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Preface

This book provides an introduction to the basic principles &mols for the design
and analysis of feedback systems. It is intended to serveeasd audience of
scientists and engineers who are interested in undersgadd utilizing feedback
in physical, biological, information and social systems Néve attempted to keep
the mathematical prerequisites to a minimum while beingfcdmnot to sacrifice
rigor in the process. We have also attempted to make use ofigga from a
variety of disciplines, illustrating the generality of nyaof the tools while at the
same time showing how they can be applied in specific apphicatbmains.

A major goal of this book is to present a concise and insightiew of the
current knowledge in feedback and control systems. The fielebofrol started
by teaching everything that was known at the time and, as mawledge was
acquired, additional courses were developed to cover nelanigues. A conse-
guence of this evolution is that introductory courses haeained the same for
many years, and it is often necessary to take many individoatses in order
to obtain a good perspective on the field. In developing thiskbave have at-
tempted to condense the current knowledge by emphasizimtafuental concepts.
We believe that it is important to understand why feedbaalseful, to know the
language and basic mathematics of control and to grasp thedmdigms that
have been developed over the past half century. It is alsoritapt to be able to
solve simple feedback problems using back-of-the-eneetephniques, to recog-
nize fundamental limitations and difficult control problearsd to have a feel for
available design methods.

This book was originally developed for use in an experimecoalrse at Cal-
tech involving students from a wide set of backgrounds. Thesswas offered to
undergraduates at the junior and senior levels in traditiengineering disciplines,
as well as first- and second-year graduate students in emgigead science. This
latter group included graduate students in biology, compsitience and physics.
Over the course of several years, the text has been classested at Caltech and
at Lund University, and the feedback from many students alidagues has been
incorporated to help improve the readability and acce#yilof the material.

Because of its intended audience, this book is organizedslightly unusual
fashion compared to many other books on feedback and cohtrparticular, we
introduce a number of concepts in the text that are normabgnved for second-
year courses on control and hence often not available t@stadvho are not con-
trol systems majors. This has been done at the expense ohdeatditional top-
ics, which we felt that the astute student could learn inddpatly and are often
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explored through the exercises. Examples of topics that we inaluded are non-
linear dynamics, Lyapunov stability analysis, the matsip@nential, reachability
and observability, and fundamental limits of performanod eobustness. Topics
that we have deemphasized include root locus techniqued/|dg compensation
and detailed rules for generating Bode and Nyquist plotsamdh

Several features of the book are designed to facilitate asfduction as a basic
engineering text and as an introduction for researcheratimral, information and
social sciences. The bulk of the material is intended to bd usgardless of the
audience and covers the core principles and tools in theysinadnd design of
feedback systems. Advanced sections, marked by the “dangdrend” symbol
shown here, contain material that requires a slightly mechnical background,
of the sort that would be expected of senior undergraduatesdineering. A few
sections are marked by two dangerous bend symbols and areled for readers
with more specialized backgrounds, identified at the beguoif the section. To
limit the length of the text, several standard results aridresions are given in the
exercises, with appropriate hints toward their solutions.

To further augment the printed material contained here napamion web site
has been developed and is available from the publisher'spagb:

http://www.cds.caltech.edumurray/amwiki

The web site contains a database of frequently asked questiopplemental ex-
amples and exercises, and lecture material for coursed bagdéis text. The mate-
rial is organized by chapter and includes a summary of themnpajints in the text
as well as links to external resources. The web site also icenifae source code
for many examples in the book, as well as utilities to implatribe techniques
described in the text. Most of the code was originally writtesing MATLAB M-
files but was also tested with LabView MathScript to ensure caififity with
both packages. Many files can also be run using other scrifatiggiages such as
Octave, SciLab, SysQuake and Xmath.

The first half of the book focuses almost exclusively on stadéesgontrol sys-
tems. We begin in Chapter 2 with a description of modelingtofgical, biolog-
ical and information systems using ordinary differentiqliations and difference
equations. Chapter 3 presents a number of examples in sdaik demarily as a
reference for problems that will be used throughout the tesitowing this, Chap-
ter 4 looks at the dynamic behavior of models, including de&ding of stability
and more complicated nonlinear behavior. We provide add@sections in this
chapter on Lyapunov stability analysis because we find thatiseful in a broad
array of applications and is frequently a topic that is nataduced until later in
one’s studies.

The remaining three chapters of the first half of the book foculnear sys-
tems, beginning with a description of input/output behaindChapter 5. In Chap-
ter 6, we formally introduce feedback systems by demornistrditow state space
control laws can be designed. This is followed in Chapter 7 hyemal on output
feedback and estimators. Chapters 6 and 7 introduce thedkeepts of reacha-
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bility and observability, which give tremendous insighbithe choice of actuators
and sensors, whether for engineered or natural systems.

The second half of the book presents material that is oftesidered to be
from the field of “classical control.” This includes the tramsfunction, introduced
in Chapter 8, which is a fundamental tool for understandegdback systems.
Using transfer functions, one can begin to analyze thelgtadi feedback systems
using frequency domain analysis, including the abilitygason about the closed
loop behavior of a system from its open loop characterislibss is the subject of
Chapter 9, which revolves around the Nyquist stabilityseran.

In Chapters 10 and 11, we again look at the design problenusiiog first
on proportional-integral-derivative (PID) controllersdahien on the more general
process of loop shaping. PID control is by far the most comnesigh technique
in control systems and a useful tool for any student. The enamt frequency
domain design introduces many of the ideas of modern cotitealry, including
the sensitivity function. In Chapter 12, we combine the itsftom the second half
of the book to analyze some of the fundamental trade-offgdxen robustness and
performance. This is also a key chapter illustrating the pa@i/the techniques that
have been developed and serving as an introduction for nuwanaed studies.

The book is designed for use in a 10- to 15-week course in fekdbastems
that provides many of the key concepts needed in a varietisoijdines. For a 10-
week course, Chapters 1-2, 4—6 and 8-11 can each be covarateiek’s time,
with the omission of some topics from the final chapters. A neisurely course,
spread out over 14-15 weeks, could cover the entire book, 2witeeks on mod-
eling (Chapters 2 and 3)—particularly for students withowtch background in
ordinary differential equations—and 2 weeks on robustgrarince (Chapter 12).

The mathematical prerequisites for the book are modest akdeping with
our goal of providing an introduction that serves a broadienmk. We assume
familiarity with the basic tools of linear algebra, incladi matrices, vectors and
eigenvalues. These are typically covered in a sophomost-teurse on the sub-
ject, and the textbooks by Apostol [Apo69], Arnold [Arn8fdaStrang [Str88]
can serve as good references. Similarly, we assume basicldagesvof differ-
ential equations, including the concepts of homogeneodgarticular solutions
for linear ordinary differential equations in one variabfgpostol [Apo69] and
Boyce and DiPrima [BD04] cover this material well. Finally, \&kso make use
of complex numbers and functions and, in some of the advaseetibns, more
detailed concepts in complex variables that are typicaileced in a junior-level
engineering or physics course in mathematical methodsst#pApo67] or Stew-
art [Ste02] can be used for the basic material, with Ahlforkl%], Marsden and
Hoffman [MH98] or Saff and Snider [SS02] being good referencestfe more
advanced material. We have chosen not to include apperslicesarizing these
various topics since there are a number of good books alailab

One additional choice that we felt was important was thedi@cinot to rely
on a knowledge of Laplace transforms in the book. While theé is by far the
most common approach to teaching feedback systems in emgigemany stu-
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dents in the natural and information sciences may lack tbessary mathematical
background. Since Laplace transforms are not required in ssgnéial way, we
have included them only in an advanced section intendecetthiings together
for students with that background. Of course, we make trelmes use ofrans-
fer functions which we introduce through the notion of response to exptiale
inputs, an approach we feel is more accessible to a broayl afniscientists and
engineers. For classes in which students have already hdddeajpansforms, it
should be quite natural to build on this background in therepate sections of
the text.
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Chapter One

Introduction

Feedback is a central feature of life. The process of feedback gokiemsve grow, respond
to stress and challenge, and regulate factors such as body temperafooel, pressure and
cholesterol level. The mechanisms operate at every level, from thedtiteraf proteins in
cells to the interaction of organisms in complex ecologies.

M. B. Hoagland and B. Dodsoithe Way Life Works1995 [HD95].

In this chapter we provide an introduction to the basic cphoéfeedbackand
the related engineering discipline entrol. We focus on both historical and cur-
rent examples, with the intention of providing the contextdurrent tools in feed-
back and control. Much of the material in this chapter is aeldfrom [Mur03],
and the authors gratefully acknowledge the contributidnRager Brockett and
Gunter Stein to portions of this chapter.

1.1 What Is Feedback?

A dynamical systeris a system whose behavior changes over time, often in re-
sponse to external stimulation or forcing. The tdaadbackefers to a situation
in which two (or more) dynamical systems are connected kegetuch that each
system influences the other and their dynamics are thus $groogpled. Simple
causal reasoning about a feedback system is difficult be¢had@st system in-
fluences the second and the second system influences the falsigléaa circular
argument. This makes reasoning based on cause and eff&gf &id it is neces-
sary to analyze the system as a whole. A consequence of thiatithe behavior
of feedback systems is often counterintuitive, and it iséfere necessary to resort
to formal methods to understand them.

Figure 1.1 illustrates in block diagram form the idea of fesakb We often use

u y r u y
System 1——»| System 2 — System 1——»{ System 2—»
(a) Closed loop (b) Open loop

Figure 1.1: Open and closed loop systems. (a) The output of system 1 is used aguhefin
system 2, and the output of system 2 becomes the input of system tingr@&losed loop
system. (b) The interconnection between system 2 and system 1 is iraodethe system
is said to be open loop.
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Figure 1.2: The centrifugal governor and the steam engine. The centrifugatigoven the
left consists of a set of flyballs that spread apart as the speed of gireeencreases. The
steam engine on the right uses a centrifugal governor (above andladttb&the flywheel)
to regulate its speed. (Credit: Machine a Vapeur Horizontale de Philip TEy8a8].)

the termsopen loopand closed loopwhen referring to such systems. A system
is said to be a closed loop system if the systems are inteecb@a in a cycle, as
shown in Figure 1.1a. If we break the interconnection, wertefthe configuration
as an open loop system, as shown in Figure 1.1b.

As the quote at the beginning of this chapter illustratesagonsource of ex-
amples of feedback systems is biology. Biological systerakenuse of feedback
in an extraordinary number of ways, on scales ranging frorieoubes to cells to
organisms to ecosystems. One example is the regulatioruobgg in the blood-
stream through the production of insulin and glucagon byptrecreas. The body
attempts to maintain a constant concentration of glucosichnis used by the
body’s cells to produce energy. When glucose levels riger(@hating a meal, for
example), the hormone insulin is released and causes tlyetdstbre excess glu-
cose in the liver. When glucose levels are low, the pancreagtes the hormone
glucagon, which has the opposite effect. Referring to Figutewe can view the
liver as system 1 and the pancreas as system 2. The outputifedindr is the glu-
cose concentration in the blood, and the output from theneasds the amount of
insulin or glucagon produced. The interplay between insatid glucagon secre-
tions throughout the day helps to keep the blood-glucoseergmation constant,
at about 90 mg per 100 mL of blood.

An early engineering example of a feedback system is a ¢egaligovernor,
in which the shaft of a steam engine is connected to a flybalhan@sm that is
itself connected to the throttle of the steam engine, astithtied in Figure 1.2. The
system is designed so that as the speed of the engine inergesbaps because
of a lessening of the load on the engine), the flyballs spread apd a linkage
causes the throttle on the steam engine to be closed. Thisnislaws down the
engine, which causes the flyballs to come back together. Wmoake! this system
as a closed loop system by taking system 1 as the steam engirgystem 2 as
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the governor. When properly designed, the flyball governantaes a constant
speed of the engine, roughly independent of the loadingitiond. The centrifugal
governor was an enabler of the successful Watt steam enghieh fueled the
industrial revolution.

Feedback has many interesting properties that can be egblimitdesigning
systems. As in the case of glucose regulation or the flybakguaw, feedback can
make a system resilient toward external influences. It cam ladsused to create
linear behavior out of nonlinear components, a common ambrin electronics.
More generally, feedback allows a system to be insensititle to external distur-
bances and to variations in its individual elements.

Feedback has potential disadvantages as well. It can crgasenic instabili-
ties in a system, causing oscillations or even runaway heh@nother drawback,
especially in engineering systems, is that feedback candnte unwanted sensor
noise into the system, requiring careful filtering of signétiss for these reasons
that a substantial portion of the study of feedback systerdsvoted to developing
an understanding of dynamics and a mastery of techniqueggigical systems.

Feedback systems are ubiquitous in both natural and engohegstems. Con-
trol systems maintain the environment, lighting and poweour buildings and
factories; they regulate the operation of our cars, cons@heetronics and manu-
facturing processes; they enable our transportation amghemications systems;
and they are critical elements in our military and spaceesyst For the most part
they are hidden from view, buried within the code of embeduétoprocessors,
executing their functions accurately and reliably. Feelliss also made it pos-
sible to increase dramatically the precision of instruraesutch as atomic force
microscopes (AFMs) and telescopes.

In nature, homeostasis in biological systems maintaingrtak chemical and
biological conditions through feedback. At the other endhef size scale, global
climate dynamics depend on the feedback interactions lestee atmosphere,
the oceans, the land and the sun. Ecosystems are filled withpdesuof feedback
due to the complex interactions between animal and plaat HEfen the dynam-
ics of economies are based on the feedback between indisidod corporations
through markets and the exchange of goods and services.

1.2 What Is Control?

The termcontrol has many meanings and often varies between communities.

this book, we define control to be the use of algorithms anddfaeklin engineered
systems. Thus, control includes such examples as feedbauk ilo electronic am-
plifiers, setpoint controllers in chemical and materialscpssing, “fly-by-wire”
systems on aircraft and even router protocols that contafild flow on the Inter-
net. Emerging applications include high-confidence softwgséems, autonomous
vehicles and robots, real-time resource management systechbiologically en-
gineered systems. At its core, control isiaformationscience and includes the
use of information in both analog and digital representetio
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external disturbances noise

D/IA (= Computer AD |« Filter

A

e I ,,,,,,,,,,,,,,,,,,,, Controller _ .

operator input

Figure 1.3: Components of a computer-controlled system. The upper dasheéjp@sents
the process dynamics, which include the sensors and actuators in adulitiendynamical
system being controlled. Noise and external disturbances can pereudyilamics of the
process. The controller is shown in the lower dashed box. It consiatltdr and analog-to-
digital (A/D) and digital-to-analog (D/A) converters, as well as a compiln@rimplements
the control algorithm. A system clock controls the operation of the contysijachronizing
the A/D, D/A and computing processes. The operator input is also fed tmthputer as an
external input.

A modern controller senses the operation of a system, cagnpbagainst the
desired behavior, computes corrective actions based ondelnobd the system’s
response to external inputs and actuates the system ta #féedesired change.
This basideedback loopf sensing, computation and actuation is the central con-
cept in control. The key issues in designing control logicearsuring that the dy-
namics of the closed loop system are stable (bounded distaes give bounded
errors) and that they have additional desired behaviordghsturbance attenua-
tion, fast responsiveness to changes in operating poijt, Bhiese properties are
established using a variety of modeling and analysis teglas that capture the
essential dynamics of the system and permit the explorafipossible behaviors
in the presence of uncertainty, noise and component failure

A typical example of a control system is shown in Figure 1.3. basic ele-
ments of sensing, computation and actuation are clearly. $eemodern control
systems, computation is typically implemented on a digitehputer, requiring the
use of analog-to-digital (A/D) and digital-to-analog (D/@onverters. Uncertainty
enters the system through noise in sensing and actuatieysteins, external dis-
turbances that affect the underlying system operation awérntain dynamics in
the system (parameter errors, unmodeled effects, etc). [Qoeithm that com-
putes the control action as a function of the sensor valuefies called aontrol
law. The system can be influenced externally by an operator whadintescom-
mand signalgo the system.
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Control engineering relies on and shares tools from phy@gaamics and
modeling), computer science (information and software) @perations research
(optimization, probability theory and game theory), buisitalso different from
these subjects in both insights and approach.

Perhaps the strongest area of overlap between control aeddi$igiplines is in
the modeling of physical systems, which is common acrosga#ls of engineering
and science. One of the fundamental differences betwednotaniented model-
ing and modeling in other disciplines is the way in which ratgions between
subsystems are represented. Control relies on a type afaypput modeling that
allows many new insights into the behavior of systems, saalisturbance attenu-
ation and stable interconnection. Model reduction, whesienpler (lower-fidelity)
description of the dynamics is derived from a high-fidelitydah is also naturally
described in an input/output framework. Perhaps most impdst modeling in a
control context allows the design adbustinterconnections between subsystems,
a feature that is crucial in the operation of all large engiad systems.

Control is also closely associated with computer scienneesvirtually all
modern control algorithms for engineering systems areempinted in software.
However, control algorithms and software can be very diffieéifrom traditional
computer software because of the central role of the dyreofithe system and
the real-time nature of the implementation.

1.3 Feedback Examples

Feedback has many interesting and useful properties. Itsiggessible to design

precise systems from imprecise components and to makearglguantities in a

system change in a prescribed fashion. An unstable systeimecstabilized using

feedback, and the effects of external disturbances candueed. Feedback also
offers new degrees of freedom to a designer by exploitingisgnactuation and

computation. In this section we survey some of the imporggplications and

trends for feedback in the world around us.

Early Technological Examples

The proliferation of control in engineered systems occupeaharily in the latter
half of the 20th century. There are some important exceptismsh as the cen-
trifugal governor described earlier and the thermostatuffeidL.4a), designed at
the turn of the century to regulate the temperature of bugsli

The thermostat, in particular, is a simple example of feekllcantrol that ev-
eryone is familiar with. The device measures the temperatuacbuilding, com-
pares that temperature to a desired setpoint and usdsdtiback errobetween
the two to operate the heating plant, e.g., to turn heat omwihe temperature
is too low and to turn it off when the temperature is too highisTéxplanation
captures the essence of feedback, but it is a bit too simgle f&r a basic device
such as the thermostat. Because lags and delays exist iedfiadiplant and sen-
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Movement Load
opens Spring Accelerator
throttle \ Pedal
Speed-
Adjustment
Electromagnet Governor nob
Contacts Latching
Button
: Flyball
Reversible Speed-
. Motor Governor ometer
A T aas <~—— Adjustment
Spring
1T A
(a) Honeywell thermostat, 1953 (b) Chrysler cruise control, 1958

Figure 1.4: Early control devices. (a) Honeywell T87 thermostat originally intrelimn

1953. The thermostat controls whether a heater is turned on by complaeircurrent tem-
perature in a room to a desired value that is set using a dial. (b) Chrysiise control
system introduced in the 1958 Chrysler Imperial [Row58]. A centrifggaernor is used
to detect the speed of the vehicle and actuate the throttle. The refererexkisgspecified
through an adjustment spring. (Left figure courtesy of Honeywédirirational, Inc.)

sor, a good thermostat does a bit of anticipation, turnimghtbater off before the
error actually changes sign. This avoids excessive temperawings and cycling
of the heating plant. This interplay between the dynamic$iefgrocess and the
operation of the controller is a key element in modern cdisystems design.

There are many other control system examples that have gecelover the
years with progressively increasing levels of sophisiicatAn early system with
broad public exposure was theuise controloption introduced on automobiles in
1958 (see Figure 1.4b). Cruise control illustrates the dyadmahavior of closed
loop feedback systems in action—the slowdown error as tstesyclimbs a grade,
the gradual reduction of that error due to integral actiotméecontroller, the small
overshoot at the top of the climb, etc. Later control systemawtomobiles such
as emission controls and fuel-metering systems have ahi@ajor reductions of
pollutants and increases in fuel economy.

Power Generation and Transmission

Access to electrical power has been one of the major driveteahnological
progress in modern society. Much of the early developmenbafrol was driven
by the generation and distribution of electrical power. tt@ns mission critical
for power systems, and there are many control loops in iddali power stations.
Control is also important for the operation of the whole ponetwork since it is
difficult to store energy and it is thus necessary to matchymrtion to consump-
tion. Power management is a straightforward regulationlprotior a system with
one generator and one power consumer, but it is more diffioudt highly dis-
tributed system with many generators and long distancesdasgt consumption
and generation. Power demand can change rapidly in an uofakld manner and
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Figure 1.5: A small portion of the European power network. By 2008 Europeanepow
suppliers will operate a single interconnected network covering a regiomthe Arctic to
the Mediterranean and from the Atlantic to the Urals. In 2004 the installedrpeagmore
than 700 GW (& 101 W). (Source: UCTE [www.ucte.org])

combining generators and consumers into large networkesiggossible to share
loads among many suppliers and to average consumption amaimgcustomers.
Large transcontinental and transnational power systenss thavefore been built,
such as the one show in Figure 1.5.

Most electricity is distributed by alternating current (Aicause the transmis-
sion voltage can be changed with small power losses usingftaners. Alternat-
ing current generators can deliver power only if the gemesaare synchronized
to the voltage variations in the network. This means that ¢hers of all genera-
tors in a network must be synchronized. To achieve this vaitall decentralized
controllers and a small amount of interaction is a challeggiroblem. Sporadic
low-frequency oscillations between distant regions haxenbobserved when re-
gional power grids have been interconnected [KWO05].

Safety and reliability are major concerns in power systemesrdmay be dis-
turbances due to trees falling down on power lines, liglgrminequipment failures.
There are sophisticated control systems that attempt to tkeegpystem operating
even when there are large disturbances. The control actaonbesto reduce volt-
age, to break up the net into subnets or to switch off linespamveer users. These
safety systems are an essential element of power distsibatistems, but in spite
of all precautions there are occasionally failures in lagrg@er systems. The power
system is thus a nice example of a complicated distributstesywhere control is
executed on many levels and in many different ways.
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(a) F/A-18 “Hornet” (b) X-45 UCAV

Figure 1.6: Military aerospace systems. (a) The F/A-18 aircraft is one of the ficstyrtion
military fighters to use “fly-by-wire” technology. (b) The X-45 (UCAVnmanned aerial
vehicle is capable of autonomous flight, using inertial measuremenrsessd the global
positioning system (GPS) to monitor its position relative to a desired traje(Ritgtographs
courtesy of NASA Dryden Flight Research Center.)

Aerospace and Transportation

In aerospace, control has been a key technological cayatpdicing back to the
beginning of the 20th century. Indeed, the Wright brotheesarrectly famous
not for demonstrating simply powered flight bzantrolled powered flight. Their
early Wright Flyer incorporated moving control surfacegfiieal fins and canards)
and warpable wings that allowed the pilot to regulate theraft's flight. In fact,
the aircraft itself was not stable, so continuous pilot ections were mandatory.
This early example of controlled flight was followed by a fasting success story
of continuous improvements in flight control technology,neurating in the high-
performance, highly reliable automatic flight control sys¢ewe see in modern
commercial and military aircraft today (Figure 1.6).

Similar success stories for control technology have ocduimemany other
application areas. Early World War 1l bombsights and fire adrgervo systems
have evolved into today’s highly accurate radar-guidedsgumd precision-guided
weapons. Early failure-prone space missions have evolviedrautine launch
operations, manned landings on the moon, permanently rdaspece stations,
robotic vehicles roving Mars, orbiting vehicles at the ougkanets and a host of
commercial and military satellites serving various sutaete, communication,
navigation and earth observation needs. Cars have advémoednanually tuned
mechanical/pneumatic technology to computer-contrafipdration of all major
functions, including fuel injection, emission controlui@e control, braking and
cabin comfort.

Current research in aerospace and transportation sysseimgestigating the
application of feedback to higher levels of decision makingluding logical reg-
ulation of operating modes, vehicle configurations, payloadfigurations and
health status. These have historically been performed byahwperators, but to-
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Figure 1.7: Materials processing. Modern materials are processed underlbacefutrolled
conditions, using reactors such as the metal organic chemical vapositden (MOCVD)
reactor shown on the left, which was for manufacturing supercondyttin films. Using
lithography, chemical etching, vapor deposition and other techniqoaslex devices can
be built, such as the IBM cell processor shown on the right. (MOCVD incagetesy of Bob
Kee. IBM cell processor photograph courtesy Tom Way, IBM Caoafion; unauthorized use
not permitted.)

day that boundary is moving and control systems are inarghsiaking on these
functions. Another dramatic trend on the horizon is the uskarge collections
of distributed entities with local computation, global cmemication connections,
little regularity imposed by the laws of physics and no ploisisy of imposing
centralized control actions. Examples of this trend incltite national airspace
management problem, automated highway and traffic managemérommand
and control for future battlefields.

Materials and Processing

The chemical industry is responsible for the remarkable n@sxyin developing
new materials that are key to our modern society. In additiothe continuing
need to improve product quality, several other factors & hocess control in-
dustry are drivers for the use of control. Environmentalugést continue to place
stricter limitations on the production of pollutants, fiorg the use of sophisticated
pollution control devices. Environmental safety consitlers have led to the de-
sign of smaller storage capacities to diminish the risk ofomehemical leakage,
requiring tighter control on upstream processes and, irestases, supply chains.
And large increases in energy costs have encouraged erginekesign plants that
are highly integrated, coupling many processes that usepdmte independently.
All of these trends increase the complexity of these praeand the performance
requirements for the control systems, making control sgsdesign increasingly
challenging. Some examples of materials-processing téatppare shown in Fig-
ure 1.7.

As in many other application areas, hew sensor technologeeing new op-
portunities for control. Online sensors—including lasackscattering, video mi-
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croscopy and ultraviolet, infrared and Raman spectroseapg becoming more
robust and less expensive and are appearing in more mamirfigcprocesses.
Many of these sensors are already being used by currentgsrcoatrol systems,
but more sophisticated signal-processing and controhigales are needed to use
more effectively the real-time information provided by $besensors. Control en-
gineers also contribute to the design of even better sengbrsh are still needed,
for example, in the microelectronics industry. As elsewvehéne challenge is mak-
ing use of the large amounts of data provided by these nevoseimsan effective
manner. In addition, a control-oriented approach to modele essential physics
of the underlying processes is required to understand theéafmental limits on
observability of the internal state through sensor data.

Instrumentation

The measurement of physical variables is of prime interestience and engineer-
ing. Consider, for example, an accelerometer, where eatyuiments consisted of
a mass suspended on a spring with a deflection sensor. Theigmezisuch an
instrument depends critically on accurate calibratiorhef$pring and the sensor.
There is also a design compromise because a weak spring ggresdmsitivity
but low bandwidth.

A different way of measuring acceleration is to tisee feedbackThe spring
is replaced by a voice coil that is controlled so that the miassains at a con-
stant position. The acceleration is proportional to the entrthrough the voice
coil. In such an instrument, the precision depends entorlthe calibration of the
voice coil and does not depend on the sensor, which is usgdasrthe feedback
signal. The sensitivity/bandwidth compromise is also a@didrhis way of using
feedback has been applied to many different engineeringfaid has resulted in
instruments with dramatically improved performance. Edeedback is also used
in haptic devices for manual control.

Another important application of feedback is in instrunagioin for biological
systems. Feedback is widely used to measure ion currentdisruseng a device
called avoltage clampwhich is illustrated in Figure 1.8. Hodgkin and Huxley
used the voltage clamp to investigate propagation of agt@iantials in the giant
axon of the squid. In 1963 they shared the Nobel Prize in Mediwith Eccles
for “their discoveries concerning the ionic mechanism®ived in excitation and
inhibition in the peripheral and central portions of theveecell membrane.” A
refinement of the voltage clamp callegbatch clampmade it possible to measure
exactly when a single ion channel is opened or closed. Thisdessloped by
Neher and Sakmann, who received the 1991 Nobel Prize in Mediton their
discoveries concerning the function of single ion chaniretzlls.”

There are many other interesting and useful applicationseaxtlfack in scien-
tific instruments. The development of the mass spectrometar &arly example.
In a 1935 paper, Nier observed that the deflection of ions dipen both the
magnetic and the electric fields [Nie35]. Instead of keepioth liields constant,
Nier let the magnetic field fluctuate and the electric field wadrotied to keep the



1.3. FEEDBACK EXAMPLES 11

Electrode

Avy
—_—
Glass Pipette Controller
Ion Channel — - .

Cell Membrane —~ y

Figure 1.8: The voltage clamp method for measuring ion currents in cells using fekdba
A pipet is used to place an electrode in a cell (left and middle) and maintapotkeatial of
the cell at a fixed level. The internal voltage in the celjisand the voltage of the external
fluid is ve. The feedback system (right) controls the curieinto the cell so that the voltage
drop across the cell membrafe = v; — ve is equal to its reference valde/,. The current

is then equal to the ion current.

ratio between the fields constant. Feedback was implemeniegl wvecuum tube
amplifiers. This scheme was crucial for the development of rs&stroscopy.

The Dutch engineer van der Meer invented a clever way to usthésk to
maintain a good-quality high-density beam in a particlestexator [MPTvdM80].
The idea is to sense particle displacement at one point incitedexator and apply
a correcting signal at another point. This scheme, caltedhastic coolingwas
awarded the Nobel Prize in Physics in 1984. The method was esdsentthe
successful experiments at CERN where the existence of thielparW and Z
associated with the weak force was first demonstrated.

The 1986 Nobel Prize in Physics—awarded to Binnig and Rohretheir
design of the scanning tunneling microscope—is anothanpl@of an innovative
use of feedback. The key idea is to move a narrow tip on a ceatileeam across
a surface and to register the forces on the tip [BR86]. The d&fteof the tip is
measured using tunneling. The tunneling current is used g@black system to
control the position of the cantilever base so that the tlimgeurrent is constant,
an example of force feedback. The accuracy is so high thatithdil atoms can
be registered. A map of the atoms is obtained by moving the bithe cantilever
horizontally. The performance of the control system is diyeceflected in the
image quality and scanning speed. This example is describadditional detail
in Chapter 3.

Robotics and Intelligent Machines

The goal of cybernetic engineering, already articulatedhé&1940s and even be-
fore, has been to implement systems capable of exhibitighiyiflexible or “in-
telligent” responses to changing circumstances. In 1948l mathematician
Norbert Wiener gave a widely read account of cyberneticef\8]. A more math-
ematical treatment of the elements of engineering cybieshetas presented by
H. S. Tsien in 1954, driven by problems related to the controhisiiles [Tsi54].
Together, these works and others of that time form much ofrtedlectual basis
for modern work in robotics and control.

Two accomplishments that demonstrate the successes ofltharkethe Mars
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Figure 1.9: Robotic systems. (a) Spirit, one of the two Mars Exploratory Rovers thedeth

on Mars in January 2004. (b) The Sony AIBO Entertainment Robotobmiee first enter-

tainment robots to be mass-marketed. Both robots make use of féebisaeeen sensors,
actuators and computation to function in unknown environments. (Plagtbgrcourtesy of
Jet Propulsion Laboratory and Sony Electronics, Inc.)

Exploratory Rovers and entertainment robots such as the S&8§ Ashown in
Figure 1.9. The two Mars Exploratory Rovers, launched by thEdgiulsion Lab-
oratory (JPL), maneuvered on the surface of Mars for more thyaar starting in
January 2004 and sent back pictures and measurementsragnkigonment. The
Sony AIBO robot debuted in June 1999 and was the first “enteniam” robot to
be mass-marketed by a major international corporationak particularly note-
worthy because of its use of artificial intelligence (Al) taclogies that allowed it
to act in response to external stimulation and its own judgmEhis higher level
of feedback is a key element in robotics, where issues suchsiacle avoidance,
goal seeking, learning and autonomy are prevalent.

Despite the enormous progress in robotics over the lastcealfury, in many
ways the field is still in its infancy. Today’s robots still ekl simple behaviors
compared with humans, and their ability to locomote, intetrgomplex sensory
inputs, perform higher-level reasoning and cooperatethegen teams is limited.
Indeed, much of Wiener’s vision for robotics and intelligenachines remains
unrealized. While advances are needed in many fields to achiey vision—
including advances in sensing, actuation and energy sterdlge opportunity to
combine the advances of the Al community in planning, adeptand learning
with the techniques in the control community for modelingglgsis and design of
feedback systems presents a renewed path for progress.

Networks and Computing Systems

Control of networks is a large research area spanning mamgstancluding con-

gestion control, routing, data caching and power managerSeneral features of
these control problems make them very challenging. The damifeature is the
extremely large scale of the system; the Internet is probtiia largest feedback
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Figure 1.10: A multitier system for services on the Internet. In the complete system shown
schematically in (a), users request information from a set of comgp(iter 1), which in turn
collect information from other computers (tiers 2 and 3). The indivigealer shown in (b)

has a set of reference parameters set by a (human) system opwititdeedback used to
maintain the operation of the system in the presence of uncertainty. (Badéellerstein et

al. [HDPTO04].)

control system humans have ever built. Another is the deakered nature of the
control problem: decisions must be made quickly and basbdoorocal informa-
tion. Stability is complicated by the presence of varyingetitags, as information
about the network state can be observed or relayed to clang@nly after a de-
lay, and the effect of a local control action can be felt tigtoout the network
only after substantial delay. Uncertainty and variatiothie network, through net-
work topology, transmission channel characteristicsficrdemand and available
resources, may change constantly and unpredictably. ©tingplicating issues are
the diverse traffic characteristics—in terms of arrivalistats at both the packet
and flow time scales—and the different requirements for tuafiservice that the
network must support.

Related to the control of networks is control of the servbas sit on these net-
works. Computers are key components of the systems of syuteb servers and
database servers used for communication, electronic cooemadvertising and
information storage. While hardware costs for computingetdecreased dramati-
cally, the cost of operating these systems has increasedibeof the difficulty in
managing and maintaining these complex interconnecteadrags The situation is
similar to the early phases of process control when feedwasKirst introduced to
control industrial processes. As in process control, tleegnteresting possibili-
ties for increasing performance and decreasing costs lyiagpeedback. Several
promising uses of feedback in the operation of computeesysiare described in
the book by Hellerstein et al. [HDPTO04].

A typical example of a multilayer system for e-commerce isvah in Fig-
ure 1.10a. The system has several tiers of servers. The edgg secepts in-
coming requests and routes them to the HTTP server tier wheyeatte parsed
and distributed to the application servers. The processingdifferent requests can
vary widely, and the application servers may also accessmadtservers managed
by other organizations.

Control of an individual server in a layer is illustrated irgkre 1.10b. A quan-
tity representing the quality of service or cost of opematiesuch as response time,
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throughput, service rate or memory usage—is measured ootheuter. The con-
trol variables might represent incoming messages acceptiedties in the oper-
ating system or memory allocation. The feedback loop thesgits to maintain
quality-of-service variables within a target range of wu

Economics

The economy is a large, dynamical system with many actorergovents, orga-
nizations, companies and individuals. Governments cbtiiteoeconomy through
laws and taxes, the central banks by setting interest ras@mpanies by set-
ting prices and making investments. Individuals contreléaconomy through pur-
chases, savings and investments. Many efforts have beea tmadodel the sys-
tem both at the macro level and at the micro level, but thisetiog is difficult
because the system is strongly influenced by the behaviotedfitferent actors
in the system.

Keynes [Key36] developed a simple model to understandoaksmong gross
national product, investment, consumption and governspending. One of Keynes’
observations was that under certain conditions, e.g.nduhie 1930s depression,
an increase in the investment of government spending ceald to a larger in-
crease in the gross national product. This idea was used byadgovernments to
try to alleviate the depression. Keynes' ideas can be cegtoy a simple model
that is discussed in Exercise 2.4.

A perspective on the modeling and control of economic systeam be ob-
tained from the work of some economists who have receive@tiegiges Riks-
bank Prize in Economics in Memory of Alfred Nobel, popularlyiea the Nobel
Prize in Economics. Paul A. Samuelson received the prize in 1&7Qhe sci-
entific work through which he has developed static and dynaodmomic the-
ory and actively contributed to raising the level of anayisieconomic science.”
Lawrence Klein received the prize in 1980 for the developrnoéfdrge dynamical
models with many parameters that were fitted to historicad lG55], e.g., a
model of the U.S. economy in the period 1929-1952. Other resees have mod-
eled other countries and other periods. In 1997 Myron Schellesed the prize
with Robert Merton for a new method to determine the value exfvatives. A
key ingredient was a dynamic model of the variation of stai&gs that is widely
used by banks and investment companies. In 2004 Finn E. Kydiath&dward C.
Prestcott shared the economics prize “for their contrilmgtim dynamic macroe-
conomics: the time consistency of economic policy and theérdy forces behind
business cycles,” a topic that is clearly related to dynaraitd control.

One of the reasons why it is difficult to model economic systetbat there
are no conservation laws. A typical example is that the vafitecompany as ex-
pressed by its stock can change rapidly and erratically.eraer, however, some
areas with conservation laws that permit accurate mode@dmg example is the
flow of products from a manufacturer to a retailer as illustahn Figure 1.11. The
products are physical quantities that obey a conservatndnd the system can
be modeled by accounting for the number of products in tHergifit inventories.
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Figure 1.11: Supply chain dynamics (after Forrester [For61]). Products flomftiee pro-
ducer to the customer through distributors and retailers as indicated bylithéres. There
are typically many factories and warehouses and even more distrilautdretailers. Multi-
ple feedback loops are present as each agent tries to maintain the ipxepeory level.

There are considerable economic benefits in controlling sughains so that prod-
ucts are available to customers while minimizing produc#s are in storage. The
real problems are more complicated than indicated in thedibacause there may
be many different products, there may be different facsatiat are geographically
distributed and the factories may require raw material bassemblies.

Control of supply chains was proposed by Forrester in 19@t6F and is
now growing in importance. Considerable economic benefitsbeaobtained by
using models to minimize inventories. Their use accelerdtedhatically when
information technology was applied to predict sales, keapkt of products and
enable just-in-time manufacturing. Supply chain manageimas contributed sig-
nificantly to the growing success of global distributors.

Advertising on the Internet is an emerging application aftonl. With network-
based advertising it is easy to measure the effect of differarketing strategies
quickly. The response of customers can then be modeled, adtdek strategies
can be developed.

