0 and a map

G : V → O

of class C1 such that G(y0) = x0 and so that

F (G(y)) = y

for each y ∈ V. 2

This is an immediate consequence of the Rank Theorem for finitedimensional
mappings, which can be found in any advanced calculus book, because if F has
full rank, then there is some finite dimensional subspace

Ñ1 ⊆ N1

so that the restriction of F to
O
⋂
Ñ1

still has full rank, and the finite dimensional theorem can be applied to the
restricted mapping.
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The Implicit Function Theorem follows from this. In general, if

F : O ×Q → N3

is differentiable at
(x0, y0) ∈ O ×Q ⊆ N1 ×N2 ,

where N1, N2, N3 are normed spaces, the partial derivative with respect to N2

at (x0, y0) is the linear bounded operator

∂

∂y
F [x0, y0] : N2 → N3

given by
F∗[x0, y0](0, ·) ,

which can be identified naturally to the differential of

F (x0, ·)

as a map from Q into N3. If this partial derivative is of full rank, then also the
mapping

F̃ : O ×Q → N1 ×N3 : (x, y) → (x, F (x, y))

is of full rank. Applying the Rank Theorem to F̃ we conclude the Implicit
Function Theorem:

Theorem 53 Assume that F : O×Q → N3 is of class C1, where O,Q are open
subsets of normed spaces N1 and N2, respectively. Assume further that ∂

∂yF is
of full rank at (x0, y0), that z0 = F (x0, y0), and that both N1 and N3 are finite
dimensional. Then there exist open neighborhoods V ⊆ N3 of z0 and W ⊆ O of
x0 and a map

G : W ×V → Q
of class C1 such that G(x0, z0) = y0 and so that

F (x,G(x, z)) = z

for each (x, z) ∈ W × V. 2

The following Lemma is particularly useful when applied to mappings send-
ing controls into final states. In those cases one often applies the result to
conclude under certain conditions that controllability using arbitrary controls
implies controllability with nice controls, such as piecewise constant controls or
polynomial ones.

Lemma B.2.2 Assume that Ñ1 is a dense subspace of N1, that f : O → N2 is
of class C1, and that dimN2 = n <∞. Assume further that f has full rank at
some x0 ∈ O. Then there are elements x̃0 in

Õ := O
⋂
Ñ1
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arbitrarily close to x0 such that the mapping

f̃ := f | eO : Õ → N2

is of full rank at x̃0. If x0 ∈ Õ, then f̃ is of full rank at x0.

Proof. Note that f̃ is also of class C1, directly from the definition of differen-
tiability; its differential at any x ∈ Õ is the restriction of f∗[x] to Ñ1. Let

v1, . . . , vn

be elements of N1 so that

f∗[x0](v1), . . . , f∗[x0](vn)

form a basis of N2. Since f∗[x0] is continuous, we may approximate the vi’s by
elements of Ñ1 while preserving linear independence. So we assume from now
on that vi ∈ Ñ1 for all i. If x0 ∈ Ñ1, then this means that f̃ has full rank there,
as wanted. If not, consider a sequence

xj → x0 as t→∞

of elements of Õ. By continuous differentiability,

lim
j→∞

f∗[xj ](vi) = f∗[x](vi)

for each i. It follows that for all j large enough

f∗[xj ](v1), . . . , f∗[xj ](vn)

are linearly independent, and they are the same as

f̃∗[xj ](v1), . . . , f̃∗[xj ](vn)

because the xj ’s are in Ñ2.



Appendix C

Ordinary Differential
Equations

As explained in the text, it is convenient to introduce some concepts from
Lebesgue integration theory. However, readers who have not seen measure the-
ory before still should be able to follow the rest of this book if they substitute
“piecewise continuous function” instead of “measurable function” and they in-
terpret “almost everywhere” as “everywhere except at most for a countable set
of points.” At some points in a few proofs, results from Lebesgue integration
theory will be used, but all statements as well as most proofs will not require such
knowledge. Two good references for real-variables concepts are [190] and [264].
Except for some notation introduced there, the next section can be skipped by
readers willing to restrict themselves to piecewise continuous controls.

C.1 Review of Lebesgue Measure Theory

The simplest way to introduce measurable functions is by first defining sets of
measure zero and then defining measurable functions as the pointwise limits of
step (piecewise constant) functions. We do this next.

A subset S of Rn is said to have zero measure if for each ε > 0 there is a
countable union of balls B1, B2, . . . of volume εi such that

∞∑
i=1

εi < ε

and

S ⊆
∞⋃
i=1

Bi .

Two functions f, g : O → T from some subset O ⊆ Rn into some other set T

467
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are said to be equal almost everywhere (a.e.) if the set

{x ∈ O | f(x) 6= g(x)}

has zero measure. In general, a property is said to hold almost everywhere
provided that it only fails in a set of measure zero.

If U is a metric space and {fi, i = 1, 2, . . .} is a sequence of functions from
O ⊆ Rn into U, and also f : O → U, one says that {fi} converges to f almost
everywhere, denoted

fi → f (a.e.)

if the set
{x ∈ O | fi(x) 6→ f(x)}

has measure zero. In other words, except for a negligible set, the sequence
converges at every point. (For instance,

fi(x) : [0, 1] → [0, 1] : x 7→ xi

converges almost everywhere to the function f(x) ≡ 0.)
Let I be an interval in R and U a metric space. A piecewise constant function

g : I → U is one that is constant in each element Ij of a finite partition of I
into subintervals. An f : O → U is a measurable function if there exists some
sequence of piecewise constant functions {fi, i = 1, 2, . . .} so that {fi} converges
to f almost everywhere. Clearly, continuous functions are measurable, and in
general g ◦ f is measurable if f is measurable and g is continuous.

By abuse of notation, it is common to identify functions that are equal almost
everywhere. In particular, given a ω ∈ U[σ,τ) we may, and will, also think of it
as a function defined on the closed interval [σ, τ ].

The next two Remarks do use some less trivial facts from Lebesgue measure.
However, they are not needed for the understanding of the further material in
this Appendix, and only play a role in an approximation result in the main text.

Remark C.1.1 Assume that the metric space U is separable, that is, it has a
countable dense subset. Consider the following property for an ω : I → U:

ω−1(V ) is measurable for each open subset V ⊆ U , (C.1)

where “measurable” means Lebesgue measurable. (The measurable sets are
those obtained by countable intersections, unions, and complements, starting
with open subsets of I and sets of measure zero.) Then, the map ω is measurable
if and only if it satisfies Property (C.1). This is a very useful fact, standard
when U is a subset of a Euclidean space. In this generality, it is also known but
less accessible, so we give now a proof. The necessity of (C.1) is a consequence
of the fact that an almost everywhere limit of functions satisfying (C.1) again
satisfies (C.1) (see, for instance, [264], Fact M7 in Chapter X), and the fact
that piecewise constant functions obviously satisfy (C.1). The converse can be
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proved as follows. Assume that ω satisfies the property. By [264], Fact M11,
and Remark 3 on page 234 of that reference, ω is known to be the limit of
simple functions. Recall that ω is simple if there is a partition of I into finitely
many measurable sets J0, . . . , Jk such that J1, . . . , Jk have finite measure and
ω is constant on each Ji. It will be enough, then, to show that every simple
function is an almost everywhere limit of piecewise constant ones. So let ω be
simple, and assume that

ω(t) = ui if t is in Ji

and that all the ui’s are distinct.
We claim that it is enough to consider the case in which k = 1. Indeed,

assume that one has found sequences {ω(i)
n , n = 1, 2, . . .} and sets Zi of measure

zero for each i = 1, . . . , k, such that for each i and each t /∈ Zi there is some
N = N(t, i) such that

t ∈ Ji ⇒ ω(i)
n (t) = ui

t /∈ Ji ⇒ ω(i)
n (t) = u0

for all n > N (intuitively, these are approximating the “characteristic functions”
of the Ji’s, but with values ui, u0 instead of 1, 0). Then, we can define a function
ωn as follows: For any t ∈ I, if there is exactly one of the ω(i)

n (t) equal to ui
and the rest equal u0, then we let ωn(t) := ui; otherwise, we let ωn(t) := u0.
This is again piecewise constant, as it is constant on each interval where all of
the ω(i)

n ’s are constant. Now, for each

t /∈ Z := Z1 ∪ . . . ∪ Zk
there is some N so that ωn(t) = ω(t) for all n > N : It is enough for this to take
N > N(t, i) for this t and i = 1, . . . , k. So we assume that k = 1.

The problem is now that of showing that if J ⊆ I has finite measure and u, v
are two elements of U, with ω(t) = u if t ∈ J and ω(t) = v otherwise, then there
exists a sequence of piecewise constant functions {ωn} so that ωn(t) = ω(t) for
all n = n(t) large enough, except on a set of measure zero. To see this, start
with a sequence of open sets Vn so that

µ(Vn∆J) → 0 ,

where µ indicates Lebesgue measure and ∆ indicates symmetric difference. Since
each Vn is a countable union of intervals and has finite measure, without loss
of generality we can assume that each Vn is a finite union of (open) intervals.
Furthermore, we may also assume that

µ(Vn∆J) < 2−n

for all n. Let ωn be equal to u on Vn and v otherwise; this is a piecewise constant
function. It agrees with ω whenever t /∈ Vn∆J . Letting

WN :=
⋃
n≥N

(Vn∆J) ,
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one has that µ(WN ) → 0, so also Z := ∩{WN , N ≥ 0} has zero measure, and
for each t /∈ Z one has that ωn(t) = ω(t) for large N . 2

A function ω : I → U is (essentially) bounded if it is measurable and there
exists a compact subset K ⊆ U such that

ω(t) ∈ K for almost all t ∈ I ,

and it is locally (essentially) bounded if the restriction of ω to every bounded
subinterval of I is bounded.

Remark C.1.2 Assume, as in Remark C.1.1, that U is separable. Then: If ω is
essentially bounded, then there is always a sequence of piecewise constant func-
tions ωn converging almost everywhere to ω and equibounded (that is, ωn(t) ∈ K
for almost all t, for some compact K independent of n). This is because if K
is a compact containing the values of ω, we may replace ω by a function al-
most everywhere equal having image entirely contained in K, and now see K
itself as a separable metric space (as a subspace of U). Then Property (C.1)
holds for maps into K, so ω is measurable also as a map into K; therefore an
approximation can be found with values entirely contained in K.

Often one can obtain approximations by more regular controls. For instance,
assume that U is a convex subset of Rn. Then each piecewise constant control
can be approximated almost everywhere by continuous controls (just interpo-
late linearly on small intervals about the discontinuities), and any bound on the
norm of the original control is preserved. Thus, every essentially bounded mea-
surable control can be approximated in this case by an equibounded sequence
of continuous controls. If in addition U is open, then one can approximate, as
long as the interval I of definition is finite, by analytic, and even polynomial,
controls. This is because one can first assume that the interval is closed, then
approximate by continuous controls, and then approximate these uniformly via
the Weierstrass Theorem by polynomials in each coordinate; openness of U

guarantees that the values of the controls eventually lie entirely in U. 2

For measurable functions h : I → Cn on a finite interval one may define the
Lebesgue integral

∫
h(τ)dτ via the limits of integrals of suitable sequences of

approximating piecewise constant functions. (For essentially bounded functions,
the only ones that are really used in this text, any bounded sequence of piecewise
constant functions will do.) One can also define integrals of functions on infinite
intervals in a similar fashion. An integrable function is one for which

∫
‖h(τ)‖ dτ

is finite; the function h is locally integrable if∫ b

a

‖h(τ)‖ dτ < ∞

for each a < b, a, b ∈ I.
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A function ξ : I → Cn defined on a compact interval I = [a, b] is said to be
absolutely continuous if it satisfies the following property: for each ε > 0 there
is a δ > 0 such that, for every k and for every sequence of points

a ≤ a1 < b1 < a2 < b1 < . . . < ak < bk ≤ b

so that
∑k
i=1(bi− ai) < δ, it holds that

∑k
i=1 ‖ξ(bi)− ξ(ai)‖ < ε. The function

ξ is absolutely continuous if and only if it is an indefinite integral, that is, there
is some integrable function h such that

ξ(t) = ξ(a) +
∫ t

a

h(τ) dτ (C.2)

for all t ∈ I. An absolutely continuous function is differentiable almost every-
where, and

ξ̇(t) = h(t)

holds for almost all t, if h is as in (C.2). Note that a function is Lipschitz con-
tinuous if and only if it is absolutely continuous and has an essentially bounded
derivative. If I is an arbitrary, not necessarily compact, interval, a locally abso-
lutely continuous function ξ : I → Cn is one whose restriction to each compact
interval is absolutely continuous; equivalently, there is some σ ∈ I and some
locally integrable function h so that ξ(t) = ξ(σ) +

∫ t
σ
h(τ) dτ for all t ∈ I.

If I is an interval and U is a metric space, we denote the sets of all (essen-
tially) bounded measurable maps and all locally bounded maps into U by

L∞U (I) and L∞,loc
U (I) ,

respectively. When U = Rn (or Cn, depending on context) we write simply

L∞n (I) and L∞,loc
n (I) ,

respectively. Elements of such spaces are equivalence classes of functions that
coincide almost everywhere, and there is no distinction between

L∞n [σ, τ) , L∞n [σ, τ ] , L∞n (σ, τ) , L∞n (σ, τ ]

since these can be all naturally identified with each other. The space L∞n (I) is
a Banach space under the norm

‖ξ‖∞ := ess.sup. {‖ξ(t)‖ , t ∈ I};

that is, ‖ξ‖∞ is the infimum of the numbers c such that {t | ‖ξ(t)‖ ≥ c} has
measure zero, and with the distance

d(ξ, ζ) = ‖ξ − ζ‖∞

the space is a complete metric space. This is the standard “sup norm” save
for the fact that for measurable functions one ignores values that occur only
exceptionally.
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More generally, for every metric space U we view L∞U (I) as a metric space
(itself complete, if U is complete) when endowed with the distance

d∞ (ω, ν) := sup
t∈I

d (ω(t), ν(t))

(uniform convergence), again understood in the “essential” sense that behavior
on sets of measure zero is disregarded in computing the supremum.

If σ < τ are finite, the notation C0
n(σ, τ) is used for the subspace of L∞n (σ, τ)

consisting of all continuous maps

ξ : [σ, τ ] → Rn .

(This is of course very different from the space of continuous maps on the open
interval; it may be identified to the space of such maps whose one-sided limits
exist at t→ σ+ and t→ τ−.) This is again a Banach space. It follows that if ρ
is any positive real number, the ball centered at any ξ0 ∈ C0

n(I),

Bρ(ξ0) := {ζ ∈ C0
n(I) | ‖ξ − ζ‖∞ ≤ ρ} , (C.3)

is also a complete metric space. We shall use the fact that the Contraction
Mapping Theorem holds on each such ball as well as on the whole space. That
is, if

S : Bρ(ξ0) → Bρ(ξ0)

is any map such that, for some λ < 1,

‖Sξ − Sζ‖∞ ≤ λ ‖ξ − ζ‖∞

for all ξ, ζ, then S has a (unique) fixed point in Bρ(ξ0), and similarly for the
entire space (ρ = ∞).

Remark C.1.3 Assume that I is an interval and U is a metric space. Suppose
that we have a convergent sequence ωi → ω in L∞U (I). We prove here that the
set of these controls is equibounded, that is, there is some compact subset K̂ of
U so that, for almost all t ∈ I, ω(t) ∈ K̂ and ωi(t) ∈ K̂ for all i. By definition
of L∞U (I) there are compact subsets K and Ki, i ≥ 1, so that, except for t ∈ I
in a set of zero measure, ω(t) ∈ K and ωi(t) ∈ Ki for all i. For each ε > 0, let
Bε be the set of points at distance at most ε from K. Since ωi → ω in uniform
norm, for almost all t we have that d (ωi(t), ω(t)) < εi, where {εi} is a sequence
of real numbers converging to zero, and so ωi(t) ∈ Bεi for all i. (Observe that
these sets need not be compact unless, for example, one assumes the space U

to be locally compact.) Replacing Ki by its intersection with Bεi
, we may take

each Ki as contained in Bεi . It will be enough to show that the set K̂ defined
as the union of K and of all the sets Ki is also compact. We pick a sequence
{ui} of elements of K̂ and show that it admits a convergent subsequence in K̂.