Feedback in Nature

Many problems in the natural sciences involve understandggregate behavior
in complex large-scale systems. This behavior emerges fnenmteraction of a
multitude of simpler systems with intricate patterns obimhation flow. Repre-
sentative examples can be found in fields ranging from embgydio seismology.
Researchers who specialize in the study of specific compkrisys often develop
an intuitive emphasis on analyzing the role of feedbackr{tarconnection) in fa-
cilitating and stabilizing aggregate behavior.

While sophisticated theories have been developed by domauarts for the
analysis of various complex systems, the development @faaus methodology
that can discover and exploit common features and essemilematical struc-
ture is just beginning to emerge. Advances in science armhtdogy are creating
a new understanding of the underlying dynamics and the itapoe of feedback
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Figure 1.12: The wiring diagram of the growth-signaling circuitry of the mammalian
cell [HWO0O]. The major pathways that are thought to play a role in caageindicated
in the diagram. Lines represent interactions between genes and piiotéirescell. Lines
ending in arrowheads indicate activation of the given gene or pathwas énding in a
T-shaped head indicate repression. (Used with permission of Elseadiead the authors.)

in a wide variety of natural and technological systems. Weflyrhighlight three
application areas here.

Biological SystemgA major theme currently of interest to the biology commu-
nity is the science of reverse (and eventually forward) eegiing of biological
control networks such as the one shown in Figure 1.12. Thera atide variety
of biological phenomena that provide a rich source of exaspf control, includ-
ing gene regulation and signal transduction; hormonal,umafogical and cardio-
vascular feedback mechanisms; muscular control and lotomactive sensing,
vision and proprioception; attention and consciousness;p@pulation dynamics
and epidemics. Each of these (and many more) provide oppibesito figure out
what works, how it works, and what we can do to affect it.

One interesting feature of biological systems is the fretjuse of positive
feedback to shape the dynamics of the system. Positive fekediaa be used to
create switchlike behavior through autoregulation of aegemd to create oscilla-
tions such as those present in the cell cycle, central pegmerators or circadian
rhythm.

Ecosystemdn contrast to individual cells and organisms, emergenp@ries
of aggregations and ecosystems inherently reflect seletigmmanisms that act on
multiple levels, and primarily on scales well below that loé system as a whole.
Because ecosystems are complex, multiscale dynamicamnsgsthey provide a
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broad range of new challenges for the modeling and analy&gdback systems.
Recent experience in applying tools from control and dyrcahsystems to bac-
terial networks suggests that much of the complexity of¢hestworks is due to

the presence of multiple layers of feedback loops that pevbbust functional-

ity to the individual cell. Yet in other instances, eventstet cell level benefit the

colony at the expense of the individual. Systems level aisatyen be applied to

ecosystems with the goal of understanding the robustnesscbfsystems and the
extent to which decisions and events affecting individya&lcses contribute to the
robustness and/or fragility of the ecosystem as a whole.

Environmental Sciencé.is now indisputable that human activities have altered
the environment on a global scale. Problems of enormous exitythallenge re-
searchers in this area, and first among these is to under$iafigetdback systems
that operate on the global scale. One of the challenges ielaj@ng such an un-
derstanding is the multiscale nature of the problem, withitkd understanding of
the dynamics of microscale phenomena such as microbi@bgrganisms being
a necessary component of understanding global phenomectaas the carbon
cycle.

1.4 Feedback Properties

Feedback is a powerful idea which, as we have seen, is usats&dly in natural
and technological systems. The principle of feedback is nmpase correcting
actions on the difference between desired and actual peaface. In engineering,
feedback has been rediscovered and patented many timesindifferent con-
texts. The use of feedback has often resulted in vast impremtsnn system ca-
pability, and these improvements have sometimes beerutemmry, as discussed
above. The reason for this is that feedback has some trulyrkaivla properties.
In this section we will discuss some of the properties of ket that can be un-
derstood intuitively. This intuition will be formalized inubsequent chapters.

Robustness to Uncertainty

One of the key uses of feedback is to provide robustness tertaicty. By mea-
suring the difference between the sensed value of a regudageal and its desired
value, we can supply a corrective action. If the system wguks some change that
affects the regulated signal, then we sense this changenatalforce the system
back to the desired operating point. This is precisely thecethat Watt exploited
in his use of the centrifugal governor on steam engines.

As an example of this principle, consider the simple feelllsgstem shown in
Figure 1.13. In this system, the speed of a vehicle is coetidy adjusting the
amount of gas flowing to the engine. Simpmportional-integral(P1) feedback
is used to make the amount of gas depend on both the error dretive current
and the desired speed and the integral of that error. The pltheright shows
the results of this feedback for a step change in the deseeldsand a variety of
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Figure 1.13: A feedback system for controlling the speed of a vehicle. In the blockaliag
on the left, the speed of the vehicle is measured and compared to theldgses within the
“Compute” block. Based on the difference in the actual and desiregtispéhe throttle (or
brake) is used to modify the force applied to the vehicle by the enginetdain and wheels.
The figure on the right shows the response of the control system to maonded change
in speed from 25 m/s to 30 m/s. The three different curves corresfmodiffering masses
of the vehicle, between 1000 and 3000 kg, demonstrating the robustinthesclosed loop
system to a very large change in the vehicle characteristics.

different masses for the car, which might result from haardjfferent number of
passengers or towing a trailer. Notice that independeihieafitass (which varies by
a factor of 3!), the steady-state speed of the vehicle ahappsoaches the desired
speed and achieves that speed within approximately 5 s. Tieyserformance of
the system is robust with respect to this uncertainty.

Another early example of the use of feedback to provide rolass is the nega-
tive feedback amplifier. When telephone communications @eveloped, ampli-
fiers were used to compensate for signal attenuation in loeg liA vacuum tube
was a component that could be used to build amplifiers. Distodaused by the
nonlinear characteristics of the tube amplifier togethehwitnplifier drift were
obstacles that prevented the development of line amplifeera fong time. A ma-
jor breakthrough was the invention of the feedback amplifiet927 by Harold S.
Black, an electrical engineer at Bell Telephone Laborasoidack usedhegative
feedbackwhich reduces the gain but makes the amplifier insensitivatiations
in tube characteristics. This invention made it possibleuitdistable amplifiers
with linear characteristics despite the nonlinearitiethefvacuum tube amplifier.

Design of Dynamics

Another use of feedback is to change the dynamics of a sySthrough feed-
back, we can alter the behavior of a system to meet the neeals application:
systems that are unstable can be stabilized, systems ¢éhslugigish can be made
responsive and systems that have drifting operating poanisbe held constant.
Control theory provides a rich collection of techniquesnalgze the stability and
dynamic response of complex systems and to place bounds txeltavior of such
systems by analyzing the gains of linear and nonlinear ¢per¢hat describe their
components.

An example of the use of control in the design of dynamics cofmem the
area of flight control. The following quote, from a lecture @et®d by Wilbur
Wright to the Western Society of Engineers in 1901 [McF53]siifates the role
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of control in the development of the airplane:

Men already know how to construct wings or airplanes, whittem
driven through the air at sufficient speed, will not only sirsthe
weight of the wings themselves, but also that of the engind, Gt
the engineer as well. Men also know how to build engines arehsc

of sufficient lightness and power to drive these planes aasusy
speed ... Inability to balance and steer still confrontsletiis of the
flying problem ... When this one feature has been worked ost, th
age of flying will have arrived, for all other difficulties are ofinor
importance.

The Wright brothers thus realized that control was a key iss@mable flight.
They resolved the compromise between stability and manahiligy by building
an airplane, the Wright Flyer, that was unstable but maneiner The Flyer had
a rudder in the front of the airplane, which made the plang waneuverable. A
disadvantage was the necessity for the pilot to keep adg#tie rudder to fly the
plane: if the pilot let go of the stick, the plane would craétther early aviators
tried to build stable airplanes. These would have been e@sflyt but because of
their poor maneuverability they could not be brought up thair. By using their
insight and skillful experiments the Wright brothers mduefirst successful flight
at Kitty Hawk in 1903.

Since it was quite tiresome to fly an unstable aircraft, therg stiaong motiva-
tion to find a mechanism that would stabilize an aircraft. Sudewace, invented
by Sperry, was based on the concept of feedback. Sperry used-astgpilized
pendulum to provide an indication of the vertical. He theraaged a feedback
mechanism that would pull the stick to make the plane go up Was point-
ing down, and vice versa. The Sperry autopilot was the first udeanfback in
aeronautical engineering, and Sperry won a prize in a cotigefor the safest
airplane in Paris in 1914. Figure 1.14 shows the Curtiss aeapand the Sperry
autopilot. The autopilot is a good example of how feedbackeansed to stabilize
an unstable system and hence “design the dynamics” of tbetir

One of the other advantages of designing the dynamics of imedéyvthat it
allows for increased modularity in the overall system desBy using feedback
to create a system whose response matches a desired profilen\wuale the com-
plexity and variability that may be present inside a sulesystThis allows us to
create more complex systems by not having to simultanedusky/the responses
of a large number of interacting components. This was oneeatvantages of
Black’s use of negative feedback in vacuum tube amplifiersrésulting device
had a well-defined linear input/output response that did apedd on the individ-
ual characteristics of the vacuum tubes being used.

Higher Levels of Automation

A major trend in the use of feedback is its application to kiglevels of situa-
tional awareness and decision making. This includes not atjitional logical
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Figure 1.14: Aircraft autopilot system. The Sperry autopilot (left) contained a sdbof
gyros coupled to a set of air valves that controlled the wing surfaces19h2 Curtiss used
an autopilot to stabilize the roll, pitch and yaw of the aircraft and was able totanalevel
flight as a mechanic walked on the wing (right) [Hug93].

branching based on system conditions but also optimizatidaptation, learning
and even higher levels of abstract reasoning. These prolassria the domain of
the artificial intelligence community, with an increasinderof dynamics, robust-
ness and interconnection in many applications.

One of the interesting areas of research in higher levelsecfsibn is au-
tonomous control of cars. Early experiments with autonontbivéng were per-
formed by Ernst Dickmanns, who in the 1980s equipped cars edtheras and
other sensors [Dic07]. In 1994 his group demonstrated amoois driving with
human supervision on a highway near Paris and in 1995 ones @idng drove au-
tonomously (with human supervision) from Munich to Copeggraat speeds of
up to 175 km/hour. The car was able to overtake other vehicidshange lanes
automatically.

This application area has been recently explored througb&iRPA Grand
Challenge, a series of competitions sponsored by the U.&rgment to build ve-
hicles that can autonomously drive themselves in desertidyah environments.
Caltech competed in the 2005 and 2007 Grand Challenges asimified Ford
E-350 offroad van nicknamed “Alice.” It was fully automatéuicluding electron-
ically controlled steering, throttle, brakes, transnussand ignition. Its sensing
systems included multiple video cameras scanning at 10z36d+¥eral laser rang-
ing units scanning at 10 Hz and an inertial navigation paekagpable of providing
position and orientation estimates at 5 ms temporal rasoluComputational re-
sources included 12 high-speed servers connected todbhtbagh a 1-Gb/s Eth-
ernet switch. The vehicle is shown in Figure 1.15, along withoaldiagram of
its control architecture.

The software and hardware infrastructure that was develepalled the ve-
hicle to traverse long distances at substantial speedsstimgj, Alice drove itself
more than 500 km in the Mojave Desert of California, with ttdity to follow



1.4. FEEDBACK PROPERTIES 21

Supervisory Control

Path Path \ehicle
Planner| ~| Follower| " |Actuation

? T i

Road Cost State i
Finding [ 17| Map Estimator | ~| Vehicle
} 1
Y
Terrain Elevation
Sensors| | Map

Figure 1.15:DARPA Grand Challenge. “Alice,” Team Caltech’s entry in the 2005 ar@i720
competitions and its networked control architecture [CFG+06]. Thebfsedsystem fuses
data from terrain sensors (cameras and laser range finders) tohetex digital elevation
map. This map is used to compute the vehicle’s potential speed over thatemnd an
optimization-based path planner then commands a trajectory for the véhitddow. A
supervisory control module performs higher-level tasks suchradling sensor and actuator
failures.

dirt roads and trails (if present) and avoid obstacles atbagath. Speeds of more
than 50 km/h were obtained in the fully autonomous mode. @ukat tuning
of the algorithms was done during desert testing, in parabse of the lack of
systems-level design tools for systems of this level of demify. Other competi-
tors in the race (including Stanford, which won the 2005 caitipe) used algo-
rithms for adaptive control and learning, increasing thpatilities of their sys-
tems in unknown environments. Together, the competitotiseérGrand Challenge
demonstrated some of the capabilities of the next generaficontrol systems
and highlighted many research directions in control at éidbvels of decision
making.

Drawbacks of Feedback

While feedback has many advantages, it also has some drisvi@itief among
these is the possibility of instability if the system is n@&s@yned properly. We
are all familiar with the effects opositive feedbackvhen the amplification on
a microphone is turned up too high in a room. This is an exampfeaxlback
instability, something that we obviously want to avoid. Tisigricky because we
must design the system not only to be stable under nominaiwomns but also to
remain stable under all possible perturbations of the dycem

In addition to the potential for instability, feedback imaetly couples different
parts of a system. One common problem is that feedback affents measure-
ment noise into the system. Measurements must be carefudlyefil so that the
actuation and process dynamics do not respond to them, whilee same time
ensuring that the measurement signal from the sensor i€pgyomupled into the
closed loop dynamics (so that the proper levels of perfonaamne achieved).

Another potential drawback of control is the complexity afleedding a con-
trol system in a product. While the cost of sensing, comprteand actuation has
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decreased dramatically in the past few decades, the faetimsrthat control sys-
tems are often complicated, and hence one must carefulnbalthe costs and
benefits. An early engineering example of this is the use ofopiocessor-based
feedback systems in automobiles.The use of microprocessawomotive appli-
cations began in the early 1970s and was driven by increlgsstigct emissions
standards, which could be met only through electronic cistriEarly systems
were expensive and failed more often than desired, leadifiggguent customer
dissatisfaction. It was only through aggressive improvetsién technology that
the performance, reliability and cost of these systemsvalibthem to be used in a
transparent fashion. Even today, the complexity of theseesysis such that it is
difficult for an individual car owner to fix problems.

Feedforward

Feedback is reactive: there must be an error before coreeatitions are taken.
However, in some circumstances it is possible to measurstardance before it
enters the system, and this information can then be use#eactarective action
before the disturbance has influenced the system. The effabeadisturbance
is thus reduced by measuring it and generating a controabktbat counteracts it.
This way of controlling a system is calléeledforward Feedforward is particularly
useful in shaping the response to command signals becaosearad signals are
always available. Since feedforward attempts to match tgmeds, it requires good
process models; otherwise the corrections may have thegnsme or may be
badly timed.

The ideas of feedback and feedforward are very general arghappmany dif-
ferent fields. In economics, feedback and feedforward arwgoas to a market-
based economy versus a planned economy. In business, argardf strategy
corresponds to running a company based on extensive stratagning, while a
feedback strategy corresponds to a reactive approacholioglyj feedforward has
been suggested as an essential element for motion contrahians that is tuned
during training. Experience indicates that it is often adageous to combine feed-
back and feedforward, and the correct balance requireghihand understanding
of their respective properties.

Positive Feedback

In most of this text, we will consider the role aokgative feedbackn which we
attempt to regulate the system by reacting to disturbamcasnay that decreases
the effect of those disturbances. In some systems, patigldiological systems,
positive feedbackan play an important role. In a system with positive fee&tbac
the increase in some variable or signal leads to a situatiariich that quantity is
further increased through its dynamics. This has a destadglieffect and is usu-
ally accompanied by a saturation that limits the growth ef gmantity. Although
often considered undesirable, this behavior is used irgiocal (and engineering)
systems to obtain a very fast response to a condition orlsigna
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Figure 1.16: Input/output characteristics of on-off controllers. Each plot showsniet on
the horizontal axis and the corresponding output on the vertical axal toh-off control is
shown in (a), with modifications for a dead zone (b) or hysteresis (@fe khat for on-off
control with hysteresis, the output depends on the value of past inputs.

One example of the use of positive feedback is to create singcbehavior,
in which a system maintains a given state until some inpussa® a threshold.
Hysteresis is often present so that noisy inputs near tlesliotd do not cause the
system to jitter. This type of behavior is callbdtability and is often associated
with memory devices.

1.5 Simple Forms of Feedback

The idea of feedback to make corrective actions based on fiieeettice between
the desired and the actual values of a quantity can be impietdén many differ-
ent ways. The benefits of feedback can be obtained by very siegiwack laws
such as on-off control, proportional control and proparéibintegral-derivative
control. In this section we provide a brief preview of sometaf topics that will
be studied more formally in the remainder of the text.

On-Off Control

A simple feedback mechanism can be described as follows:

if
U {umax ife>0

1.1

where thecontrol error e=r —y is the difference between the reference signal (or
command signal) and the output of the systeyrandu is the actuation command.
Figure 1.16a shows the relation between error and contrad.cidritrol law implies
that maximum corrective action is always used.

The feedback in equation (1.1) is called-off control One of its chief advan-
tagesisthat it is simple and there are no parameters to eh@osoff control often
succeeds in keeping the process variable close to the mefersuch as the use of
a simple thermostat to maintain the temperature of a rootgpitally results in
a system where the controlled variables oscillate, whiaften acceptable if the
oscillation is sufficiently small.

Notice that in equation (1.1) the control variable is not dadimvhen the error
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is zero. It is common to make modifications by introducing ezith dead zone or
hysteresis (see Figure 1.16b and 1.16c).

PID Control

The reason why on-off control often gives rise to oscillasias that the system
overreacts since a small change in the error makes the adtuatiable change
over the full range. This effect is avoidedpnoportional contro] where the char-
acteristic of the controller is proportional to the contalor for small errors. This
can be achieved with the control law

Umax If €> €max
U= < kpe i emin < €< €max (1.2)
Umin  If € < €nin,

whereky, is the controller gain@min = Umin/Kp @ndemax = Umax/Kp. The interval
(emin, €max) is called theproportional bandbecause the behavior of the controller
is linear when the error is in this interval:

u=kp(r—y)=kpe  if emin < €< emax (1.3)

While a vast improvement over on-off control, proportioahtrol has the
drawback that the process variable often deviates fronefesence value. In par-
ticular, if some level of control signal is required for thgstem to maintain a
desired value, then we must hawe 0 in order to generate the requisite input.

This can be avoided by making the control action proportiemdhe integral
of the error:

u(t) =k; /: e(1)dr. (1.4)

This control form is calledntegral control andk; is the integral gain. It can be
shown through simple arguments that a controller with irgtegction has zero
steady-state error (Exercise 1.5). The catch is that therenotagiways be a steady
state because the system may be oscillating.

An additional refinement is to provide the controller with anieipative abil-
ity by using a prediction of the error. A simple predictiongisen by the linear
extrapolation

det)
dt

et+Ty) ~et)+ Ty

9

which predicts the errofy time units ahead. Combining proportional, integral and
derivative control, we obtain a controller that can be egpeel mathematically as

t de(t
u(t) :kpe(t)+ki/o e(r)dr+kd2(t). (1.5)
The control action is thus a sum of three terms: the past agsepted by the
integral of the error, the present as represented by theogiopal term and the
future as represented by a linear extrapolation of the dther derivative term).
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Figure 1.17: Action of a PID controller. At time, the proportional term depends on the
instantaneous value of the error. The integral portion of the feedbaelsed on the integral

of the error up to time (shaded portion). The derivative term provides an estimate of the
growth or decay of the error over time by looking at the rate of changiefrror.Ty
represents the approximate amount of time in which the error is projemtedrd (see text).

This form of feedback is called@oportional-integral-derivative (PID) controller
and its action is illustrated in Figure 1.17.

A PID controller is very useful and is capable of solving a widege of con-
trol problems. More than 95% of all industrial control preivis are solved by
PID control, although many of these controllers are actyathportional-integral
(PI) controllersbecause derivative action is often not included [DMO02]. Ehesre
also more advanced controllers, which differ from PID colteérs by using more
sophisticated methods for prediction.

1.6 Further Reading

The material in this section draws heavily from the reporthef Panel on Future
Directions on Control, Dynamics and Systems [Mur03]. Sevedditional papers
and reports have highlighted the successes of control [N&8@]new vistas in
control [Bro0O, KumO01, Wis07]. The early development of cohts described
by Mayr [May70] and in the books by Bennett [Ben79, Ben93]jclircover the
period 1800-1955. A fascinating examination of some of dréyéistory of con-
trol in the United States has been written by Mindell [MinO&] popular book
that describes many control concepts across a wide rangsaplihes isOut of
Control by Kelly [Kel94]. There are many textbooks available thatailigge con-
trol systems in the context of specific disciplines. For eagis, the textbooks by
Franklin, Powell and Emami-Naeini [FPENO5], Dorf and Bishop [DB®&4o and
Golnaraghi [KG02] and Seborg, Edgar and Mellichamp [SEMO04] adely used.
More mathematically oriented treatments of control theécjude Sontag [Son98]
and Lewis [Lew03]. The book by Hellerstein et al. [HDPTO04] prod@edescrip-
tion of the use of feedback control in computing systems. Aler of books
look at the role of dynamics and feedback in biological systeincluding Mil-
horn [Mil66] (now out of print), J. D. Murray [Mur04] and Ellmeand Gucken-
heimer [EGO05]. The book by Fradkov [Fra07] and the tutorial krty Bechhoe-
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fer [Bec05] cover many specific topics of interest to the ptyysommunity.

Exercises

1.1(Eye motion) Perform the following experiment and explainy@sults: Hold-
ing your head still, move one of your hands left and right ionfrof your face,
following it with your eyes. Record how quickly you can mowveuy hand before
you begin to lose track of it. Now hold your hand still and shgkur head left to
right, once again recording how quickly you can move befosing track of your
hand.

1.2 Identify five feedback systems that you encounter in youryelay environ-
ment. For each system, identify the sensing mechanismatémtumechanism and
control law. Describe the uncertainty with respect to whioh feedback system
provides robustness and/or the dynamics that are changmdytihthe use of feed-
back.

1.3(Balance systems) Balance yourself on one foot with yous elased for 15 s.
Using Figure 1.3 as a guide, describe the control system megigde for keeping
you from falling down. Note that the “controller” will difiefrom that in the dia-
gram (unless you are an android reading this in the far fluture

1.4(Cruise control) Download the MATLAB code used to produce dations for
the cruise control system in Figure 1.13 from the companiol si. Using trial
and error, change the parameters of the control law so thaitbrshoot in speed
is not more than 1 m/s for a vehicle with mams= 1000 kg.

1.5 (Integral action) We say that a system with a constant inpathes steady
state if the output of the system approaches a constant ealdiene increases.
Show that a controller with integral action, such as thosemin equations (1.4)
and (1.5), gives zero error if the closed loop system reasteesly state.

1.6 Search the web and pick an article in the popular press ab@a#dback and
control system. Describe the feedback system using thernelogy given in the
article. In particular, identify the control system and ctése (a) the underlying
process or system being controlled, along with the (b) sefspactuator and (d)
computational element. If the some of the information isawaiilable in the article,
indicate this and take a guess at what might have been used.



Chapter Two
System Modeling

... | asked Fermi whether he was not impressed by the agreemawtdre our calculated
numbers and his measured numbers. He replied, “How many arbipargmeters did you
use for your calculations?” | thought for a moment about our cut-ofigedures and said,
“Four” He said, “l remember my friend Johnny von Neumann useday svith four param-
eters | can fit an elephant, and with five | can make him wiggle his trunk.”

Freeman Dyson on describing the predictions of his model for mesatospscattering to
Enrico Fermi in 1953 [Dys04].

A model is a precise representation of a system’s dynamied ts answer
guestions via analysis and simulation. The model we chogsendis on the ques-
tions we wish to answer, and so there may be multiple models fingle dy-
namical system, with different levels of fidelity dependingtbe phenomena of
interest. In this chapter we provide an introduction to thecept of modeling and
present some basic material on two specific methods commaeely in feedback
and control systems: differential equations and diffeeemguations.

2.1 Modeling Concepts

A modelis a mathematical representation of a physical, biologicahformation
system. Models allow us to reason about a system and maké&twad about
how a system will behave. In this text, we will mainly be irgsted in models of
dynamical systems describing the input/output behavi@ystems, and we will
often work in “state space” form.

Roughly speaking, a dynamical system is one in which thecesffef actions
do not occur immediately. For example, the velocity of a caesinot change
immediately when the gas pedal is pushed nor does the tetupeia a room
rise instantaneously when a heater is switched on. Similafyeadache does not
vanish right after an aspirin is taken, requiring time fdoitake effect. In business
systems, increased funding for a development project datdacrease revenues in
the short term, although it may do so in the long term (if it wagod investment).
All of these are examples of dynamical systems, in which thlealsior of the
system evolves with time.

In the remainder of this section we provide an overview of safithe key
concepts in modeling. The mathematical details introdueed are explored more
fully in the remainder of the chapter.
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Figure 2.1: Spring—mass system with nonlinear damping. The position of the mass is de-
noted byq, with g = O corresponding to the rest position of the spring. The forces on the
mass are generated by a linear spring with spring conktamdl a damper with force depen-
dent on the velocity.”

The Heritage of Mechanics

The study of dynamics originated in attempts to describegtéag motion. The
basis was detailed observations of the planets by TychoeBaal the results of
Kepler, who found empirically that the orbits of the plan&tsild be well described
by ellipses. Newton embarked on an ambitious program totexplain why the
planets move in ellipses, and he found that the motion coeld¥plained by his
law of gravitation and the formula stating that force equadss times acceleration.
In the process he also invented calculus and differentiahtons.

One of the triumphs of Newton’s mechanics was the obsenvdltiat the mo-
tion of the planets could be predicted based on the curresitigos and velocities
of all planets. It was not necessary to know the past motioa stdteof a dynam-
ical system is a collection of variables that completelyrabterizes the motion of
a system for the purpose of predicting future motion. Forstesy of planets the
state is simply the positions and the velocities of the pgkand/e call the set of all
possible states thstate space

A common class of mathematical models for dynamical systisnesdinary
differential equations (ODES). In mechanics, one of the fstsuch differential
equations is that of a spring—mass system with damping:

mg+c(q) +kg= 0. (2.1)

This system is illustrated in Figure 2.1. The variafple R represents the position
of the masam with respect to its rest position. We use the notatipio denote
the derivative ofg with respect to time (i.e., the velocity of the mass) antb ~
represent the second derivative (acceleration). The ssi@gsumed to satisfy
Hooke’s law, which says that the force is proportional to displacement. The
friction element (damper) is taken as a nonlinear functi@), which can model
effects such as stiction and viscous drag. The posgiand velocityq represent
the instantaneous state of the system. We say that thissystasecond-order
systensince the dynamics depend on the first two derivatives of

The evolution of the position and velocity can be describadgusither a time
plot or a phase portrait, both of which are shown in Figure 2tztime plot on
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Figure 2.2: lllustration of a state model. A state model gives the rate of change of tiee sta
as a function of the state. The plot on the left shows the evolution of the statéuaction

of time. The plot on the right shows the evolution of the states relative to ethel, with

the velocity of the state denoted by arrows.

the left, shows the values of the individual states as a fonctf time. Thephase
portrait, on the right, shows theector fieldfor the system, which gives the state
velocity (represented as an arrow) at every point in the Sadice. In addition, we
have superimposed the traces of some of the states fromedtiffeonditions. The
phase portrait gives a strong intuitive representatiorheféquation as a vector
field or a flow. While systems of second order (two states) carepeesented in
this way, unfortunately it is difficult to visualize equat®of higher order using
this approach.

The differential equation (2.1) is called antonomousystem because there
are no external influences. Such a model is natural for use @stigl mechanics
because it is difficult to influence the motion of the planetanbmy examples, it
is useful to model the effects of external disturbances atrotled forces on the
system. One way to capture this is to replace equation (.1) b

md+c(q) +kg=u, (2.2)

whereu represents the effect of external inputs. The model (2.2llsa aforced

or controlled differential equatianit implies that the rate of change of the state
can be influenced by the inputt). Adding the input makes the model richer and
allows new questions to be posed. For example, we can exammatinfluence
external disturbances have on the trajectories of a systenin the case where
the input variable is something that can be modulated in &raolbed way, we can
analyze whether it is possible to “steer” the system from poiat in the state
space to another through proper choice of the input.

The Heritage of Electrical Engineering

A different view of dynamics emerged from electrical engineg, where the de-
sign of electronic amplifiers led to a focus on input/outpuidogor. A system was
considered a device that transforms inputs to outputs|uesdrited in Figure 2.3.
Conceptually an input/output model can be viewed as a gadoh¢ tof inputs and
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Figure 2.3: lllustration of the input/output view of a dynamical system. The figure on the
left shows a detailed circuit diagram for an electronic amplifier; the onthemight is its
representation as a block diagram.

outputs. Given an input signalt) over some interval of time, the model should
produce the resulting outpwtt).

The input/output framework is used in many engineering dis@s since it
allows us to decompose a system into individual componesrisected through
their inputs and outputs. Thus, we can take a complicate@rmsystich as a radio
or a television and break it down into manageable pieces aadie receiver,
demodulator, amplifier and speakers. Each of these piecesdaohinputs and
outputs and, through proper design, these components cardoeonnected to
form the entire system.

The input/output view is particularly useful for the spedaikss oflinear time-
invariant systemsrThis term will be defined more carefully later in this chapier,
roughly speaking a system is linear if the superpositiorlifaah) of two inputs
yields an output that is the sum of the outputs that wouldespond to individual
inputs being applied separately. A system is time-invaiiftie output response
for a given input does not depend on when that input is applied

Many electrical engineering systems can be modeled bytlitve-invariant
systems, and hence a large number of tools have been dede¢topralyze them.
One such tool is thetep responsevhich describes the relationship between an
input that changes from zero to a constant value abruptlyefa isput) and the
corresponding output. As we shall see later in the text, the esponse is very
useful in characterizing the performance of a dynamicaksgsand it is often used
to specify the desired dynamics. A sample step responsevasim Figure 2.4a.

Another way to describe a linear time-invariant system igefresent it by its
response to sinusoidal input signals. This is calledftthguency responsand a
rich, powerful theory with many concepts and strong, usedslilts has emerged.
The results are based on the theory of complex variables arlddeappansforms.
The basic idea behind frequency response is that we can ctatypdbaracterize
the behavior of a system by its steady-state response teadal inputs. Roughly
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Figure 2.4: Input/output response of a linear system. The step response (&9 gmautput
of the system due to an input that changes from 0 to 1 at timé& s. The frequency re-
sponse (b) shows the amplitude gain and phase change due to a sihingaitiat different

frequencies.

speaking, this is done by decomposing any arbitrary signal a linear combi-
nation of sinusoids (e.g., by using the Fourier transforng hen using linearity
to compute the output by combining the response to the iddalifrequencies. A
sample frequency response is shown in Figure 2.4b.

The input/output view lends itself naturally to experimémtatermination of
system dynamics, where a system is characterized by recpidi response to
particular inputs, e.g., a step or a set of sinusoids ovengeraf frequencies.

The Control View

When control theory emerged as a discipline in the 1940safipeoach to dy-
namics was strongly influenced by the electrical enginedfimaut/output) view.
A second wave of developments in control, starting in the 1&850s, was inspired
by mechanics, where the state space perspective was usegiméhgence of space
flight is a typical example, where precise control of the oobid spacecraft is es-
sential. These two points of view gradually merged into wkabday the state
space representation of input/output systems.

The development of state space models involved modifyingrtbdels from
mechanics to include external actuators and sensors dimingtimore general
forms of equations. In control, the model given by equatih@) was replaced by

Ko fxu,  y=hocw), 23
wherex is a vector of state variablesjs a vector of control signals aryds a vec-
tor of measurements. The tedw/dt represents the derivative pfvith respect to
time, now considered a vector, alidandh are (possibly nonlinear) mappings of
their arguments to vectors of the appropriate dimensionnte@chanical systems,
the state consists of the position and velocity of the syssanthatx = (q,q) in
the case of a damped spring—mass system. Note that in th@ldanmulation we
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model dynamics as first-order differential equations, butwiesee that this can
capture the dynamics of higher-order differential equeiby appropriate defini-
tion of the state and the mapsandh.

Adding inputs and outputs has increased the richness ofdlsical problems
and led to many new concepts. For example, it is natural tdaf gslssible statex
can be reached with the proper choicaigfeachability) and if the measurement
contains enough information to reconstruct the state (ohbdity). These topics
will be addressed in greater detail in Chapters 6 and 7.

A final development in building the control point of view wag timergence of
disturbances and model uncertainty as critical elementsaritheory. The simple
way of modeling disturbances as deterministic signalsdik@s and sinusoids has
the drawback that such signals cannot be predicted precisehore realistic ap-
proach is to model disturbances as random signals. This viedvgives a natural
connection between prediction and control. The dual viewamit/output repre-
sentations and state space representations are pattiausaful when modeling
uncertainty since state models are convenient to descnbennal model but un-
certainties are easier to describe using input/output teqdéen via a frequency
response description). Uncertainty will be a constant thémoughout the text
and will be studied in particular detail in Chapter 12.

An interesting observation in the design of control systentisat feedback sys-
tems can often be analyzed and designed based on compgraimple models.
The reason for this is the inherent robustness of feedbat&ragsHowever, other
uses of models may require more complexity and more accutasy example is
feedforward control strategies, where one uses a modektmprpute the inputs
that cause the system to respond in a certain way. Anotharigsystem valida-
tion, where one wishes to verify that the detailed respoh#eeosystem performs
as it was designed. Because of these different uses of madelsommon to use
a hierarchy of models having different complexity and figelit

Multidomain Modeling

Modeling is an essential element of many disciplines, taditions and methods
from individual disciplines can differ from each other, Hsstrated by the previ-
ous discussion of mechanical and electrical engineerindifffeulty in systems
engineering is that it is frequently necessary to deal wétefogeneous systems
from many different domains, including chemical, electjenechanical and in-
formation systems.

To model such multidomain systems, we start by partitiorangystem into
smaller subsystems. Each subsystem is represented by dalquations for mass,
energy and momentum, or by appropriate descriptions ofrimition processing
in the subsystem. The behavior at the interfaces is capturetkescribing how
the variables of the subsystem behave when the subsystenistenrconnected.
These interfaces act by constraining variables within tdé&vidual subsystems to
be equal (such as mass, energy or momentum fluxes). The comquded is then
obtained by combining the descriptions of the subsysterddtainterfaces.
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Using this methodology it is possible to build up librarigssabsystems that
correspond to physical, chemical and informational congpdg The procedure
mimics the engineering approach where systems are buitt f@bsystems that
are themselves built from smaller components. As expegiégngained, the com-
ponents and their interfaces can be standardized and teallécmodel libraries.
In practice, it takes several iterations to obtain a goagi¥pthat can be reused for
many applications.

State models or ordinary differential equations are noablétfor component-
based modeling of this form because states may disappear eameponents are
connected. This implies that the internal description of mgonent may change
when it is connected to other components. As an illustratierconsider two ca-
pacitors in an electrical circuit. Each capacitor has a stateesponding to the
voltage across the capacitors, but one of the states wapgisar if the capacitors
are connected in parallel. A similar situation happens with rotating inertias,
each of which is individually modeled using the angle of tiofmand the angular
velocity. Two states will disappear when the inertias airegd by a rigid shaft.

This difficulty can be avoided by replacing differential eqoas bydifferential
algebraic equationswhich have the form

F(z,2) =0,
wherez € R". A simple special case is

x="f(xy), g(xy) =0, (2.4)

wherez = (x,y) andF = (x— f(x,y),9(x,y)). The key property is that the deriva-
tive zis not given explicitly and there may be pure algebraic iefst between the
components of the vectar

The model (2.4) captures the examples of the parallel capa@nd the linked
rotating inertias. For example, when two capacitors ar@eoted, we simply add
the algebraic equation expressing that the voltages athessapacitors are the
same.

Modelicais a language that has been developed to support compoased-b
modeling. Differential algebraic equations are used as#sc description, and
object-oriented programming is used to structure the nsodiébdelica is used to
model the dynamics of technical systems in domains such akanéal, electri-
cal, thermal, hydraulic, thermofluid and control subsystdvtmdelica is intended
to serve as a standard format so that models arising in éiffedomains can be
exchanged between tools and users. A large set of free anahemial Modelica
component libraries are available and are used by a growimgper of people
in industry, research and academia. For further informagibout Modelica, see
http://www.modelica.org or Tiller [TilO1].
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2.2 State Space Models

In this section we introduce the two primary forms of modélsttwe use in this
text: differential equations and difference equationghBoake use of the notions
of state, inputs, outputs and dynamics to describe the ahafva system.

Ordinary Differential Equations

The state of a system is a collection of variables that sunmmdhe past of a
system for the purpose of predicting the future. For a playsgstem the state
is composed of the variables required to account for stoohgeass, momentum
and energy. A key issue in modeling is to decide how accyr#éitéd storage has
to be represented. The state variables are gathered in a weet®" called the
state vectarThe control variables are represented by another vectoRP, and
the measured signal by the vecyor RY. A system can then be represented by the
differential equation

3.)[(: f(X,U), y= h(X, U), (25)

wheref : R" x RP — R" andh: R" x RP — RY are smooth mappings. We call a
model of this form astate space model

The dimension of the state vector is called trder of the system. The sys-
tem (2.5) is calledime-invariantbecause the functions andh do not depend
explicitly on timet; there are more general time-varying systems where the func
tions do depend on time. The model consists of two functidresfunctionf gives
the rate of change of the state vector as a function of statel controlu, and the
functionh gives the measured values as functions of stated controlu.