If this sequence is contained in a finite union A = K1

⋃
K2

⋃
. . .
⋃
Kr, then

it has a convergent subsequence, since A is compact, and we are done. So
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assume that the sequence is not contained in any finite union of this form.
Then, there are subsequences uj` and Kk`

so that uj` ∈ Kk`
for all `. (Such

a subsequence can be obtained by induction: if we already have j1, . . . , j` and
k1, . . . , k`, let A = K1

⋃
K2

⋃
. . .
⋃
Kk`

and let B be a union of finitely many
Ki’s which contains u1, ...uj` ; as the entire sequence cannot be contained in the
union of A and B, there are j > j` and k > k` so that uj ∈ Kk, so we may
take j`+1 := j and k`+1 := k.) We renumber and suppose from now on that
ui ∈ Ki for each i. Pick for each i = 1, 2, . . . some yi ∈ K so that d (ui, yi) ≤ εi.
Since K is compact, there is a subsequence of y1, y2, . . . which converges to some
element y ∈ K, and renumbering again, we assume without loss of generality
that yi → y as i → ∞. Thus ui → y as well, so the original sequence has a
convergent subsequence, establishing compactness. 2

C.2 Initial-Value Problems

When dealing with continuous-time systems, it is necessary to have a good
understanding of the basic facts regarding initial-value problems

ξ̇ = f(t, ξ(t)) , ξ(σ0) = x0 , (IVP)

where ξ(t) ∈ X ⊆ Rn. Such equations result when a control is substituted in
the right-hand side of a control equation

ẋ = f(x, u) .

(As a rule, when we are proving results for differential equations we use ξ to
denote a solution and reserve the letter “x” for states, that is, values ξ(t).
During informal discussions, examples, or exercises, we often revert to the more
standard use of x for the solution function ξ itself. Similar remarks apply to the
notation ω for control functions and u for control values.)

Since it is essential to allow for the possibility of discontinuous controls,
the right hand side of (IVP) cannot be assumed to be continuous on its first
argument t, and hence this results in a possibly nondifferentiable solution ξ(·).
Thus, the meaning of “solution” of the differential equation must be clarified.
The simplest approach is to define a solution of (IVP) on an interval I as a
locally absolutely continuous function

ξ : I → X (C.4)

such that the integral equation

ξ(t) = x0 +
∫ t

σ0
f(τ, ξ(τ)) dτ (INT)

holds. In order for this integral to be meaningful, we first remark that f(t, ξ(t))
is measurable. More precisely, we assume that

f : I × X → Rn



474 C. Ordinary Differential Equations

is a vector function, where I is an interval in R and X is an open subset of Rn,
and that the following two properties hold:

f(·, x) : I → Rn is measurable for each fixed x (H1)

and
f(t, ·) : Rn → Rn is continuous for each fixed t . (H2)

Under these hypotheses, it is also true that

f(t, ξ(t))

is measurable as a function of t, for any given continuous (C.4). This is proved
as follows. If ξ would be piecewise constant on a partition I1, . . . , Ik of I, say
with ξ(t) = xi when t ∈ Ii, then

f(t, ξ(t)) =
k∑
i=1

f(t, xi)χi(t) ,

where χi is the characteristic function of Ii. This function is a sum of products
of measurable ones, hence measurable itself. If now ξ is continuous, we can
always find a sequence of piecewise constant functions {ξi} such that

ξi → ξ

(uniformly on compact subsets of I). Since f is continuous on the second
coordinate (assumption (H2)) it follows that pointwise

f(t, ξi(t)) → f(t, ξ(t)) ,

and therefore the latter is also measurable as claimed.

Definition C.2.1 A solution of (IVP) on an interval J ⊆ I containing σ0 is
a locally absolutely continuous function ξ : J → X such that (INT) holds for all
t ∈ J . 2

In most cases in this text, the derivative of ξ is (almost everywhere) bounded
on each finite interval, because the right-hand side of equations involve controls
(which are assumed, by definition, to be essentially bounded) and the continuous
function ξ. Thus, solutions will be in fact locally Lipschitz, not merely absolutely
continuous.

C.3 Existence and Uniqueness Theorem

The following result is known as the Bellman-Gronwall or the Gronwall Lemma.
It is central to the proof of uniqueness and well-posedness of ODEs. By “inter-
val” we mean either finite or infinite interval.
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Lemma C.3.1 Assume given an interval I ⊆ R, a constant c ≥ 0, and two
functions

α, µ : I → R+

such that α is locally integrable and µ is continuous. Suppose further that for
some σ ∈ I it holds that

µ(t) ≤ ν(t) := c+
∫ t

σ

α(τ)µ(τ) dτ (C.5)

for all t ≥ σ, t ∈ I. Then, it must hold that

µ(t) ≤ ce
R t

σ
α(τ) dτ . (C.6)

Proof. Note that ν̇(t) = α(t)µ(t) ≤ α(t)ν(t) almost everywhere, so

ν̇(t)− α(t)ν(t) ≤ 0 (C.7)

for almost all t. Let
π(t) := ν(t)e−

R t
σ
α(τ) dτ .

This is a locally absolutely continuous function, and

π̇(t) = [ν̇(t)− α(t)ν(t)] e−
R t

σ
α(τ) dτ

is ≤ 0 by (C.7). So π is nonincreasing, and thus,

ν(t)e−
R t

σ
α(τ) dτ = π(t) ≤ π(σ) = ν(σ) = c ,

from which the conclusion follows.

The following remark is very simple, but the resulting inequality will appear
repeatedly.

Lemma C.3.2 Let f, g : L× X → Rn both satisfy the hypotheses (H1), (H2),
where L is an interval in R, let X0 ⊆ X ⊆ Rn be two subsets, and let

ξ : L→ X and ζ : L→ X0

be continuous. Suppose that there exist two locally integrable functions

α, β : L→ R+

such that
‖f(t, x)− f(t, y)‖ ≤ α(t) ‖x− y‖ (C.8)

for all x, y ∈ X and all t ∈ L, and

‖f(t, x)− g(t, x)‖ ≤ β(t) (C.9)
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for each x ∈ X0 and all t ∈ L. Then, if x0, z0 are arbitrary elements of Rn and
σ0 ∈ L, and we denote

ξ̃(t) := x0 +
∫ t

σ0
f(τ, ξ(τ)) dτ

and

ζ̃(t) := z0 +
∫ t

σ0
g(τ, ζ(τ)) dτ ,

it holds that∥∥∥ξ̃(t)− ζ̃(t)
∥∥∥ ≤

∥∥x0 − z0
∥∥ +

∫ t

σ0
α(τ) ‖ξ(τ)− ζ(τ)‖ dτ +

∫ t

σ0
β(τ) dτ

for all t ≥ σ0 such that t ∈ L.

Proof. Just write

f(τ, ξ)− g(τ, ζ) = f(τ, ξ)− f(τ, ζ) + f(τ, ζ)− g(τ, ζ) ,

take norms, and use the triangle inequality.

We now state the main Theorem on existence and uniqueness.

Theorem 54 Assume that f : I ×X → Rn satisfies the assumptions (H1) and
(H2), where X ⊆ Rn is open and I ⊆ R is an interval, and the following two
conditions also hold:

1. f is locally Lipschitz on x; that is, there are for each x0 ∈ X a real number
ρ > 0 and a locally integrable function

α : I → R+

such that the ball Bρ(x0) of radius ρ centered at x0 is contained in X and

‖f(t, x)− f(t, y)‖ ≤ α(t) ‖x− y‖

for each t ∈ I and x, y ∈ Bρ(x0).

2. f is locally integrable on t; that is, for each fixed x0 there is a locally
integrable function β : I → R+ such that∥∥f(t, x0)

∥∥ ≤ β(t)

for almost all t.

Then, for each pair (σ0, x0) ∈ I ×X there is some nonempty subinterval J ⊆ I
open relative to I and there exists a solution ξ of (IVP) on J , with the following
property: If

ζ : J ′ → X



C.3. Existence and Uniqueness Theorem 477

is any other solution of (IVP), where J ′ ⊆ I, then necessarily

J ′ ⊆ J and ξ = ζ on J ′ .

The solution ξ is called the maximal solution of the initial-value problem in
the interval I.

Before proving the Theorem, we remark that the assumptions imply also a
stronger version of Condition 2, namely that it holds also uniformly on compacts.
That is, for any compact K ⊆ X there is a locally integrable γ such that

‖f(t, x)‖ ≤ γ(t) for all t ∈ I, x ∈ K . (C.10)

This is proved as follows. Given any x0 ∈ K, there are ρ > 0 and functions α, β
as in the Theorem. Thus, for any element x ∈ Bρ(x0) and each t ∈ I,

‖f(t, x)‖ ≤
∥∥f(t, x0)

∥∥+
∥∥f(t, x)− f(t, x0)

∥∥
≤ β(t) + ρα(t) . (C.11)

Call this last function γx0 and note that it is locally integrable, too. Consider
the open covering of K by the sets of the form Bρ(x0); by compactness there is
a finite subcover, corresponding to, say, balls centered at x1, . . . , xl. Take then

γ(t) := max{γx1 , . . . , γxl
} .

This is again locally integrable, and (C.11) gives then the desired Property
(C.10). 2

We now prove the Theorem.
Proof. Assume without loss of generality that I 6= {σ0}; otherwise the
problem is trivial. We first show that there exists some δ > 0 such that problem
(IVP) has a solution on the interval [σ0, σ0 + δ]

⋂
I. If σ0 is the right endpoint

of I, then this is obvious, so we assume that such is not the case. Pick, for the
given x0, a number ρ and locally integrable functions α and β as in the statement
of the Theorem. Note that, because of local integrability, the function

a(t) :=
∫ t+σ0

σ0
α(τ) dτ → 0

as t→ 0+, and similarly for

b(t) :=
∫ t+σ0

σ0
β(τ) dτ .

Note also that both a and b are nonnegative and nondecreasing. Thus, there
exists a δ > 0 such that σ0 + δ ∈ I and

(i) a(t) ≤ a(δ) = λ < 1 for all t ∈ [0, δ], and
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(ii) a(t)ρ+ b(t) ≤ a(δ)ρ+ b(δ) < ρ for all t ∈ [0, δ].

Let ξ0 ≡ x0 on the interval [σ0, σ0 +δ] and consider the ball of radius ρ centered
at this point in the space C0

n(σ
0, σ0 + δ),

B := Bρ(ξ0) .

Introduce the operator
S : B → C0

n(σ
0, σ0 + δ)

defined by

(Sξ)(t) := x0 +
∫ t

σ0
f(τ, ξ(τ)) dτ .

Since the values ξ(τ), τ ∈ [σ0, σ0 + δ] all belong to some compact set K (by
continuity of ξ,) it follows from the discussion before the proof that f(·, ξ(·)) is
locally integrable, since∫ t

σ0
‖f(τ, ξ(τ))‖ dτ ≤

∫ t

σ0
γ(τ) dτ .

Thus, S is well defined, and Sξ is absolutely continuous, for each ξ. We claim
that B is invariant under S. Indeed, take any ξ ∈ B and apply Lemma C.3.2
with L = [σ0, δ+σ0], g ≡ 0, same α, β, x0, ξ, f as here, X = Bρ(x0), X0 = {x0},
ζ := ξ0, and z0 = x0. Since then ξ̃ = Sξ and ζ̃ = ξ0, we conclude that

‖Sξ − ξ0‖∞ ≤ ‖ξ − ξ0‖∞ a(δ) + b(δ) < ρ,

the last inequality because of Property (ii). Therefore, S can be thought of as
a map B → B. Next we prove that it is a contraction there.

For that we again apply Lemma C.3.2, this time with the following choices,
given any ξ, ζ ∈ B: X = X0 = Bρ(x0), α, f, x0 as here, g = f , β ≡ 0, and
L = [σ0, δ + σ0]. Note that now the first and third terms in the conclusion of
the Lemma vanish, and we have

‖Sξ − Sζ‖∞ ≤ λ ‖ξ − ζ‖∞ ,

so S is a contraction.
It follows then from the Contraction Mapping Theorem that there is some

fixed point ξ = Sξ, and this is, then, a solution of (IVP) in the interval [σ0, δ+
σ0]. If σ0 is not a left endpoint of I, a similar argument proves that there is a
solution in some interval of the form [σ0−δ, σ0], and therefore by concatenating
both solutions, we conclude that there is a solution in an interval [σ0−δ, σ0 +δ].
If σ0 is an endpoint, we have a solution in an interval of the form [σ0, σ0 + δ] or
[σ0 − δ, σ0], and in any case this gives a solution defined on a neighborhood of
σ0 in I. Moreover, this local existence result holds for every initial pair (σ0, x0).

We now prove the following uniqueness statement: If ξ and ζ are two solu-
tions of the problem (IVP) on some interval J ⊆ I, σ0 ∈ J , then ξ ≡ ζ on J .
We prove that they coincide for t ∈ J, t ≥ σ0, the case t ≤ σ0 being analogous.
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We first prove that ξ and ζ must coincide in some (possibly small) interval
of the form [σ0, σ0 + δ], for some δ > 0. (If σ0 is the right endpoint, there
is nothing to prove.) Choose again ρ as in Condition 1, for the given x0. By
continuity of both ξ and ζ, there is a δ small enough that all values ξ(t) and
ζ(t), for t ∈ [σ0, σ0 + δ], belong to the ball Bρ(x0). Once more we apply Lemma
C.3.2, this time taking X = X0 = X, f, x0, ξ, ζ, α as here, z0 = x0, g = f ,
L = [σ0, σ0 + δ], and β ≡ 0. As before, the first and last term vanish, so the
Lemma gives that

‖ξ(t)− ζ(t)‖ ≤
∫ t

σ0
α(τ) ‖ξ(τ)− ζ(τ)‖ dτ

for all t ∈ [σ0, σ0 + δ]. Gronwall’s Lemma then gives that the left-hand side
must be zero, since “c” is zero. This proves uniqueness on that (small) interval.

Assume now that there would exist any t > σ0, t ∈ J , such that ξ(t) 6= ζ(t).
Define

σ1 := inf{t ∈ J, t > σ0 | ξ(t) 6= ζ(t)} .

So ξ ≡ ζ on [σ0, σ1), and hence by continuity of both ξ and ζ it also holds
that ξ(σ1) = ζ(σ1). The above local uniqueness proof was equally valid for any
initial σ0 ∈ I and any x0 ∈ X. Thus, we apply it to the initial-value problem
with σ1 as initial time and initial state x1 := ξ(σ1). It follows that ξ ≡ ζ on
some interval of the form [σ1, σ1 +δ] for some δ > 0, contradicting the definition
of σ1.

We now show that there is a maximal solution. For this, consider

τmin := inf{t ∈ I | there is a solution on [t, σ0]}

and
τmax := sup{t ∈ I | there is a solution on [σ0, t]} .

(Possibly τmax = +∞ or τmin = −∞.) From the local existence result we know
that τmin < τmax. Consider the open interval (τmin, τmax). There is a solution
defined on this interval, because there are two sequences

sn ↓ τmin and tn ↑ τmax ,

and there is a solution on each interval (sn, tn), by definition of τmin and τmax,
and these solutions coincide on their common domains by the uniqueness state-
ment.

We now pick J as follows. If τmin and τmax are both in the interior of I,
then

J := (τmin, τmax) .

If τmin is the left endpoint (that is, I has the form [τmin, b] or [τmin, b)), then
τmin is added to J provided that a solution exists on an interval including τmin.
Similarly for τmax. With this definition, J is open relative to I and nonempty.
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Moreover, if τmin is interior to I, then there can be no solution ζ of (IVP)
which is defined on [τmin, σ

0]. Otherwise, from the local existence Theorem
applied to the initial-value problem with ξ(τmin) = ζ(τmin), there would result
a solution on some interval

(τmin − δ, τmin]

and hence by concatenation also one on (τmin−δ, σ0], contradicting the definition
of τmin. Similarly for τmax. In conclusion, any solution of (IVP) must have
domain included in the above J , and therefore the last part of the Theorem
follows again from the uniqueness statement.

When τmax is in the interior of I, one calls t = τmax a finite escape time for
the problem (IVP).

Exercise C.3.3 Let X = I = R. Consider the differential equation

ẋ = x2

with the following initial values, and find explicitly the maximal solution in each
case:

1. x(0) = 1.

2. x(1) = 0.

3. x(1) = 1. 2

The local Lipschitz property typically is not hard to verify, due to the fact
to be proved next.