A system is called dnear state space system if the functiohandh are linear
in x andu. A linear state space system can thus be represented by

?;[( = Ax+ Bu, y = Cx+ Du, (2.6)

whereA, B, C andD are constant matrices. Such a system is said tmbar and
time-invariant or LTI for short. The matrixXA is called thedynamics matrixthe
matrix B is called thecontrol matrix the matrixC is called thesensor matrixand
the matrixD is called thedirect term Frequently systems will not have a direct
term, indicating that the control signal does not influenesattput directly.
A different form of linear differential equations, genezalg the second-order
dynamics from mechanics, is an equation of the form
dn dnfl
dTZ ra dt”—i/
wheret is the independent (time) variabl}) is the dependent (output) variable
and u(t) is the input. The notation¥y/dt¥ is used to denote thkth derivative
of y with respect tat, sometimes also written 389. The controlled differential
equation (2.7) is said to be ath-order system. This system can be converted into

+-t+ay=u, 2.7)



2.2. STATE SPACE MODELS 35

state space form by defining

X1 dnfly/dtnfl
X2 dnfzy/dtan
X= : = : )
Xn—1 dy/dt
Xn Yy

and the state space equations become

X1 —aiXy — - —anXp u
X X 0
g 2 B 1 . . .
dt . - . . ) y_ n
Xn-1 Xn-2 0
Xn Xn—1 0

With the appropriate definitions &, B, C andD, this equation is in linear state
space form.

An even more general system is obtained by letting the olpatlinear com-
bination of the states of the system, i.e.,

y = bixg +boxo + - + bpxp + du.

This system can be modeled in state space as

X1 —a1 —8.2 ... —dn-1 —an 1
q X2 . 0 0 0
< e 0 0 |x+|O0]uy,
: : (2.8)
Xn 1 0 0
b]_ by, ... ]X+du

This particular form of a linear state space system is catbedhable canonical
formand will be studied in more detail in later chapters.

Example 2.1 Balance systems

An example of a type of system that can be modeled using ardutifferential
equations is the class bilance system#\ balance system is a mechanical sys-
tem in which the center of mass is balanced above a pivot.pdarhe common
examples of balance systems are shown in Figure 2.5. The SegRey®nal
Transporter (Figure 2.5a) uses a motorized platform tolstaeta person standing
on top of it. When the rider leans forward, the transportatevice propels itself
along the ground but maintains its upright position. Anotixeample is a rocket
(Figure 2.5b), in which a gimbaled nozzle at the bottom of theket is used to
stabilize the body of the rocket above it. Other examplesatdice systems in-
clude humans or other animals standing upright or a perslamt&iag a stick on
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(a) Segway (b) Saturn rocket (c) Cart—pendulum system

Figure 2.5: Balance systems. (a) Segway Personal Transporter, (b) Satket @nd (c)
inverted pendulum on a cart. Each of these examples uses forcedattitra of the system
to keep it upright.

their hand.
Balance systems are a generalization of the spring—maites1syse saw earlier.
We can write the dynamics for a mechanical system in the géfeam

M(a)d+C(a,q) +K(q) =B(q)u,

whereM(q) is the inertia matrix for the systen(q,q) represents the Coriolis
forces as well as the dampinig(q) gives the forces due to potential energy and
B(q) describes how the external applied forces couple into theuwhycs. The spe-
cific form of the equations can be derived using Newtonian raeics. Note that
each of the terms depends on the configuration of the sygterd that these terms
are often nonlinear in the configuration variables.

Figure 2.5c shows a simplified diagram for a balance systemgtomgsof an
inverted pendulum on a cart. To model this system, we chaase wariables that
represent the position and velocity of the base of the sygpeand p, and the an-
gle and angular rate of the structure above the b@sad 6. We letF represent
the force applied at the base of the system, assumed to be hotizontal direc-
tion (aligned withp), and choose the position and angle of the system as outputs.
With this set of definitions, the dynamics of the system candmaputed using
Newtonian mechanics and have the form

(M+m) —mlcosB) (p cp+mising62)  (F
[—mlcose (J+m|2)] [9] * [ y6 — mglsin@ ] - [O] (29

whereM is the mass of the basm,andJ are the mass and moment of inertia of the
system to be balanceldis the distance from the base to the center of mass of the
balanced body; andy are coefficients of viscous friction amds the acceleration
due to gravity.

We can rewrite the dynamics of the system in state space fgrdetining the

state ax=(p, 8, p, 0), the input as1 = F and the output ag= (p, 0). If we define
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the total mass and total inertia as
M=M+m,  J=J+mP,

the equations of motion then become

( p
p . 6 .
dloe —mlsg82 +mgml?/3)sgcg — cp— (y/J)mlcg8 +u
dt | p| M¢ —m(mi2/%)c3 »
0 —mI2530992+Mth59—clcep—y(Mt/m)éJrIceu
J(Mt/m) —m(Icg)?

_1|p
y_ 6] 9
where we have used the shorthanpd= cosf andsg = sin6.

In many cases, the angewill be very close to 0, and hence we can use the
approximations sifl ~ 6 and co® =~ 1. Furthermore, if0 is small, we can ig-

nore quadratic and higher terms én Substituting these approximations into our
equations, we see that we are left witlireear state space equation

D 0 0 1 0 0 0
d|e 0 0 0 1 0 0
at [p| = o mP2gu —ca/u —yim/u| [o] T asm |
0 0 Mmgl/u —clm/u —yM/u) \O Im/u
_(r 000,
Y=1o 1 0 o) *®
whereu = MyJ — Al 0

Example 2.2 Inverted pendulum

A variation of the previous example is one in which the lozaf the base does

not need to be controlled. This happens, for example, if weéraeeested only in
stabilizing a rocket’s upright orientation without wonng about the location of
base of the rocket. The dynamics of this simplified system aenddy

d [(9] _ [mgl ° ] y—0 (2.10)
dt (6) | —=Zsin6— L6+ —cosbul’ o '
J Joo%
wherey is the coefficient of rotational friction = J+ ml® andu is the force
applied at the base. This system is referred to dsarted pendulum O

Difference Equations

In some circumstances, it is more natural to describe thugen of a system
at discrete instants of time rather than continuously iretiiifi we refer to each
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of these times by an integ&r=0,1,2, ..., then we can ask how the state of the
system changes for eakhJust as in the case of differential equations, we define
the state to be those sets of variables that summarize thefghs system for the
purpose of predicting its future. Systems described in traamer are referred to
asdiscrete-time systems

The evolution of a discrete-time system can be written in ¢t f

X[k+ 1] = f(x[k],ulk]), y[K| = h(x[k],ulk]), (2.11)

wherex[k] € R" is the state of the system at tirkgan integer)u[k] € RP is the
input andy[k] € R% is the output. As beforef, andh are smooth mappings of the
appropriate dimension. We call equation (2.13jifference equatiosince it tells
us howx[k + 1] differs fromx[k]. The statex[k] can be either a scalar- or a vector-
valued quantity; in the case of the latter we weijék] for the value of thgth state
at timek.

Just as in the case of differential equations, it is oftercdse that the equations
are linear in the state and input, in which case we can desthi#&system by

x[k+ 1] = Axk] + BulK], y[K] = Cx[k] + DulK].

As before, we refer to the matricés B, C andD as the dynamics matrix, the
control matrix, the sensor matrix and the direct term. Thatsw of a linear dif-
ference equation with initial conditiox]0] and inputu[0],...,u[T] is given by

x[K] = AX[0] + kz:Akilsu[ il,
J:
1 k> 0. (2.12)
y[k] = CAX[0] + %CA"’j’lBu[ j] + Dulk],
=

Difference equations are also useful as an approximatialiffefrential equa-
tions, as we will show later.

Example 2.3 Predator—prey
As an example of a discrete-time system, consider a simptiehior a predator—
prey system. The predator—prey problem refers to an ecalbgystem in which
we have two species, one of which feeds on the other. This tfgsgsbem has
been studied for decades and is known to exhibit interesiymgmics. Figure 2.6
shows a historical record taken over 90 years for a populaifdynxes versus a
population of hares [Mac37]. As can been seen from the gtaptannual records
of the populations of each species are oscillatory in nature

A simple model for this situation can be constructed usingsardte-time
model by keeping track of the rate of births and deaths of spelties. Letting
H represent the population of hares dncepresent the population of lynxes, we
can describe the state in terms of the populations at despeziods of time. Let-



2.2. STATE SPACE MODELS 39
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1845 1855 1865 1875 1885 1895 1905 1915 1925 1935
Figure 2.6: Predator versus prey. The photograph on the left shows a Canadiaarygl
a snowshoe hare, the lynx’s primary prey. The graph on the rightskiwe populations of
hares and lynxes between 1845 and 1935 in a section of the Canadigesjdtac37]. The

data were collected on an annual basis over a period of 90 yearso@Pdyoh copyright Tom
and Pat Leeson.)

ting k be the discrete-time index (e.g., the day or month numbex);an write
Hk+ 1] = H[K] + by (u)H K] —aL[k]H K],
L[k+ 1] = L[k] + cL[K|H[k] —dsL[K],

whereby (u) is the hare birth rate per unit period and as a function of toel f
supplyu, ds is the lynx mortality rate and andc are the interaction coefficients.
The interaction ternaL[k]H [k] models the rate of predation, which is assumed to
be proportional to the rate at which predators and prey megttisshence given
by the product of the population sizes. The interaction tekfi]H [K] in the lynx
dynamics has a similar form and represents the rate of groftie lynx popula-
tion. This model makes many simplifying assumptions—sudha$act that hares
decrease in number only through predation by lynxes—nbutends sufficient to
answer basic questions about the system.

To illustrate the use of this system, we can compute the nuoftignxes and
hares at each time point from some initial population. Thadoise by starting with
X[0] = (Ho,Lo) and then using equation (2.13) to compute the populatiotisein
following period. By iterating this procedure, we can geerthe population over
time. The output of this process for a specific choice of pararaeind initial con-
ditions is shown in Figure 2.7. While the details of the siniola are different
from the experimental data (to be expected given the siplaf our assump-
tions), we see qualitatively similar trends and hence weusaithe model to help
explore the dynamics of the system. O

(2.13)

Example 2.4 E-mail server
The IBM Lotus server is an collaborative software system thatinisters users’
e-mail, documents and notes. Client machines interact evithusers to provide
access to data and applications. The server also handlesadth@istrative tasks.
In the early development of the system it was observed tlegpénformance was
poor when the central processing unit (CPU) was overloadeause of too many
service requests, and mechanisms to control the load wereftine introduced.
The interaction between the client and the server is in thra fifremote proce-
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Figure 2.7: Discrete-time simulation of the predator—prey model (2.13). Using thenpa
etersa= ¢ = 0.014, b, (u) = 0.6 andd = 0.7 in equation (2.13) with daily updates, the
period and magnitude of the lynx and hare population cycles approxinmatelh the data
in Figure 2.6.

dure calls (RPCs). The server maintains a log of statisticowipteted requests.
The total number of requests being served, cale® (RPCs in server), is also
measured. The load on the server is controlled by a paranedted vaxUser s,
which sets the total number of client connections to theeseivhis parameter is
controlled by the system administrator. The server can bardeg as a dynami-
cal system withvaxUser s as the input andRl S as the output. The relationship
between input and output was first investigated by explofiregsteady-state per-
formance and was found to be linear.

In [HDPTO04] a dynamic model in the form of a first-order differerequation
is used to capture the dynamic behavior of this system. Usiatgm identification
techniques, they construct a model of the form

y[k+ 1] = ay{k] + bulk],

whereu = MaxUser s —MaxUser s andy = RI S—RI' S. The parametera =
0.43 andb = 0.47 are parameters that describe the dynamics of the systemdar
the operating point, an¥axUser s = 165 andRI S = 135 represent the nomi-
nal operating point of the system. The number of requests wasged over a
sampling period of 60 s. O

Simulation and Analysis

State space models can be used to answer many questions. Derenudst com-
mon, as we have seen in the previous examples, involvesciregthe evolution
of the system state from a given initial condition. While $omple models this can
be done in closed form, more often it is accomplished thracmhputer simula-
tion. One can also use state space models to analyze thdl dedravior of the
system without making direct use of simulation.

Consider again the damped spring—mass system from Seclion2 this time
with an external force applied, as shown in Figure 2.8. We washredict the
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Figure 2.8: A driven spring—mass system with damping. Here we use a linear damping
element with coefficient of viscous frictiom The mass is driven with a sinusoidal force of
amplitudeA.

motion of the system for a periodic forcing function, withigem initial condition,
and determine the amplitude, frequency and decay rate oéthdting motion.

We choose to model the system with a linear ordinary difféakequation.
Using Hooke’s law to model the spring and assuming that thepéa exerts a
force that is proportional to the velocity of the system, vagén

mg+ cq+kg=u, (2.14)

wherem is the massq is the displacement of the massjs the coefficient of
viscous friction k is the spring constant andis the applied force. In state space
form, usingx = (q, ) as the state and choosigg- g as the output, we have

dx e
e c k ul> y=Xi.
dt ——Xo— =X+ —

m m m

We see that this is a linear second-order differential egaatith one inputu and
one outputy.

We now wish to compute the response of the system to an inplaédbrmu =
Asinwt. Although it is possible to solve for the response analiiticave instead
make use of a computational approach that does not rely ogpibefic form of
this system. Consider the general state space system

dx

— = f(x,u).

gt = fxu)

Given the state at timet, we can approximate the value of the state at a short
time h > 0 later by assuming that the rate of changd ©f,u) is constant over the
intervalt tot + h. This gives

X(t+h) =x(t) +hf(x(t),u(t)). (2.15)

Iterating this equation, we can thus solve fas a function of time. This approxi-
mation is known as Euler integration and is in fact a diffeeeaguation if we leh
represent the time increment and wrif&] = x(kh). Although modern simulation
tools such as MATLAB and Mathematica use more accurate methaasEuler
integration, they still have some of the same basic tratke-of
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Figure 2.9: Simulation of the forced spring—mass system with different simulation time
constants. The solid line represents the analytical solution. The dasheddpresent the
approximate solution via the method of Euler integration, using decreasipgizes.

Returning to our specific example, Figure 2.9 shows the restitemputing
X(t) using equation (2.15), along with the analytical compotatWe see that as
h gets smaller, the computed solution converges to the exattien. The form
of the solution is also worth naoticing: after an initial tei@nt, the system settles
into a periodic motion. The portion of the response after thedient is called the
steady-state responsethe input.

In addition to generating simulations, models can also led ts answer other
types of questions. Two that are central to the methods itbestin this text con-
cern the stability of an equilibrium point and the inputfawitfrequency response.
We illustrate these two computations through the exampsband return to the
general computations in later chapters.

Returning to the damped spring—mass system, the equafiomstion with no
input forcing are given by

dx—[ ¢k ] (2.16)

dt | —Sxo——xg
m m

whereXx; is the position of the mass (relative to the rest positiorg gnis its
velocity. We wish to show that if the initial state of the sstis away from the
rest position, the system will return to the rest positioergually (we will later
define this situation to mean that the rest positioasigmptotically stable While
we could heuristically show this by simulating many, manijiah conditions, we
seek instead to prove that this is true &myinitial condition.

To do so, we construct a functidh: R" — R that maps the system state to a
positive real number. For mechanical systems, a convedinite is the energy of
the system,

V(X) = %kx%+%mx§. (2.17)
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If we look at the time derivative of the energy function, we deat

av . . C k
e kxaXa + Mxexo = kxaxo + mxz(—axz — mxl) = —0%,

which is always either negative or zero. Hentg(t)) is never increasing and,
using a bit of analysis that we will see formally later, theiuidual states must
remain bounded.

If we wish to show that the states eventually return to thgioyiwe must use
a slightly more detailed analysis. Intuitively, we can mass follows: suppose
that for some period of time/(x(t)) stops decreasing. Then it must be true that
V(x(t)) = 0, which in turn implies thaty(t) = 0 for that same period. In that case,
X2(t) = 0, and we can substitute into the second line of equatiom®)2olobtain

O0=x = Cx kxf I(x
=Xo= o X = XL

Thus we must have thai also equals zero, and so the only time téx(t)) can
stop decreasing is if the state is at the origin (and heneestfstem is at its rest
position). Since we know thaf (x(t)) is never increasing (because< 0), we
therefore conclude that the origin is stable @oryinitial condition).

This type of analysis, called Lyapunov stability analyss;ansidered in detail
in Chapter 4. It shows some of the power of using models foattadysis of system
properties.

Another type of analysis that we can perform with models isdmpute the
output of a system to a sinusoidal input. We again considesghing—mass sys-
tem, but this time keeping the input and leaving the systeits iariginal form:

mg+cq+kg=u. (2.18)
We wish to understand how the system responds to a sinusojmslof the form
u(t) = Asinwt.

We will see how to do this analytically in Chapter 6, but fomnee make use of
simulations to compute the answer.

We first begin with the observation thatjft) is the solution to equation (2.18)
with inputu(t), then applying an inputit) will give a solution 2(t) (this is easily
verified by substitution). Hence it suffices to look at an inpithwnit magnitude,
A =1. A second observation, which we will prove in Chapter 5het the long-
term response of the system to a sinusoidal input is itseili@ssid at the same
frequency, and so the output has the form

q(t) = g(w)sin(wt + ¢ (w)),
whereg(w) is called thegain of the system and (w) is called thephase(or phase
offset).
To compute the frequency response numerically, we can atmtihe system
at a set of frequencies,...,wy and plot the gain and phase at each of these
frequencies. An example of this type of computation is showFigure 2.10.
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Figure 2.10: A frequency response (gain only) computed by measuring the respain
individual sinusoids. The figure on the left shows the response ofystera as a function
of time to a number of different unit magnitude inputs (at differentdiestries). The figure
on the right shows this same data in a different way, with the magnitude oktiponse
plotted as a function of the input frequency. The filled circles corredporthe particular
frequencies shown in the time responses.

2.3 Modeling Methodology

To deal with large, complex systems, it is useful to haveedét representations
of the system that capture the essential features and hmeleviant details. In all
branches of science and engineering it is common practiaegsome graphical
description of systems, callethematic diagramslhey can range from stylistic
pictures to drastically simplified standard symbols. Thestupés make it possi-
ble to get an overall view of the system and to identify theviaiial components.
Examples of such diagrams are shown in Figure 2.11. Schematgaans are
useful because they give an overall picture of a system, isigogifferent subpro-
cesses and their interconnection and indicating variahlgtscan be manipulated
and signals that can be measured.

Block Diagrams

A special graphical representation calleblack diagramhas been developed in
control engineering. The purpose of a block diagram is to exsigk the informa-
tion flow and to hide details of the system. In a block diagraiffiernt process
elements are shown as boxes, and each box has inputs depditezshwith arrows
pointing toward the box and outputs denoted by lines witbvasrgoing out of the
box. The inputs denote the variables that influence a procedsha outputs de-
note the signals that we are interested in or signals thatinée other subsystems.
Block diagrams can also be organized in hierarchies, winelieidual blocks may
themselves contain more detailed block diagrams.

Figure 2.12 shows some of the notation that we use for bloakaias. Signals
are represented as lines, with arrows to indicate inputsoaityuts. The first di-
agram is the representation for a summation of two signatsinfut/output re-
sponse is represented as a rectangle with the system nam®iloematical de-
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Figure 2.13: A block diagram representation of the flight control system for an irfggng
against the wind. The mechanical portion of the model consists of thelyaigt dynamics
of the fly, the drag due to flying through the air and the forces genergtéuehwings. The
motion of the body causes the visual environment of the fly to changethainformation
is then used to control the motion of the wings (through the sensory mattemsy, closing
the loop.

scription) in the block. Two special cases are a proportigain, which scales the
input by a multiplicative factor, and an integrator, whialtputs the integral of the
input signal.

Figure 2.13 illustrates the use of a block diagram, in thig dasmodeling the
flight response of a fly. The flight dynamics of an insect are inbigdntricate,
involving careful coordination of the muscles within the fiyhaintain stable flight
in response to external stimuli. One known characterigtftes is their ability to
fly upwind by making use of the optical flow in their compound eges feedback
mechanism. Roughly speaking, the fly controls its orientasio that the point of
contraction of the visual field is centered in its visual field.

To understand this complex behavior, we can decompose tralbdynamics
of the system into a series of interconnected subsystensdoky. Referring to
Figure 2.13, we can model the insect navigation system tirangnterconnection
of five blocks. The sensory motor system (a) takes the infaoméitom the visual
system (e) and generates muscle commands that attempetatstdly so that the
point of contraction is centered. These muscle commandaxered into forces
through the flapping of the wings (b) and the resulting aeradyin forces that are
produced. The forces from the wings are combined with the dratipe fly (d) to
produce a net force on the body of the fly. The wind velocity enterough the
drag aerodynamics. Finally, the body dynamics (c) describvethe fly translates
and rotates as a function of the net forces that are appligdTtbe insect position,
speed and orientation are fed back to the drag aerodynamitsision system
blocks as inputs.

Each of the blocks in the diagram can itself be a complicatbdysiem. For
example, the visual system of a fruit fly consists of two coogiktd compound
eyes (with about 700 elements per eye), and the sensory sydtem has about
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200,000 neurons that are used to process information. A detedled block dia-
gram of the insect flight control system would show the intenszxtions between
these elements, but here we have used one block to represerthé motion of
the fly affects the output of the visual system, and a secorekiorepresent how
the visual field is processed by the fly’s brain to generate reusminmands. The
choice of the level of detail of the blocks and what elememteparate into differ-
ent blocks often depends on experience and the questidr@thavants to answer
using the model. One of the powerful features of block diagyrés their ability to
hide information about the details of a system that may notdeded to gain an
understanding of the essential dynamics of the system.

Modeling from Experiments

Since control systems are provided with sensors and ac#,dtds also possible
to obtain models of system dynamics from experiments on tbegss. The mod-
els are restricted to input/output models since only thageats are accessible to
experiments, but modeling from experiments can also be gwdhlwith modeling
from physics through the use of feedback and interconnectio

A simple way to determine a system’s dynamics is to obsemedbponse to a
step change in the control signal. Such an experiment begisstbing the control
signal to a constant value; then when steady state is edtedlithe control signal
is changed quickly to a new level and the output is observed. &tperiment
gives the step response of the system, and the shape of fumsesgives useful
information about the dynamics. It immediately gives anidation of the response
time, and it tells if the system is oscillatory or if the resge is monotone.

Example 2.5 Spring—mass system
Consider the spring—mass system from Section 2.1, whoserdgsare given by

mg+cq+kg=u. (2.19)

We wish to determine the constamis ¢ andk by measuring the response of the
system to a step input of magnituBg

We will show in Chapter 6 that whest < 4km, the step response for this system
from the rest configuration is given by

q(t) = % (1— al)d\/EeXp(_zcr:w) sin(awyt + ¢)) ,

V4km—c? o —tant <\/4km— 02>
) - C .

2m

From the form of the solution, we see that the form of the respas determined
by the parameters of the system. Hence, by measuring céetires of the step
response we can determine the parameter values.

Figure 2.14 shows the response of the system to a step of mdghit= 20 N,
along with some measurements. We start by noting that tlaelststate position
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Figure 2.14: Step response for a spring—mass system. The magnitude of the stéfsinpu
Fo = 20 N. The period of oscillatiofT is determined by looking at the time between two
subsequent local maxima in the response. The period combined wittettysstate value
g() and the relative decrease between local maxima can be used to estinpeeatheters

in a model of the system.

of the mass (after the oscillations die down) is a functiothefspring constark

o) = 22, (2.20)

whereFy is the magnitude of the applied force)(= 1 for a unit step input). The
parameter Ak is called thegain of the system. The period of the oscillation can be
measured between two peaks and must satisfy

2m /4km—c2

Finally, the rate of decay of the oscillations is given by tlpanential factor in
the solution. Measuring the amount of decay between twogeek have

log (q(tl) - %) - Iog(q(tz) - %) = %1

Using this set of three equations, we can solve for the parsiand determine
that for the step response in Figure 2.14 we hawve 250 kg,c ~ 60 N s/m and
k=40 N/m. |

(to—t1). (2.22)

Modeling from experiments can also be done using many otgealks. Sinu-
soidal signals are commonly used (particularly for systewite fast dynamics)
and precise measurements can be obtained by exploitinglaton techniques.
An indication of nonlinearities can be obtained by repenérperiments with in-
put signals having different amplitudes.

Normalization and Scaling

Having obtained a model, it is often useful to scale the \wem by introducing
dimension-free variables. Such a procedure can often diripk equations for a
system by reducing the number of parameters and revea¢atiieg properties of
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the model. Scaling can also improve the numerical conditgmif the model to
allow faster and more accurate simulations.

The procedure of scaling is straightforward: choose uniteéah independent
variable and introduce new variables by dividing the vdealy the chosen nor-
malization unit. We illustrate the procedure with two exdesp

Example 2.6 Spring—mass system
Consider again the spring—mass system introduced edlefecting the damp-
ing, the system is described by

mg+ kg=u.
The model has two parametarsandk. To normalize the model we introduce
dimension-free variables = q/I and T = wyot, whereawy = y/k/m and| is the
chosen length scale. We scale forcerblw? and introducer = u/(mlw?). The
scaled equation then becomes

d? d?q/I 1
: N _ a)g(—kq+U)=—X+v,

drz2 ~ d(wt)2 ml
which is the normalized undamped spring—mass system. &ltitat the normal-
ized model has no parameters, while the original model hadparametersn
andk. Introducing the scaled, dimension-free state variakles x = q/I and
2, = dx/dt = g/(lwy), the model can be written as

a2)= (5o ()4 [0)

This simple linear equation describes the dynamics of anpwgpmass system,
independent of the particular parameters, and hence gs/assight into the fun-
damental dynamics of this oscillatory system. To recoverghysical frequency
of oscillation or its magnitude, we must invert the scaling lvave applied. [

Example 2.7 Balance system
Consider the balance system described in Section 2.1. Nemedamping by
puttingc = 0 andy = 0 in equation (2.9), the model can be written as

d?p d?6 . 00,2
(M+m)W—mICOSGW+mIsm9(a) =F,
d2p ,.d%0 .
—mIcosGWJr(Jerl )W—mglsme_o.

Let an = /mgl/(J+ ml?), choose the length scalelaset the time scale be/tw,
choose the force scale &9 + m)lw? and introduce the scaled variables- wyt,

x=p/l andu=F/((M+m)lwp). The equations then become

d?x d?e . do\2 d’x  d%6 .

a2 acos@w + asm@(a> =u, —Bcos@w + a2 —sind =0,
wherea = m/(M +m) andf = mI?/(J4ml?). Notice that the original model has
five parameterm, M, J, | andg but the normalized model has only two parameters
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Figure 2.15: Characterization of model uncertainty. Uncertainty of a static system is illus-
trated in (a), where the solid line indicates the nominal input/output relatiorsstdpthe
dashed lines indicate the range of possible uncertainty. The uncertairip [E®D59] in

(b) is one way to capture uncertainty in dynamical systems emphasizirgiadel is valid

only in some amplitude and frequency ranges. In (c) a model is repies by a nominal
modelM and another model representing the uncertainty analogous to the representation
of parameter uncertainty.

a andB. If M > mandml? > J, we geta ~ 0 andf ~ 1 and the model can be
approximated by

d?x d’e .

P—u, W—sme_ucose.
The model can be interpreted as a mass combined with an idveetedulum
driven by the same input. O

Model Uncertainty

Reducing uncertainty is one of the main reasons for usirgjd@ek, and it is there-
fore important to characterize uncertainty. When makingsneements, there is a
good tradition to assign both a nominal value and a measuneadrtainty. It is
useful to apply the same principle to modeling, but unfaatety it is often difficult
to express the uncertainty of a model quantitatively.

For a static system whose input/output relation can be cteriaed by a func-
tion, uncertainty can be expressed by an uncertainty barnllasated in Fig-
ure 2.15a. At low signal levels there are uncertainties dusensor resolution,
friction and quantization. Some models for queuing systemesells are based
on averages that exhibit significant variations for smallyatons. At large sig-
nal levels there are saturations or even system failuressifinal ranges where a
model is reasonably accurate vary dramatically betweelicapipns, but it is rare
to find models that are accurate for signal ranges larger té&n 1

Characterization of the uncertainty of a dynamic model isimmore difficult.
We can try to capture uncertainties by assigning unceregind parameters of the
model, but this is often not sufficient. There may be errors dyghenomena that
have been neglected, e.g., small time delays. In contralltimeate test is how well
a control system based on the model performs, and time detaybe important.
There is also a frequency aspect. There are slow phenomemaasaging, that
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can cause changes or drift in the systems. There are alsdreigiency effects: a
resistor will no longer be a pure resistance at very highdeagies, and a beam
has stiffness and will exhibit additional dynamics whenjsabto high-frequency
excitation. Theuncertainty lemodGPD59] shown in Figure 2.15b is one way to
conceptualize the uncertainty of a system. It illustraked & model is valid only
in certain amplitude and frequency ranges.

We will introduce some formal tools for representing unaierty in Chapter 12
using figures such as Figure 2.15c. These tools make use of thept@f a trans-
fer function, which describes the frequency response ohaaotioutput system.
For now, we simply note that one should always be carefuld¢ogeize the limits
of a model and not to make use of models outside their rangppicability. For
example, one can describe the uncertainty lemon and thek thhenake sure that
signals remain in this region. In early analog computingysiesn was simulated
using operational amplifiers, and it was customary to givenaawhen certain
signal levels were exceeded. Similar features can be indlidgigital simulation.

2.4 Modeling Examples

In this section we introduce additional examples thatitiate some of the differ-
ent types of systems for which one can develop differentjabéion and difference
equation models. These examples are specifically chosen framge of differ-
ent fields to highlight the broad variety of systems to whiakdteack and control
concepts can be applied. A more detailed set of applicatlmatsserve as running
examples throughout the text are given in the next chapter.

Motion Control Systems

Motion control systems involve the use of computation ardiback to control the
movement of a mechanical system. Motion control systemga&om nanoposi-
tioning systems (atomic force microscopes, adaptive sptio control systems
for the read/write heads in a disk drive of a CD player, to nfiacturing systems
(transfer machines and industrial robots), to automotomrol systems (antilock
brakes, suspension control, traction control), to air guats flight control systems
(airplanes, satellites, rockets and planetary rovers).

Example 2.8 Vehicle steering—the bicycle model
A common problem in motion control is to control the trajegt@f a vehicle
through an actuator that causes a change in the orientatisteering wheel on an
automobile and the front wheel of a bicycle are two examdessimilar dynam-
ics occur in the steering of ships or control of the pitch dyies of an aircraft.
In many cases, we can understand the basic behavior of th&tses through the
use of a simple model that captures the basic kinematicedahtstem.

Consider a vehicle with two wheels as shown in Figure 2.16 tik@purpose
of steering we are interested in a model that describes hewsdlocity of the
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Figure 2.16: Vehicle steering dynamics. The left figure shows an overhead viewelfiale
with four wheels. The wheel basebsand the center of mass at a distaaderward of the
rear wheels. By approximating the motion of the front and rear pairshefelg by a single
front wheel and a single rear wheel, we obtain an abstraction calldzidyee modelshown
on the right. The steering angle dsand the velocity at the center of mass has the angle
relative the length axis of the vehicle. The position of the vehicle is givetxby and the
orientation (heading) bg.

vehicle depends on the steering anglelo be specific, consider the velocinat
the center of mass, a distarc&om the rear wheel, and letbe the wheel base, as
shown in Figure 2.16. Let andy be the coordinates of the center of ma@she
heading angle and the angle between the velocity vectoand the centerline of
the vehicle. Sincé = ratand anda = ratana, it follows that taro = (a/b)tand
and we get the following relation betweenand the steering angte

(2.23)

a(d) = arctar( atané) :

b
Assume that the wheels are rolling without slip and that tblecity of the rear

wheel isvp. The vehicle speed at its center of mass is vp/ cosa, and we find
that the motion of this point is given by

d—f[(:vcos(or—ke) :voms(fsj;e),

g n(a+ 0) (2.24)
dy . _sin(a +

at =vsin(a +0) =Vo T oeg

To see how the angl@ is influenced by the steering angle, we observe from Fig-
ure 2.16 that the vehicle rotates with the angular velogityr, around the point
O. Hence

de . Vo .

Vo
it b tand. (2.25)
Equations (2.23)—(2.25) can be used to model an automohilertine assump-
tions that there is no slip between the wheels and the roadhatdhe two front
wheels can be approximated by a single wheel at the centdreoddr. The as-
sumption of no slip can be relaxed by adding an extra statablat giving a more
realistic model. Such a model also describes the steeringndizs of ships as well
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(a) Harrier “jump jet” (b) Simplified model

Figure 2.17: Vectored thrust aircraft. The Harrier AV-8B military aircraft (a) resits its

engine thrust downward so that it can “hover” above the ground.eSainfrom the engine
is diverted to the wing tips to be used for maneuvering. As shown in (bypehéhrust on
the aircraft can be decomposed into a horizontal féicand a vertical forcé acting at a
distancer from the center of mass.

as the pitch dynamics of aircraft and missiles. It is alscsfids to choose coor-
dinates so that the reference point is at the rear wheelsemnding to setting
a = 0), a model often referred to as tBeibins car[Dub57].

Figure 2.16 represents the situation when the vehicle maresgafd and has
front-wheel steering. The case when the vehicle reversdstégsned by changing
the sign of the velocity, which is equivalent to a vehicletwi¢ar-wheel steering.

O

Example 2.9 Vectored thrust aircraft

Consider the motion of vectored thrust aircraft, such asHbgier “jump jet”
shown Figure 2.17a. The Harrier is capable of vertical takbpffedirecting its
thrust downward and through the use of smaller maneuvehningters located on
its wings. A simplified model of the Harrier is shown in Figurdzb, where we
focus on the motion of the vehicle in a vertical plane throtigh wings of the
aircraft. We resolve the forces generated by the main dowhtaeiuster and the
maneuvering thrusters as a pair of forég®ndF, acting at a distancebelow the
aircraft (determined by the geometry of the thrusters).

Let (x,y,0) denote the position and orientation of the center of maséef t
aircraft. Letm be the mass of the vehiclé,the moment of inertiag the gravita-
tional constant andthe damping coefficient. Then the equations of motion for the
vehicle are given by

mX = F1 cosf — F,sinf — cx,
my = F1sin@ + F, cosf — mg-— cy, (2.26)
JO =rFy.

It is convenient to redefine the inputs so that the origin is quildrium point
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Figure 2.18: Schematic diagram of a queuing system. Messages arrive ai ratel are
stored in a queue. Messages are processed and removed froretiesatjuate:. The average
size of the queue is given byc R.

of the system with zero input. Lettinggp = F; andu, = F, — mg, the equations

become . . . .
MX = —mgsin® — cx+ u; cosO — Uz sing,

my = mg(cosB — 1) — cy+ u; Sin6 + ux coso, (2.27)
Jé =Trus.
These equations describe the motion of the vehicle as a $eeef¢oupled second-
order differential equations. O

Information Systems

Information systems range from communication systemstlikeinternet to soft-
ware systems that manipulate data or manage enterprisesgdarces. Feedback
is presentin all these systems, and designing strategiesfting, flow control and
buffer management is a typical problem. Many results in qugetheory emerged
from design of telecommunication systems and later fronelbg@ment of the In-
ternet and computer communication systems [BG87, Kle758'HcManagement
of queues to avoid congestion is a central problem and wethélefore start by
discussing the modeling of queuing systems.

Example 2.10 Queuing systems

A schematic picture of a simple queue is shown in Figure 2. HjuRsts arrive
and are then queued and processed. There can be large variatiarrival rates
and service rates, and the queue length builds up when tivalaate is larger
than the service rate. When the queue becomes too larg&eserdenied using
an admission control policy.

The system can be modeled in many different ways. One way i®teheach
incoming request, which leads to an event-based model vilhestate is an integer
that represents the queue length. The queue changes wheuestragives or a
request is serviced. The statistics of arrival and serviaiagtypically modeled as
random processes. In many cases it is possible to determaitigtiss of quantities
like queue length and service time, but the computationdeaguite complicated.

A significant simplification can be obtained by usindglev model Instead
of keeping track of each request we instead view service agdests as flows,
similar to what is done when replacing molecules by a contimwhen analyzing
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fluids. Assuming that the average queue lengtha continuous variable and that
arrivals and services are flows with ratesand i, the system can be modeled by
the first-order differential equation

dx
a:/\_uz)‘_umaxf(x)’ x>0, (2.28)
where Umax is the maximum service rate arfdx) is a number between 0 and 1
that describes the effective service rate as a functioneofjtieue length.

It is natural to assume that the effective service rate digpem the queue
length because larger queues require more resources. ddysstate we have
f(X) = A /Umax, @nd we assume that the queue length goes to zero WheRax
goes to zero and that it goes to infinity whan timax goes to 1. This implies
that f (0) = 0 and thatf (o) = 1. In addition, if we assume that the effective ser-
vice rate deteriorates monotonically with queue lengtantthe functionf (x) is
monotone and concave. A simple function that satisfies thie beguirements is
f(x) = x/(1+x), which gives the model

dx A X

a- I-lmaxm-
This model was proposed by Agnew [Agn76]. It can be shown fretrival and
service processes are Poisson processes, the averageengthed given by equa-
tion (2.29) and that equation (2.29) is a good approximagizen for short queue
lengths; see Tipper [TS90].

To explore the properties of the model (2.29) we will first istigate the equi-
librium value of the queue length when the arrival ratés constant. Setting the
derivativedx/dt to zero in equation (2.29) and solving fgrwe find that the queue
lengthx approaches the steady-state value

A
Hmax— A~
Figure 2.19a shows the steady-state queue length as a furadtid/ tmayx, the
effective service rate excess. Notice that the queue lengteases rapidly as
approachegimax. To have a queue length less than 20 requirgsmax < 0.95. The
average time to service a requestds= (X+1)/Umax and itincreases dramatically
asA approachegimax-

Figure 2.19b illustrates the behavior of the server in a Blmuerload situation.
The maximum service rate [gnax = 1, and the arrival rate starts &t= 0.5. The
arrival rate is increased td = 4 at time 20, and it returns td = 0.5 at time 25.
The figure shows that the queue builds up quickly and clearssiewly. Since the
response time is proportional to queue length, it meanslieaquality of service
is poor for a long period after an overload. This behavior Iedahe rush-hour
effectand has been observed in web servers and many other questegisysuch
as automobile traffic.