Proposition C.3.4 Assume that f : I × X → Rn satisfies assumption (H1),
where X is open in Rn and I is an interval. Suppose further that for each t the
function f(t, ·) is of class C1 and that for each compact set K ⊆ X there is some
locally integrable function α : I → R+ such that∥∥∥∥∂f∂x (t, x)

∥∥∥∥ ≤ α(t) for all t ∈ I, x ∈ K . (C.12)

Then f satisfies the local Lipschitz Property (1) in Theorem 54. In the particular
case when f is independent of t, Property (C.12) is automatically satisfied.

Proof. Given any x0 ∈ X, pick any ρ such that Bρ(x0) ⊆ X. Apply the above
property with K := Bρ(x0). Thus, for any two elements x, y in K we have that
for each coordinate fi, i = 1, . . . , n of f ,

fi(t, x)− fi(t, y) =
n∑
i=1

∂fi
∂xj

(t, z)(xj − yj)



C.3. Existence and Uniqueness Theorem 481

for some z in the line joining x and y, by the Mean Value Theorem applied to
the function fi(µx+ (1− µ)y) of µ ∈ [0, 1]. It follows that for some constant c,

‖f(t, x)− f(t, y)‖ ≤ cα(t) ‖x− y‖ ,

so cα(t) is as desired. If f (or even if just ∂f/∂x) is independent of t, continuity
of ∂f/∂x insures that this is bounded on compact sets.

The proof of the Theorem shows that solutions exist at least on the interval
[σ0, σ0 + δ], if δ is so that properties (i) and (ii) in the proof hold. This gives
(very conservative) lower bounds on the interval of definition. The next problem
illustrates how one may use such estimates, for an equation that arises naturally
from a control system.

Exercise C.3.5 Consider the system

ẋ(t) = x2(t) + u(t) . (C.13)

Show that there is a solution with x(0) = 1, defined on the interval [0, 0.1], if u
is any control that satisfies ∫ 0.1

0

|u(τ)| dτ < 0.1 .

(Hint: Try ρ := 1 in the Theorem.) 2

The following fact is often useful.

Proposition C.3.6 Assume that the hypotheses of the above Theorem hold
and that in addition it is known that there is a compact subset K ⊆ X such
that the maximal solution ξ of (IVP) satisfies ξ(t) ∈ K for all t ∈ J . Then

J = [σ0,+∞)
⋂
I, (C.14)

that is, the solution is defined for all times t > σ0, t ∈ I.

Proof. Assume that (C.14) does not hold. Thus, ξ is defined on [σ0, τmax),
τmax < ∞, but there is no solution on [σ0, τmax], and τmax ∈ I. Find a γ as in
the discussion preceding the proof of Theorem 54, for the compact set K in the
statement of the Proposition, and consider the function

ξ̃(t) :=
{
ξ(t) if t ∈ [σ0, τmax)
x∗ if t = τmax

where x∗ is any element in K. Thus, f(t, ξ̃(t)) is bounded by γ(t), which is an
integrable function on [σ0, τmax], and is therefore integrable itself. Define now

ξ(τmax) := x0 +
∫ τmax

σ0
f(τ, ξ̃(τ)) dτ .
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Since this is the limit of the integrals
∫ t
σ0 as t→ τmax and K is closed, ξ(τmax) ∈

K and in particular ξ(τmax) ∈ X. Also, since f(τ, ξ̃(τ)) = f(τ, ξ(τ)) almost
everywhere, we conclude that ξ satisfies

ξ(t) = x0 +
∫ t

σ0
f(τ, ξ(τ)) dτ

= x0 +
∫ t

σ0
f(τ, ξ̃(τ)) dτ

on the interval [σ0, τmax]; thus, it is absolutely continuous (from the first equal-
ity) and it satisfies (IVP) (from the second). So we defined an extension to
[σ0, τmax], contradicting maximality.

A related result is as follows:

Proposition C.3.7 Assume that X = Rn and that the hypotheses in Theorem
54 hold but with the boundedness Property (2) being global: There is some
locally integrable β such that

‖f(t, x)‖ ≤ β(t) for all x ∈ Rn .

Then again (C.14) holds.

Proof. We use the same argument as in the proof of Proposition C.3.6, except
that now f(t, ξ̃(t)) is bounded by β instead of γ.

Note that the assumption that X = Rn is crucial in having a well defined
ξ(τmax) in this argument. Otherwise boundedness is not sufficient, as illustrated
by

ξ̇ = 1, x0 = 0

on X = (−1, 1) and I = R, for which J = (−1, 1) 6= I.
Finally, another sufficient condition for global solutions to exist is that the

Lipschitz condition holds globally:

Proposition C.3.8 Let X = Rn and assume that [σ0,+∞) ⊆ I. Suppose that
f satisfies the assumptions of Theorem 54 except that the function α can be
chosen independently of x0, with ρ = ∞; that is, that there exists a locally
integrable α so that

‖f(t, x)− f(t, y)‖ ≤ α(t) ‖x− y‖

for each t ∈ I and x, y ∈ Rn. Then J = [σ0,+∞).

Proof. This is proved in a manner very similar to Theorem 54. Let δ be such
that (i) in the proof of the Theorem holds, i.e., so that

a(t) ≤ a(δ) = λ < 1 for all t ∈ [0, δ] .
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Then, the proof of the Theorem, arguing with all of C0
n(σ

0, σ0 + δ) instead of
Bρ(ξ0), shows that solutions exist for (IVP) at least on the interval [σ0, σ0 + δ],
and that this is true for any such initial-value problem, independently of the
particular σ0 and x0. Given now a fixed x0 and σ0, consider the maximal
solution ξ. Assume the Proposition to be false, so in particular τmax <∞. Let
σ1 := τmax − δ/2 and x1 := ξ(σ1). The initial-value problem has a maximal
solution ζ with these initial data and, as remarked before, ζ is defined at least
in the interval

[σ1, σ1 + δ] .

If we let ξ̃(t) be defined as ξ(t) for t ≤ σ1 and equal to ζ(t) for t > σ1, we obtain
a solution of the original (IVP) on

[σ0, τmax + δ/2] ,

contradicting maximality of τmax.

Exercise C.3.9 Consider the nonlinear pendulum

ẋ1 = x2

ẋ2 = − sinx1 + u(t)

with I = R.

1. Prove that if u ∈ L∞,loc
m (R) and σ0, x0 are arbitrary, the corresponding

initial-value problem has τmax = +∞.

2. Prove the same fact for the equation that results when one considers the
closed-loop system resulting from the feedback law u = −2x1 − x2.

3. Find a feedback law (and an initial state) for which the closed-loop system
has a finite τmax. 2

Exercise C.3.10 Show that with the feedback u = −x3, system (C.13) in Ex-
ercise C.3.5, with I = X = R, has no escape times, for any initial condition. 2

All of the facts given above hold for complex initial-value problems (IVP)
for which the set X is a subset of a complex Euclidean space Cn and f takes
values in Cn. It is only necessary to consider separately the resulting differential
equations for the real and imaginary parts of ξ and f . That is, the resulting
equation is equivalent to an equation in R2n, and the hypotheses of the various
results must be verified for this real system. Observe that properties such as
local integrability, essential boundedness, or continuity, can be defined in terms
of complex numbers, using the norm√√√√ n∑

i=1

|xi|2
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in Cn, where |λ| is the magnitude of the complex number λ. Equivalently, one
may use the standard Euclidean norm in R2n and ask that these properties hold
for the corresponding real systems; the same concepts result.

It is many times the case that f in (IVP) is smooth in both x and t; in control
applications this will correspond to the case in which the dynamics as well as
the control being applied are well behaved. In that case one may conclude that
solutions are smooth as functions of time:

Proposition C.3.11 Assume that f : I ×X → Rn is of class Ck, where k ≥ 1.
Then, the conclusions of Theorem 54 hold, and the maximal solution ξ of (IVP)
is of class Ck+1.

Proof. By Proposition C.3.4, we know that the hypotheses of the Theorem
hold, so there is indeed a solution. By induction, assume that ξ is of class Cl,
with some l ≤ k. (The case l = 0 is clear by the definition of solution.) Then,
in the equation

ξ̇(t) = f(t, ξ(t)) ,

the right-hand side is of class Cl. Thus, the derivative of ξ is l times continuously
differentiable, from which it follows that ξ is of class Cl+1, establishing the
induction step.

The result also holds for functions of class Cω. Recall that an analytic (or
more precisely, real analytic) function

f : V → R ,

where V is an open subset of Rm, is one with the property that for each v0 ∈ V
there exists some ρ > 0 and a series

f(v1, . . . , vm) =
∞∑
i1=0

. . .

∞∑
im=0

ai1...im(v1 − v0
1)i1 . . . (vm − v0

m)im (C.15)

convergent for all v ∈ Bρ(v0). A vector function f : V → Rn is analytic
provided that each coordinate is. We also say that f is of class Cω. When V is
not necessarily open, we define analyticity by the requirement that there exists
an extension to an analytic map in a neighborhood of V.

Proposition C.3.12 Assume that f : I × X → Rn is of class Cω. Then, the
conclusions of Theorem 54 hold, and the maximal solution ξ of (IVP) is of class
Cω.

Proof. Because analyticity is a local property, and using the fact that solutions
are unique, it is enough to prove that there is an analytic solution defined in some
interval (σ0−δ, σ0+δ) about σ0. (Even if σ0 is an endpoint of I, by definition of
analytic function there is an extension of f to some open neighborhood of I×X,



C.3. Existence and Uniqueness Theorem 485

so we may assume that σ0 is interior to I.) Adding if necessary a coordinate
satisfying

ξ̇n+1 = 1, ξn+1(σ0) = σ0 ,

we may assume without loss of generality that f is independent of t, that is,
f : X → Rn. Since the series (C.15) for f is convergent about x0, it also defines
an extension to an analytic function g of complex variables (z1, . . . , zn) defined
in a neighborhood Z of x0 in complex space Cn. We shall show that there is a
continuous function

ξ̃ : {|σ0 − σ| ≤ δ} → Z ⊆ Cn

defined on some complex disk of radius δ > 0 about σ0, such that

ξ̃(σ) = x0 +
∫ σ

σ0
f(ξ̃(z)) dz if |σ0 − σ| < δ , (C.16)

where the integral is interpreted as a line integral along the line joining σ0 to
σ, such that ξ̃ is analytic on |σ0 − σ| < δ (as a function of a complex variable).
Then the restriction of ξ̃ to the real interval (σ0 − δ, σ0 + δ) will be as desired.

In order to prove the existence of ξ̃ we introduce for each positive real δ the
space Dωn(σ0, δ) consisting of all those

ξ̃ : {|σ0 − σ| ≤ δ} → Cn

that have the property that they are analytic in the interior of the disk and are
continuous everywhere, thought of as a normed space with

‖ξ‖∞ := sup
|σ0−σ|≤δ

‖ξ(σ)‖ .

This space is complete and is hence a Banach space, as proved in most functional
analysis texts (see, for instance, [399]). It is naturally identified to a subspace of
the Hardy space H∞ consisting of all functions that are analytic in the interior
of the disk and are bounded. (Completeness is an easy consequence of Morera’s
Theorem: Any Cauchy sequence has a continuous limit, by the completeness of
the space of all continuous functions on the disk, and a uniform limit of analytic
functions must be analytic, since along each closed path one has that

0 =
∫

Γ

fn dz →
∫

Γ

f dz

and therefore the integral of the limit must be zero, too.)
We also introduce for each ρ > 0 the ball

Bρ(ξ0) ⊆ Dωn(σ0, δ)

consisting of all elements with ‖ξ − ξ0‖ ≤ ρ, where ξ0 is the function constantly
equal to x0, and introduce the operator S : Bρ(ξ0) → Bρ(ξ0) defined by

(Sξ)(σ) := x0 +
∫ σ

σ0
f(ξ(z)) dz .
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As before, both ρ and δ can be chosen small enough that this is a contraction;
the result follows from the Contraction Mapping Theorem.

We now prove that solutions depend continuously on initial conditions as
well as on the right-hand side of the equation.

Theorem 55 Let α : I → R+ be an integrable function, where I = [σ, τ ] is
a bounded closed interval in R, X an open subset of Rn, and D a positive real
number. Suppose that f and h are two mappings I × X → Rn which satisfy
the hypotheses of Theorem 54 (namely (H1), (H2), and the local Lipschitz and
integrability properties), and that ξ : I → X is a solution of

ξ̇(t) = f(t, ξ(t))

such that the D-neighborhood of its range:

K = {x | ‖x− ξ(t)‖ ≤ D for some t ∈ [σ, τ ]}

is included in X. Let

H(t) :=
∫ t

σ

h(s, ξ(s)) ds t ∈ I

and H := supt∈I ‖H(t)‖. Assume that

max
{
H ,

∥∥ξ(σ)− z0
∥∥} ≤ D

2
e−

R τ
σ
α(s) ds (C.17)

and, with g := f + h,

‖g(t, x)− g(t, z)‖ ≤ α(t) ‖x− z‖ for all x, z ∈ X and t ∈ I . (C.18)

Then, the solution ζ of the perturbed equation

ζ̇ = g(t, ζ) = f(t, ζ) + h(t, ζ) , ζ(σ) = z0 (C.19)

exists on the entire interval [σ, τ ], and is uniformly close to the original solution
in the following sense:

‖ξ − ζ‖∞ ≤
(∥∥ξ(σ)− z0

∥∥+H
)
e

R τ
σ
α(s) ds . (C.20)

Proof. Let ζ : J → Rn be the maximal solution of the initial value prob-
lem (C.19), J ⊆ I. This solution exists because f and h, and therefore g,
satisfy the hypotheses of the existence theorem. For any t ∈ J we have:

ξ(t)− ζ(t) = ξ(σ)− z0 +
∫ t

σ

[g(s, ξ(s))− g(s, ζ(s))] ds −
∫ t

σ

h(s, ξ(s)) ds .

Therefore, for each t ∈ J :

‖ξ(t)− ζ(t)‖ ≤
∥∥ξ(σ)− z0

∥∥ + ‖H(t)‖ +
∫ t

σ

α(s) ‖ξ(s)− ζ(s)‖ ds
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and hence from Gronwall’s inequality we conclude:

‖ξ(t)− ζ(t)‖ ≤
(∥∥ξ(σ)− z0

∥∥ + H
)
e

R τ
σ
α(s) ds . (C.21)

In particular, this implies that ‖ξ(t)− ζ(t)‖ ≤ D, and therefore ζ(t) ∈ K.
Thus the maximal solution ζ is included in a compact subset of X, which by
Proposition C.3.6 implies that J = I, and this means that Equation (C.21)
holds for all t ∈ I, which is what Equation (C.20) asserts.

Remark C.3.13 In Theorem 1 (p. 57), and also in Section 4.2 (starting on
page 147), we establish several additional properties regarding joint continuity
of ξ(t) on t and the initial condition. 2

The following characterization of maximal solutions is often very useful.

Exercise C.3.14 Show that if ξ : [σ0, τmax) → X is a maximal solution of
ẋ = f(t, x) then

lim
t↗τmax

‖ξ(t)‖ = ∞ . (C.22)

(Hint: Suppose that there would exist a sequence tn↗τmax so that ξ(tn) con-
verges to some state z0; a solution ζ exists on [τmax−δ, τmax+δ], for some δ > 0,
with ζ(τmax) = z0; now use continuity on initial conditions to extend ξ.) 2

C.4 Linear Differential Equations

We now review some facts about the solutions of linear differential equations.
We take here K = R or C.

Assume that A(·) is an n× n matrix of locally (essentially) bounded (mea-
surable) functions on an interval I with values in K. Consider the initial-value
problem

ξ̇(t) = A(t)ξ(t) , ξ(σ0) = x0 . (C.23)

We may assume that I = R simply by defining A(t) ≡ 0 outside I. Since the
right-hand side is globally Lipschitz, Proposition C.3.8 insures that there is a
(unique) solution for all t ≥ σ0. Solving the equation for t < σ0 is equivalent
to solving the reversed-time equation ξ̇ = −Aξ, which is also globally Lipschitz.
Thus, solutions are defined on (−∞,+∞). Observe that, in the complex case,
the resulting system in R2n is again linear, so the same conclusions apply for
both real and complex equations.

A convenient way to study all solutions of a linear equation, for all possible
initial values simultaneously, is to introduce the matrix differential equation

Ẋ(t) = A(t)X(t), X(σ) = I , (C.24)

with X(t) ∈ Kn×n for each t ∈ R. Since this can be seen as a linear differential
equation over Kn2

, it has a global solution on (−∞,∞).