The dashed line in Figure 2.19b shows the behavior of the flow hatiéch
describes the average queue length. The simple model cajiiteinavior qualita-

(2.29)

Xe = (2.30)
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Figure 2.19: Queuing dynamics. (a) The steady-state queue length as a funcfioiugfy.
(b) The behavior of the queue length when there is a temporary overidaed system. The
solid line shows a realization of an event-based simulation, and the dasheshéws the
behavior of the flow model (2.29).

tively, but there are variations from sample to sample wimengueue length is
short. O

Many complex systems use discrete control actions. Sucaregstan be mod-
eled by characterizing the situations that correspond ¢t eantrol action, as il-
lustrated in the following example.

Example 2.11 Virtual memory paging control

An early example of the use of feedback in computer systenssapplied in the
operating system OS/VS for the IBM 370 [BG68, Cro75]. The systsed virtual
memory, which allows programs to address more memory thalmyisically avail-
able as fast memory. Data in current fast memory (randonsaacoemory, RAM)
is accessed directly, but data that resides in slower me(dasly) is automatically
loaded into fast memory. The system is implemented in suchyahed it appears
to the programmer as a single large section of memory. Thersyserformed very
well in many situations, but very long execution times weneaintered in over-
load situations, as shown by the open circles in Figure 2.PBa.difficulty was
resolved with a simple discrete feedback system. The loakdeoféntral process-

CPU load
@, 150 T T
g © open loop o Normal
= 1000 * closed loop ]
c
9
3 500¢ ° - Underload| Overload
0 2 3 4 Memory swaps
Number of processes
(a) System performance (b) System state

Figure 2.20: Illustration of feedback in the virtual memory system of the IBM/370. (a¢ T
effect of feedback on execution times in a simulation, following [BG6&sits with no
feedback are shown with, and results with feedback with Notice the dramatic decrease
in execution time for the system with feedback. (b) How the three statedbtamed based
on process measurements.
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Figure 2.21: Consensus protocols for sensor networks. (a) A simple sensor metvith
five nodes. In this network, node 1 communicates with node 2 and nodenghanicates
with nodes 1, 3, 4, 5, etc. (b) A simulation demonstrating the convergefibe consensus
protocol (2.31) to the average value of the initial conditions.

ing unit (CPU) was measured together with the number of pagpswetween
fast memory and slow memory. The operating region was clagsiebeing in

one of three states: normal, underload or overload. The rigtai is character-
ized by high CPU activity, the underload state is charaaeérizy low CPU activity

and few page replacements, the overload state has modetate €CPU load but

many page replacements; see Figure 2.20b. The boundariesdretie regions
and the time for measuring the load were determined fromlsitions using typ-

ical loads. The control strategy was to do nothing in the notosd condition,

to exclude a process from memory in the overload conditiahtarallow a new

process or a previously excluded process in the underloaditcan. The crosses
in Figure 2.20a show the effectiveness of the simple feedbgstiem in simulated
loads. Similar principles are used in many other situatieng., in fast, on-chip
cache memory. O

Example 2.12 Consensus protocols in sensor networks

Sensor networks are used in a variety of applications whergvare to collect
and aggregate information over a region of space using phellsiensors that are
connected together via a communications network. Examptésde monitoring
environmental conditions in a geographical area (or inaitlailding), monitoring
the movement of animals or vehicles and monitoring the nesoloading across
a group of computers. In many sensor networks the computdtiesources are
distributed along with the sensors, and it can be importarthie set of distributed
agents to reach a consensus about a certain property, stighasrage tempera-
ture in a region or the average computational load among@f semputers.

We model the connectivity of the sensor network using a graptihn nodes
corresponding to the sensors and edges corresponding éxi#tence of a direct
communications link between two nodes. We use the notafioto represent the
set of neighbors of a node For example, in the network shown in Figure 2.21a
A2 =1{1,3,4,5} and.43 = {2,4}.

To solve the consensus problem Xghbe the state of thigh sensor, correspond-
ing to that sensor’s estimate of the average value that wieyaing to compute. We
initialize the state to the value of the quantity measuredhieyindividual sensor.
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The consensus protocol (algorithm) can now be realized asahupdate law

Xilk+ 1 =x[kl+y S (XK —xik]). (2.31)
e
This protocol attempts to compute the average by updatintptad state of each
agent based on the value of its neighbors. The combined dgsarhiall agents
can be written in the form

X[k+ 1] = x[k] — y(D — A)x[K], (2.32)

whereA is the adjacency matrix and is a diagonal matrix with entries corre-
sponding to the number of neighbors of each node. The cong@esgcribes the
rate at which the estimate of the average is updated basedfamation from
neighboring nodes. The matrix:= D — Ais called the_aplacianof the graph.
The equilibrium points of equation (2.32) are the set of statech thakg[k +
1] = x¢[K]. It can be shown thate = (a,qa,...,a) is an equilibrium state for the
system, corresponding to each sensor having an identittalags a for the av-
erage. Furthermore, we can show thaits indeed the average value of the initial
states. Since there can be cycles in the graph, it is posh#iéhe state of the sys-
tem could enter into an infinite loop and never converge to #dwreld consensus
state. A formal analysis requires tools that will be introéld later in the text, but
it can be shown that for any connected graph we can always firgliah that the
states of the individual agents converge to the averaganAlation demonstrating
this property is shown in Figure 2.21b. O

Biological Systems

Biological systems provide perhaps the richest sourceanftiack and control ex-
amples. The basic problem of homeostasis, in which a quasntdy as temperature
or blood sugar level is regulated to a fixed value, is but ondéefmany types of

complex feedback interactions that can occur in molecukehimes, cells, organ-
isms and ecosystems.

Example 2.13 Transcriptional regulation
Transcription is the process by which messenger RNA (mRNAgnherated from
a segment of DNA. The promoter region of a gene allows trapiseni to be con-
trolled by the presence of other proteins, which bind to tf@mter region and
either repress or activate RNA polymerase, the enzyme tiogiupes an mRNA
transcript from DNA. The mRNA is then translated into a pnoteccording to its
nucleotide sequence. This process is illustrated in Fig22. 2.

A simple model of the transcriptional regulation processhimugh the use
of a Hill function [dJ02, Mur04]. Consider the regulation afprotein A with a
concentration given by, and a corresponding mRNA concentratiog. Let B
be a second protein with concentratipgmthat represses the production of protein
A through transcriptional regulation. The resulting dynesmf p, andm, can be
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RNA
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Transcription
Translation

Figure 2.22:Biological circuitry. The cell on the left is a bovine pulmonary cell, stained s
that the nucleus, actin and chromatin are visible. The figure on the rigks$ gn overview
of the process by which proteins in the cell are made. RNA is transcribed DNA by an
RNA polymerase enzyme. The RNA is then translated into a protein by ameltg called

a ribosome.
written as
dmy Oab dpa
Gt~ 15 ko™ + Qa0 — YaMa, gt — Pama—daPa; (2.33)

where aa, + 0y is the unregulated transcription ratg, represents the rate of
degradation of mMRNAQ@ap, kap and ngy are parameters that describe how B re-
presses Af3, represents the rate of production of the protein from itsespond-
ing mMRNA andd, represents the rate of degradation of the protein A. The pa-
rametera,g describes the “leakiness” of the promoter, and is called the Hill
coefficient and relates to the cooperativity of the promoter.

A similar model can be used when a protein activates the tamuof another
protein rather than repressing it. In this case, the equaitiave the form

dm.  QapkapPp® dp
d 1+ kabpgab + Qa0 — YalMe, ar Bama — OaPa, (2.34)

where the variables are the same as described previoudly.thit in the case of
the activator, ifp, is zero, then the production ratedgy (versusaa, + a4 for the
repressor). Agy, gets large, the first term in the expression rigy approaches 1
and the transcription rate becomes, + ayo (Versusayg for the repressor). Thus
we see that the activator and repressor act in oppositeofasiom each other.

As an example of how these models can be used, we consideraithel wf a
“repressilator,” originally due to Elowitz and Leibler [ELOOThe repressilator is
a synthetic circuit in which three proteins each represstaman a cycle. This is
shown schematically in Figure 2.23a, where the three protia TetRA ¢l and
Lacl. The basic idea of the repressilator is that if TetR is@neghen it represses
the production ofA cl. If A cl is absent, then Lacl is produced (at the unregulated
transcription rate), which in turn represses TetR. OncR Tetepressed, thehcl
is no longer repressed, and so on. If the dynamics of theitaoeidesigned prop-
erly, the resulting protein concentrations will oscillate

We can model this system using three copies of equation )(2:8th A and
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Figure 2.23: The repressilator genetic regulatory network. (a) A schematic diagfahe o
repressilator, showing the layout of the genes in the plasmid that holds¢hé as well as
the circuit diagram (center). (b) A simulation of a simple model for theaggilator, showing
the oscillation of the individual protein concentrations. (Figure courtesklbwitz.)

B replaced by the appropriate combination of TetR, cl and Laké state of the
system is then given by= (Mretr, Pretr, Mel, Pl MLacl, PLact)- Figure 2.23b shows
the traces of the three protein concentrations for parasete 2, a = 0.5,k =
6.25x 1074, ag=5%x10"% y=58x 102, 3 =0.12 andd = 1.2 x 10~3 with
initial conditionsx(0) = (1,0,0,200,0,0) (following [ELOO]). O

Example 2.14 Wave propagation in neuronal networks
The dynamics of the membrane potential in a cell are a fundeherechanism
in understanding signaling in cells, particularly in news@nd muscle cells. The
Hodgkin—Huxley equations give a simple model for studyimgpagation waves
in networks of neurons. The model for a single neuron has titme fo

Cc(lj\: = _INa_ IK - IIeak+ Iinputa
whereV is the membrane potentidl,is the capacitancéy, andlk are the current
caused by the transport of sodium and potassium across theerabrane Jjeax
is a leakage current arlghot is the external stimulation of the cell. Each current

obeys Ohm’s law, i.e.,
I = g(V - E)’

whereg is the conductance aritlis the equilibrium voltage. The equilibrium volt-
age is given by Nernst's law,
RT Ce
E=—log—
nF g G’
whereR is Boltzmann’s constani] is the absolute temperaturig,is Faraday’s
constantn is the charge (or valence) of the ion aniéndce are the ion concentra-
tions inside the cell and in the external fluid. At 20 we haveRT/F =20 mV.
The Hodgkin—Huxley model was originally developed as a mearmedict
the quantitative behavior of the squid giant axon [HH52].dgkin and Huxley
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shared the 1963 Nobel Prize in Physiology (along with J. C. Bydte analysis

of the electrical and chemical events in nerve cell disabsrgdhe voltage clamp

described in Section 1.3 was a key element in Hodgkin and Kisxxperiments.
t

2.5 Further Reading

Modeling is ubiquitous in engineering and science and hasghiistory in applied
mathematics. For example, the Fourier series was intratogd-ourier when he
modeled heat conduction in solids [FouO7]. Models of dyr@nfiave been de-
veloped in many different fields, including mechanics [Arn@l53], heat con-
duction [CJ59], fluids [BRS60], vehicles [Abk69, Bla91, Ell9djbotics [MLS94,
SV89], circuits [Gui63], power systems [Kun93], acoustiBelb4] and microme-
chanical systems [Sen01]. Control theory requires moddtiogn many differ-
ent domains, and most control theory texts contain sevérapters on model-
ing using ordinary differential equations and differencpiaions (see, for ex-
ample, [FPENO5]). A classic book on the modeling of physicateys, espe-
cially mechanical, electrical and thermofluid systems, isirt@a [Can03]. The
book by Aris [Ari94] is highly original and has a detailed dission of the use
of dimension-free variables. Two of the authors’ favoriteoks on modeling of
biological systems are J. D. Murray [Mur04] and Wilson [VE]9

Exercises

2.1 (Chain of integrators form) Consider the linear ordinarifedéntial equa-
tion (2.7). Show that by choosing a state space represemtaiib x; =y, the
dynamics can be written as

0o 1 0 0
L 0

A=| O w0 g | ], C:(l .0 0].
o . 0 1 :
—an —an-1 —a1 1

This canonical form is called thehain of integratordorm.

2.2(Inverted pendulum) Use the equations of motion for a baaystem to derive
a dynamic model for the inverted pendulum described in Exar@# and verify
that for smallf the dynamics are approximated by equation (2.10).

2.3(Discrete-time dynamics) Consider the following discriéee system
x[k+ 1] = AXK] + Bulk], y[k] = CxK],

where

(% _ [ann a _ [0 _
X — [x2]’ A_[O azz], B_[l], c_[l o].
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In this problem, we will explore some of the properties o$ttliscrete-time system
as a function of the parameters, the initial conditions dednputs.

(a) For the case wheay, = 0 andu = 0, give a closed form expression for the
output of the system.

(b) A discrete system is iaquilibriumwhenx[k+ 1] = x[k] for all k. Letu=r be

a constant input and compute the resulting equilibrium fpinthe system. Show
that if |a;j| < 1 for all i, all initial conditions give solutions that converge to the
equilibrium point.

(c) Write a computer program to plot the output of the systenesponse to a unit
step inputulk] = 1, k > 0. Plot the response of your system wiiB] = 0 andA
given bya;1 = 0.5, a12 = 1 anday, = 0.25.

2.4 (Keynesian economics) Keynes'’ simple model for an econangyvien by
Y[K| = CIK] + I [K] + G[K],

whereY, C, | andG are gross national product (GNP), consumption, investment
and government expenditure for ydaConsumption and investment are modeled
by difference equations of the form

Ck+1]=aYk,  I[k+1] =b(C[k+1]—C[K),

wherea andb are parameters. The first equation implies that consumption in
creases with GNP but that the effect is delayed. The secoratiegumplies that
investment is proportional to the rate of change of consionpt

Show that the equilibrium value of the GNP is given by

1

- l1-a
where the parameter/{1 — a) is the Keynes multiplier (the gain froinor G to
Y). With a= 0.75 an increase of government expenditure will result in aftidd

increase of GNP. Also show that the model can be written a®tlosving discrete-
time state model:

[(':[[lfi 11]]] N [aba—b ;b] [CI:[[IL(}]] + [;b] G[K],

Y[k = ClK]+1[K + G[KI.

Ye

(le+Ge),

2.5(Least squares system identification) Consider a nonlinéareintial equation
that can be written in the form

dx M

a@t :i;ai fi(x),

where fi(x) are known nonlinear functions armxd are unknown, but constant, pa-
rameters. Suppose that we have measurements (or estimiaties)wall statex at
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time instantdy,ty, ..., tn, with N > M. Show that the parametess can be deter-
mined by finding the least squares solution to a linear equatithe form

Ha = b,
wherea € RM is the vector of all parameters amtlc RN*M andb € RN are
appropriately defined.

2.6(Normalized oscillator dynamics) Consider a damped sprimass system with
dynamics

mi+cq+kg=F.
Let wp = y/k/mbe the natural frequency agd= c/(2v/km) be the damping ratio.
(&) Show that by rescaling the equations, we can write therdigsin the form

G+ 2¢ an+ whd = B, (2.35)
whereu = F /k. This form of the dynamics is that of a linear oscillator witktural
frequencywy and damping ratid .

(b) Show that the system can be further normalized and wiiitt&me form
da _ 4z
dr @ dr
The essential dynamics of the system are governed by a siaglpidg parameter
{. TheQ-valuedefined af) = 1/2( is sometimes used instead {f

=—21—2{2,+V. (2.36)

2.7 (Electric generator) An electric generator connected tocmgtpower grid can
be modeled by a momentum balance for the rotor of the generato
2

J(:jtf =Pn—Pe=Pn— %sind),
wherelJ is the effective moment of inertia of the generaiprthe angle of rota-
tion, Py, the mechanical power that drives the generdgrs the active electrical
power, E the generator voltagd/ the grid voltage anK the reactance of the
line. Assuming that the line dynamics are much faster thanrdtor dynamics,
P.=VI = (EV/X)sing, wherel is the current component in phase with the volt-
ageE andg¢ is the phase angle between voltagesndV. Show that the dynamics
of the electric generator has a normalized form that is sintd the dynamics of a
pendulum with forcing at the pivot.

2.8 (Admission control for a queue) Consider the queuing sysiescribed in
Example 2.10. The long delays created by temporary overlaaube reduced by
rejecting requests when the queue gets large. This allowestgjthat are accepted
to be serviced quickly and requests that cannot be accontetda receive a
rejection quickly so that they can try another server. Gigrsan admission control
system described by

dx

X
at :)\U_Umaxm7 u = satg 1) (k(r —x)), (2.37)
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where the controller is a simple proportional control wititusation (sakp) is
defined by equation (3.9)) anmdis the desired (reference) queue length. Use a
simulation to show that this controller reduces the rustrhedfect and explain
how the choice of affects the system dynamics.

2.9 (Biological switch) A genetic switch can be formed by cortiregtwo repres-
sors together in a cycle as shown below.

A m—
N
U1_|g 5._UZ
~.. .
B L w

Using the models from Example 2.13—assuming that the paeamate the same
for both genes and that the mRNA concentrations reach stetady quickly—
show that the dynamics can be written in normalized cootdsas

dz U dz H

= 71—V = 7V 2.38

dr  1+2 b dr  1+27] 2 (2.38)
wherez; andz, are scaled versions of the protein concentrations andrieedcale
has also been changed. Show that 200 using the parameters in Example 2.13,
and use simulations to demonstrate the switch-like beha¥ithe system.

2.10 (Motor drive) Consider a system consisting of a motor dgviwo masses
that are connected by a torsional spring, as shown in theatiagelow.

?1 ®2

—— Motor

W 0]
i I
This system can represent a motor with a flexible shaft thagésgli@ioad. Assuming

that the motor delivers a torque that is proportional to tieemt, the dynamics of
the system can be described by the equations

2 =
‘Jldd'gl C(O::(Iptl_ogptz> K91~ ) =k, (2.39)
: + .
2dd$2+c(d(;’irzcﬁl>+k(¢2¢l) B

Similar equations are obtained for a robot with flexible armg fam the arms of
DVD and optical disk drives.
Derive a state space model for the system by introducingtiher(alized) state

variables = @1, Xo = ¢2, X3 = Wi/ twp, andxa = wy/ wn, Wherewy = \/k(Jl +J2)/(Ad2)
is the undamped natural frequency of the system when theataignal is zero.



Chapter Three

Examples

... Don't apply any model until you understand the simplifying assumptionwhich it is
based, and you can test their validity. Catch phrase: use only as dirdatedt limit yourself
to a single model: More than one model may be useful for understandiiegedif aspects of
the same phenomenon. Catch phrase: legalize polygamy.”

Saul Golomb, “Mathematical Models—Uses and Limitations,” 1970 [Gol70]

In this chapter we present a collection of examples spanmiagy different
fields of science and engineering. These examples will be hsedghout the text
and in exercises to illustrate different concepts. Firstetireaders may wish to
focus on only a few examples with which they have had the mst pxperience
or insight to understand the concepts of state, input, awapd dynamics in a
familiar setting.

3.1 Cruise Control

The cruise control system of a car is a common feedback systeougtered in
everyday life. The system attempts to maintain a constantitglin the presence
of disturbances primarily caused by changes in the slopeadé The controller
compensates for these unknowns by measuring the speed@drthed adjusting
the throttle appropriately.

To model the system we start with the block diagram in Figute Betv be
the speed of the car ang the desired (reference) speed. The controller, which
typically is of the proportional-integral (PI) type des@&ibbriefly in Chapter 1,
receives the signalg andv; and generates a control signathat is sent to an
actuator that controls the throttle position. The throttiélirn controls the torque
T delivered by the engine, which is transmitted through trergand the wheels,
generating a forc& that moves the car. There are disturbance fofgedue to
variations in the slope of the road, the rolling resistane @aerodynamic forces.
The cruise controller also has a human—-machine interfadeattoavs the driver
to set and modify the desired speed. There are also functianslisconnect the
cruise control when the brake is touched.

The system has many individual components—actuator, engaresmission,
wheels and car body—and a detailed model can be very cortgaich spite of
this, the model required to design the cruise controllertEaguite simple.

To develop a mathematical model we start with a force balfordbe car body.
Let v be the speed of the canthe total mass (including passengefs}he force
generated by the contact of the wheels with the road Fgrile disturbance force
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Figure 3.1: Block diagram of a cruise control system for an automobile. The throttle-
controlled engine generates a torquéhat is transmitted to the ground through the gearbox
and wheels. Combined with the external forces from the environmettt,asiaerodynamic
drag and gravitational forces on hills, the net force causes the carue.mMbe velocity of

the carv is measured by a control system that adjusts the throttle through an aciuetibn
anism. A driver interface allows the system to be turned on and off anetéeence speed

Vr to be established.

due to gravity, friction and aerodynamic drag. The equatifanation of the car is
simply
dv_ F—F (3.1)
mdt = d- .
The forceF is generated by the engine, whose torque is proportiondido t
rate of fuel injection, which is itself proportional to a dool signal 0< u <1
that controls the throttle position. The torque also dep@mdsngine speed. A

simple representation of the torque at full throttle is gy the torque curve

T(w) = Tm (1—ﬁ(a‘;’n—1>z>, (3.2)

where the maximum torquR, is obtained at engine spee#,. Typical parameters
areTym =190 Nm,wy, = 420 rad/s (about 4000 RPM) afid= 0.4. Letn be the gear
ratio andr the wheel radius. The engine speed is related to the veldeitygh the

expression

n
w = FV =. GnV,
and the driving force can be written as
nu
F= TT(w) = apuT(apv).

Typical values of, for gears 1 through 5 am;, = 40,a, = 25,03 = 16,04 =12
andas = 10. The inverse ofr, has a physical interpretation as thigective wheel
radius. Figure 3.2 shows the torque as a function of engine speed elndle
speed. The figure shows that the effect of the gear is to “flattemtdrque curve
so that an almost full torque can be obtained almost over ti@erspeed range.
The disturbance forc€y has three major components;, the forces due to
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Figure 3.2: Torque curves for typical car engine. The graph on the left showsotigeie
generated by the engine as a function of the angular velocity of the engiile,the curve
on the right shows torque as a function of car speed for differemsgea

gravity; F, the forces due to rolling friction; arfg, the aerodynamic drag. Letting
the slope of the road b&, gravity gives the forcéy = mgsing, as illustrated in
Figure 3.3a, wherg = 9.8 m/¢ is the gravitational constant. A simple model of
rolling friction is

F = mgG sgnv),

whereC; is the coefficient of rolling friction and sg@w) is the sign ofv (1) or
zero if v= 0. A typical value for the coefficient of rolling friction i€, = 0.01.
Finally, the aerodynamic drag is proportional to the squatbespeed:

Fa= %pCdszv

wherep is the density of airCy is the shape-dependent aerodynamic drag coef-
ficient andA is the frontal area of the car. Typical parameters@re 1.3 kg/n?¥,
Cq=0.32andA = 2.4 n?.

Summarizing, we find that the car can be modeled by

mgll = apuT(anV) —mgG sgnv) — %pCdsz — mgsiné, (3.3)
where the functiorT is given by equation (3.2). The model (3.3) is a dynamical
system of first order. The state is the car velogityvhich is also the output. The
input is the signal that controls the throttle position, and the disturbanciés
force Fy4, which depends on the slope of the road. The system is nonlimeeause
of the torque curve, the gravity term and the nonlinear dattaraof rolling friction
and aerodynamic drag. There can also be variations in thengtess; e.g., the
mass of the car depends on the number of passengers anddhmelog carried in
the car.

We add to this model a feedback controller that attemptsgolage the speed
of the car in the presence of disturbances. We shall use ai@pal-integral
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Figure 3.3: Car with cruise control encountering a sloping road. A schematic diaggam
shown in (a), and (b) shows the response in speed and throttle whereao§id is encoun-
tered. The hill is modeled as a net change ofrthill angle 8, with a linear change in the
angle betweeh =5 andt = 6. The PI controller has proportional gainkig= 0.5, and the
integral gain i; = 0.1.

controller, which has the form

u(t) = kpe(t) + ki /0t e(T)dr.

This controller can itself be realized as an input/outputasgital system by defin-
ing a controller state and implementing the differential equation

dz

dt
wherev; is the desired (reference) speed. As discussed briefly inddetitb, the
integrator (represented by the stayensures that in steady state the error will be
driven to zero, even when there are disturbances or modefiogs. (The design
of PI controllers is the subject of Chapter 10.) Figure 3.3wshtie response of
the closed loop system, consisting of equations (3.3) adq,(@hen it encounters
a hill. The figure shows that even if the hill is so steep that Hrettle changes
from 0.17 to almost full throttle, the largest speed errdess than 1 m/s, and the
desired velocity is recovered after 20 s.

Many approximations were made when deriving the model (B 8)ay seem
surprising that such a seemingly complicated system car&eritied by the sim-
ple model (3.3). It is important to make sure that we restiigtuse of the model
to the uncertainty lemon conceptualized in Figure 2.15b. Thdehis not valid
for very rapid changes of the throttle because we have ightbre details of the
engine dynamics, neither is it valid for very slow changesaose the properties
of the engine will change over the years. Nevertheless traems very useful for
the design of a cruise control system. As we shall see in tdiapters, the reason
for this is the inherent robustness of feedback systems:iétlee model is not per-
fectly accurate, we can use it to design a controller and makeof the feedback

Vi —V, u=Kp(vy —V) +kiz, (3.4)
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resume

Figure 3.4: Finite state machine for cruise control system. The figure on the left show
some typical buttons used to control the system. The controller can be iof éour modes,
corresponding to the nodes in the diagram on the right. Transition betweendtes is
controlled by pressing one of the five buttons on the cruise control iotarfan, off, set,
resume or cancel.

in the controller to manage the uncertainty in the system.

The cruise control system also has a human—machine inteffatallows the
driver to communicate with the system. There are many diffeneays to imple-
ment this system; one version is illustrated in Figure 3.4. 3ywem has four
buttons: on-off, set/decelerate, resume/accelerate amzet The operation of the
system is governed by a finite state machine that controls taemof the Pl con-
troller and the reference generator. Implementation otrotlars and reference
generators will be discussed more fully in Chapter 10.

The use of control in automotive systems goes well beyondithpls cruise
control system described here. Applications include eomsscontrol, traction
control, power control (especially in hybrid vehicles) adhptive cruise control.
Many automotive applications are discussed in detail irbthek by Kiencke and
Nielsen [KNOO] and in the survey papers by Powers et al. [BP9®JPN

3.2 Bicycle Dynamics

The bicycle is an interesting dynamical system with the fesatinat one of its key
properties is due to a feedback mechanism that is createtiebgdsign of the
front fork. A detailed model of a bicycle is complex because system has many
degrees of freedom and the geometry is complicated. Howavgreat deal of
insight can be obtained from simple models.

To derive the equations of motion we assume that the bicpdkean the hori-
zontalxy plane. Introduce a coordinate system that is fixed to the ldayith the
&-axis through the contact points of the wheels with the gdotine n-axis hor-
izontal and thef-axis vertical, as shown in Figure 3.5. Lef be the velocity of
the bicycle at the rear whedd,the wheel basep the tilt angle and the steering
angle. The coordinate system rotates around the @ivith the angular veloc-
ity w = Vvpd /b, and an observer fixed to the bicycle experiences forces dieto
motion of the coordinate system.

The tilting motion of the bicycle is similar to an inverted geihum, as shown
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Figure 3.5: Schematic views of a bicycle. The steering anglé,ignd the roll angle ig.
The center of mass has heidghand distance from a vertical through the contact poiR
of the rear wheel. The wheel basévjsand the trail isc.

in the rear view in Figure 3.5b. To model the tilt, consideriiggd body obtained
when the wheels, the rider and the front fork assembly are fizetie bicycle
frame. Letm be the total mass of the systednthe moment of inertia of this body
with respect to thé€ -axis andD the product of inertia with respect to th€ axes.
Furthermore, let thé and{ coordinates of the center of mass with respect to the
rear wheel contact poinBy, bea andh, respectively. We havé ~ mt? andD =
mah The torques acting on the system are due to gravity and petsafiaction.
Assuming that the steering anglds small, the equation of motion becomes
d? Dvo dd . mgh

Jdt"f — =5 gt = mahsing + TO
The termmghsing is the torque generated by gravity. The terms contaidiagd
its derivative are the torques generated by steering, Wwiéghterm(Dvp/b) dd /dt
due to inertial forces and the terfmih/b) & due to centripetal forces.

The steering angle is influenced by the torque the rider apfdi¢ise handle
bar. Because of the tilt of the steering axis and the shaphleofront fork, the
contact point of the front wheel with the ro&d is behind the axis of rotation of
the front wheel assembly, as shown in Figure 3.5c. The distarmmween the
contact point of the front whed®, and the projection of the axis of rotation of
the front fork assembl¥; is called thetrail. The steering properties of a bicycle
depend critically on the trail. A large trail increases gtglbut makes the steering
less agile.

A consequence of the design of the front fork is that the sigeangled is
influenced both by steering torqileand by the tilt of the fram&. This means
that a bicycle with a front fork is #&eedback systems illustrated by the block
diagram in Figure 3.6. The steering anglenfluences the tilt angl@, and the
tilt angle influences the steering angle, giving rise to tmeutar causality that is
characteristic of reasoning about feedback. For a froit ¥ath a positive trail,

5. (3.5)
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— | Front ° Frame ’
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Figure 3.6: Block diagram of a bicycle with a front fork. The steering torque applietthéo
handlebars i§, the roll angle isp and the steering angle & Notice that the front fork
creates a feedback from the roll angl¢o the steering anglé that under certain conditions
can stabilize the system.

the bicycle will steer into the lean, creating a centrifuffate that attempts to
diminish the lean. Under certain conditions, the feedbarkaxctually stabilize the
bicycle. A crude empirical model is obtained by assuming titva blockB can be
modeled as the static system

5 =kiT —kop. (3.6)

This model neglects the dynamics of the front fork, the tioaerinteraction and
the fact that the parameters depend on the velocity. A mangrate model, called
theWhipple modelis obtained using the rigid-body dynamics of the front far
the frame. Assuming small angles, this model becomes

(2] con(8) roorkad (&) - (). e

where the elements of thex22 matricedM, C, Kg andK; depend on the geometry
and the mass distribution of the bicycle. Note that this Hasra somewhat similar
to that of the spring—mass system introduced in Chapter 2tendalance system
in Example 2.1. Even this more complex model is inaccurateusscthe interac-
tion between the tire and the road is neglected; takingidssiccount requires two
additional state variables. Again, the uncertainty lenmoRigure 2.15b provides a
framework for understanding the validity of the model untihese assumptions.

Interesting presentations on the development of the kBcgok given in the
books by D. Wilson [Wil04] and Herlihy [Her04]. The model (3was presented
in a paper by Whipple in 1899 [Whi99]. More details on bicyatedeling are
given in the paperﬁ{KLOS], which has many references.

3.3 Operational Amplifier Circuits

An operational amplifier (op amp) is a modern implementatidBlack’s feedback
amplifier. It is a universal component that is widely used f@tiumentation, con-
trol and communication. It is also a key element in analogmating. Schematic
diagrams of the operational amplifier are shown in Figure 3.@. diplifier has
one inverting input\(_), one noninverting inputu; ) and one outputv,). There
are also connections for the supply voltages,ande,, and a zero adjustment
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Figure 3.7: An operational amplifier and two schematic diagrams. (a) The amplifier pin
connections on an integrated circuit chip. (b) A schematic with all conmext{g) Only the
signal connections.

(offset null). A simple model is obtained by assuming that itmput currents
andi, are zero and that the output is given by the static relation

Vout = Salty, ;. vinay) (k(vy —vo)), (3.8)

where sat denotes the saturation function

a ifx<a
Satap)(X) = ¢ x ifa<x<b (3.9)
b if x>h.

We assume that the galiris large, in the range of $81(, and the voltagesnn
andvpmax satisfy

€ < Vmin < Vmax < €4

and hence are in the range of the supply voltages. More aecomadels are ob-
tained by replacing the saturation function with a smootcfion as shown in
Figure 3.8. For small input signals the amplifier character{8t8) is linear:

Vout = K(V4 —v_) = —kv, (3.10)
Vout
Vmax
vV, —V_
Vmin

Figure 3.8: Input/output characteristics of an operational amplifier. The differkiniat is
given byv, —v_. The output voltage is a linear function of the input in a small range around
0, with saturation a¥yin andvmax. In the linear regime the op amp has high gain.
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Figure 3.9: Stable amplifier using an op amp. The circuit (a) uses negative feledbaiand
an operational amplifier and has a corresponding block diagramigb)€istor&; andR,
determine the gain of the ampilifier.

Since the open loop gakis very large, the range of input signals where the system
is linear is very small.

A simple amplifier is obtained by arranging feedback arourmdbifisic opera-
tional amplifier as shown in Figure 3.9a. To model the feedbaaglifier in the
linear range, we assume that the curiignt i_ + i, is zero and that the gain of
the amplifier is so large that the voltage- v_ — v, is also zero. It follows from
Ohm'’s law that the currents through resistB§sandR, are given by

i Ve
Ri R
and hence the closed loop gain of the amplifier is
Vo Ro
2 _ h =_Z, 3.11
" ket, — where kg R (3.11)

A more accurate model is obtained by continuing to negleetdinrentip but
assuming that the voltages small but not negligible. The current balance is then

Vi—V o V—\Vo

Ri R~

Assuming that the amplifier operates in the linear range aimg) @sjuation (3.10),
the gain of the closed loop system becomes

v R R
vi RiRi+R+kR

If the open loop gairk of the operational amplifier is large, the closed loop gain
ke is the same as in the simple model given by equation (3.11jic&lthat the
closed loop gain depends only on the passive componenthandariations irk
have only a marginal effect on the closed loop gain. For edarfigk = 10° and
R2/R1 =100, a variation ok by 100% gives only a variation of 0.01% in the closed
loop gain. The drastic reduction in sensitivity is a nicesthation of how feedback
can be used to make precise systems from uncertain comgoiettiis particular
case, feedback is used to trade high gain and low robustoeks\f gain and high
robustness. Equation (3.13) was the formula that inspiradiBivhen he invented
the feedback amplifier [Bla34] (see the quote at the beginairi@hapter 12).

(3.12)

kel = — (3.13)
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Figure 3.10: Circuit diagram of a PI controller obtained by feedback around aratipesl
amplifier. The capacitd is used to store charge and represents the integral of the input.

It is instructive to develop a block diagram for the feedbaahplifier in Fig-
ure 3.9a. To do this we will represent the pure amplifier wiguirv and output,
as one block. To complete the block diagram, we must deshdies depends on
v; andvs. Solving equation (3.12) for gives

Vv

Ry Ry Ri (R

R+ szl+ R1+R2V2 T Ri+Re (R1V1+V2>7
and we obtain the block diagram shown in Figure 3.9b. The dmagtaarly shows
that the system has feedback and that the gain frotavis Ry /(R1 + R2), which
can also be read from the circuit diagram in Figure 3.9a. Ifidlog is stable and
the gain of the amplifier is large, it follows that the ereds small, and we find that
v2 = —(Rz/R1)va. Notice that the resistdR; appears in two blocks in the block
diagram. This situation is typical in electrical circuitsdait is one reason why
block diagrams are not always well suited for some types g$jglal modeling.

The simple model of the amplifier given by equation (3.10) mtesiqualitative
insight, but it neglects the fact that the amplifier is a dyr@hsystem. A more

realistic model is
dVout

dt

The parametdr that has dimensions of frequency and is calledythia-bandwidth
productof the amplifier. Whether a more complicated model is used r#pen
the questions to be answered and the required size of thetaimtg lemon. The
model (3.14) is still not valid for very high or very low fregocies since drift
causes deviations at low frequencies and there are adalidgnamics that appear
at frequencies close tm The model is also not valid for large signals—an upper
limitis given by the voltage of the power supply, typicaltfythe range of 5-10 V—
neither is it valid for very low signals because of electritaise. These effects can
be added, if needed, but increase the complexity of the aisaly

The operational amplifier is very versatile, and many diffessistems can be
built by combining it with resistors and capacitors. In faaty linear system can
be implemented by combining operational amplifiers withstess and capacitors.
Exercise 3.5 shows how a second-order oscillator is impléadeand Figure 3.10
shows the circuit diagram for an analog proportional-ireegontroller. To de-
velop a simple model for the circuit we assume that the ctirgeis zero and that
the open loop gaik is so large that the input voltagds negligible. The current

— —a.Vout - bV (314)
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through the capacitor is= Cd\/dt, wherev is the voltage across the capacitor.
Since the same current goes through the resigtowe get

o v
SR T dt?
which implies that

Ve(t) = l/i(t)dt— 1/tv (1)dt
T “RCJ N
The output voltage is thus given by

: R 1
Vo(t) = —Roi — Ve = _ﬁivl(t) - @/0 v1(T)dT,

which is the input/output relation for a PI controller.

The development of operational amplifiers was pioneered by itkl[Lun05,
Phi48], and their usage is described in many textbooks (€B75]). Good infor-
mation is also available from suppliers [Jun02, Man02].

3.4 Computing Systems and Networks

The application of feedback to computing systems followsstrae principles as
the control of physical systems, but the types of measuresraerd control inputs
that can be used are somewhat different. Measurementso(sgrse typically
related to resource utilization in the computing system emvork and can in-
clude quantities such as the processor load, memory usageveork bandwidth.
Control variables (actuators) typically involve settiimgits on the resources avail-
able to a process. This might be done by controlling the amoumtemory, disk
space or time that a process can consume, turning on or afeégsmng, delaying
availability of a resource or rejecting incoming requests: tserver process. Pro-
cess modeling for networked computing systems is alsoagithg, and empirical
models based on measurements are often used when a firspl@snoodel is not
available.

Web Server Control

Web servers respond to requests from the Internet and gravidrmation in the
form of web pages. Modern web servers start multiple preasess respond to
requests, with each process assigned to a single sourtaafiiither requests are
received from that source for a predefined period of time. RgmEethat are idle
become part of a pool that can be used to respond to new regiliesprovide a
fast response to web requests, it is important that the wefersprocesses do not
overload the server’'s computational capabilities or egsha&simemory. Since other
processes may be running on the server, the amount of aegiledcessing power
and memory is uncertain, and feedback can be used to prowwke gerformance
in the presence of this uncertainty.
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Figure 3.11:Feedback control of a web server. Connection requests arriveiopat queue,
where they are sent to a server process. A finite state machine kespsftthe state of the
individual server processes and responds to requests. A colgaosithm can modify the
server’s operation by controlling parameters that affect its behastich as the maximum
number of requests that can be serviced at a single fWag@ i ent s) or the amount of
time that a connection can remain idle before it is droppéepAl i ve).

Figure 3.11 illustrates the use of feedback to modulate theradipon of an
Apache web server. The web server operates by placing ingpoonnection re-
guests on a queue and then starting a subprocess to handéstedpr each ac-
cepted connection. This subprocess responds to requestafgiven connection
as they come in, alternating betweeBusy state and &4i t state. (Keeping the
subprocess active between requests is known agdtsistencef the connection
and provides a substantial reduction in latency to requestsultiple pieces of
information from a single site.) If no requests are receifggdch sufficiently long
period of time, controlled by thEeepAl i ve parameter, then the connection is
dropped and the subprocess enterkdine state, where it can be assigned another
connection. A maximum ofaxC i ent s simultaneous requests will be served,
with the remainder remaining on the incoming request queue.

The parameters that control the server represent a tradeetffeen perfor-
mance (how quickly requests receive a response) and resaosage (the amount
of processing power and memory used by the server). InogdstMaxCl i ent s
parameter allows connection requests to be pulled off ofjtieie more quickly
but increases the amount of processing power and memorg tisagis required.
Increasing th&eepAl i ve timeout means that individual connections can remain
idle for a longer period of time, which decreases the prangdsad on the ma-
chine but increases the size of the queue (and hence the aofdime required
for a user to initiate a connection). Successful operatiom lmlisy server requires
a proper choice of these parameters, often based on triadramd

To model the dynamics of this system in more detail, we craaliscrete-time
model with states given by the average processor lggdand the percentage
memory usage&mnem The inputs to the system are taken as the maximum number
of clientsumc and the keep-alive timey,. If we assume a linear model around the
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equilibrium point, the dynamics can be written as

i) = (M Rz (i) + (B 2 () - 09

where the coefficients of th&andB matrices can be determined based on empiri-
cal measurements or detailed modeling of the web servertsegsing and memory
usage. Using system identification, Diao et al. [DGH+02, HDRT@ntified the
linearized dynamics as

_( 054 011 (-85 44 4
A= [—0.026 063]’ B= [—2.5 2.8] <107,

where the system was linearized about the equilibrium point
chu — 058, uka — 11 S Xmem — 0557 Umc — 600.

This model shows the basic characteristics that were destabove. Looking
first at theB matrix, we see that increasing tikeepAl i ve timeout (first col-
umn of theB matrix) decreases both the processor usage and the menagg us
since there is more persistence in connections and henseier spends a longer
time waiting for a connection to close rather than taking ovea active connec-
tion. TheMaxdCl i ent s connection increases both the processing and memory
requirements. Note that the largest effect on the procésadiis thekeepAl i ve
timeout. TheA matrix tells us how the processor and memory usage evolvesn a
gion of the state space near the equilibrium point. The diaggenms describe how
the individual resources return to equilibrium after a siant increase or decrease.
The off-diagonal terms show that there is coupling betweertwo resources, so
that a change in one could cause a later change in the other.

Although this model is very simple, we will see in later exdespthat it can
be used to modify the parameters controlling the serverahtime and provide
robustness with respect to uncertainties in the load on thehine. Similar types
of mechanisms have been used for other types of serversintpisrtant to re-
member the assumptions on the model and their role in deterghivhen the
model is valid. In particular, since we have chosen to useageequantities over
a given sample time, the model will not provide an accurapgegentation for
high-frequency phenomena.

Congestion Control

The Internet was created to obtain a large, highly decené@diefficient and ex-
pandable communication system. The system consists of e tangber of inter-
connected gateways. A message is split into several packéth are transmitted
over different paths in the network, and the packages aoinesj to recover the
message at the receiver. An acknowledgment (“ack”) messaggnt back to the
sender when a packet is received. The operation of the systgoverned by a
simple but powerful decentralized control structure tred Bvolved over time.
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Figure 3.12:Internet congestion control. (a) Source computers send informati@uters,
which forward the information to other routers that eventually connecitogbeiving com-
puter. When a packet is received, an acknowledgment packet isagnthrough the routers
(not shown). The routers buffer information received from thersesi and send the data
across the outgoing link. (b) The equilibrium buffer skzefor a set ofN identical comput-
ers sending packets through a single router with drop probapility

The system has two control mechanisms capestocols the Transmission
Control Protocol (TCP) for end-to-end network communicatiod ¢he Internet
Protocol (IP) for routing packets and for host-to-gateway ategay-to-gateway
communication. The current protocols evolved after sometapalar congestion
collapses occurred in the mid 1980s, when throughput ureéegly could drop by
a factor of 1000 [Jac95]. The control mechanism in TCP is basetbaserving
the number of packets in the loop from the sender to the recaivd back to the
sender. The sending rate is increased exponentially whee th@o congestion,
and it is dropped to a low level when there is congestion.

To derive an overall model for congestion control, we motlet¢ separate
elements of the system: the rate at which packets are semidbsidual sources
(computers), the dynamics of the queues in the links (reptmd the admission
control mechanism for the queues. Figure 3.12a is a blockahagf the system.

The current source control mechanism on the Internet is @gobknown as
TCP/Reno [LPDO02]. This protocol operates by sending packets ¢oeiver and
waiting to receive an acknowledgment from the receivertti@packet has arrived.
If no acknowledgment is sent within a certain timeout pertbe packet is retrans-
mitted. To avoid waiting for the acknowledgment before segdhe next packet,
Reno transmits multiple packets up to a fixgihdowaround the latest packet that
has been acknowledged. If the window length is chosen piygpaickets at the be-
ginning of the window will be acknowledged before the soure@smits packets
at the end of the window, allowing the computer to continlypageam packets at
a high rate.

To determine the size of the window to use, TCP/Reno uses adekdiech-
anism in which (roughly speaking) the window size is incesbigy 1 every time a
packet is acknowledged and the window size is cut in half wiearkets are lost.
This mechanism allows a dynamic adjustment of the window isizehich each
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computer acts in a greedy fashion as long as packets are delingred but backs
off quickly when congestion occurs.

A model for the behavior of the source can be developed byritdérsg the
dynamics of the window size. Suppose we h&l/eomputers and lety; be the
current window size (measured in number of packets) foritihneomputer. Let
g represent the end-to-end probability that a packet will tmpped someplace
between the source and the receiver. We can model the dysaiibe window
size by the differential equation

Wi

r(t—T W
=g Tne-n), =
wherer; is the end-to-end transmission time for a packet to reackdsrhtion and
the acknowledgment to be sent back ani the resulting rate at which packets
are cleared from the list of packets that have been receiaal first term in the
dynamics represents the increase in window size when a packeceived, and
the second term represents the decrease in window size wpenkat is lost.
Notice thatr; is evaluated at time— 1, representing the time required to receive
additional acknowledgments.

The link dynamics are controlled by the dynamics of the rogtezue and the
admission control mechanism for the queue. Assume that welhlnks in the
network and usé to index the individual links. We model the queue in terms of
the current number of packets in the router’s bubieand assume that the router
can contain a maximum diff max packets and transmits packets at a tequal
to the capacity of the link. The buffer dynamics can then bétamrias

%?za—q, s= 3 r(t—17), (3.17)
{i: TeLi}

(3.16)

wherel; is the set of links that are being used by soulrarﬁI is the time it takes a
packet from sourceto reach linkl ands is the total rate at which packets arrive
atlink .

The admission control mechanism determines whether a giaekep is ac-
cepted by a router. Since our model is based on the averagétopsim the net-
work and not the individual packets, one simple model is suage that the proba-
bility that a packet is dropped depends on how full the buffep, = m (b, bmax)-
For simplicity, we will assume for now thag = piby (see Exercise 3.6 for a more
detailed model). The probability that a packet is dropped @iven link can be
used to determine the end-to-end probability that a paskest in transmission:

G=1-[]-p)~ 5 pt—1), (3.18)
leL; leL;
whererfiJ is the backward delay from linkto sourcel and the approximation is
valid as long as the individual drop probabilities are smak use the backward

delay since this represents the time required for the aclatmment packet to be
received by the source.
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Together, equations (3.16), (3.17) and (3.18) represeraehof congestion
control dynamics. We can obtain substantial insight by icterg1g a special case
in which we haveN identical sources and 1 link. In addition, we assume for the
moment that the forward and backward time delays can be éghan which case
the dynamics can be reduced to the form

dw _1_pe@+wy) db_ew . _b (3.19)
dt 1 2 dt 41 c
wherew; € R, i = 1,...,N, are the window sizes for the sources of déta R
is the current buffer size of the routgy, controls the rate at which packets are
dropped and is the capacity of the link connecting the router to the cotagsu
The variabler represents the amount of time required for a packet to beepsec
by a router, based on the size of the buffer and the capacdihedink. Substituting
T into the equations, we write the state space dynamics as

dw ¢ w2 db Y ew
dt_b—pc<1+2 ; a—i;T—c. (3.20)
More sophisticated models can be found in [HMTGO0O0, LPDO02]. _

The nominal operating point for the system can be found bingeti = b= 0:

c w2 CJow
O_b—pc<1+2), O_i;T_C’

Exploiting the fact that all of the source dynamics are idsifiit follows that all
of thew; should be the same, and it can be shown that there is a unigilibbggm
satisfying the equations

be CTe

1 3

The solution for the second equation is a bit messy but catydasidetermined
numerically. A plot of its solution as a function of @p?N?) is shown in Fig-
ure 3.12b. We also note that at equilibrium we have the fafigvadditional equal-
ities:

be Nwe We

e c C7 qe pe p97 e Te

(3.22)

Figure 3.13 shows a simulation of 60 sources communicatingsa@ single
link, with 20 sources dropping out at= 500 ms and the remaining sources in-
creasing their rates (window sizes) to compensate. Notethiabuffer size and
window sizes automatically adjust to match the capacitheflink.

A comprehensive treatment of computer networks is giveméntéxtbook by
Tannenbaum [Tan96]. A good presentation of the ideas behmaontrol prin-
ciples for the Internet is given by one of its designers, Varobson, in [Jac95].
F. Kelly [Kel85] presents an early effort on the analysistod system. The book
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Figure 3.13: Internet congestion control faX identical sources across a single link. As
shown on the left, multiple sources attempt to communicate through a rautessa single
link. An “ack” packet sent by the receiver acknowledges that thesaggs was received,;
otherwise the message packet is resent and the sending rate is slowedtdbe source.
The simulation on the right is for 60 sources starting random rates, witbi#@es dropping
out att = 500 ms. The buffer size is shown at the top, and the individual soates for 6
of the sources are shown at the bottom.

by Hellerstein et al. [HDPTO04] gives many examples of the uséeflback in
computer systems.

3.5 Atomic Force Microscopy

The 1986 Nobel Prize in Physics was shared by Gerd Binnig andieleiRohrer
for their design of thescanning tunneling microscop&he idea of the instrument
is to bring an atomically sharp tip so close to a conductingase that tunneling
occurs. An image is obtained by traversing the tip acrossahgple and measuring
the tunneling current as a function of tip position. This imien has stimulated
the development of a family of instruments that permit vigadion of surface
structure at the nanometer scale, including dh@mic force microscopéAFM),
where a sample is probed by a tip on a cantilever. An AFM canaipen two
modes. Intapping modehe cantilever is vibrated, and the amplitude of vibration
is controlled by feedback. Inontact modehe cantilever is in contact with the
sample, and its bending is controlled by feedback. In bosesaontrol is actuated
by a piezo element that controls the vertical position ofdhetilever base (or the
sample). The control system has a direct influence on pictuatitgiand scanning
rate.

A schematic picture of an atomic force microscope is shovkigare 3.14a. A
microcantilever with a tip having a radius of the order of X0 is placed close to
the sample. The tip can be moved vertically and horizontalggia piezoelectric
scanner. It is clamped to the sample surface by attractivelga\Waals forces and
repulsive Pauli forces. The cantilever tilt depends on tpedoaphy of the surface
and the position of the cantilever base, which is contraigdhe piezo element.
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Figure 3.14: Atomic force microscope. (a) A schematic diagram of an atomic forceamic
scope, consisting of a piezo drive that scans the sample under the AFMI&per reflects
off of the cantilever and is used to measure the detection of the tip througgdadck con-
troller. (b) An AFM image of strands of DNA. (Image courtesy Veecstiaments.)

The tilt is measured by sensing the deflection of the laser bsarg a photodiode.
The signal from the photodiode is amplified and sent to a cdatrthat drives
the amplifier for the vertical position of the cantilever. Bgntrolling the piezo
element so that the deflection of the cantilever is consthatsignal driving the
vertical deflection of the piezo element is a measure of thaiattorces between
the cantilever tip and the atoms of the sample. An image oftiniace is obtained
by scanning the cantilever along the sample. The resolutiakemit possible to
see the structure of the sample on the atomic scale, agalladtin Figure 3.14b,
which shows an AFM image of DNA.

The haorizontal motion of an AFM is typically modeled as a sprimgss sys-
tem with low damping. The vertical motion is more complicat&d model the
system, we start with the block diagram shown in Figure 3.1§n&s¢ that are
easily accessible are the input voltag® the power amplifier that drives the piezo
element, the voltage applied to the piezo element and the output voltagéthe
signal amplifier for the photodiode. The controller is a PI colfgr implemented
by a computer, which is connected to the system by analaligital (A/D) and
digital-to-analog (D/A) converters. The deflection of thetdawer ¢ is also shown
in the figure. The desired reference value for the deflection is@ut to the com-
puter.

There are several different configurations that have diftedgnamics. Here
we will discuss a high-performance system frorv&[:S\LO?] where the cantilever
base is positioned vertically using a piezo stack. We bdginnhodeling with a
simple experiment on the system. Figure 3.16a shows a stepss of a scanner
from the input voltage: to the power amplifier to the output voltagef the signal
amplifier for the photodiode. This experiment captures theadyns of the chain
of blocks fromutoy in the block diagram in Figure 3.15. Figure 3.16a shows that
the system responds quickly but that there is a poorly danygeilatory mode
with a period of about 35 ps. A primary task of the modelingisihderstand the
origin of the oscillatory behavior. To do so we will exploteetsystem in more
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Figure 3.15: Block diagram of the system for vertical positioning of the cantilever for an
atomic force microscope in contact mode. The control system attempisefo tke can-
tilever deflection equal to its reference value. Cantilever deflection isurexsamplified
and converted to a digital signal, then compared with its reference valaerrécting sig-
nal is generated by the computer, converted to analog form, amplifetedeant to the piezo
element.

detail.

The natural frequency of the clamped cantilever is typicalyeral hundred
kilohertz, which is much higher than the observed oscdlatdf about 30 kHz.
As a first approximation we will model it as a static system. 8itiee deflections
are small, we can assume that the bendirgj the cantilever is proportional to the
difference in height between the cantilever tip at the pianiethe piezo scanner. A
more accurate model can be obtained by modeling the caettiéeva spring—mass
system of the type discussed in Chapter 2.

Figure 3.16a also shows that the response of the power amdifiast. The
photodiode and the signal amplifier also have fast respomsksam thus be mod-
eled as static systems. The remaining block is a piezo systi#mswspension.
A schematic mechanical representation of the vertical onotif the scanner is
shown in Figure 3.16b. We will model the system as two masgerated by an
ideal piezo element. The mass is half of the piezo system, and the masgsis
the other half of the piezo system plus the mass of the support

A simple model is obtained by assuming that the piezo crgemérates a force
F between the masses and that there is a dangimghe spring. Let the positions
of the center of the masses beandz,. A momentum balance gives the following
model for the system:

2 2
ml% = F, mz% = —Cz%—kzZz—F.
Let the elongation of the piezo elemdnt z; — z be the control variable and
the heightz; of the cantilever base be the output. Eliminating the vaei&bin
equations above and substituting- | for z gives the model

d’zy,  dz d? dl
(m1+mz)w+cZa+k2z1_ mz@Jrczaijzl. (3.23)

Summarizing, we find that a simple model of the system is obdiairyemod-
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Figure 3.16: Modeling of an atomic force microscope. (a) A measured step respdhg
top curve shows the voltageapplied to the drive amplifier (50 mV/div), the middle curve
is the outpud/, of the power amplifier (500 mV/div) and the bottom curve is the ouyput
of the signal amplifier (500 mV/div). The time scale is 25/div. Data have been supplied
by Georg Schitter. (b) A simple mechanical model for the vertical postiamd the piezo
crystal.

eling the piezo by (3.23) and all the other blocks by statidet®. Introducing
the linear equations= kzu andy = ksz;, we now have a complete model relat-
ing the outputy to the control signall. A more accurate model can be obtained
by introducing the dynamics of the cantilever and the powepldier. As in the
previous examples, the concept of the uncertainty lemongargi2.15b provides
a framework for describing the uncertainty: the model wéldccurate up to the
frequencies of the fastest modeled modes and over a rangetaimin which
linearized stiffness models can be used.

The experimental results in Figure 3.16a can be explainedtazly as fol-
lows. When a voltage is applied to the piezo, it expandkpthe massn moves
up and the mass, moves down instantaneously. The system settles after aypoorl
damped oscillation.

It is highly desirable to design a control system for the icaftmotion so
that it responds quickly with little oscillation. The instnent designer has sev-
eral choices: to accept the oscillation and have a slow resptime, to design a
control system that can damp the oscillations or to redebigmechanics to give
resonances of higher frequency. The last two alternatiwesaiaster response and
faster imaging.

Since the dynamic behavior of the system changes with theepiep of the
sample, itis necessary to tune the feedback loop. In sinygtems this is currently
done manually by adjusting parameters of a Pl controller. §lage interesting
possibilities for making AFM systems easier to use by intaidg automatic tun-
ing and adaptation.

The book by Sarid [Sar91] gives a broad coverage of atomic forcestopes.
The interaction of atoms close to surfaces is fundamentallio state physics, see
Kittel [Kit95]. The model discussed in this section is basadsehitter [Sch01].
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Figure 3.17: Abstraction used to compartmentalize the body for the purpose of diesgrib
drug distribution (based on Teorell [Teo37]). The body is abstracyea tumber of com-
partments with perfect mixing, and the complex transport processeapgaroximated by
assuming that the flow is proportional to the concentration differenceg icampartments.
The constant&; parameterize the rates of flow between different compartments.

3.6 Drug Administration

The phrase “Take two pills three times a day” is a recommeodatith which we
are all familiar. Behind this recommendation is a solutibam open loop control
problem. The key issue is to make sure that the concentrafiannoedicine in
a part of the body is sufficiently high to be effective but nothégh that it will
cause undesirable side effects. The control action is qgethteke two pills and
sampledevery 8 hoursThe prescriptions are based on simple models captured in
empirical tables, and the dose is based on the age and wéitjiet patient.

Drug administration is a control problem. To solve it we mustlerstand how
a drug spreads in the body after it is administered. This taaitedpharmacoki-
netics is now a discipline of its own, and the models used are caltedpart-
ment modelsThey go back to the 1920s when Widmark modeled the propamatio
of alcohol in the body [WT24]. Compartment models are now intgd for the
screening of all drugs used by humans. The schematic diagrdigure 3.17 il-
lustrates the idea of a compartment model. The body is viewwea rumber of
compartments like blood plasma, kidney, liver and tisshie$ &re separated by
membranes. It is assumed that there is perfect mixing sahbatrug concentra-
tion is constant in each compartment. The complex transpocggses are approx-
imated by assuming that the flow rates between the compagrassproportional
to the concentration differences in the compartments.

To describe the effect of a drug it is necessary to know batlianhcentration
and how it influences the body. The relation between concémraand its effect
eis typically nonlinear. A simple model is

C
e= . 3.24
Co—i—CemaX ( )

The effect is linear for low concentrations, and it saturatgsigh concentrations.
The relation can also be dynamic, and it is then cglledrmacodynamics
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Compartment Models

The simplest dynamic model for drug administration is olgdiby assuming that
the drug is evenly distributed in a single compartment aftteas been adminis-
tered and that the drug is removed at a rate proportionaktaedhcentration. The
compartments behave like stirred tanks with perfect mixireg c be the concen-
tration, V the volume andj the outflow rate. Converting the description of the
system into differential equations gives the model

3? =-—-qc, c¢c>0. (3.25)

This equation has the solutiaft) = coe~9/V = cye !, which shows that the con-
centration decays exponentially with the time consfartV /q after an injection.
The input is introduced implicitly as an initial conditiontime model (3.25). More
generally, the way the input enters the model depends onledrtig is adminis-
tered. For example, the input can be represented as a massifitotkié compart-
ment where the drug is injected. A pill that is dissolved clsio de interpreted as
an input in terms of a mass flow rate.

The model (3.25) is called aane-compartment modet asingle-pool model
The parameteq/V is called the elimination rate constant. This simple model
often used to model the concentration in the blood plasman@&gsuring the con-
centration at a few times, the initial concentration canlit@ioed by extrapolation.
If the total amount of injected substance is known, the vaihtan then be de-
termined a8/ = m/cp; this volume is called thapparent volume of distribution
This volume is larger than the real volume if the concentratiothe plasma is
lower than in other parts of the body. The model (3.25) is vénpke, and there
are large individual variations in the parameters. The pataraV andq are often
normalized by dividing by the weight of the person. Typicatgameters for aspirin
areV = 0.2 L/kg andg = 0.01(L/h)/kg. These numbers can be compared with a
blood volume of 0.07 L/kg, a plasma volume of 0.05 L/kg, an icetkular fluid
volume of 0.4 L/kg and an outflow of 0.0015 L/min/kg.

The simple one-compartment model captures the gross beloddoug distri-
bution, but it is based on many simplifications. Improved ni®dan be obtained
by considering the body as composed of several compartirexamples of such
systems are shown in Figure 3.18, where the compartmentsaesented as cir-
cles and the flows by arrows.

Modeling will be illustrated using the two-compartment rebish Figure 3.18a.
We assume that there is perfect mixing in each compartmehthat the transport
between the compartments is driven by concentration difflees. We further as-
sume that a drug with concentratiogis injected in compartment 1 at a volume
flow rate ofu and that the concentration in compartment 2 is the outputclabd
c2 be the concentrations of the drug in the compartments ang kndV, be the

S
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Figure 3.18: Schematic diagrams of compartment models. (a) A simple two-compairtme
model. Each compartment is labeled by its volume, and arrows indicatetheffthemical
into, out of and between compartments. (b) A system with six compartmeatsto study
the metabolism of thyroid hormone [God83]. The notatigndenotes the transport from
compartmeng to compartmeni.

volumes of the compartments. The mass balances for the comerds are

dc
Vl(Tt1 = (|(C2 — C1) — CoC1 + CoU, c1 >0,
dc
Vzd—t2 —q(ci—c), ©2>0, (3.26)
y=~=Co.

Introducing the variableky = qo/Vi, k1 = q/V1, ko = q/V2 andby = ¢o/V1 and
using matrix notation, the model can be written as

%3: [_kokz_kl —kliz] c+ [%O] u, y= (O 1] C. (3.27)

Comparing this model with its graphical representation iguFeé 3.18a, we find
that the mathematical representation (3.27) can be wiityanspection.

It should also be emphasized that simple compartment msdelsas the one
in equation (3.27) have a limited range of validity. Low-foegcy limits exist be-
cause the human body changes with time, and since the comgrartnodel uses
average concentrations, they will not accurately repttasgid changes. There are
also nonlinear effects that influence transportation betvilee compartments.

Compartment models are widely used in medicine, engingenitd environ-
mental science. An interesting property of these systeftiats/ariables like con-
centration and mass are always positive. An essential dtffiie compartment
modeling is deciding how to divide a complex system into cartpents. Com-
partment models can also be nonlinear, as illustrated ine¢esection.
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Figure 3.19: Insulin—glucose dynamics. (a) Sketch of body parts involved in the alooitr
glucose. (b) Schematic diagram of the system. (c) Responses of iasdliglucose when
glucose in injected intravenously. From [PB86].

Insulin—glucose Dynamics

It is essential that the blood glucose concentration in thaykis kept within a
narrow range (0.7-1.1 g/L). Glucose concentration is infladrity many factors
like food intake, digestion and exercise. A schematic pe&uf the relevant parts
of the body is shown in Figures 3.19a and b.

There is a sophisticated mechanism that regulates glucosecwation. Glu-
cose concentration is maintained by the pancreas, whiatetescthe hormones
insulin and glucagon. Glucagon is released into the bloedst when the glucose
level is low. It acts on cells in the liver that release gleomsulin is secreted
when the glucose level is high, and the glucose level is ledidry causing the
liver and other cells to take up more glucose. In diseaseguikenile diabetes the
pancreas is unable to produce insulin and the patient mjesitimsulin into the
body to maintain a proper glucose level.

The mechanisms that regulate glucose and insulin are caatgdicdynamics
with time scales that range from seconds to hours have besamaa. Models of
different complexity have been developed. The models aredllp tested with
data from experiments where glucose is injected intravsiyoand insulin and
glucose concentrations are measured at regular time atserv

Arelatively simple model called thminimal modeWas developed by Bergman
and coworkers [Ber89]. This models uses two compartmenésrapresenting the
concentration of glucose in the bloodstream and the otlpeesenting the concen-
tration of insulin in the interstitial fluid. Insulin in the ®dstream is considered
an input. The reaction of glucose to insulin can be modeledhbtjuations

dX]_ .

d .
ar —(P1+X2)X1+ P1Ge, d—)iz = —p2Xo+ p3(U—ie), (3.28)
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wherege andie represent the equilibrium values of glucose and insulins the
concentration of glucose and is proportional to the concentration of interstitial
insulin. Notice the presence of the tepgx; in the first equation. Also notice
that the model does not capture the complete feedback locgube it does not
describe how the pancreas reacts to the glucose. Figure 8ht®¢s a fit of the
model to a test on a normal person where glucose was injecteyénously at
timet = 0. The glucose concentration rises rapidly, and the pancespsnds with
a rapid spikelike injection of insulin. The glucose and imsidvels then gradually
approach the equilibrium values.

Models of the type in equation (3.28) and more complicatediet®having
many compartments have been developed and fitted to expeaindema. A diffi-
culty in modeling is that there are significant variations iod®l parameters over
time and for different patients. For example, the paramptan equation (3.28)
has been reported to vary with an order of magnitude for heatidividuals. The
models have been used for diagnosis and to develop schem#weftreatment
of persons with diseases. Attempts to develop a fully autiwnaatificial pancreas
have been hampered by the lack of reliable sensors.

The papers by Widmark and Tandberg [WT24] and Teorell [TeoB¥tkssics
in pharmacokinetics, which is now an established disogpliith many textbooks
[Dos68, Jac72, GP82]. Because of its medical importancenmwokinetics is
now an essential component of drug development. The bookdysRRig63] is a
good source for the modeling of physiological systems, ambee mathematical
treatment is given in [KS01]. Compartment models are dissigs[God83]. The
problem of determining rate coefficients from experimentthds discussed in
[BA?O] and [God83]. There are many publications on the insglineose model.
The minimal model is discussed in [CT84, Ber89] and more readatences are
[MLKO6, FCF+06].

3.7 Population Dynamics

Population growth is a complex dynamic process that involliesnteraction of
one or more species with their environment and the largesystem. The dynam-
ics of population groups are interesting and important imyndifferent areas of
social and environmental policy. There are examples wherespecies have been
introduced into new habitats, sometimes with disastrogalt® There have also
been attempts to control population growth both througlemtiges and through
legislation. In this section we describe some of the modelsdan be used to un-
derstand how populations evolve with time and as a functidiner environments.

Logistic Growth Model

Let x be the population of a species at tilmé\ simple model is to assume that the
birth rates and mortality rates are proportional to thel totgoulation. This gives
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the linear model

dx

Fri bx—dx= (b—d)x=rx, x>0, (3.29)
where birth rateb and mortality rated are parameters. The model gives an ex-
ponential increase i > d or an exponential decreasehif< d. A more realistic
model is to assume that the birth rate decreases when théagiopus large. The

following modification of the model (3.29) has this property:
—=mx(1-3), x>0, (3.30)

wherek is the carrying capacityof the environment. The model (3.30) is called
thelogistic growth model

Predator—Prey Models

A more sophisticated model of population dynamics incluttheseffects of com-
peting populations, where one species may feed on anothssitlmtion, referred
to as thepredator—prey problemwas introduced in Example 2.3, where we devel-
oped a discrete-time model that captured some of the feaddifgistorical records
of lynx and hare populations.

In this section, we replace the difference equation mods tisere with a more
sophisticated differential equation model. lkéft) represent the number of hares
(prey) and leL (t) represent the number of lynxes (predator). The dynamicseof th
system are modeled as

d—H:rH (1—H) anL H >0,

dt k) c+H’ =
(3.31)
dL aHL
— =b—— —dL L>0.
dt bc+H dt, 20

In the first equationy represents the growth rate of the haresepresents the
maximum population of the hares (in the absence of lynx@espresents the in-
teraction term that describes how the hares are diminishadunction of the lynx
population anat controls the prey consumption rate for low hare populatioithe
second equatiot represents the growth coefficient of the lynxes dmdpresents
the mortality rate of the lynxes. Note that the hare dynaririchide a term that
resembles the logistic growth model (3.30).

Of particular interest are the values at which the poputatadues remain con-
stant, callecequilibrium points The equilibrium points for this system can be de-
termined by setting the right-hand side of the above equatio zero. LettindHe
andLe represent the equilibrium state, from the second equat®have

. cd
Le=0 or Hg = Bb_d (3.32)

Substituting this into the first equation, we have thatlige= 0 eitherHs = 0 or
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Figure 3.20: Simulation of the predator—prey system. The figure on the left showswa sim
lation of the two populations as a function of time. The figure on the right stibe pop-
ulations plotted against each other, starting from different values of apelation. The
oscillation seen in both figures is an example tifrdt cycle The parameter values used for
the simulations ara=3.2,b=0.6,c=50,d = 0.56,k = 125 andr = 1.6.

He = k. ForLe # 0, we obtain

- M(l— E) _ ber(abk—cd—dk)
N aHe N (ab—d)2k

L: (3.33)

k

Thus, we have three possible equilibrium poixgs= (Le, He):

() ) ()

whereHg andL; are given in equations (3.32) and (3.33). Note that the #xquil
rium populations may be negative for some parameter vatwesesponding to a
nonachievable equilibrium point.

Figure 3.20 shows a simulation of the dynamics starting frasatanf popula-
tion values near the nonzero equilibrium values. We sedahalis choice of pa-
rameters, the simulation predicts an oscillatory popatatiount for each species,
reminiscent of the data shown in Figure 2.6.

Volume | of the two-volume set by J. D. Murray [Mur04] give abd coverage
of population dynamics.

Exercises

3.1(Cruise control) Consider the cruise control example diesdrin Section 3.1.
Build a simulation that re-creates the response to a hillvehio Figure 3.3b and
show the effects of increasing and decreasing the mass céhtly 25%. Redesign
the controller (using trial and error is fine) so that it regita within 1% of the

desired speed within 3 s of encountering the beginning ohilhe
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3.2 (Bicycle dynamics) Show that the dynamics of a bicycle fraimergby equa-
tion (3.5) can be approximated in state space form as

E X1 0 1 X1 i DVo/(bJ) u
dt {x2)] ~ (mghvd 0] (x mgh/(bJ) | =
y= [1 O] X,
where the inputi is the steering anglé and the outpuy is the tilt angle¢. What

do the statex; andx, represent?

3.3 (Bicycle steering) Combine the bicycle model given by emumef3.5) and the
model for steering kinematics in Example 2.8 to obtain a mtusldescribes the
path of the center of mass of the bicycle.

3.4 (Operational amplifier circuit) Consider the op amp circhibwn below.

2
O_M/V__Wv A‘/‘/‘v
R R, Ry,

Ry
V] C= J‘A/VTO
Vo
(&) —|— V3
(e} O

Show that the dynamics can be written in state space form as

1 1 0 1

dx B B R]_Cl B RaC]_ R1C1 _

i R 1 1 X+ . u, y_(O 1]x,
Ra RC; RoCo

whereu = vi andy = vs. (Hint: Usev, andvs as your state variables.)

3.5(Operational amplifier oscillator) The op amp circuit showiolaeis an imple-
mentation of an oscillator.

(&) R4 C
H w !

Ry = R3 > Ry >
AV AW
+ V2 + V3 + Vi

Show that the dynamics can be written in state space form as

A
dix o R1RzCy1
dt 1 ’
——— 0
R.Co

where the state variables represent the voltages acrosaplaeitorss; = v; and
X2 = V.
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3.6 (Congestion control using RED [LPW+02]) A number of improvenseran
be made to the model for Internet congestion control preseim Section 3.4.
To ensure that the router’s buffer size remains positivecaremodify the buffer
dynamics to satisfy

dt | salpe(s—c) b =0

In addition, we can model the drop probability of a packellasn how close we
are to the buffer limits, a mechanism known as random eatigotien (RED):

dh_{a—q b >0

0 a (t) < blower
_m@)={PiO=A bjower bio"e" < ay(t) < b**
= ) i) — (120 PP < g (t) < 2677
1 a(t) > 2pPPe,
da
gt = e (a —by),

whereay, bPP®, blower and p;'PP®" are parameters for the RED protocol.

Using the model above, write a simulation for the system andl dirset of
parameter values for which there is a stable equilibriunmipand a set for which
the system exhibits oscillatory solutions. The followindgssef parameters should
be explored:

N = 20,30,...,60, blower = 40 pkts p = 0.1,
c=8,9,...,15 pktgms bi'PPe" =540 pkts a =104,
T =05560,...,100 ms

3.7 (Atomic force microscope with piezo tube) A schematic déagrof an AFM
where the vertical scanner is a piezo tube with preloadisdsvn below.

fr_m

v
ny

ky |- 2

Show that the dynamics can be written as

221 d21 d2| dl
W—i_ (Cl-i-Cz)E-i- (k1+k2)zl = mzﬁ-i-Cza +Kkol.

Are there parameter values that make the dynamics pantigsianple?

(M +np)
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3.8 (Drug administration) The metabolism of alcohol in the body be modeled
by the nonlinear compartment model

dg, dg C
Vba =q(C —Cp) + v, \Y at g(co—c) — qmaxCqu =+ gi,

whereV, = 48 L andV, = 0.6 L are the apparent volumes of distribution of body
water and liver water, andc are the concentrations of alcohol in the compart-
ments,dyy anddgi are the injection rates for intravenous and gastrointaistin
take,q = 1.5 L/min is the total hepatic blood flovgnax = 2.75 mmol/min and
co = 0.1 mmol/L. Simulate the system and compute the concentritiihre blood
for oral and intravenous doses of 12 g and 40 g of alcohol.

3.9 (Population dynamics) Consider the model for logistic gtogiven by equa-
tion (3.30). Show that the maximum growth rate occurs whersite of the pop-
ulation is half of the steady-state value.

3.10 (Fisheries management) The dynamics of a commercial fisherpeate-
scribed by the following simple model:

dx

dt
wherex s the total biomass,(x) = rx(1—x/k) is the growth rate ankl(x, u) = axu
is the harvesting rate. The outpuis the rate of revenue, and the parametglils
andc are constants representing the price of fish and the cost afdisBhow that
there is an equilibrium where the steady-state biomass4sc/(ab). Compare
with the situation when the biomass is regulated to a cohstloe and find the
maximum sustainable return in that case.

f(x) —h(x,u), y = bh(x,u) —cu



Chapter Four

Dynamic Behavior

It Don't Mean a Thing If It Ain't Got That Swing.
Duke Ellington (1899-1974)

In this chapter we present a broad discussion of the behalgymamical sys-
tems focused on systems modeled by nonlinear differerdigtons. This allows
us to consider equilibrium points, stability, limit cyclaad other key concepts in
understanding dynamic behavior. We also introduce sombatdstfor analyzing
the global behavior of solutions.

4.1 Solving Differential Equations

In the last two chapters we saw that one of the methods of rimgddi/namical
systems is through the use of ordinary differential equat©@DES). A state space,
input/output system has the form

31( = f(x,u), y=h(x,u), (4.1)
wherex= (x1,...,X,) € R"is the statey € RP is the input ang € RY is the output.
The smooth mapé : R" x RP — R"andh: R" x RP — RY represent the dynamics
and measurements for the system. In general, they can bmeanfunctions of
their arguments. We will sometimes focus on single-inpigle-output (SISO)
systems, for whiclp = q=1.

We begin by investigating systems in which the input has Ise¢to a function
of the statey = a(x). This is one of the simplest types of feedback, in which the
system regulates its own behavior. The differential equatin this case become

dx

5¢ = fxa(x) =FX). (4.2)

To understand the dynamic behavior of this system, we neeshatyze the
features of the solutions of equation (4.2). While in somepdé situations we can
write down the solutions in analytical form, often we mudy ren computational
approaches. We begin by describing the class of solutiarthifoproblem.

We say thatx(t) is a solution of the differential equation (4.2) on the time
intervaltp € Rtot; e R if

dx(t)

= F(x(t)) forallto <t <ts.
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A given differential equation may have many solutions. W# wiost often be
interested in thenitial value problem wherex(t) is prescribed at a given time
to € R and we wish to find a solution valid for dlituretimet > to.
We say thak(t) is a solution of the differential equation (4.2) with initialue
Xo € R"attg e R if
dx(t)

X(to) =% and T:F(x(t)) foralltg <t <ts.

For most differential equations we will encounter, thera isiquesolution that is
defined fortg < t < t¢. The solution may be defined for all tinte> tg, in which
case we takeés = . Because we will primarily be interested in solutions of the
initial value problem for ODEs, we will usually refer to thisrgly as the solution
of an ODE.

We will typically assume thap is equal to 0. In the case whéris independent
of time (as in equation (4.2)), we can do so without loss ofegelity by choosing
a new independent (time) variable=t —ty (Exercise 4.1).