488 C. Ordinary Differential Equations

We denote by Φ(τ, σ) the solution of (C.24) at time τ , that is, X(τ). This
is defined for each real σ and t; Φ is the fundamental solution associated to A.
Observe that the solution of (C.23) is then given by

ξ(t) = Φ(t, σ0)x0 .

More generally, the solution of a nonhomogeneous equation

ξ̇ = A(t)ξ + ν, ξ(σ0) = x0 (C.25)

on the interval [σ0, t], where ν is any locally integrable n-vector of functions, is
given by the variation of parameters formula

ξ(t) = Φ(t, σ0)x0 +
∫ t

σ0
Φ(t, s)ν(s)ds (C.26)

also in terms of the fundamental solution. This formula can be verified by
derivation; it is well defined because continuity of Φ implies that the integrand
is locally integrable.

A number of properties of the matrix function Φ(τ, σ) can be proved as
simple consequences of the uniqueness of solutions of ode’s. Note that equation
(C.24) says that

∂Φ(τ, σ)
∂τ

= A(τ)Φ(τ, σ) .

Lemma/Exercise C.4.1 Prove that, for all σ, τ, µ ∈ R:

(a) Φ(τ, τ) = I .

(b) Φ(τ, σ) = Φ(τ, µ)Φ(µ, σ) .

(c) Φ(τ, σ)−1 = Φ(σ, τ) .

(d) ∂Φ(σ,τ)
∂τ = −Φ(σ, τ)A(τ) .

(e) If A(t) ≡ A is constant, then Φ(τ, σ) = e(τ−σ)A .

(f) det Φ(τ, σ) = e
R τ

σ
traceA(τ) dτ . 2

Sometimes the term fundamental solution is used for the matrix function
of just one variable Φ̃(t) := Φ(t, 0), instead of Φ. These two objects carry the
same information, since Φ can be recovered from Φ̃ via the formula Φ(t, σ) =
Φ̃(t)Φ̃(σ)−1.

The exponential etA that appears in (e) above is defined by the matrix series

etA = I + tA+
t2

2
A2 + . . .+

tn

n!
An + . . . .
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This series is normally convergent, and

∥∥etA∥∥ ≤ ∞∑
n=0

tn

n!
‖A‖n = et‖A‖ .

One method of computing the exponential is via Jordan forms —not at all
suitable for accurate numerical computation, however— or more generally by
finding a similar matrix for which the exponential is easy to compute. When
all of the eigenvalues of A are distinct, the matrix can be diagonalized. That is,
there is an invertible matrix T and a diagonal matrix

Λ = diag (λ1, . . . , λn)

(the λi being the eigenvalues of A) so that

T−1AT = Λ .

Then also Al = TΛlT−1 for all l, and therefore

eA = TeΛT−1 = T diag (eλ1 , . . . , eλn)T−1 .

Consider as an example the equation

ẋ =
(

0 1
−1 0

)
x

corresponding to a pendulum linearized about the position θ = 0 (normalizing
constants so that m = g = 1). Since the eigenvalues ±i of A are distinct, we
can diagonalize; computing eigenvectors gives:

A =
(

1 1
i −i

)(
i 0
0 −i

)(
1/2 −i/2
1/2 i/2

)
.

Thus

etA =
(

1 1
i −i

)(
eit 0
0 e−it

)(
1/2 −i/2
1/2 i/2

)
=

(
(eit + e−it)/2 (eit − e−it)/2i
−(eit − e−it)/2i (eit + e−it)/2

)
=
(

cos t sin t
− sin t cos t

)
.

In the nonconstant case, the exponential is generalized to the use of a power
series expansion, for Φ(t, σ), called the Peano-Baker formula, for any fixed real
numbers σ, t:

Φ(t, σ) = I +
∫ t

σ

A(s1) ds1 +
∫ t

σ

∫ s1

σ

A(s1)A(s2) ds2ds1 + . . .

+
∫ t

σ

∫ s1

σ

. . .

∫ sl−1

σ

A(s1)A(s2) . . . A(sl) dsl . . . ds2ds1 + . . . (C.27)
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This is obtained formally when solving by iteration for X(·) the fixed-point
equation

X(t) = I +
∫ t

σ

A(s)X(s)ds

corresponding to the initial-value problem (C.24). The series (C.27) converges
uniformly on compacts with respect to σ, t. Indeed, since the entries of A(·) are
locally bounded, there is for each finite interval I a constant K such that

|A(s)| < K

for almost all s ∈ I; therefore the lth term of the series is bounded by

Kl(t− σ)l

l!
.

The partial sums of the series obtained by differentiating each term with respect
to t are simply the products of A(t) by the partial sums of the above series.
Therefore that termwise differentiated series converges uniformly, too. It follows
that the derivative of the sum exists and it equals this termwise derivative, that
is, A(t)Φ(t, σ). So Φ(t, σ) is a solution for (C.24) in [σ, t] and hence is the
fundamental solution matrix introduced earlier.

An advantage of this derivation is that it provides an explicit formula for
the solution, in terms of the power series (C.27). This forms the basis of some
numerical integration methods for linear systems. For constant matrices, it is
the same as the series defining the exponential.

Exercise C.4.2 Substitute the Peano-Baker series for Φ(t, σ) into the variation
of parameters formula (C.26), assuming for simplicity the case x0 = 0, and
obtain in this manner a series expansion for ξ(t). 2

Remark C.4.3 When A(t) is analytic (respectively, k-times continuously dif-
ferentiable, smooth) on an open interval I (meaning that each entry of A is, as a
function of t), then also Φ(t, s) is analytic (respectively, k+1-times continuously
differentiable, smooth), as a function of (t, s) ∈ I × I. This is because, for any
fixed σ ∈ I,

Φ(t, s) = Φ(t, σ)Φ(s, σ)−1 ,

and each factor has the desired degree of smoothness, by Propositions C.3.11
and C.3.12, being solutions of Equation (C.24). 2

Exercise C.4.4 For discrete-time difference equations, one may define

Φ(t, σ) := A(t− 1)A(t− 2) . . . A(σ)

whenever t > σ, and
Φ(σ, σ) := I .
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Derive then an expansion analogous to that in equation (C.26) for the discrete-
time case. Note that in the special situation in which every matrix A(k) is
invertible, one can then also define

Φ(t, s) := Φ(s, t)−1

for t < s, and Property (b) in Lemma C.4.1 holds. 2

C.5 Stability of Linear Equations

We review here some basic facts about the asymptotic behavior of linear differ-
ential and difference equations.

Proposition C.5.1 Let A be an n × n real (respectively, complex) matrix.
Then:

1. All real (respectively, complex) solutions of the differential equation

ξ̇(t) = Aξ(t)

satisfy that
ξ(t) → 0 as t→∞ (C.28)

if and only if all eigenvalues of A have negative real parts.

2. All real (respectively, complex) solutions of the difference equation

ξ(t+ 1) = Aξ(t)

satisfy (C.28) if and only if all eigenvalues of A have magnitude less than
1.

Proof. From the Jordan form of A it follows that each entry of etA is a finite
linear combination of terms of the form

ctieλt ,

where λ is an eigenvalue of A, i is an integer, and c is a constant, and that each
entry of Ak is a finite linear combination of terms of the form

ckiλk

(see Lemma A.3.2 in Appendix A.3). Thus, etA → 0 or Ak → 0 if the respective
eigenvalue condition holds.

Conversely, assume that there is some eigenvalue λ of A with

a := Reλ ≥ 0 .
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Let v be a corresponding eigenvector. Then∥∥etAv∥∥ = eat ‖v‖ .

This is constant if a = 0, and tends to ∞ if a > 0. If K = C, this means that
the solution etAv contradicts the assumption on A that all solutions converge
to zero. If K = R, then the real and imaginary parts of etAv are solutions of

ξ̇ = Aξ ,

which cannot both converge to zero, again providing a contradiction. If there is
some eigenvalue λ with |λ| ≥ 1, an analogous argument applies to

∥∥Akv∥∥.
Definition C.5.2 The complex matrix A is said to be

• Hurwitz if all its eigenvalues have a negative real part;

• convergent or discrete-time Hurwitz if all of its eigenvalues have magni-
tude less than 1. 2

Some authors call a Schur matrix what we are calling here a convergent
matrix.