Example 4.1 Damped oscillator
Consider a damped linear oscillator with dynamics of thenfor

G+ 2 apd + whq =0,
whereq is the displacement of the oscillator from its rest positibimese dynamics
are equivalent to those of a spring—mass system, as showneircigx 2.6. We
assume thaf < 1, corresponding to a lightly damped system (the reasorhfer t
particular choice will become clear later). We can rewtilis in state space form
by settingx; = g andx; = g/, giving
Xm o dXZ

== === -2 .
qr — W% at WoX1 — 2{ (X2

In vector form, the right-hand side can be written as
WpX2
F(X) = .
(x) [—woxl—ZZcuoxz]

The solution to the initial value problem can be written in anter of different
ways and will be explored in more detail in Chapter 5. Here iwgok/ assert that
the solution can be written as

1 .
xq(t) = e oot <x10coswdt + @(%ZX:[()—F X20) smwdt> ,

Xo(t) = e ¢! <Xzocoswdt - a])-d(ng10+ wod X20) Sinwdt> :

wherexo = (X10,X20) is the initial condition andwy = wp+/1— 2. This solution

can be verified by substituting it into the differential eqoat We see that the so-
lution is explicitly dependent on the initial condition,dit can be shown that this
solution is unique. A plot of the initial condition resporiseshown in Figure 4.1.
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Figure 4.1: Response of the damped oscillator to the initial condikgr- (1,0). The solu-
tion is unique for the given initial conditions and consists of an oscillatorytieoldior each
state, with an exponentially decaying magnitude.

We note that this form of the solution holds only fox0{ < 1, corresponding to
an “underdamped” oscillator. O

Without imposing some mathematical conditions on the fiondt, the differ- @
ential equation (4.2) may not have a solution fortalind there is no guarantee
that the solution is unique. We illustrate these possieditvith two examples.

Example 4.2 Finite escape time
Letx € R and consider the differential equation

dx 5
at =X 4.3)

with the initial conditionx(0) = 1. By differentiation we can verify that the func-
tion 1
)= —
Xt) =1

satisfies the differential equation and that it also satisfiedritial condition. A
graph of the solution is given in Figure 4.2a; notice that thietson goes to infinity
ast goes to 1. We say that this system liiméte escape timeThus the solution
exists only in the time interval €t < 1. O

Example 4.3 Nonunique solution
Letx € R and consider the differential equation

dx
— =2 4.4
at VX (4.4)
with initial conditionx(0) = 0. We can show that the function
0 fo<t<a
X(t) = 2
(t—a)- ift>a

satisfies the differential equation for all values of the paatera > 0. To see this,
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Figure 4.2: Existence and uniqueness of solutions. Equation (4.3) has a solutiorioonly
time t < 1, at which point the solution goes to, as shown in (a). Equation (4.4) is an
example of a system with many solutions, as shown in (b). For each vhlajene get a
different solution starting from the same initial condition.

we differentiatex(t) to obtain

dx_]0 fo<t<a
dt 2(t—a) ift>a,

and hencex= 2,/x for all t > 0 with x(0) = 0. A graph of some of the possible
solutions is given in Figure 4.2b. Notice that in this casedlae many solutions
to the differential equation. O

These simple examples show that there may be difficulties eviénsimple
differential equations. Existence and uniqueness can begigeed by requiring
that the functior have the property that for some fixed R,

IFO)—FW) <clx—y[ forallxy,

which is calledLipschitz continuity A sufficient condition for a function to be
Lipschitz is that the JacobiatF /dx is uniformly bounded for atk. The difficulty
in Example 4.2 is that the derivativ@F /dx becomes large for large and the
difficulty in Example 4.3 is that the derivativ~ /dx is infinite at the origin.

4.2 Qualitative Analysis

The qualitative behavior of nonlinear systems is importantriderstanding some
of the key concepts of stability in nonlinear dynamics. W# f@icus on an im-
portant class of systems known as planar dynamical sysfEmse systems have
two state variables € R?, allowing their solutions to be plotted in thgy,x,)
plane. The basic concepts that we describe hold more ggnaralican be used to
understand dynamical behavior in higher dimensions.

Phase Portraits

A convenient way to understand the behavior of dynamicalesys with state
x € R? is to plot the phase portrait of the system, briefly introduice@hapter 2.
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Figure 4.3: Phase portraits. (a) This plot shows the vector field for a planar dyasyis-
tem. Each arrow shows the velocity at that point in the state space. (bpldhiacludes the
solutions (sometimes called streamlines) from different initial conditiorits the vector
field superimposed.

We start by introducing the concept ofvactor field For a system of ordinary

differential equations
S —Fi)
dt '

the right-hand side of the differential equation defines arex € R" a velocity
F(x) € R". This velocity tells us how changes and can be represented as a vector
F(x) e R".

For planar dynamical systems, each state corresponds totarpihe plane and
F(x) is a vector representing the velocity of that state. We cahtpese vectors
on a grid of points in the plane and obtain a visual image ofdyramics of the
system, as shown in Figure 4.3a. The points where the veloditie zero are of
particular interest since they define stationary points eflibw: if we start at such
a state, we stay at that state.

A phase portraitis constructed by plotting the flow of the vector field corre-
sponding to the planar dynamical system. That is, for a seiitidli conditions, we
plot the solution of the differential equation in the plak& This corresponds to
following the arrows at each point in the phase plane andidgthe resulting tra-
jectory. By plotting the solutions for several differenitial conditions, we obtain
a phase portrait, as show in Figure 4.3b. Phase portraitssresametimes called
phase plane diagrams

Phase portraits give insight into the dynamics of the systgshbwing the so-
lutions plotted in the (two-dimensional) state space oftfstem. For example, we
can see whether all trajectories tend to a single point asiticreases or whether
there are more complicated behaviors. In the example in €igid, corresponding
to a damped oscillator, the solutions approach the origimlianitial conditions.
This is consistent with our simulation in Figure 4.1, but ibals us to infer the
behavior for all initial conditions rather than a singletiai condition. However,
the phase portrait does not readily tell us the rate of chahfjee states (although
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Figure 4.4: Equilibrium points for an inverted pendulum. An inverted pendulum is a iode
for a class of balance systems in which we wish to keep a system uprightasa rocket (a).
Using a simplified model of an inverted pendulum (b), we can develomagoportrait that
shows the dynamics of the system (c). The system has multiple equilibriints pmarked

by the solid dots along the = 0 line.

this can be inferred from the lengths of the arrows in thearefatld plot).

Equilibrium Points and Limit Cycles

An equilibrium pointof a dynamical system represents a stationary condition for
the dynamics. We say that a stages an equilibrium point for a dynamical system

dx

if F(Xe) = 0. If a dynamical system has an initial conditief®) = Xe, then it will

stay at the equilibrium poink(t) = xe for all t > 0, where we have takdp = 0.
Equilibrium points are one of the most important features df@amical sys-

tem since they define the states corresponding to constargtmgeconditions. A

dynamical system can have zero, one or more equilibriumtgoin

Example 4.4 Inverted pendulum
Consider the inverted pendulum in Figure 4.4, which is a gfdahtebalance system
we considered in Chapter 2. The inverted pendulum is a singbN&esion of the
problem of stabilizing a rocket: by applying forces at thedaf the rocket, we
seek to keep the rocket stabilized in the upright positiore $tate variables are
the anglef = x; and the angular velocitg6/dt = xo, the control variable is the
acceleratioru of the pivot and the output is the andle

For simplicity we assume thangl/J = 1 andl /J = 1, so that the dynamics
(equation (2.10)) become

dX_ X2
dt [sinxl—cszrucosxl] : (4-5)

This is a nonlinear time-invariant system of second orders $hme set of equa-
tions can also be obtained by appropriate normalizatiohesystem dynamics as
illustrated in Example 2.7.
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Figure 4.5: Phase portrait and time domain simulation for a system with a limit cycle. The
phase portrait (a) shows the states of the solution plotted for different iritiitions. The
limit cycle corresponds to a closed loop trajectory. The simulation (b) slacsingle solution
plotted as a function of time, with the limit cycle corresponding to a steady dswillaf
fixed amplitude.

We consider the open loop dynamics by setting 0. The equilibrium points
for the system are given by
I =1
o (07,

wheren=0,1,2,.... The equilibrium points fon even correspond to the pendu-
lum pointing up and those farodd correspond to the pendulum hanging down. A
phase portrait for this system (without corrective inpugsghown in Figure 4.4c.
The phase portrait shows2mt < x; < 21, so five of the equilibrium points are
shown. O

Nonlinear systems can exhibit rich behavior. Apart fromikdopa they can
also exhibit stationary periodic solutions. This is of grpedctical value in gen-
erating sinusoidally varying voltages in power systemsnogenerating periodic
signals for animal locomotion. A simple example is given ireExse 4.12, which
shows the circuit diagram for an electronic oscillator. Amalized model of the
oscillator is given by the equation

dx d

d—tl:xgthl(l—x%—x%), d—)iz
The phase portrait and time domain solutions are given in Eigus. The figure
shows that the solutions in the phase plane converge to@aniittajectory. In the
time domain this corresponds to an oscillatory solutiontidenatically the circle
is called dimit cycle More formally, we call an isolated solutiot) a limit cycle
of periodT > 0 if x(t+T) = x(t) forallt € R.

There are methods for determining limit cycles for secorstepsystems, but
for general higher-order systems we have to resort to caatipagl analysis. Com-
puter algorithms find limit cycles by searching for periodigjeéctories in state

=X +X%(1—x —x3). (4.6)
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Figure 4.6: lllustration of Lyapunov’s concept of a stable solution. The solutionesgmted
by the solid line is stable if we can guarantee that all solutions remain within acfube
diametere by choosing initial conditions sufficiently close the solution.

space that satisfy the dynamics of the system. In many sinststable limit cy-
cles can be found by simulating the system with differerttahconditions.

4.3 Stability

The stability of a solution determines whether or not sohgioearby the solution
remain close, get closer or move further away. We now giveradbdefinition of
stability and describe tests for determining whether atswius stable.

Definitions

Let x(t;a) be a solution to the differential equation with initial camah a. A
solution isstableif other solutions that start nearstay close tx(t; a). Formally,
we say that the solutiok(t;a) is stable if for alle > 0, there exists & > 0 such

that
Ib—al|l<d = ||x(t;b)—x(t;a)]| <& forallt>O0.

Note that this definition does not imply th&(t; b) approacheg(t;a) as time in-
creases but just that it stays nearby. Furthermore, the w@ildemay depend on
€, so that if we wish to stay very close to the solution, we mayetta start very,
very close § < ¢). This type of stability, which is illustrated in Figure 4.8,also
calledstability in the sense of Lyapund¥a solution is stable in this sense and the
trajectories do not converge, we say that the solutioreigrally stable

An important special case is when the solutidtta) = Xe is an equilibrium
solution. Instead of saying that the solution is stable, weply say that the equi-
librium point is stable. An example of a neutrally stableigqtium point is shown
in Figure 4.7. From the phase portrait, we see that if we stat the equilibrium
point, then we stay near the equilibrium point. Indeed, iig €xample, given any
¢ that defines the range of possible initial conditions, we @daply choosed = ¢
to satisfy the definition of stability since the trajectoréae perfect circles.

A solutionx(t; a) isasymptotically stablé it is stable in the sense of Lyapunov
and alsox(t;b) — x(t;a) ast — o for b sufficiently close taa. This corresponds
to the case where all nearby trajectories converge to thdessalution for large
time. Figure 4.8 shows an example of an asymptotically stadplelibrium point.
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Figure 4.7: Phase portrait and time domain simulation for a system with a single stable
equilibrium point. The equilibrium pointe at the origin is stable since all trajectories that
start neax stay neake.

Note from the phase portraits that not only do all trajeet®stay near the equi-
librium point at the origin, but that they also all approabh brigin ad gets large
(the directions of the arrows on the phase portrait show iteetibn in which the
trajectories move).

A solutionx(t; a) is unstablef it is not stable. More specifically, we say that a
solutionx(t;a) is unstable if given some > 0, there doesot exist ad > 0 such
that if ||b—a|| < 9, then||x(t;b) — x(t; a)|| < € for all t. An example of an unstable
equilibrium point is shown in Figure 4.9.

The definitions above are given without careful descriptiothefr domain of
applicability. More formally, we define a solution to kecally stable(or locally
asymptotically stableif it is stable for all initial conditionsc € B, (a), where

Br(a) = {x:[|lx—a] <r}

is a ball of radiug arounda andr > 0. A system isglobally stableif it is sta-
ble for all r > 0. Systems whose equilibrium points are only locally stalale c

-_ L _1 L Il Il Il
iLl -0.5 0 0.5 1 0 2 4 6 8 10
X Timet

Figure 4.8: Phase portrait and time domain simulation for a system with a single asymptoti-
cally stable equilibrium point. The equilibrium poixy¢ at the origin is asymptotically stable
since the trajectories converge to this point as .
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Figure 4.9: Phase portrait and time domain simulation for a system with a single unstable
equilibrium point. The equilibrium point at the origin is unstable since not all trajectories
that start neare stay neawe. The sample trajectory on the right shows that the trajectories
very quickly depart from zero.

have interesting behavior away from equilibrium pointswasexplore in the next
section.

For planar dynamical systems, equilibrium points have essigned names
based on their stability type. An asymptotically stableilogpium point is called
a sink or sometimes a®ttractor. An unstable equilibrium point can be either a
source if all trajectories lead away from the equilibrium point, @ saddle if
some trajectories lead to the equilibrium point and othesseraway (this is the
situation pictured in Figure 4.9). Finally, an equilibriumimpicthat is stable but not
asymptotically stable (i.e., neutrally stable, such asthein Figure 4.7) is called
acenter

Example 4.5 Congestion control
The model for congestion control in a network consistinglafientical computers
connected to a single router, introduced in Section 3.4 yvisrgby

dW—C—pc<1+W2>, @:NW—C—

2

wherew is the window size anflis the buffer size of the router. Phase portraits are
shown in Figure 4.10 for two different sets of parameter v@lireeach case we see
that the system converges to an equilibrium point in whi@htffer is below its
full capacity of 500 packets. The equilibrium size of the bufepresents a balance
between the transmission rates for the sources and theiapithe link. We see
from the phase portraits that the equilibrium points arergagtically stable since
all initial conditions result in trajectories that converp these points. O

dt b 2

Stability of Linear Systems

A linear dynamical system has the form

=A% X(0) =X, (4.7)
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Figure 4.10: Phase portraits for a congestion control protocol running iith 60 identical
source computers. The equilibrium values correspond to a fixed wiatitive source, which
results in a steady-state buffer size and corresponding transmist&oA faster link (b) uses
a smaller buffer size since it can handle packets at a higher rate.

whereA € R™" is a square matrix, corresponding to the dynamics matrix of a
linear control system (2.6). For a linear system, the dtglaf the equilibrium at
the origin can be determined from the eigenvalues of theixnAtr

A(A) ={se C:defsl—A) =0}.

The polynomial dgsl — A) is the characteristic polynomiaénd the eigenvalues
are its roots. We use the notatiapfor the jth eigenvalue oA, so thatA; € A (A).
In generalA can be complex-valued, althoughAfis real-valued, then for any
eigenvalue), its complex conjugatd * will also be an eigenvalue. The origin is
always an equilibrium for a linear system. Since the stabdita linear system
depends only on the matri we find that stability is a property of the system. For
a linear system we can therefore talk about the stabilithefdystem rather than
the stability of a particular solution or equilibrium paint
The easiest class of linear systems to analyze are those wysteen matrices
are in diagonal form. In this case, the dynamics have the form
A 0
dx A2
i . X. (4.8)
0 An
It is easy to see that the state trajectories for this systenmdependent of each
other, so that we can write the solution in termsafdividual systems; = AjXx;.
Each of these scalar solutions is of the form

Xj (t) = €' (0).

We see that the equilibrium point = O is stable ifA; < 0 and asymptotically
stable ifA; <O.
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Another simple case is when the dynamics are in the bloclodialgiorm

o W 0 0
—w 01 0 0
dx SRR I
T 0 0 " : : .
0 0 Om  Wn
0 0 —Wm  Om

In this case, the eigenvalues can be shown tdjbe 0j +-iw;. We once again can
separate the state trajectories into independent sofufiimreach pair of states, and
the solutions are of the form

Xoj_1(t) = 71" (xj_1(0) coswjt + Xz} (0) sinwjt),
Xoj(t) = €71 (—X2j_1(0) sinwjt + X2 (0) coswjt),

wherej =1,2,....m. We see that this system is asymptotically stable if and only
if gj =ReA;j < 0. Itis also possible to combine real and complex eigensgailue
(block) diagonal form, resulting in a mixture of solutioristioe two types.

Very few systems are in one of the diagonal forms above, buesystems can
be transformed into these forms via coordinate transfaomst One such class of
systems is those for which the dynamics matrix has distmatiepeating) eigen-
values. In this case there is a matfixe R"™" such that the matrix AT 1 is
in (block) diagonal form, with the block diagonal elementsresponding to the
eigenvalues of the original matrix (see Exercise 4.14). If we choose new coordi-

natesz = Tx, then
dz

—=Tx=TAx=TAT 'z

dt
and the linear system has a (block) diagonal dynamics mattixthermore, the
eigenvalues of the transformed system are the same as ¢feabsystem since if
vis an eigenvector o, thenw = T vcan be shown to be an eigenvecto@fT .
We can reason about the stability of the original system byngahat x(t) =
T—1z(t), and so if the transformed system is stable (or asymptbtistdble), then
the original system has the same type of stability.

This analysis shows that for linear systems with distincemiglues, the sta-
bility of the system can be completely determined by exangjrthe real part of
the eigenvalues of the dynamics matrix. For more generaésys we make use
of the following theorem, proved in the next chapter:

Theorem 4.1(Stability of a linear system)The system

dx

— = AX

dt
is asymptotically stable if and only if all eigenvalues of IAhave a strictly neg-
ative real part and is unstable if any eigenvalue of A has &tyrpositive real

part.
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Example 4.6 Compartment model

Consider the two-compartment module for drug deliveryodtrced in Section 3.6.
Using concentrations as state variables and denotingadke\stctor by, the sys-
tem dynamics are given by

dx _[—ko—ki ki bo _

dt_[ ko “k X+ 1| y= [0 1] X,
where the inpuu is the rate of injection of a drug into compartment 1 and the
concentration of the drug in compartment 2 is the measurgalioy We wish to

design a feedback control law that maintains a constantubgipen byy = yy.
We choose an output feedback control law of the form

u= _k(y_yd) + Ud,
whereuq is the rate of injection required to maintain the desiredcemtration
andk is a feedback gain that should be chosen such that the clospdystem is
stable. Substituting the control law into the system, weiabta

%_ —ko—k1 ki —bok bg N
dt_[ ko —ko X+ 1o (ug +Kyg) =: AX+ B,

y= (O 1] x=:Cx.

The equilibrium concentratior, € R? is given byxe = —A 1Bu and

_ boko
— CABUL= 2 (44 kyq).
Ye Ue k0k2+bok2k(ud+ Yd)

Choosinguq such thatye = y4 provides the constant rate of injection required to

maintain the desired output. We can now shift coordinatgdatoe the equilibrium
point at the origin, which yields (after some algebra)

dz_ (—ko—ki ki—bok .
dt ko —ko ?
wherez = X — Xe. We can now apply the results of Theorem 4.1 to determine the

stability of the system. The eigenvalues of the system aendiy the roots of the
characteristic polynomial

A(S) = S? + (ko + k1 + ko) s+ (kokz + bokak).

While the specific form of the roots is messy, it can be shownhtti&roots have
negative real part as long as the linear term and the cortstantare both positive
(Exercise 4.16). Hence the system is stable forkamO. O

Stability Analysis via Linear Approximation

An important feature of differential equations is that ibisen possible to deter-
mine the local stability of an equilibrium point by approxtng the system by a
linear system. The following example illustrates the bad&ai
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Example 4.7 Inverted pendulum
Consider again an inverted pendulum whose open loop dysaamécgiven by

de_ (%
dt  |sinxg—yxo )’

where we have defined the statexas (6, 0). We first consider the equilibrium
point atx = (0, 0), corresponding to the straight-up position. If we assuraéttie
angle@ = x; remains small, then we can replacexsinvith x; and cox; with 1,
which gives the approximate system

dX_ X2 o 0O 1
G- (o) - 2 5)x (4.9)

Intuitively, this system should behave similarly to the ma@omplicated model
as long as«; is small. In particular, it can be verified that the equililoniyoint
(0,0) is unstable by plotting the phase portrait or computing therevalues of the
dynamics matrix in equation (4.9)

We can also approximate the system around the stable equititpoint at
x=(m,0). In this case we have to expandsirand cox; aroundx; = 71, according
to the expansions

sin(rm+0) = —sinB~ -0, cogm+6) = —cog0) ~ —1.

If we definez; = x; — randz; = xp, the resulting approximate dynamics are given

by
dZ_ Vi) B 0 1
g_ [_Zl_yzz] _ [_1 _y] ? (4.10)

Note thatz= (0,0) is the equilibrium point for this system and that it has thmea
basic form as the dynamics shown in Figure 4.8. Figure 4.11 shiwsvyphase por-
traits for the original system and the approximate systeyarat the corresponding
equilibrium points. Note that they are very similar, altgbunot exactly the same.
It can be shown that if a linear approximation has either gagtically stable or
unstable equilibrium points, then the local stability of thriginal system must be
the same (Theorem 4.3). O

More generally, suppose that we have a nonlinear system

dx

dt

that has an equilibrium point at. Computing the Taylor series expansion of the
vector field, we can write

% = F(xe) + ‘E (X—Xe) + higher-order terms iix — Xe).
dt O |y,

F(%)

SinceF (xe) = 0, we can approximate the system by choosing a new statélearia
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Figure 4.11: Comparison between the phase portraits for the full nonlinear systgrasda
its linear approximation around the origin (b). Notice that near the equilibgaimt at the
center of the plots, the phase portraits (and hence the dynamics) ars alerdical.

Z= X—Xe and writing

%E:Az, where A= dj . (4.11)

c?xxe

We call the system (4.11) thi@ear approximatiorof the original nonlinear system
or thelinearizationat Xe.

The fact that a linear model can be used to study the behaviarmafnlin-
ear system near an equilibrium point is a powerful one. Iddee can take this
even further and use a local linear approximation of a nealirsystem to design
a feedback law that keeps the system near its equilibriumtfdesign of dy-
namics). Thus, feedback can be used to make sure that sslugorain close to
the equilibrium point, which in turn ensures that the linepproximation used to
stabilize it is valid.

Linear approximations can also be used to understand théitgtabnonequi-
librium solutions, as illustrated by the following example

Example 4.8 Stable limit cycle
Consider the system given by equation (4.6),
dx
dt dt
whose phase portrait is shown in Figure 4.5. The differentjgbéion has a peri-
odic solution

d X1

=X+ x1(1— X2 —x3), = —x+Xx(1-x —x3),

X1(t) = X1(0) cost + x2(0) sint, (4.12)

with x2(0) +x5(0) = 1.
To explore the stability of this solution, we introduce potaordinates and
¢, which are related to the state variabkgsndx, by

X1 = rcosp, X2 =rsing.
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Differentiation gives the following linear equations foand¢:
X1 = rFcosp —rsing, Xp =fsing +r¢ cosp.
Solving this linear system farand¢ gives, after some calculation,

dr %_

—_ = —2 e
gt A g

Notice that the equations are decoupled; hence we can athlyztability of each
state separately.

The equation for has three equilibriar = 0, r = 1 andr = —1 (not realiz-
able since must be positive). We can analyze the stability of theselibgiai by
linearizing the radial dynamics with(r) = r(1—r?). The corresponding linear
dynamics are given by

dr _ oF
dt — or|,

where we have abused notation and usdd represent the deviation from the
equilibrium point. It follows from the sign of1 — 3r2) that the equilibriunt = 0

is unstable and the equilibrium= 1 is asymptotically stable. Thus for any initial
conditionr > 0 the solution goes to= 1 as time goes to infinity, but if the system
starts withr = 0, it will remain at the equilibrium for all times. This impBehat
all solutions to the original system that do not starkat X, = 0 will approach
the circlex? + x5 = 1 as time increases.

To show the stability of the full solution (4.12), we must @éstigate the be-
havior of neighboring solutions with different initial cditions. We have already
shown that the radiuswill approach that of the solution (4.12) as longé8) > O.
The equation for the angl¢ can be integrated analytically to gie(t) = —t +
#(0), which shows that solutions starting at different angpewill neither con-
verge nor diverge. Thus, the unit circleatracting, but the solution (4.12) is only
stable, not asymptotically stable. The behavior of the systeillustrated by the
simulation in Figure 4.12. Notice that the solutions apphd&e circle rapidly, but
that there is a constant phase shift between the solutions. O

-1

r=(1-3r2)r, re=0,1,

4.4 Lyapunov Stability Analysis

We now return to the study of the full nonlinear system

(;;( =F(x), xeR" (4.13)

Having defined when a solution for a nonlinear dynamical sgystestable, we
can now ask how to prove that a given solution is stable, asytioplly stable
or unstable. For physical systems, one can often argue aalitity based on
dissipation of energy. The generalization of that techniguarbitrary dynamical
systems is based on the use of Lyapunov functions in placeestg.
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Figure 4.12:Solution curves for a stable limit cycle. The phase portrait on the left shiost

the trajectory for the system rapidly converges to the stable limit cycle. fEntng points

for the trajectories are marked by circles in the phase portrait. The timaidgpiots on

the right show that the states do not converge to the solution but insteathinaconstant
phase error.

In this section we will describe techniques for determinting stability of so-
lutions for a nonlinear system (4.13). We will generally beerested in stability
of equilibrium points, and it will be convenient to assumattk = 0 is the equi-
librium point of interest. (If not, rewrite the equationsamew set of coordinates

Z=X—Xe.)

Lyapunov Functions

A Lyapunov function V. R" — R is an energy-like function that can be used to
determine the stability of a system. Roughly speaking, itesfind a nonnegative
function that always decreases along trajectories of te&enmy, we can conclude
that the minimum of the function is a stable equilibrium gdlocally).

To describe this more formally, we start with a few definitiode say that a
continuous functiorV is positive definitef V(x) > 0 for all x # 0 andV (0) = 0.
Similarly, a function isnegative definité V (x) < 0 for allx# 0 andVv (0) = 0. We
say that a functiolV is positive semidefinité V (x) > 0 for all x, butV(x) can be
zero at points other than just= 0.

To illustrate the difference between a positive definite fiomcand a positive
semidefinite function, suppose thet R? and let

Vilx) =3, Vo(X) =8 + 3.

BothV; andV, are always nonnegative. However, it is possibleMpto be zero
even ifx # 0. Specifically, if we sex= (0,c), wherec € R is any nonzero number,
thenVi(x) = 0. On the other hand/x(x) = 0 if and only ifx = (0,0). ThusV; is
positive semidefinite and, is positive definite.

We can now characterize the stability of an equilibrium poin= 0 for the
system (4.13).

Theorem 4.2(Lyapunov stability theorem)Let V be a nonnegative function on
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Figure 4.13: Geometric illustration of Lyapunov’s stability theorem. The closed contours
represent the level sets of the Lyapunov functx) = c. If dx/dt points inward to these
sets at all points along the contour, then the trajectories of the system vaysbaus¥® (x)

to decrease along the trajectory.

R" and letV represent the time derivative of V along trajectories @& #ystem
dynamicqg4.13)

/ — ‘?7\/% — 07VF(X)

- oxdt  ox '

Let B = B, (0) be a ball of radius r around the origin. If there exists>r0 such
that V is positive definite and is negative semidefinite for allxBy, then x= 0
is locally stable in the sense of Lyapunov. If V is positiviinite andV is negative
definite in B, then x= 0is locally asymptotically stable.

If V satisfies one of the conditions above, we say that a (local)Lyapunov
functionfor the system. These results have a nice geometric intatjmet The
level curves for a positive definite function are the curveinge byV (x) = c,
¢ > 0, and for eacle this gives a closed contour, as shown in Figure 4.13. The
condition thatV (x) is negative simply means that the vector field points toward
lower-level contours. This means that the trajectories mioamnaller and smaller
values ofV and ifV is negative definite thenmust approach 0.

Example 4.9 Scalar nonlinear system
Consider the scalar nonlinear system
dx 2 «
dt  1+x
This system has equilibrium points)a& 1 andx = —2. We consider the equilib-
rium point atx = 1 and rewrite the dynamics usizg= x — 1:
dz 2
— =7
dt 2+z
which has an equilibrium point &= 0. Now consider the candidate Lyapunov
function

—1,
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which is globally positive definite. The derivative Uf along trajectories of the

system is given by )
z

21z
If we restrict our analysis to an interv8|, wherer < 2, then 2+z> 0 and we can
multiply through by 2+ zto obtain

22— (Z+2)(242=-2-32=-2(z+3)<0, zeB,r<2

It follows thatV(z) < Oforallze By, z# 0, and hence the equilibrium poxg= 1
is locally asymptotically stable. 0

V(2 =z

A slightly more complicated situation occursMfis negative semidefinite. In
this case it is possible th¥tx) = 0 whenx # 0, and hence could stop decreasing
in value. The following example illustrates this case.

Example 4.10 Hanging pendulum
A normalized model for a hanging pendulum is

ng[l = Xo, dd)iz = —sinxy,

wherex; is the angle between the pendulum and the vertical, withtigest;

corresponding to counterclockwise rotation. The equatasan equilibriunx; =

x2 = 0, which corresponds to the pendulum hanging straight ddaexplore the

stability of this equilibrium we choose the total energy dyapunov function:
1,

1 1
V(X) = 1—cosxg + éxg ~ éxf +5%

The Taylor series approximation shows that the function sitpe definite for
smallx. The time derivative o¥/ (x) is

V = X1 SiNXg + XoXo = X SiNXg — Xp Sinxg = 0.
Since this function is negative semidefinite, it follows frolyabunov’s theorem
that the equilibrium is stable but not necessarily asynigaby stable. When per-
turbed, the pendulum actually moves in a trajectory thatesponds to constant
energy. U

Lyapunov functions are not always easy to find, and they arainigue. In
many cases energy functions can be used as a starting peiwgsadone in Ex-
ample 4.10. It turns out that Lyapunov functions can alwag<fdund for any
stable system (under certain conditions), and hence onetimat if a system
is stable, a Lyapunov function exists (and vice versa). Re@sults using sum-
of-squares methods have provided systematic approachdmdong Lyapunov
systems [PPP02]. Sum-of-squares technigues can be applieddadhvariety of
systems, including systems whose dynamics are describgmlpgomial equa-
tions, as well as hybrid systems, which can have differentletsofor different
regions of state space.
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For a linear dynamical system of the form
dx
Z A
dt
it is possible to construct Lyapunov functions in a systeomaanner. To do so, we
consider quadratic functions of the form

V(x) = X" Px,

whereP € R™" is a symmetric matrix® = PT). The condition thaV be positive
definite is equivalent to the condition thRbe apositive definite matrix

x'Px>0, forallx#0,

which we write ad® > 0. It can be shown that P is symmetric, thet® is positive
definite if and only if all of its eigenvalues are real and pgsit

Given a candidate Lyapunov functiéf(x) = x" Px, we can now compute its
derivative along flows of the system:

_ovidx_

~ooxdt
The requirement that be negative definite (for asymptotic stability) becomes a
condition that the matrixQ be positive definite. Thus, to find a Lyapunov func-

tion for a linear system it is sufficient to choos®a> 0 and solve thé.yapunov
equation

X" (ATP+PA)Xx =: —x" Qx.

ATP+PA=—Q. (4.14)

This is a linear equation in the entries Bf and hence it can be solved using
linear algebra. It can be shown that the equation always rsadugion if all of
the eigenvalues of the matri are in the left half-plane. Moreover, the solution
P is positive definite ifQ is positive definite. It is thus always possible to find
a quadratic Lyapunov function for a stable linear system.Whkedefer a proof
of this until Chapter 5, where more tools for analysis of ingystems will be
developed.

Knowing that we have a direct method to find Lyapunov functitordinear
systems, we can now investigate the stability of nonlingatesns. Consider the
system

dx

dt
whereF (0) = 0 andF (x) contains terms that are second order and higher in the
elements ok. The functionAx is an approximation oF (x) near the origin, and
we can determine the Lyapunov function for the linear apipnaxion and investi-
gate if it is also a Lyapunov function for the full nonlineassgem. The following
example illustrates the approach.

F(x) =: Ax+F(x), (4.15)

Example 4.11 Genetic switch
Consider the dynamics of a set of repressors connectedhtgeet a cycle, as
shown in Figure 4.14a. The normalized dynamics for this systeme given in
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Figure 4.14: Stability of a genetic switch. The circuit diagram in (a) represents two ptein
that are each repressing the production of the other. The inp@sdu, interfere with this
repression, allowing the circuit dynamics to be modified. The equilibriumtgdor this
circuit can be determined by the intersection of the two curves shown.in (b)

Exercise 2.9:
dzz  u dzz  u

=7 =z
dr 14z dr 1+ Z

wherez; and z, are scaled versions of the protein concentrationand u are
parameters that describe the interconnection betweenethesgand we have set
the external inputs; andus, to zero.

The equilibrium points for the system are found by equatirggtitne deriva-
tives to zero. We define

(4.16)

u , df —pnu?
f(uy=-—— flluy=—=——=
(W 14u’ W du (1+um?’
and the equilibrium points are defined as the solutions of go@tons
7z = f(z), 2= f(z).

If we plot the curvegz, f(z)) and(f(z),2) on a graph, then these equations
will have a solution when the curves intersect, as shown inreig.14b. Because
of the shape of the curves, it can be shown that there willydvwe three solutions:
one atzye = e, ONe Withzie < 2 and one withezge > zpe. If U > 1, then we can
show that the solutions are given approximately by

1 1
ZeN M ZeN o nopi Ae=Ze  ZeNnp e (4.17)

To check the stability of the system, we writéu) in terms of its Taylor series
expansion aboule:

f(u) = f(Ue) + f'(Ue) - (U—Ug) + % ”(Ue) - (U— Ug)? + higher-order terms

where f’ represents the first derivative of the function, drfdthe second. Using
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these approximations, the dynamics can then be written as

dw (=1 f/(ze) =
a— [f/(zle) _i ]W+F(W)>

wherew = z— z is the shifted state arfé(w) represents quadratic and higher-order
terms.

We now use equation (4.14) to search for a Lyapunov func@hiwosingQ = |
and lettingP € R2*? have elementg;j, we search for a solution of the equation

-1 fi) (Pu P2 (Pu pr2) (-1 f) _ (-1 O

f; —1) | p2 P22 P12 P22 fi —1 0o -1}
wheref] = f'(z¢) andf) = '(ze). Note that we have sgb1 = p12 to forceP to
be symmetric. Multiplying out the matrices, we obtain

—2pu+2fipiz puf;—2pa+p2fi) _ (-1 O
P11f;—2p1a+ p2of]  —2p22+2f5p12 0o -1)°

which is a set ofinear equations for the unknowns;. We can solve these linear
equations to obtain

f12— 5 +2 . H+f P ff42
afhen 0 P amney PP A
To check tha¥ (w) = w' Pwis a Lyapunov function, we must verify the{(w) is
positive definite function or equivalently thBt> 0. SinceP is a 2x 2 symmetric
matrix, it has two real eigenvaludg andA, that satisfy
A1+ Az =traceP), A1-A2 =detP).

In order forP to be positive definite we must have tiiatandA, are positive, and
we thus require that
f12—2ff+ 5%+ 4 f12 28 f]+ 57 +4

4—Af1f) 16— 16f; f;
We see that tra¢®) = 4de{(P) and the numerator of the expressions is jigt-
f2)24+4 > 0, so it suffices to check the sign of-1f; 5. In particular, forP to be
positive definite, we require that
f/(Z]_e) f/(ZZe) <1

We can now make use of the expressionsffodefined earlier and evaluate at
the approximate locations of the equilibrium points detdireequation (4.17). For
the equilibrium points whereye # 2y, We can show that

P11 =—

tracdP) = > 0.

>0, detP)=

1 —unu™?l —un —(n-1) o
f'(z1e) ' (22e) = f/(“)f/(unfl) = (1N+Zn)2 ’ 11:—n(n—1) A

Usingn = 2 andu ~ 200 from Exercise 2.9, we see thid{z;e) f'(z¢) < 1 and
henceP is a positive definite. This implies th¥tis a positive definite function and
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Figure 4.15: Dynamics of a genetic switch. The phase portrait on the left shows that the
switch has three equilibrium points, corresponding to protein A having aecdration
greater than, equal to or less than protein B. The equilibrium point withl guogein con-
centrations is unstable, but the other equilibrium points are stable. The sonuta the

right shows the time response of the system starting from two differentlioaraditions.

The initial portion of the curve corresponds to initial concentratizi@$ = (1,5) and con-
verges to the equilibrium whem, < zp¢. At timet = 10, the concentrations are perturbed
by +2inz and—2 in zp, moving the state into the region of the state space whose solutions
converge to the equilibrium point whezg, < zse.

hence a potential Lyapunov function for the system. _
To determine if the system (4.16) is stable, we now compuge the equilib-
rium point. By construction,

V = w'(PA+ATP) W+ F T(w)Pw+ w'PF (w)
= —w'w+ FT(w)Pw+w'PF (w).

Since all terms irF are quadratic or higher order im, it follows thatF T(w)Pw
andw"PF (w) consist of terms that are at least third ordeminTherefore ifw is
sufficiently close to zero, then the cubic and higher-ordenmgewill be smaller
than the quadratic terms. Hence, sufficiently close'te 0,V is negative definite,
allowing us to conclude that these equilibrium points aréhlstable.

Figure 4.15 shows the phase portrait and time traces for ammysith u = 4,
illustrating the bistable nature of the system. When thigaintondition starts with
a concentration of protein B greater than that of A, the smfutonverges to the
equilibrium point at (approximately)l/u"1, u). If A is greater than B, then it
goes to(u, 1/u"1). The equilibrium point withz;e = zp¢ is unstable. 0

More generally, we can investigate what the linear apprakion tells about
the stability of a solution to a nonlinear equation. The fwilog theorem gives a
partial answer for the case of stability of an equilibriunino

Theorem 4.3. Consider the dynamical syste@.15)with F(0) = 0 andF such
thatlim ||F (x)||/||x|| — 0 as||x|| — O. If the real parts of all eigenvalues of A are
strictly less than zero, then.x= 0 is a locally asymptotically stable equilibrium
point of equatiorn(4.15)
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This theorem implies that asymptotic stability of the linapproximation im-
plies local asymptotic stability of the original nonlinear system. Thedrem is
very important for control because it implies that stalilian of a linear approxi-
mation of a nonlinear system results in a stable equilibrianthe nonlinear sys-
tem. The proof of this theorem follows the technique used innipla 4.11. A
formal proof can be found in [Kha01].