It is possible to determine whether a given matrix is Hurwitz (or convergent)
without having to compute eigenvalues, directly, by checking certain polynomial
inequalities on the coefficients of A. This is typically done through a Routh-
Hurwitz type of test; see, for instance, [34] for extensive discussions of such
issues, and also Remark 5.7.20 in Chapter 5.
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In addition to the references cited in the text, listed here are some additional
papers and books. These contain many further references, and a few provide
introductions to some of the areas that have not been covered, but the list is in
no way comprehensive or balanced in terms of the different possible topics.

Other Books

Some books that should be of interest are included in this Bibliography. The
three-part book [230] was in a sense the first “modern systems and control
theory” treatise. Algebraic topics on realization are covered there, and the close
analogies between automata and linear systems results are discussed. Though
somewhat out of date, it is still worth reading.

There are many automata theory texts; some examples include: [52], [97]
(material on observability), [125] (an excellent treatise of many topics in au-
tomata theory, very algebraic in character; it also includes a chapter on linear
systems as well as many results on what can be described as “systems over
semirings,” a class that includes both linear systems and automata), and [156].

For general topics on linear systems, good references are for instance [17],
[58] (focuses on performance issues), [65] (a classic, but apparently out of print),
[88], [114] (a brief introduction to basic facts about linear systems, including
controllability, observability, and minimality), [144] (a very detailed reference
for elementary algebraic theory of linear systems and classical control theory; it
has many realistic examples), [212] (modern, very algebraic, treatment of linear
systems, emphasizing the ‘polynomial matrix’ approach), [314] (an elementary
introduction to control theory, including comparisons to automata and a brief
treatment of some ‘advanced’ topics such as category-theoretic methods), [335]
(a rather summarized treatment of algebraic theory of time-invariant linear
systems), [337] (introduces linear systems and optimal linear control, including
many stochastic topics), and [430] (a very algebraic approach to linear regulator
design, based on the author’s “geometric” method of solution).

There are literally hundreds of textbooks dealing with frequency-response
and basic linear theory from an engineering standpoint, geared to an under-
graduate audience but very useful nonetheless for learning the basic concepts.
One particularly nice book is [260], as it contains very detailed examples of
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applications.
In optimal control the choice is also very large. For excellent introductions

to quadratic/linear problems, including some study of the effect of nonlinear-
ities as well as numerical methods, see [16] and [263]. More generally, some
suggested texts are: [134] (one of the best treatises of optimal control; results
proved rigorously and in great generality), [188] (especially for the time-optimal
problem for linear systems), and [266] (an excellent “classical” reference, some-
what outdated; exposition of linear and nonlinear optimal control, and of basic
properties of nonlinear systems; little algebraic theory of linear systems). Also,
[108] provides an excellent brief exposition to filtering and stochastic control.
Among other books in optimal control are: [25], [44], [48], [103], [151], [165],
[189], [247], [248], [276], [289], [315], [379], and [442].

On the control of nonlinear systems there are several books available, includ-
ing: [115] (operator approach), [199], [311] (state-space methods, differential-
geometric in character), [414] (a very nice exposition of material on ODEs rel-
evant to control theory, including stability, as well as the operator approach to
input/output nonlinear systems), and [422] (operator approach).

For infinite-dimensional systems, some books are [107], [133], [147], and [281].
Many others are cited in them.

For applications of control theory see for instance the following books: [20]
(economics), [45] (management), [146] (automobiles), [168] (biology), [317] (eco-
nomics), [325] (oil recovery), [328] (physiology), [346] (economics), [347] (man-
agement), [350] (economics and engineering applications), [380] (chemical pro-
cess control), [394] (biomedicine), [401] (psychology), [420] (robotics), and [427]
(signal processing). Also, the Systems & Control Encyclopedia [352] and the
The Control Handbook [274] contain many articles on applications as well as on
further theoretical questions.
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dynamic
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Fliess series, 80
flyballs, 22



526 Index

forward dynamic programming,
355
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design, 15
natural, 15
of system, 102
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function
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fundamental solution, 488

gain
at frequency ω, 334
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nonlinear, 331
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general systems theory, 76
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geometric

linear theory, 207, 218
multiplicity, 452
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Gramian

controllability, 109
observability, 279
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Gronwall Lemma, 474

Hamilton-Jacobi-Bellman equation,
358, 391

Hamiltonian, 360, 403
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Hankel
approximation, 311
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detectability condition, 318
Lemma, 94
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Heymann’s Lemma, 256
H∞ optimization, 396
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Hurwitz, 492
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identity axiom, 26
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length controls, 28
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input-to-state stability, 330
input/output
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stability, 10
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feedback, 18

integrator
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equation, 301
map, 31
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form, 452

K-function, 330
Kalman
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Laplace transform, 332
LaSalle invariance principle, 226
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Lie
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linear
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linear growth on controls, 65
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linearization, 207
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linearization principle, 5
for controllability, 125
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local in time, 45
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controllable, 124
integrable, 470
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machine, 26
Markov
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controllability, 130
observability, 310

Newton’s method, 416
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nonhomogeneous linear systems, 96
nonlinear gain, 331
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437
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numerical

methods for optimal control,
415
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rank condition, 282
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optimal, 378
reduced order, 320
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operator norm, 447
optimal
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observer, 378
path, 355, 392
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output
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feedback, 17
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Padé approximation, 311
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Spectral Mapping Theorem, 454
stability, 258

asymptotic, 211
exponential, 259
input-to-state, 330, 345
internal, 328
non-asymptotic, 237
of time-varying systems, 232
output-to-state, 331

stabilizability, 236
stabilizable, 214
state, 12, 27

equilibrium, 40, 51
initial, 28, 31
space, 11, 26
terminal, 28

state-output, 77
static output feedback, 17
steady-state

error, 19
Kalman filter, 390
Kalman gain, 390
output, 334

steepest descent, 417
STLC, 432
stochastic

filtering, 18, 376
state estimation, 18, 376
systems, 23

strict causality, 31
strictly proper, 336
strongly locally controllable, 129
structural controllability, 138
submanifold, 146
superposition principle, 264
Sylvester equation, 230
system, 26, 77

affine, 96
affine in controls, 57, 154, 246,

281, 362, 392, 406
analytically varying, 113
asymptotically observable, 317
autonomous, 29
bilinear, 74
canonical, 284, 305
chaotic, 313
classical dynamical, 29
complete, 29
continuous-time, 44

analytic, 268
smooth, 45

delay-differential, 79
descriptor, 77, 256
detectable, 317
differentiable, 39, 45
discrete-event, 76
discrete-time, 32

differentiable, 39
smooth, 39

distributed, 79
final-state observable, 266
Hamiltonian, 313
hereditary, 79
hybrid, 24, 76
infinite dimensional, 79, 494
initialized, 31
input-to-state stable, 330, 345
internally stable, 328
isomorphism, 306
ISS, 330, 345
large scale, 77
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linear, 47, 82, 264, 493
nonhomogeneous, 96

minimal, 308
morphism, 306
multidimensional, 77
observable, 263
of class Ck, 45
on group, 313
OSS, 331
output-to-state stable, 331
over ring, 79
piecewise linear, 138
polynomial, 273, 313
reversible, 84
sampled, 72
similarity, 183, 286
singular, 77, 256
smoothly varying, 113
state-output, 77
time-invariant, 29
time-reversed, 45
time-varying, 30
topological, 123
underlying, 27
unstable, 237
with no controls, 29
with outputs, 27, 45
without drift, 158, 393

tangent vector field, 146
terminal state, 28
time

series, 77, 312
set, 25

time-invariant, 11
i/o behavior, 32
system, 29

time-optimal control, 423
time-reversed system, 45
time-varying system, 30

stability, 232
topological system, 123
tracking, 15, 371

error, 372
trajectory, 28

transfer
function, 333
matrix, 333

transition map, 26, 33
triple

canonical, 284
controllable and observable,

283
minimal, 286

UBIBO, 327
uncontrollable

modes, 94
polynomial, 94

unicycle, 164
uniformly bounded-input

bounded-output, 327
uniqueness of canonical

realizations, 286
universal formula for feedback

stabilization, 246
unstable

closed-loop poles, 342
open-loop poles, 342
system, 237

value function, 355, 392, 443
variation of parameters, 488
vector field, 141
verification principle, 356
viscosity solution, 394, 396
VLSI testing, 310
Volterra

expansion, 75
series, 74

weak
controllability, 141
convergence, 56, 424

weakly coercive mapping, 220
well-posed interconnection, 322

Young tableaux, 193

zero
measure, 467
of a system, 257