Krasovski—Lasalle Invariance Principle

For general nonlinear systems, especially those in symfmiin, it can be difficult
to find a positive definite functiod whose derivative is strictly negative definite.
The Krasovski—Lasalle theorem enables us to conclude thepstimstability of
an equilibrium point under less restrictive conditionanedy, in the case wheié
is negative semidefinite, which is often easier to constHimivever, it applies only
to time-invariant or periodic systems. This section makesafissome additional
concepts from dynamical systems; see Hahn [Hah67] or Klikdi#01] for a more
detailed description.
We will deal with the time-invariant case and begin by introishg a few more
definitions. We denote the solution trajectories of the timariant system
dx
dt
asx(t;a), which is the solution of equation (4.18) at titngtarting froma atty = 0.
The w limit setof a trajectoryx(t; a) is the set of all pointz € R" such that there
exists a strictly increasing sequence of timesuch thatx(t,;a) — zasn — oo.
A setM C R" is said to be amnvariant setif for all b € M, we havex(t;b) € M
for allt > 0. It can be proved that th® limit set of every trajectory is closed and
invariant. We may now state the Krasovski—Lasalle principle

F(X) (4.18)

Theorem 4.4(Krasovski—Lasalle principle)Let V: R" — R be a locally positive
definite function such that on the compactQet= {x € R": V(x) <r} we have

V(x) < 0. Define

S={xeQ:V(x)=0}.

As t— oo, the trajectory tends to the largest invariant set insidé.&; its w limit
set is contained inside the largest invariant set in S. Irtipatar, if S contains no
invariant sets other than x 0, then 0 is asymptotically stable.

Proofs are given in [Kra63] and [LaS60].

Lyapunov functions can often be used to design stabilizimgrollers, as is
illustrated by the following example, which also illusgathow the Krasovski—
Lasalle principle can be applied.

Example 4.12 Inverted pendulum
Following the analysis in Example 2.7, an inverted pendulamize described by
the following normalized model:

dxq dx .
— e 4.19
It X2, It SinX; + UCOSXy, ( )
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(a) Physical system (b) Phase portrait (c) Manifold view

Figure 4.16: Stabilized inverted pendulum. A control law applies a foucat the bottom
of the pendulum to stabilize the inverted position (a). The phase portragh(@ys that
the equilibrium point corresponding to the vertical position is stabilized. Thded region
indicates the set of initial conditions that converge to the origin. The ellipsesgmonds to a
level set of a Lyapunov functiow(x) for whichV (x) > 0 andV (x) < 0 for all points inside
the ellipse. This can be used as an estimate of the region of attraction ofutieragqn
point. The actual dynamics of the system evolve on a manifold (c).

wherex; is the angular deviation from the upright position ang the (scaled)
acceleration of the pivot, as shown in Figure 4.16a. The sy$i@snan equilib-
rium atx; = X = 0, which corresponds to the pendulum standing upright. This
equilibrium is unstable.

To find a stabilizing controller we consider the following dadate for a Lya-
punov function:

1 1 1
V(x) = (cosxg — 1) +a(1—cogxg) + éxg ~ (a— é)x§+ EX%'

The Taylor series expansion shows that the function is pesiefinite near the
origin if a > 0.5. The time derivative o¥ (x) is

V = —Xq Sinxy + 2a%; SiNXg COSXy + XoXo = X2(U4 2asinXy) COSX;.
Choosing the feedback law
U= —2asinx; — X» COSX1

gives _
V = —x5c08X;.

It follows from Lyapunov’s theorem that the equilibrium exhlly stable. However,
since the function is only negative semidefinite, we cannotkale asymptotic
stability using Theorem 4.2. However, note tilat 0 implies thatx, = 0 orx; =
T/2+NTT.
If we restrict our analysis to a small neighborhood of thgiorQ),, r < /2,
then we can define
S={(x1,%) € Q; : xp =0}
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and we can compute the largest invariant set in§ideor a trajectory to remain
in this set we must have, = 0 for all t and hencex(t) = 0 as well. Using the
dynamics of the system (4.19), we see thgt) = 0 andxz(t) = 0 impliesx;(t) =0
as well. Hence the largest invariant set insgis (x1,X2) = 0, and we can use the
Krasovski—Lasalle principle to conclude that the originasdlly asymptotically
stable. A phase portrait of the closed loop system is shoviaigare 4.16b.

In the analysis and the phase portrait, we have treated tie afthe pendulum
6 = x; as a real number. In facf, is an angle withd = 2T equivalent tof = 0.
Hence the dynamics of the system actually evolves maifold(smooth surface)
as shown in Figure 4.16c. Analysis of nonlinear dynamicalesys on manifolds
is more complicated, but uses many of the same basic idessriegl here. [

4.5 Parametric and Nonlocal Behavior

Most of the tools that we have explored are focused on thd luslsavior of a
fixed system near an equilibrium point. In this section weflyrimtroduce some
concepts regarding the global behavior of nonlinear systanad the dependence
of a system'’s behavior on parameters in the system model.

Regions of Attraction

To get some insight into the behavior of a nonlinear systeramestart by finding
the equilibrium points. We can then proceed to analyze tbal loehavior around
the equilibria. The behavior of a system near an equilibrivoimpis called the
local behavior of the system.

The solutions of the system can be very different far away fanrequilibrium
point. This is seen, for example, in the stabilized penduluixample 4.12. The
inverted equilibrium point is stable, with small osciltatis that eventually con-
verge to the origin. But far away from this equilibrium pothere are trajectories
that converge to other equilibrium points or even cases iithwthe pendulum
swings around the top multiple times, giving very long datibns that are topo-
logically different from those near the origin.

To better understand the dynamics of the system, we can arairé set of all
initial conditions that converge to a given asymptoticaligble equilibrium point.
This set is called theegion of attractionfor the equilibrium point. An example
is shown by the shaded region of the phase portrait in Figuréb4.In general,
computing regions of attraction is difficult. However, evewe cannot determine
the region of attraction, we can often obtain patches ardbedtable equilibria
that are attracting. This gives partial information aboethihavior of the system.

One method for approximating the region of attraction i®tigh the use of
Lyapunov functions. Suppose thdtis a local Lyapunov function for a system
around an equilibrium pointy. Let Q, be a set on whicV (x) has a value less

thanr,
Qr ={xeR":V(x) <r},
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and suppose that(x) < 0 for all x € Q;, with equality only at the equilibrium
pointxp. ThenQ, is inside the region of attraction of the equilibrium poi&ince
this approximation depends on the Lyapunov function andhiovéce of Lyapunov
function is not unique, it can sometimes be a very conserastimate.

Itis sometimes the case that we can find a Lyapunov fundtisoch thav is
positive definite ani¥ is negative (semi-) definite for atle R". In many instances
it can then be shown that the region of attraction for the ldagium point is the
entire state space, and the equilibrium point is said tglbleally stable.

Example 4.13 Stabilized inverted pendulum
Consider again the stabilized inverted pendulum from Exapl2. The Lya-
punov function for the system was

1
V(x) = (cosxg — 1) +a(l—coxg) + EX%’
andV was negative semidefinite for alland nonzero wher; # +71/2. Hence
anyx such thatx;| < r7/2 andV (x) > 0 will be inside the invariant set defined by
the level curves o¥ (x). One of these level sets is shown in Figure 4.16b. [

Bifurcations

Another important property of nonlinear systems is howrthehavior changes as
the parameters governing the dynamics change. We can dtisdiy tthe context
of models by exploring how the location of equilibrium paintheir stability, their
regions of attraction and other dynamic phenomena, suchréisdycles, vary
based on the values of the parameters in the model.

Consider a differential equation of the form

((j;[(:F(x,u), xeR", ueRK (4.20)

wherex is the state angl is a set of parameters that describe the family of equa-
tions. The equilibrium solutions satisfy

F(x,u) =0,

and asy is varied, the corresponding solutiorsg ) can also vary. We say that
the system (4.20) hadxfurcationat u = u* if the behavior of the system changes
qualitatively atu*. This can occur either because of a change in stability ty@e or
change in the number of solutions at a given valug of

Example 4.14 Predator—prey
Consider the predator—prey system described in SectiomBerdynamics of the
system are given by

dH < L > aHL dL

k

aHL
— " =rH - = —=b -
c+H’ dt c+H

i dL, (4.21)
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Figure 4.17: Bifurcation analysis of the predator—prey system. (a) Parametric stadiidity
gram showing the regions in parameter space for which the system is gtgtB&urcation
diagram showing the location and stability of the equilibrium point as a functi@ ©he
solid line represents a stable equilibrium point, and the dashed line refgresennstable
equilibrium point. The dashed-dotted lines indicate the upper and lowerdsdanthe limit
cycle at that parameter value (computed via simulation). The nominawalithe parame-
ters in the model ara=3.2,b=0.6,c=50,d = 0.56,k = 125 andr = 1.6.

whereH andL are the numbers of hares (prey) and lynxes (predatorspabd
¢, d, k andr are parameters that model a given predator—prey systeroritoes
in more detail in Section 3.7). The system has an equilibriumtgd He > 0 and
Le > 0 that can be found numerically.

To explore how the parameters of the model affect the behavithe system,
we choose to focus on two specific parameters of intesgdtie interaction coef-
ficient between the populations aoda parameter affecting the prey consumption
rate. Figure 4.17a is a numerically compufsdametric stability diagranshow-
ing the regions in the chosen parameter space for which thidle@m point is
stable (leaving the other parameters at their nominal gWge see from this fig-
ure that for certain combinations afindc we get a stable equilibrium point, while
at other values this equilibrium point is unstable.

Figure 4.17b is a numerically computbiurcation diagramfor the system. In
this plot, we choose one parameter to vaydnd then plot the equilibrium value
of one of the statesH) on the vertical axis. The remaining parameters are set to
their nominal values. A solid line indicates that the edpilim point is stable; a
dashed line indicates that the equilibrium point is ungtallote that the stability
in the bifurcation diagram matches that in the parametabibty diagram for
¢ = 50 (the nominal value) and varying from 1.35 to 4. For the predator—prey
system, when the equilibrium point is unstable, the sofutionverges to a stable
limit cycle. The amplitude of this limit cycle is shown by thaghed-dotted line in
Figure 4.17b. O

A particular form of bifurcation that is very common when tmtliing linear
systems is that the equilibrium remains fixed but the stgbiiftthe equilibrium
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Figure 4.18: Stability plots for a bicycle moving at constant velocity. The plot in (a) shows
the real part of the system eigenvalues as a function of the bicycle velocitye system

is stable when all eigenvalues have negative real part (shaded y.€genplot in (b) shows
the locus of eigenvalues on the complex plane as the velowtyaried and gives a different
view of the stability of the system. This type of plot is calletbat locus diagram

changes as the parameters are varied. In such a case it &@imgvi® plot the
eigenvalues of the system as a function of the parameters. Bats are called
root locus diagramdecause they give the locus of the eigenvalues when param-
eters change. Bifurcations occur when parameter valuesuate that there are
eigenvalues with zero real part. Computing environment$ $tabVIEW, MAT-

LAB and Mathematica have tools for plotting root loci.

Example 4.15 Root locus diagram for a bicycle model

Consider the linear bicycle model given by equation (3. Féation 3.2. Introduc-
ing the state variables = ¢, xo = d, X3 = ¢ andx4 = & and setting the steering
torqueT = 0, the equations can be written as

ax 0 [
dt  (-MY(Ko+Kavd) —MICvp

wherel is a 2x 2 identity matrix andy is the velocity of the bicycle. Figure 4.18a
shows the real parts of the eigenvalues as a function of Wgldeigure 4.18b
shows the dependence of the eigenvalues arfi the velocityg. The figures show
that the bicycle is unstable for low velocities because twemvalues are in the
right half-plane. As the velocity increases, these eigemsgamove into the left
half-plane, indicating that the bicycle becomes selfiitalg. As the velocity is
increased further, there is an eigenvalue close to themdttigit moves into the right
half-plane, making the bicycle unstable again. Howeves, ¢igenvalue is small
and so it can easily be stabilized by a rider. Figure 4.18a stibat the bicycle is
self-stabilizing for velocities between 6 and 10 m/s. O

]x::Ax,

Parametric stability diagrams and bifurcation diagrams geovide valuable
insights into the dynamics of a nonlinear system. It is Ugusdcessary to carefully
choose the parameters that one plots, including combihi@géatural parameters
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Figure 4.19: Headphones with noise cancellation. Noise is sensed by the exterior micro-
phone (a) and sent to a filter in such a way that it cancels the noise ttettgges the head
phone (b). The filter parameteasandb are adjusted by the controll@represents the input
signal to the headphones.

of the system to eliminate extra parameters when possildempQter programs
such aAUTO, LOCBI F andXPPAUT provide numerical algorithms for producing
stability and bifurcation diagrams.

Design of Nonlinear Dynamics Using Feedback

In most of the text we will rely on linear approximations tostg feedback laws
that stabilize an equilibrium point and provide a desireckleof performance.
However, for some classes of problems the feedback comtrollist be nonlinear
to accomplish its function. By making use of Lyapunov fuaog we can often
design a nonlinear control law that provides stable belmaa®we saw in Exam-
ple 4.12.

One way to systematically design a nonlinear controlleo isdgin with a can-
didate Lyapunov functiol (x) and a control system= f(x,u). We say thaV/ (x)
is a control Lyapunov functiornf for every x there exists ai such thatV(x) =
%f(x, u) < 0. In this case, it may be possible to find a functim(x) such that
u = a(x) stabilizes the system. The following example illustratesapproach.

Example 4.16 Noise cancellation

Noise cancellation is used in consumer electronics anddastmial systems to re-
duce the effects of noise and vibrations. The idea is to lpgaliiuce the effect
of noise by generating opposing signals. A pair of headphavith noise can-
cellation such as those shown in Figure 4.19a is a typical plam schematic
diagram of the system is shown in Figure 4.19b. The system lamtarophones,
one outside the headphones that picks up exterior no&®d another inside the
headphones that picks up the sigaalvhich is a combination of the desired signal
and the external noise that penetrates the headphone. Tia B@m the exterior
microphone is filtered and sent to the headphones in such ahatit tancels the
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external noise that penetrates into the headphones. Thagtns of the filter are
adjusted by a feedback mechanism to make the noise sigrta internal micro-
phone as small as possible. The feedback is inherently reamllvecause it acts by
changing the parameters of the filter.

To analyze the system we assume for simplicity that the gafian of external
noise into the headphones is modeled by a first-order dynagyiseem described
by

dz
— = apz+bon, (4.22)
dt
wherezis the sound level and the parametays< 0 andbg are not known. Assume
that the filter is a dynamical system of the same type:

dw _ aw+ bn

dt '
We wish to find a controller that updatesand b so that they converge to the
(unknown) parameteid andbg. Introducex; = e=w-—2z X, =a—ap andxz =
b — bp; then

dx
d—tl = ap(W—2) + (a—ag)W+ (b— bo)n = agxg + XoW+ X3n. (4.23)
We will achieve noise cancellation if we can find a feedbackflanwchanging the

parameterga andb so that the erroe goes to zero. To do this we choose

1
V (X1, %2,X3) = E(orxﬂx%—kxg)
as a candidate Lyapunov function for (4.23). The derivativé &
V = ax1X1 + XoXo + XaXa = A @gX + Xa (X2 + QWX1 ) + X3(X3 + arnxy ).

Choosing
Xo = —OWXy = —AWe, X3 = —0nNx, = —aneg (4.24)

we find thatv = aagx? < 0, and it follows that the quadratic function will decrease
as long a2 = x; = w—2z# 0. The nonlinear feedback (4.24) thus attempts to
change the parameters so that the error between the sighth@noise is small.
Notice that feedback law (4.24) does not use the model (£22)citly.

A simulation of the system is shown in Figure 4.20. In the satiah we have
represented the signal as a pure sinusoid and the noiseaabli@nd noise. The fig-
ure shows the dramatic improvement with noise cancellaliba sinusoidal signal
is not visible without noise cancellation. The filter parametange quickly from
their initial valuesa = b = 0. Filters of higher order with more coefficients are used
in practice. O
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Figure 4.20: Simulation of noise cancellation. The top left figure shows the headpligne s
nal without noise cancellation, and the bottom left figure shows the sigttahaise cancel-
lation. The right figures show the parameta@ndb of the filter.

4.6 Further Reading

The field of dynamical systems has a rich literature that cheriaes the possi-
ble features of dynamical systems and describes how paiambanges in the
dynamics can lead to topological changes in behavior. Reéadiatroductions to
dynamical systems are given by Strogatz [Str94] and the hiijlistrated text
by Abraham and Shaw [AS82]. More technical treatments incAudronov, Vitt
and Khaikin [AVK87], Guckenheimer and Holmes [GH83] and \giits [Wig90].
For students with a strong interest in mechanics, the tex#rbold [Arn87] and
Marsden and Ratiu [MR94] provide an elegant approach usialg from differ-
ential geometry. Finally, good treatments of dynamical eyst methods in biol-
ogy are given by Wilson [Wil99] and Ellner and Guckenheimer (5 There
is a large literature on Lyapunov stability theory, incluglithe classic texts by
Malkin [Mal59], Hahn [Hah67] and Krasovski [Kra63]. We highrecommend
the comprehensive treatment by Khalil [Kha01].

Exercises

4.1 (Time-invariant systems) Show that if we have a solution ef differential
equation (4.1) given by(t) with initial conditionx(tg) = Xo, thenxX(1) = X(t —to)
is a solution of the differential equation

dx

& —F®

with initial conditionX{0) = xp, wheret =t —tp.

4.2 (Flow in a tank) A cylindrical tank has cross sectidim?, effective outlet
areaam? and inflowg, m3/s. An energy balance shows that the outlet velocity
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isv=/2ghm/s, whereg m/s* is the acceleration of gravity ards the distance
between the outlet and the water level in the tank (in met8ig)w that the system
can be modeled by

dh a 1
a = —K\/ Zgh+ qu, qcut - a\/ Zgh

Use the parametefs= 0.2,a= 0.01. Simulate the system when the inflow is zero
and the initial level ish = 0.2. Do you expect any difficulties in the simulation?

4.3 (Cruise control) Consider the cruise control system dbsedrin Section 3.1.
Generate a phase portrait for the closed loop system on flandr@ = 0), in third
gear, using a PI controller (witky, = 0.5 andk; = 0.1), m= 1000 kg and desired
speed 20 m/s. Your system model should include the effedstafating the input
between 0 and 1.

4.4 (Lyapunov functions) Consider the second-order system

dxq dx
_— = _— —b —
at axy, at X1 — CXo,
wherea, b, c > 0. Investigate whether the functions
1, 1, 1,1 b 2
Vi(X) = Kt 5%, Vo (X) = >+ E(Xz toa axl)

are Lyapunov functions for the system and give any condittbat must hold.

4.5 (Damped spring—mass system) Consider a damped spring-sysiesn with
dynamics _
md+ cq+kg= 0.
A natural candidate for a Lyapunov function is the total ggaf the system, given
by
1 1
V = Zmi? + Zko?.
o+ ket
Use the Krasovski—Lasalle theorem to show that the systesymjgtotically sta-
ble.

4.6 (Electric generator) The following simple model for an el@ogrenerator con-
nected to a strong power grid was given in Exercise 2.7:

d? EV .
The parameter b EV
max
= - _ 4.25
&= B, T Xm. (4.25)

is the ratio between the maximum deliverable poRgsx = EV /X and the me-
chanical poweRy.

(a) Considera as a bifurcation parameter and discuss how the equilibipe rak
ona.
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(b) Fora > 1, show that there is a center ¢ = arcsir{1l/a) and a saddle at
¢ = 1m— do.

(c) Show that ifP,/J = 1 there is a solution through the saddle that satisfies

;(%‘f)z—cp+¢o—acos¢—\/ﬂzo. (4.26)

Use simulation to show that the stability region is the iiaieof the area enclosed
by this solution. Investigate what happens if the systenm isquilibrium with a
value ofathat is slightly larger than 1 aralsuddenly decreases, corresponding to
the reactance of the line suddenly increasing.

4.7 (Lyapunov equation) Show that Lyapunov equation (4.14) gdnes a solu-
tion if all of the eigenvalues oA are in the left half-plane. (Hint: Use the fact that
the Lyapunov equation is linear rand start with the case whefehas distinct
eigenvalues.)

4.8 (Congestion control) Consider the congestion control lemmbdescribed in
Section 3.4. Confirm that the equilibrium point for the systsngiven by equa-
tion (3.21) and compute the stability of this equilibriumimtousing a linear ap-
proximation.

4.9 (Swinging up a pendulum) Consider the inverted penduluncudised in Ex-
ample 4.4, that is described by

6 = sinf +ucosb,

wheref is the angle between the pendulum and the vertical and theotsignal
uis the acceleration of the pivot. Using the energy function

V(6,6) =cosh — 1+ %92,

show that the state feedbaak= k(Vo —V)6cosh causes the pendulum to “swing
up” to the upright position.

4.10(Root locus diagram) Consider the linear system

dx 0 1 -1

dt_[O _3]x+[4]u, y_(l O]x,
with the feedbacki = —Kky. Plot the location of the eigenvalues as a function the
parametek.

4.11(Discrete-time Lyapunov function) Consider a nonlineacdete-time sys-
tem with dynamicx(k+ 1] = f(x[k]) and equilibrium poinke = 0. Suppose there
exists a smooth, positive definite funct®dn R" — R such thaV/ (f(x)) —V(x) <0
for x £ 0 and V(0) = 0. Show thate = 0 is (locally) asymptotically stable.

4.12 (Operational amplifier oscillator) An op amp circuit for anciietor was
shown in Exercise 3.5. The oscillatory solution for that lineicuit was stable
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but not asymptotically stable. A schematic of a modified dirthat has nonlinear
elements is shown in the figure below.

The modification is obtained by making a feedback around eaetatipnal am-
plifier that has capacitors using multipliers. The sigagk= V2 + V3 — V3 is the
amplitude error. Show that the system is modeled by

dvy . R4 1
dt RIRG 2T Rllclvl(v(z’ Vi-V2),

dV2 o 1 1
@ RG A Ry, 20

Show that, under suitable conditions on parameter valuegitbuit gives an os-
cillation with a stable limit cycle with amplitudey. (Hint: Use the results of Ex-
ample 4.8.)

Vi +

4.13(Self-activating genetic circuit) Consider the dynamica genetic circuit that
implementsself-activationthe protein produced by the gene is an activator for the
protein, thus stimulating its own production through pesifeedback. Using the
models presented in Example 2.13, the dynamics for the systarbe written as

dm__ap?
dt  14+kp?

for p,m> 0. Find the equilibrium points for the system and analyze tuall
stability of each using Lyapunov analysis.

d
+ap—ym, dffzﬁm—ép, (4.27)

4.14 (Diagonal systems) LeA € R"™" be a square matrix with real eigenvalues
A1,...,Aq and corresponding eigenvectess. . ., V.

(@) Show that if the eigenvalues are distin&t £ A;j for i # j), thenv; # v; for
i .

(b) Show that the eigenvectors form a basis i so that any vectok can be
written asx = 3 av; for aj € R.
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(c) LetT=|v1 vo ... vn] and show thaT ~*AT is a diagonal matrix of the
form (4.8).
(d) Show that if some of tha; are complex numbers, théncan be written as
N1 0
A= where N=AcR or /\i:[a w]‘
—-w o
0 Nk

in an appropriate set of coordinates.
This form of the dynamics of a linear system is often refercedsmodal form

4.15(Furuta pendulum) The Furuta pendulum, an inverted penduluarotating
arm, is shown to the left in the figure below.

0.5

Pendulum angl®/m
o

0 5 10 15 20
Angular velocityw

Consider the situation when the pendulum arm is spinning egnstant rate. The
system has multiple equilibrium points that depend on thgukam velocity w, as
shown in the bifurcation diagram on the right.

The equations of motion for the system are given by

JpB — Jpeh sin@cosh — myglsing = 0,

whereJ, is the moment of inertia of the pendulum with respect to it®pim, is
the pendulum mass,is the distance between the pivot and the center of mass of
the pendulum andy is the the rate of rotation of the arm.

(a) Determine the equilibria for the system and the conwlfip for stability of
each equilibrium point (in terms afy).
(b) Consider the angular velocity as a bifurcation parametel verify the bifur-
cation diagram given above. This is an example pitehfork bifurcation
4.16 (Routh-Hurwitz criterion) Consider a linear differentiafjuation with the
characteristic polynomial

M) =S tasta, A(s)=S+as +as+as.

Show that the system is asymptotically stable if and onlylifred coefficientsy;
are positive and ifyay > ag. This is a special case of a more general set of criteria
known as the Routh-Hurwitz criterion.



Chapter Five

Linear Systems

Few physical elements display truly linear characteristics. For examplesthtéon between
force on a spring and displacement of the spring is always nonlinear te stegree. The
relation between current through a resistor and voltage drop acrosksd deviates from a
straight-line relation. However, if in each case the relatioméasonablylinear, then it will
be found that the system behavior will be very close to that obtained bynaggan ideal,
linear physical element, and the analytical simplification is so enormousitbahake linear
assumptions wherever we can possibly do so in good conscience.

Robert H. CannorDynamics of Physical Systeyi®67 [Can03].

In Chapters 2—4 we considered the construction and anatysigferential
equation models for dynamical systems. In this chapter weiafize our results
to the case of linear, time-invariant input/output systeiivéo central concepts
are the matrix exponential and the convolution equatiorguth which we can
completely characterize the behavior of a linear systemalsle describe some
properties of the input/output response and show how tooxppate a nonlinear
system by a linear one.

5.1 Basic Definitions

We have seen several instances of linear differential @sain the examples in
the previous chapters, including the spring—mass systampgdd oscillator) and
the operational amplifier in the presence of small (nonstangpRinput signals.
More generally, many dynamical systems can be modeled aetyby linear dif-
ferential equations. Electrical circuits are one example bfoad class of systems
for which linear models can be used effectively. Linear medek also broadly
applicable in mechanical engineering, for example, as tsaafesmall deviations
from equilibria in solid and fluid mechanics. Signal-procegsystems, including
digital filters of the sort used in CD and MP3 players, are anatbarce of good
examples, although these are often best modeled in didaret€as described in
more detail in the exercises).

In many cases, wereatesystems with a linear input/output response through
the use of feedback. Indeed, it was the desire for lineariehthat led Harold
S. Black to the invention of the negative feedback amplifiemédt all modern
signal processing systems, whether analog or digital,esgbfack to produce lin-
ear or near-linear input/output characteristics. Forasstems, it is often useful
to represent the input/output characteristics as lingagring the internal details
required to get that linear response.



132 CHAPTER 5. LINEAR SYSTEMS

For other systems, nonlinearities cannot be ignored, &dhed one cares
about the global behavior of the system. The predator—pr@ylg@m is one exam-
ple of this: to capture the oscillatory behavior of the idegendent populations
we must include the nonlinear coupling terms. Other examirlelude switch-
ing behavior and generating periodic motion for locomatidowever, if we care
about what happens near an equilibrium point, it often sidftceapproximate
the nonlinear dynamics by their local linearization, as Wweaaly explored briefly
in Section 4.3. The linearization is essentially an approioneof the nonlinear
dynamics around the desired operating point.

Linearity

We now proceed to define linearity of input/output systemsenformally. Con-
sider a state space system of the form

B fxw,  y=hxu), (5.1)
dt

wherex € R", u € RP andy € RY. As in the previous chapters, we will usually

restrict ourselves to the single-input, single-outputdag takingp =q= 1. We

also assume that all functions are smooth and that for amaasoclass of inputs

(e.q., piecewise continuous functions of time) the sohgiof equation (5.1) exist

for all time.

It will be convenient to assume that the origia= 0, u = 0 is an equilibrium
point for this systemx = 0) and thath(0,0) = 0. Indeed, we can do so without
loss of generality. To see this, suppose {ixatue) # (0,0) is an equilibrium point
of the system with outpwe = h(Xe, Ug). Then we can define a new set of states,
inputs and outputs,

)’Z:X_X& GZU—Ue, y:y_y&
and rewrite the equations of motion in terms of these vaesbl

—X
dt
¥ = h(X+Xe, 0+ Ue) — Ye =: h(X, 0).

= (K4 Xe, U4 Ue) =: f(X,00),

2

In the new set of variables, the origin is an equilibrium paiith output 0, and
hence we can carry out our analysis in this set of variablase@e have obtained
our answers in this new set of variables, we simply “trae$l#tem back to the
original coordinates using= X+ Xe, U= 0+ Us andy = Y+ Ve.

Returning to the original equations (5.1), now assumindpeuit loss of gen-
erality that the origin is the equilibrium point of intereste write the outpuy(t)
corresponding to the initial conditiof{0) = Xp and inputu(t) asy(t;xp,u). Using
this notation, a system is said to bdirrear input/output systentf the following
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Figure 5.1: Superposition of homogeneous and particular solutions. The firstirowssthe
input, state and output corresponding to the initial condition responsesetioad row shows
the same variables corresponding to zero initial condition but nonzeub. ipe third row
is the complete solution, which is the sum of the two individual solutions.

conditions are satisfied:
(i) y(t;axi+Bx2,0) = ay(t;xy,0) + By(t; x2, 0),
(i) y(t; axg, Ou) = ay(t;xo,0) + dy(t; O,u), (5.2)
(i) y(t;0,0u1 + yup) = OYy(t;0,u1) + yy(t; 0, uz).

Thus, we define a system to be linear if the outputs are joimibal in the initial
condition responséu = 0) and the forced respongg(0) = 0). Property (iii) is a
statement of therinciple of superpositionthe response of a linear system to the
sum of two inputsu; andus, is the sum of the outputg andy, corresponding to
the individual inputs.

The general form of a linear state space system is

dx
i Ax+ Bu, y =Cx+ Du, (5.3)
where A € R™", B € R™P, C € R™" andD € RY*P, In the special case of a
single-input, single-output systerB,is a column vectorC is a row vector and
is scalar. Equation (5.3) is a system of linear first-ordeeddhtial equations with
inputu, statex and outpuly. It is easy to show that given solutiorgt) andxx(t)
for this set of equations, they satisfy the linearity coiodis.

We definex,(t) to be the solution with zero input (thf@mogeneous solutipn
and the solutionxpy(t) to be the solution with zero initial condition (@articular
solution). Figure 5.1 illustrates how these two individual soluti@as be super-
imposed to form the complete solution.
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It is also possible to show that if a finite-dimensional dynaahsystem is in-
put/output linear in the sense we have described, it canyalya represented by a
state space equation of the form (5.3) through an apprepciatice of state vari-
ables. In Section 5.2 we will give an explicit solution of etjoa (5.3), but we
illustrate the basic form through a simple example.

Example 5.1 Scalar system
Consider the first-order differential equation

dX_aX+U =X
dt_ ) y_ )

with x(0) = Xo. Letu; = Asinwst andu, = Bcoswt. The homogeneous solution
iS Xn(t) = €®'xo, and two particular solutions witk(0) = 0 are

—w € + wy coswt + asinawgt
Xp1(t) = —A
pl( ) 3.2+OJ12 )
ae® — acoswpt + wp sinwpt
+w

Suppose that we now choos@) = aXp andu = u; + uy. Then the resulting solu-
tion is the weighted sum of the individual solutions:

Awy Ba
a2+ 2 + a2+ 2
Wy w5

x(t) = ™ (axo+

5.4
wy cosmt 4+ asinwyt —acoswyt + wp Sinwpt ®.4)
—A > > B > .
a2+ w? a2+ w?
To see this, substitute equation (5.4) into the differémtipation. Thus, the prop-
erties of a linear system are satisfied. O

Time Invariance

Time invariancds an important concept that is used to describe a systemewhos
properties do not change with time. More precisely, for aetimariant system
if the inputu(t) gives outputy(t), then if we shift the time at which the input
is applied by a constant amouat u(t + a) gives the outpuy(t + a). Systems
that are linear and time-invariant, often calle@l systemshave the interesting
property that their response to an arbitrary input is coteptecharacterized by
their response to step inputs or their response to shoriulises.”

To explore the consequences of time invariance, we first ctertpe response
to a piecewise constant input. Assume that the system ialiniat rest and con-
sider the piecewise constant input shown in Figure 5.2a. Tjmet inas jumps at
timesty, and its values after the jumps anéty). The input can be viewed as a
combination of steps: the first step at titgehas amplitudei(tp), the second step
at timet; has amplitudei(t;) — u(tp), etc.

Assuming that the system is initially at an equilibrium gddiso that the initial
condition response is zero), the response to the input cabta@ed by superim-
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(a) Piecewise constant input (b) Output response

Figure 5.2: Response to piecewise constant inputs. A piecewise constant sigrize cap-
resented as a sum of step signals (a), and the resulting output is the soenindividual
outputs (b).

posing the responses to a combination of step inputsHI(Btbe the response to
a unit step applied at time 0. The response to the first step fsHifie— to)u(to),

the response to the second stefi& —t1) (u(t1) — u(to)), and we find that the
complete response is given by

y(t) = H(t —to)u(to) + H(t —t2) (u(tz) — u(to)) +---
= (H(t—to) —H(t—t1))u(to) + (H(t —t2) —H(t —t2))u(ty) +---

th<t

_ ZJ(H(t—tn)—H(t—tn+1))u(tn)

NUH(t—ty) — H(t —thy 1)
= u(tn) (th1 —tn).
n; thi1— tn ( n) ( n+1 n)

An example of this computation is shown in Figure 5.2b.

The response to a continuous input signal is obtained by datkia limit as
thi1—th — 0, which gives

t
y(t):/o H'(t — 1)u(t)dr, (5.5)

whereH’ is the derivative of the step response, also calledripilse response
The response of a linear time-invariant system to any inputicas be computed
from the step response. Notice that the output depends ortlyeoinput since we
assumed the system was initially at re$0) = 0. We will derive equation (5.5) in
a slightly different way in the Section 5.3.



136 CHAPTER 5. LINEAR SYSTEMS

5.2 The Matrix Exponential

Equation (5.5) shows that the output of a linear system carritewas an integral
over the inputai(t). In this section and the next we derive a more general version
of this formula, which includes nonzero initial conditioWge begin by exploring
the initial condition response using the matrix exponéntia

Initial Condition Response

Although we have shown that the solution of a linear set ded#htial equations
defines a linear input/output system, we have not fully comgbtihe solution of
the system. We begin by considering the homogeneous respongsponding to
the system

dx
— =A 5.6
gt = ™ (5.6)
For thescalardifferential equation
dx
R,aeR
dt aX? X 6 ) 6 )

the solution is given by the exponential
X(t) = €*x(0).

We wish to generalize this to the vector case, wielbecomes a matrix. We define
thematrix exponentiahs the infinite series

1 1
eX—I+X+2X2+

il 1
3
— X+ Z k— (5.7)
whereX € R™" is a square matrix andis then x nidentity matrix. We make use
of the notation
X0=1, X?=XX, X"=x"1x,

which defines what we mean by the “power” of a matrix. Equatiaii)(& easy
to remember since it is just the Taylor series for the scalporential, applied to
the matrixX. It can be shown that the series in equation (5.7) conveigyeariy
matrix X € R™" in the same way that the normal exponential is defined for any
scalara € R.

ReplacingX in equation (5.7) byAt, wheret € R, we find that

1 1 © 1
M= | LAt AR AR = > .\l
2 3! Lok

and differentiating this expression with respect tives

d A 2 1,392 Cae Lok At
ae/*_AJrAtJréAt +---—AKZEAt = AN, (5.8)
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Multiplying by x(0) from the right, we find thax(t) = €*'x(0) is the solution to the
differential equation (5.6) with initial conditiox(0). We summarize this important
result as a proposition.

Proposition 5.1. The solution to the homogeneous system of differential equa-
tions(5.6)is given by
x(t) = €\(0).

Notice that the form of the solution is exactly the same aséatar equations,
but we must put the vecto0) on the right of the matrie™.

The form of the solution immediately allows us to see that thet®n is linear
in the initial condition. In particular, ikn; (t) is the solution to equation (5.6) with
initial condition x(0) = Xp1 andxpz(t) with initial condition x(0) = xg2, then the
solution with initial conditionx(0) = axo1 + BXoz2 IS given by

X(t) = eM(axor+ Bxo2) = (A€ %01+ BEMX02) = aX (1) + BXna(t).

Similarly, we see that the corresponding output is given by

y(t) = Cx(t) = ayni(t) + Byna(t),

whereyp (t) andyno(t) are the outputs corresponding®q (t) andxna(t).
We illustrate computation of the matrix exponential by twamples.

Example 5.2 Double integrator
A very simple linear system that is useful in understandiagi®concepts is the
second-order system given by

q=u, y=2aq

This system is called double integratobecause the inputis integrated twice to
determine the output
In state space form, we write= (q,q) and

dx 0 1 0
R GHERHE
The dynamics matrix of a double integrator is
0 1
[0 9]
and we find by direct calculation thAZ = 0 and hence

1t
eL\t:[o 1

Thus the homogeneous solutian=£ 0) for the double integrator is given by

X(t) = [cl) tl] [gggg] _ X1<02(;Eé;<2(0)] 7

y(t) = X]_(O) +tX2(0).
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Example 5.3 Undamped oscillator
A simple model for an oscillator, such as the spring—masesywiith zero damp-
ing, is

G+ wfg=u.
Putting the system into state space form, the dynamics nfatrikis system can
be written as

A 0 w and At _ co_scuot sinapt '
—wy O —Sinapt  cosunt

This expression foe can be verified by differentiation:

EeAt— —wpsSinupt (o COStnt
dt = = | —apcoswpt —apSinwpt

0 w coswpt  Sinanpt t
= . == AGA .
—wp O —Sinapt  cosant

The solution is then given by

- [ cosapt  sinaxt) [x.(0)
X(t) = €x(0) = [—sinoq)t COS&Jot] [X;(O)].

If the system has damping,
G+ 20 and+ wha = u,
the solution is more complicated, but the matrix exponénta be shown to be

Zeiwdt _ Ze_iwdt eiwdt +e—ia)dt eioodt _ e—iwdt
+ -
et 2\/72-1 2 2\/02-1
€ efiwdt _ ei(qjt Zefiwdt _ Zeiwut eiwdt + efiwdt

2771 2/2-1 | 2

wherewy = wo+/ {2 — 1. Note thaiwy and+/{? — 1 can be either real or complex,
but the combinations of terms will always yield a real valaethe entries in the

matrix exponential. O

An important class of linear systems are those that can bescenl into diag-
onal form. Suppose that we are given a system

dx
2 A
at

such that all the eigenvalues Afare distinct. It can be shown (Exercise 4.14) that
we can find an invertible matriX such thaff AT~ is diagonal. If we choose a set
of coordinateg = T x, then in the new coordinates the dynamics become

dz_ X _ rpx=TAT 2
dt dt

By construction ofT, this system will be diagonal.
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Now consider a diagonal matri& and the correspondingth power of At,
which is also diagonal:

M 0 AftK 0
A Atk
a=| 7 (k= . ,
0 An 0 )\riftk
It follows from the series expansion that the matrix expaia¢is given by
eht 0
t
|
0 et

A similar expansion can be done in the case where the eigewalre complex,
using a block diagonal matrix, similar to what was done in Bect.3.

Jordan Form @

Some matrices with equal eigenvalues cannot be transforsmdihgional form.
They can, however, be transformed to a closely related foattedt theJordan
form, in which the dynamics matrix has the eigenvalues along ihgodial. When
there are equal eigenvalues, there may be 1's appearing sugperdiagonal indi-
cating that there is coupling between the states.

More specifically, we define a matrix to be in Jordan form if it denwritten
as

J 0 ... 0 0 A1 O ... O

0 » O 0 0 0 A 1 0
= ... |, where J=|: KPR I CXe))

0 0 Jo1 O 0 0 A1

0o 0 ... 0 K 0O 0 ... 0 AN

Each matrixJ; is called aJordan block and A; for that block corresponds to an
eigenvalue ofl. A first-order Jordan block can be represented as a system con-
sisting of an integrator with feedbadk A Jordan block of higher order can be
represented as series connections of such systems, a=thasin Figure 5.3.

Theorem 5.2(Jordan decompositionAny matrix Ac R™*" can be transformed
into Jordan form with the eigenvalues of A determink@n the Jordan form.

Proof. See any standard text on linear algebra, such as Strang [Skt&8$pecial
case where the eigenvalues are distinct is examined in Beefcl4. Ol

Converting a matrix into Jordan form can be complicatedicalgh MATLAB
can do this conversion for numerical matrices usingjtbe dan function. The
structure of the resulting Jordan form is particularly resging since there is no
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X1 X2 X1 X3 X2 X1

A A A A A A

Figure 5.3: Representations of linear systems where the dynamics matrices asn Jord
blocks. A first-order Jordan block can be represented as an integrihofeedbackA, as
shown on the left. Second- and third-order Jordan blocks can besepted as series con-
nections of integrators with feedback, as shown on the right.

requirement that the individudl’s be unique, and hence for a given eigenvalue
we can have one or more Jordan blocks of different sizes.

Once a matrix is in Jordan form, the exponential of the mataix be computed
in terms of the Jordan blocks:

er 0 ... O
Jo .
- |0 ¢© . (5.10)
: .0
0 ... 0 ek

This follows from the block diagonal form af. The exponentials of the Jordan
blocks can in turn be written as

2 n—-1
(1t 5 ... 7(;_1)!
tn72
0 1 t =
eft=|. T A (5.11)
.ot
(0 ... 0o 1

When there are multiple eigenvalues, the invariant sulespassociated with
each eigenvalue correspond to the Jordan blocks of thexwatNote thatA may
be complex, in which case the transformatibrihat converts a matrix into Jor-
dan form will also be complex. Wheh has a honzero imaginary component, the
solutions will have oscillatory components since

0@t — o9 (coset + i sinawt).

We can now use these results to prove Theorem 4.1, which shatethe equilib-
rium pointxe = 0 of a linear system is asymptotically stable if and only ifARe O.

Proof of Theorem 4.1Let T € C"™" be an invertible matrix that transformdsnto
Jordan form,) = TATL. Using coordinateg= T x, we can write the solution(t)
as

z(t) = e’'Z(0).
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Since any solution(t) can be written in terms of a solutia) with z(0) = T x(0),

it follows that it is sufficient to prove the theorem in the tséormed coordinates.
The solutionz(t) can be written in terms of the elements of the matrix expo-

nential. From equation (5.11) these elements all decay wfperarbitraryz(0) if

and only if Re\; < 0. Furthermore, if any\; has positive real part, then there ex-

ists an initial conditiorg(0) such that the corresponding solution increases without

bound. Since we can scale this initial condition to be arbiyramall, it follows

that the equilibrium point is unstable if any eigenvalue pasitive real part. [

The existence of a canonical form allows us to prove many ptigseof linear
systems by changing to a set of coordinates in whichAhmeatrix is in Jordan
form. We illustrate this in the following proposition, wiii¢ollows along the same
lines as the proof of Theorem 4.1.

Proposition 5.3. Suppose that the system

dx

— =AX

dt
has no eigenvalues with strictly positive real part and omenore eigenvalues
with zero real part. Then the system is stable if and only ifJitvelan blocks cor-

responding to each eigenvalue with zero real part are scélat 1) blocks.

Proof. See Exercise 5.6b. O

The following example illustrates the use of the Jordan form.

Example 5.4 Linear model of a vectored thrust aircraft

Consider the dynamics of a vectored thrust aircraft suchatsdescribed in Ex-
ample 2.9. Suppose that we chooge-= u, = 0 so that the dynamics of the system
become

( Z
q V4
az_ B , (5.12)
dt —gsinzs — £ 24
g(coszz—1) - =75
0

wherez = (x,y, 8,x,y, 8). The equilibrium points for the system are given by set-
ting the velocitiex,'y andé to zero and choosing the remaining variables to satisfy

—gsinzze=0

— 6.0
9(003239 — 1) = O = Z3,e e

This corresponds to the upright orientation for the aircrisiftte thatxe andye
are not specified. This is because we can translate the systemew (upright)
position and still obtain an equilibrium point.
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—_— — —_— 2 -

oL B

(a) Mode 1 (b) Mode 2

Figure 5.4: Modes of vibration for a system consisting of two masses connectedingsp
In (a) the masses move left and right in synchronization in (b) they rntawvard or against
each other.

To compute the stability of the equilibrium point, we comgtite linearization
using equation (4.11):

[oNeNe]

a=F

dzZe_

cNeolNeolNoNoNel
cNeoloNoNoNe

|
(@)
|
(@]
coloor
3
ol oopro

oo
OO oo

The eigenvalues of the system can be computed as
A(A) ={0,0,0,0,—c/m,—c/m}.

We see that the linearized system is not asymptoticallylestsibce not all of the
eigenvalues have strictly negative real part.

To determine whether the system is stable in the sense otugapwe must
make use of the Jordan form. It can be shown that the JordandbA is given by

0/0 0 0/ O 0
0/0 1 0/ O 0
J_0001O 0
|1 0/0 OO0 O 0
0({0 O Ol—c/m| O
0/0 0 0f 0 |—-c/m

Since the second Jordan block has eigenvalue 0 and is not ee®igpnvalue, the
linearization is unstable. 0

Eigenvalues and Modes

The eigenvalues and eigenvectors of a system provide a pescrof the types of
behavior the system can exhibit. For oscillatory systeims térmmodeis often
used to describe the vibration patterns that can occur. €igut illustrates the
modes for a system consisting of two masses connected mgspfOne pattern is
when both masses oscillate left and right in unison, andremas when the masses
move toward and away from each other.

The initial condition response of a linear system can be @mrith terms of a
matrix exponential involving the dynamics matAxThe properties of the matri
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1 1
F\ o Slow mode X1
ast < 05PN % |
0.5 x S
0
X2 0 10 20 30 40 50
0
1
_ \ Fast mode
05 £ 05,
x \
S/Iow ol ~=
-1 -05 0 0.5 1 0 10 20 30 40 50
X1 Timet

Figure 5.5: The notion of modes for a second-order system with real eigenvalhedeft
figure shows the phase portrait and the modes corresponding to selthianstart on the
eigenvectors (bold lines). The corresponding time functions are sbhawvime right.

therefore determine the resulting behavior of the systemerG matrixA € R"<",
recall thatv is an eigenvector o with eigenvalue\ if

Av=AV.

In generald andv may be complex-valued, althoughAfis real-valued, then for
any eigenvalud its complex conjugat@ * will also be an eigenvalue (with* as
the corresponding eigenvector).

Suppose first thak andv are a real-valued eigenvalue/eigenvector pairXor
If we look at the solution of the differential equation #&(0) = v, it follows from
the definition of the matrix exponential that

2:2
fv= (I +At+ %Aztz—k SV =VAAV /\Tv+ o=y
The solution thus lies in the subspace spanned by the eigenv€be eigenvalue
A describes how the solution varies in time, and this solusarften called anode
of the system. (In the literature, the term “mode” is als@pftised to refer to the
eigenvalue rather than the solution.)
If we look at the individual elements of the vectorandy, it follows that

x(t) ey Vi
X (t) N e)‘th a Vj’

and hence the ratios of the components of the statee constants for a (real)
mode. The eigenvector thus gives the “shape” of the solutimhis also called
a mode shapef the system. Figure 5.5 illustrates the modes for a secodero
system consisting of a fast mode and a slow mode. Notice lieadthte variables
have the same sign for the slow mode and different signs éofatst mode.

The situation is more complicated when the eigenvalued afe complex.
SinceA has real elements, the eigenvalues and the eigenvectorsrapex con-
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jugatesr = g +iw andv = u+iw, which implies that
u_v+v* V—V*

W=
2 2i
Making use of the matrix exponential, we have
v = eM(u+iw) = €7 ((ucoswt — wsinwt) + i (usinwt +wcoswt)),

from which it follows that

Mu= %(e‘“v+ eAt\f*> = ue” coswt — wet sinat,
eMtw = % <e/“v— eNv*) = ue”’' sinwt + we’* coswt.

A solution with initial conditions in the subspace spanngadhe real paru and
imaginary partv of the eigenvector will thus remain in that subspace. Thetisoiu
will be a logarithmic spiral characterized lwsyand w. We again call the solution
corresponding tad a mode of the system, andhe mode shape.

If a matrix A hasn distinct eigenvalued, ..., A,, then the initial condition re-
sponse can be written as a linear combination of the modesed&ahis, suppose
for simplicity that we have all real eigenvalues with cop@sding unit eigenvec-
torsvy,...,vh. From linear algebra, these eigenvectors are linearly ieaéent,
and we can write the initial conditiox(0) as

X(0) = a1v1 + 02V2 + -+~ + Vi,
Using linearity, the initial condition response can be teritas
X(t) = alg\lt\/l + Gzef‘ZtVZ + .4 and\ntvn‘

Thus, the response is a linear combination of the modes ofystera, with the

amplitude of the individual modes growing or decayingeis The case for dis-
tinct complex eigenvalues follows similarly (the case fondistinct eigenvalues is
more subtle and requires making use of the Jordan form disdua the previous
section).

Example 5.5 Coupled spring—mass system
Consider the spring—mass system shown in Figure 5.4, buttiittaddition of
dampers on each mass. The equations of motion of the system are

M = — 2Ky — €q1 + Kap, mMbz = kop — 2kap — Cp.

In state space form, we define the state tabe(qs, 02,41, 02), and we can rewrite
the equations as

0 0 1 0
0 0 0 1
dx 2k k c
B X
dt m m m 0
k& 4 _¢
m m m
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We now define a transformatian= T x that puts this system into a simpler form.
Letz; = 3(0h + ), 2 = 21, 23 = 3(Ch — O2) andzs = 73, so that

1 10 0
~1lo 0 1 1

2=Tx=511 10 o0
0O 0 1 -1
In the new coordinates, the dynamics become
0 1 0 0 )
k c
iz | 'm m © °
- = Z,
dt 0 0 0 1
k
0o o X _¢
m m/

and we see that the system is in block diagonahfoda) form.

In thez coordinates, the stategs andz, parameterize one mode with eigenval-
uesA ~ —c/(2m) £i/k/m (for c small), and the statem andz; another mode
with A = —c/(2m) £i,/3k/m. From the form of the transformatioh we see
that these modes correspond exactly to the modes in Figure5wvhich g; and
g2 move either toward or against each other. The real and imagpaats of the
eigenvalues give the decay ratesnd frequencies for each mode. 0

5.3 Input/Output Response

In the previous section we saw how to compute the initial damdresponse using
the matrix exponential. In this section we derive the coatroh equation, which
includes the inputs and outputs as well.

The Convolution Equation

We return to the general input/output case in equation (EeBeated here:

d
d%( = Ax+ Bu, y = Cx+ Du. (5.13)

Using the matrix exponential, the solution to equation $p.dan be written as
follows.

Theorem 5.4. The solution to the linear differential equati¢®.13)is given by
t
X(t) = x(0) + / A-TBY(T)dT. (5.14)
0

Proof. To prove this, we differentiate both sides and use the ptp6r8) of the
matrix exponential. This gives

dx

1
i Aex(0) +/ ALDBY(T)dT + Bu(t) = Ax+ Bu,
0
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Figure 5.6: Pulse response and impulse response. (a) The rectangles shosvgfulgdth

5, 25 and 08, each with total area equal to 1. The arrow denotes an imp@\tsedefined

by equation (5.17). The corresponding pulse responses for a fgstmm with eigenvalues

A = {-0.08,-0.62} are shown in (b) as dashed lines. The solid line is the true impulse
response, which is well approximated by a pulse of durati8n 0

which proves the result. Notice that the calculation is ealy the same as for
proving the result for a first-order equation. O

It follows from equations (5.13) and (5.14) that the inputfmut relation for a
linear system is given by
t
y(t) = CMx(0) + /O Ct-IBY(T)dT + Du(t). (5.15)
It is easy to see from this equation that the output is joilitigar in both the
initial conditions and the input, which follows from the diarity of matrix/vector
multiplication and integration.

Equation (5.15) is called thmonvolution equatioyand it represents the general
form of the solution of a system of coupled linear differahgquations. We see
immediately that the dynamics of the system, as charaetktiy the matrixA,
play a critical role in both the stability and performancetloé system. Indeed,
the matrix exponential describésth what happens when we perturb the initial
condition and how the system responds to inputs.

Another interpretation of the convolution equation can ivergusing the concept
of theimpulse responsef a system. Consider the application of an input signal
u(t) given by the following equation:

0 t<0
ut)=pet)=<¢1l/e 0<t<e (5.16)
0 t>e¢.

This signal is gulseof duratione and amplitude 1¢, as illustrated in Figure 5.6a.
We define animpulsed(t) to be the limit of this signal as — O:

5(t) = lim pe(0). (5.17)
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This signal, sometimes calleddelta function,is not physically achievable but
provides a convenient abstraction in understanding theorese of a system. Note
that the integral of an impulse is 1:

t t t
/Oé(r)dr:/O lanopg(t)dr:yLno/o pe(t)dr

€
=lm [ 1/edt=1 t>0.
e—=0.J0
In particular, the integral of an impulse over an arbitgashort period of time is
identically 1.
We define thémpulse responsef a systenh(t) to be the output corresponding
to having an impulse as its input:

ht) = /0 ' Ct-Tps () dr — CeMB, (5.18)

where the second equality follows from the fact thét) is zero everywhere ex-
cept the origin and its integral is identically 1. We can novitevthe convolution

equation in terms of the initial condition response, thevotution of the impulse

response and the input signal, and the direct term:

y(t) = Ce"x(0) + /ot h(t — T)u(t)dt + Du(t). (5.19)

One interpretation of this equation, explored in Exercigg . that the response
of the linear system is the superposition of the response iofaite set of shifted
impulses whose magnitudes are given by the iyjtit This is essentially the ar-
gument used in analyzing Figure 5.2 and deriving equatid®).(Blote that the
second term in equation (5.19) is identical to equation)(®aBd it can be shown
that the impulse response is formally equivalent to thevdévie of the step re-
sponse.

The use of pulses as approximations of the impulse functiso atovides a
mechanism for identifying the dynamics of a system from daigure 5.6b shows
the pulse responses of a system for different pulse widthsicél that the pulse
responses approach the impulse response as the pulse wikhazero. As a
general rule, if the fastest eigenvalue of a stable systemndad part- omax, then a
pulse of lengtre will provide a good estimate of the impulse responssoif,ax <
1. Note that for Figure 5.6, a pulse width ©f= 1 s giveseOmax = 0.62 and the
pulse response is already close to the impulse response.

Coordinate Invariance

The components of the input vectarand the output vectoy are given by the
chosen inputs and outputs of a model, but the state varidelesnd on the coor-
dinate frame chosen to represent the state. This choice ofioates affects the
values of the matrice8, B andC that are used in the model. (The direct tebm
is not affected since it maps inputs to outputs.) We now itigate some of the
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Figure 5.7: Coupled spring mass system. Each mass is connected to two springs Wth stif
nessk and a viscous damper with damping coefficienThe mass on the right is driven
through a spring connected to a sinusoidally varying attachment.

consequences of changing coordinate systems.
Introduce new coordinatesby the transformatioz = T x, whereT is an in-
vertible matrix. It follows from equation (5.3) that
d .~
d{ — T(Ax+Bu) = TAT 1z+ TBu=: Az+ Bu,
y =Cx+Du=CT 'z4+Du=:Cz+Du.

The transformed system has the same form as equation (5t Bechmatrice®, B
andC are different:

A=TAT B=TB, C=cCcT . (5.20)

There are often special choices of coordinate systems tbat as to see a partic-
ular property of the system, hence coordinate transfoonattan be used to gain
new insight into the dynamics.

We can also compare the solution of the system in transfoneddinates to
that in the original state coordinates. We make use of anitapbproperty of the
exponential map,

—1
T _TeT

which can be verified by substitution in the definition of the mixagxponential.
Using this property, it is easy to show that

X(t) =T z(t) = T 1eNTx(0) + T /O CACDBY(r) dr.

From this form of the equation, we see that if it is possiblerm$formA into

a form A for which the matrix exponential is easy to compute, we canthat
computation to solve the general convolution equationHentntransformed state
x by simple matrix multiplications. This technique is illiestied in the following
example.

Example 5.6 Coupled spring—mass system
Consider the coupled spring—mass system shown in Figurd Be7Zinput to this
system is the sinusoidal motion of the end of the rightmoshgpand the output
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is the position of each masg, andgy. The equations of motion are given by

mde = ko — 2kap — ¢z + ku.

md = —2Ka1 — gy + Kap,

In state space form, we define the state ta be(q:, 02, d1,62), and we can rewrite

the equations as

0 0 1 0 0

0 0 0 1 0
dx 2k k c
—=|-= = —= 0 [x+]|0]u
dt m m m

k2% cof (X

m m m m

This is a coupled set of four differential equations and isegodmplicated to solve

in analytical form.

The dynamics matrix is the same as in Example 5.5, and we caheseor-
dinate transformation defined there to put the system in nfodal:

O 1 0 o 0 )
K
ko4 k
dz_ m m 2m
@t lo o o 1]|%| o
0 o X _c _k
m m?/ 2m/

Note that the resulting matrix equations are block diaganal hence decoupled.
We can solve for the solutions by computing the solutionsvaf $ets of second-
order systems represented by the stétes,) and(zs,z). Indeed, the functional
form of each set of equations is identical to that of a singléng—mass system.
(The explicit solution is derived in Section 6.3.)

Once we have solved the two sets of independent second-egdations, we
can recover the dynamics in the original coordinates byrting the state trans-
formation and writingc = T 1z We can also determine the stability of the system
by looking at the stability of the independent second-osystems. O

Steady-State Response

Given a linear input/output system

dx
— = Ax+Bu
gt~ xR

the general form of the solution to equation (5.21) is givgnthe convolution
equation:

y =Cx+Du, (5.22)

y(t) = CeMx(0) + /O tce‘\(t—%au(r)olr +Du(t).

We see from the form of this equation that the solution cassian initial condi-
tion response and an input response.
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Figure 5.8: Transient versus steady-state response. The input to a linear sysieows in
(a), and the corresponding output wikfD) = 0 is shown in (b). The output signal initially
undergoes a transient before settling into its steady-state behavior.

The input response, corresponding to the last two terms irdhation above,
itself consists of two components—thransient responsand thesteady-state re-
sponse The transient response occurs in the first period of time #fieinput
is applied and reflects the mismatch between the initial ¢mmdand the steady-
state solution. The steady-state response is the portidreafutput response that
reflects the long-term behavior of the system under the gimpats. For inputs
that are periodic the steady-state response will often Hedie, and for constant
inputs the response will often be constant. An example ofttuesient and the
steady-state response for a periodic input is shown in Fig&e

A particularly common form of input is step inputwhich represents an abrupt
change in input from one value to anothemAit step(sometimes called the Heav-
iside step function) is defined as

0 t=0
uzs(t):{l t>0

The step responsef the system (5.21) is defined as the outy} starting from
zero initial condition (or the appropriate equilibrium ptiand given a step input.
We note that the step input is discontinuous and hence is nactipally imple-
mentable. However, it is a convenient abstraction that delyiused in studying

input/output systems.
We can compute the step response to a linear system usingitivelation
equation. Settink(0) = 0 and using the definition of the step input above, we

have
t t
y(t) = / CAtDBY(T)dT +Du(t) = C / A-Bdr 4D
0 0

t _ =t
~c [ ¢Bdo+D ~C (A *¢B)[5,+D

—CAlMB-CA 1B+D.

If A has eigenvalues with negative real part (implying that thgim is a stable
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Figure 5.9: Sample step response. The rise time, overshoot, settling time and stasaly-s
value give the key performance properties of the signal.

equilibrium point in the absence of any input), then we cavrite the solution as

y(t)=CA'"B+D-CA'B, t>0. (5.22)
— ——
transient steady-state

The first term is the transient response and decays to zdresa®. The second
term is the steady-state response and represents the ¥ahee @utput for large
time.

A sample step response is shown in Figure 5.9. Several termssatkwhen
referring to a step response. Thieady-state valuesyof a step response is the
final level of the output, assuming it converges. Tise time T is the amount of
time required for the signal to go from 10% of its final value @® of its final
value. Itis possible to define other limits as well, but in thi®k we shall use these
percentages unless otherwise indicated. dvexshoot M is the percentage of the
final value by which the signal initially rises above the finaluea This usually
assumes that future values of the signal do not overshodirtalevalue by more
than this initial transient, otherwise the term can be amnigg. Finally, thesettling
time T is the amount of time required for the signal to stay within @®4ts final
value for all future times. The settling time is also somesrdefined as reaching
1% or 5% of the final value (see Exercise 5.7). In general theserpgance mea-
sures can depend on the amplitude of the input step, butfealisystems the last
three quantities defined above are independent of the sibe atép.

Example 5.7 Compartment model

Consider the compartment model illustrated in Figure 5.XkDdescribed in more
detail in Section 3.6. Assume that a drug is administered Ingtemt infusion in
compartmenY; and that the drug has its effect in compartméntTo assess how
quickly the concentration in the compartment reaches gtetate we compute
the step response, which is shown in Figure 5.10b. The stepnssyis quite slow,
with a settling time of 39 min. It is possible to obtain thesgte-state concentration
much faster by having a faster injection rate initially, &aswn in Figure 5.10c.
The response of the system in this case can be computed byrombivo step
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Figure 5.10: Response of a compartment model to a constant drug infusion. A sdigsle
gram of the system is shown in (a). The step response (b) shows thef @racentration
buildup in compartment 2. In (c) a pulse of initial concentration is used éedpp the
response.

responses (Exercise 5.3). O

Another common input signal to a linear system is a sinuswid combination
of sinusoids). Thérequency respons# an input/output system measures the way
in which the system responds to a sinusoidal excitation @adits inputs. As we
have already seen for scalar systems, the particular snlaisociated with a sinu-
soidal excitation is itself a sinusoid at the same frequeldeynce we can compare
the magnitude and phase of the output sinusoid to the inpatelgenerally, if a
system has a sinusoidal output response at the same fregoagtie input forcing,
we can speak of the frequency response of the system.

To see this in more detail, we must evaluate the convolutipragon (5.15) for
u = coswt. This turns out to be a very messy calculation, but we can magefi
the fact that the system is linear to simplify the derivatibmparticular, we note
that
1
2

Since the system is linear, it suffices to compute the respdrtbe gystem to the
complex inputu(t) = € and we can then reconstruct the input to a sinusoid by
averaging the responses corresponding=a w ands = —iw.

Applying the convolution equation to the input= € we have

coswt = (ej“’t +e*i“").

t
y(t) = CePx(0) + /O CAt-TIBETdr 4+ Dt

1
— Cex(0) + Ce / elS-ATBdr + De.
0

If we assume that none of the eigenvaluesfddre equal tas = +iw, then the
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matrix sl — A is invertible, and we can write
y(t) = CeMx(0) + Ce ((sl — A)*le(s'*A)TB> ’to + De™
= CeMx(0) + CeM(sl — A) L (e<s'*A>t - |) B+ D&
= Ceé"x(0) +C(sl - A) 1B CeM(sl - A) B+ De*,

and we obtain

y(t) = CeMt <x(0) ~(sl— A)’lB> + (C(sl A B4 D) et (5.23)
traagient steady-state

Notice that once again the solution consists of both a tesmigiomponent and a
steady-state component. The transient component decagsdadf zhe system is
asymptotically stable and the steady-state componenbgoptional to the (com-
plex) inputu = e,
We can simplify the form of the solution slightly further bgwriting the steady-
state response as
ySS(t) _ Meieest — ,\/Ie(SH—iG)7

where _
Me® =C(sl—A)1B+D (5.24)

andM and 0 represent the magnitude and phase of the complex nu@(s¢r
A)~B+D. Whens = iw, we say thaiM is thegain and 8 is the phaseof the
system at a given forcing frequenay Using linearity and combining the solutions
for s= +iwands= —iw, we can show that if we have an input A, sin(wt + @)
and an outpuy = Aysin(wt + @), then

gainfw) = ::Z =M, phaséw) =¢ — Y = 6.

The steady-state solution for a sinusaig coswt is now given by
Yss(t) = Mcog wt + 0).

If the phaséd is positive, we say that the outplgadsthe input, otherwise we say
it lagsthe input.

A sample sinusoidal response is illustrated in Figure 5.Tha. dashed line
shows the input sinusoid, which has amplitude 1. The outputssid is shown
as a solid line and has a different amplitude plus a shiftetbghThe gain is the
ratio of the amplitudes of the sinusoids, which can be ddtechby measuring
the height of the peaks. The phase is determined by compdregatio of the
time between zero crossings of the input and output to theatiyeeriod of the
sinusoid: AT

0— o120
T
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Figure 5.11:Response of a linear system to a sinusoid. (a) A sinusoidal input ofitnegn
Ay (dashed) gives a sinusoidal output of magnitégesolid), delayed byAT seconds. (b)
Frequency response, showing gain and phase. The gain is giver Iogtit of the output
amplitude to the input amplitud®) = Ay/A,. The phase lag is given b= —2nAT /T it
is negative for the case shown because the output lags the input.

A convenient way to view the frequency response is to plot Hmvgain and
phase in equation (5.24) depend @n(throughs = iw). Figure 5.11b shows an
example of this type of representation.

Example 5.8 Active band-pass filter

Consider the op amp circuit shown in Figure 5.12a. We can eénie dynamics of
the system by writing theodal equationswhich state that the sum of the currents
at any node must be zero. Assuming that=v, = 0, as we did in Section 3.3,

we have

o—VlF;VZ—Cldd\f, o—cl‘ij‘f+£+czz\f.
Choosingv, andvs as our states and using these equations, we obtain
dV2 V1 — V2 dV3 —V3 Vi — V2
dt ~ RCp dt  RC; RG
Rewriting these in linear state space form, we obtain
1 1
x| RG° RC:
at = 1 1 X+ | y= (O 1] X, (5.25)
RC,  RC RiC;

wherex = (v2,Vv3), U= vy andy = vs.
The frequency response for the system can be computed usiatj@y(5.24):

_& RiCis
Ry (1 + Rj_Cj_S) (1 + RzCzS) ’

The magnitude and phase are plotted in Figure 5.12BRfet 100Q, R, =5 kQ
andC; = C, = 100 pF. We see that the circuit passes through signals wihére

S=iw.

Mel® =C(sl—A)"B+D =
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Figure 5.12: Active band-pass filter. The circuit diagram (a) shows an op amp witlR@o
filters arranged to provide a band-pass filter. The plot in (b) showsaimeemd phase of the
filter as a function of frequency. Note that the phase starts atd96 to the negative gain of
the operational amplifier.

cies at about 10 rad/s, but attenuates frequencies belod/$aad above 50 rad/s.

At 0.1 rad/s the input signal is attenuated byx2(.05). This type of circuit is
called aband-pass filtesince it passes through signals in the band of frequencies
between 5 and 50 rad/s. 0

As in the case of the step response, a number of standardesfe defined
for frequency responses. The gain of a system at0 is called thezero frequency
gainand corresponds to the ratio between a constant input arsieady output:

Mo = —CA 1B+D.

The zero frequency gain is well defined onhAifs invertible (and, in particular, if

it does not have eigenvalues at 0). It is also important te tiwt the zero frequency
gain is a relevant quantity only when a system is stable ath@utorresponding
equilibrium point. So, if we apply a constant input=r, then the correspond-
ing equilibrium pointxe = —A~1Br must be stable in order to talk about the zero
frequency gain. (In electrical engineering, the zero fegly gain is often called
the DC gain DC stands for direct current and reflects the common separafi
signals in electrical engineering into a direct currentdZfeequency) term and an
alternating current (AC) term.)

The bandwidthaw, of a system is the frequency range over which the gain has
decreased by no more than a factor ¢{/2 from its reference value. For systems
with nonzero, finite zero frequency gain, the bandwidth isftequency where
the gain has decreased by\12 from the zero frequency gain. For systems that
attenuate low frequencies but pass through high frequenttie reference gain
is taken as the high-frequency gain. For a system such asathafass filter in
Example 5.8, bandwidth is defined as the range of frequencieseithe gain is
larger than 1+/2 of the gain at the center of the band. (For Example 5.8 thisavou
give a bandwidth of approximately 50 rad/s.)
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Figure 5.13: AFM frequency response. (a) A block diagram for the vertical dyioarof an
atomic force microscope in contact mode. The plot in (b) shows the gaiphase for the
piezo stack. The response contains two frequency peaks at ressnafrthe system, along
with an antiresonance ab = 268 krad/s. The combination of a resonant peak followed by
an antiresonance is common for systems with multiple lightly damped modes.

Another important property of the frequency response isghenant peak M
the largest value of the frequency response, angéak frequencyoy, the fre-
guency where the maximum occurs. These two properties desttre frequency
of the sinusoidal input that produces the largest possiltieud and the gain at the
frequency.

Example 5.9 Atomic force microscope in contact mode

Consider the model for the vertical dynamics of the atomicdamicroscope in
contact mode, discussed in Section 3.5. The basic dynamiagiveme by equa-
tion (3.23). The piezo stack can be modeled by a second-oydtgrs with un-
damped natural frequen@y; and damping rati@’s. The dynamics are then de-
scribed by the linear system

0 1 0 0 0
dx [ —k/(M+mp) —co/(M+mp) 1/mp 0 - 01,
dt 0 0 0 w3 o™
0 0 —w3  —2{303 w3
y= 117 [ My ko My Co 0] X
mMm+m M+ M+

where the input signal is the drive signal to the amplifier dreddutput is the elon-
gation of the piezo. The frequency response of the systenoigrsim Figure 5.13b.
The zero frequency gain of the systenVig= 1. There are two resonant poles with
peakdVl;; = 2.12 atwm 1 = 238 krad's andM,2 = 4.29 atwmr, = 746 krad's. The
bandwidth of the system, defined as the lowest frequency vthergain isy/2 less
than the zero frequency gain, ég, = 292 krad's. There is also a dip in the gain
Mg = 0.556 for wg = 268 krad's. This dip, called aantiresonancgis associated
with a dip in the phase and limits the performance when theesyss controlled
by simple controllers, as we will see in Chapter 10. O
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Sampling

It is often convenient to use both differential and diffeverequations in modeling
and control. For linear systems it is straightforward to$&farm from one to the
other. Consider the general linear system described bytiegua.13) and assume
that the control signal is constant over a sampling inteo¥aonstant lengtf. It
follows from equation (5.14) of Theorem 5.4 that

X(t+h) = eAx(t) + /t t+he‘“”“*”Bu(r) dr = Ox(t) +u(t), (5.26)

where we have assumed that the discontinuous control sgyeahtinuous from
the right. The behavior of the system at the sampling timekh is described by
the difference equation

x[k+1] = Ox[K +Tukl,  ylk] =CxK| +Du[K. (5.27)

Notice that the difference equation (5.27) is an exact sepr&tion of the behavior
of the system at the sampling instants. Similar expressiansalso be obtained if
the control signal is linear over the sampling interval.

The transformation from (5.26) to (5.27) is callsampling The relations be-
tween the system matrices in the continuous and sampledsemiations are as
follows:

® = r:(/ohef\Sds)B; A:%Iogdb, B:(/OheAsds)_lr. (5.28)

Notice that ifA is invertible, we have
r=Ae"-1)B.

All continuous-time systems can be sampled to obtain aelisd¢ime version,
but there are discrete-time systems that do not have a congatime equivalent.
The precise conditions depend on the properties of the n&tpgnential expAh)
in equation (5.26).

Example 5.10 IBM Lotus server
In Example 2.4 we described how the dynamics of an IBM Lotusesewere
obtained as the discrete-time system

y[k+ 1] = ay[k] + bulk],

wherea = 0.43, b = 0.47 and the sampling period ts= 60s. A differential

equation model is needed if we would like to design contratems based on
continuous-time theory. Such a model is obtained by applgiggation (5.28);
hence

h -1
A='99%_ 0141  B- (/ e‘“dt> b=00116
h 0

and we find that the difference equation can be interpretedamaled version of
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the ordinary differential equation

31( — _0.0141x+ 0.0118..

5.4 Linearization

As described at the beginning of the chapter, a common saidriieear system
models is through the approximation of a nonlinear systera layear one. These
approximations are aimed at studying the local behavior ®fsdem, where the
nonlinear effects are expected to be small. In this sectierdiscuss how to lo-
cally approximate a system by its linearization and what lsarsaid about the
approximation in terms of stability. We begin with an illcegion of the basic con-
cept using the cruise control example from Chapter 3.

Example 5.11 Cruise control
The dynamics for the cruise control system were derived ini@e&t1 and have
the form

mg\t/ = anuT(anv) —mgG sgnv) — %pCVsz —mgsiné, (5.29)
where the first term on the right-hand side of the equationasahce generated
by the engine and the remaining three terms are the rollinidn, aerodynamic
drag and gravitational disturbance force. There is an dxiifn (ve, ue) when the
force applied by the engine balances the disturbance forces

To explore the behavior of the system near the equilibriumwildinearize the
system. A Taylor series expansion of equation (5.29) art@equilibrium gives

d(v—ve)

ai = a(v—Ve) —bg(6 — B) + b(u—ue) + higher order terms, ~ (5.30)

where

4 Uea 2T’ (anVe) — PCuAVe
m

, by = gCcos6e, b= M.

(5.31)
Notice that the term corresponding to rolling friction gipaars ifv = 0. For a
car in fourth gear with/e = 25 m/s,8. = 0 and the numerical values for the car
from Section 3.1, the equilibrium value for the throttlelis= 0.1687 and the
parameters ara = —0.0101,b = 1.32 andc = 9.8. This linear model describes
how small perturbations in the velocity about the nomin&espevolve in time.
Figure 5.14 shows a simulation of a cruise controller witkedinand nonlinear
models; the differences between the linear and nonlineateiscare small, and
hence the linearized model provides a reasonable approgima O
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Figure 5.14: Simulated response of a vehicle with PI cruise control as it climbs a hill with a
slope of 4. The solid line is the simulation based on a nonlinear model, and the dashed line
shows the corresponding simulation using a linear model. The controltes geekp = 0.5

andk; = 0.1.

Jacobian Linearization Around an Equilibrium Point
To proceed more formally, consider a single-input, sirml#put nonlinear system
dx
dt
y=h(xu), YyeR,

f R" R
(x,u), xeR"UeR, (5.32)

with an equilibrium point ak = Xe, U = Ue. Without loss of generality we can
assume thate = 0 andue = 0, although initially we will consider the general case
to make the shift of coordinates explicit.

To study thdocal behavior of the system around the equilibrium pagiat ue),
we suppose that— xe andu — ue are both small, so that nonlinear perturbations
around this equilibrium point can be ignored compared with(tower-order) lin-
ear terms. This is roughly the same type of argument that id wéen we do
small-angle approximations, replacing 8invith 8 and co® with 1 for 6 near
zero.

As we did in Chapter 4, we define a new set of state variables well as
inputsv and outputsv:

Z=X—Xe, V=U-—Ug, W =Y —h(Xe, Ue).

These variables are all close to zero when we are near thetegum point, and so
in these variables the nonlinear terms can be thought ofeakitfiner-order terms
in a Taylor series expansion of the relevant vector fieldsuassy for now that
these exist).
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Formally, theJacobian linearizatiorof the nonlinear system (5.32) is
dz

rTi Az+ By, w=Cz+ Dy, (5.33)
where
N e e
OX | (xe,ue) U (e, ) OX] (e, U (e )

The system (5.33) approximates the original system (5.32nwhe are near the
equilibrium point about which the system was linearizedingsrheorem 4.3, if
the linearization is asymptotically stable, then the eluiim pointxe is locally
asymptotically stable for the full nonlinear system.

Itis important to note that we can define the linearization ®fstem only near
an equilibrium point. To see this, consider a polynomiateys

dx 2
gp = f0tax+ X +agC +u,

whereag # 0. A set of equilibrium points for this system is given b, ue) =

(Xe, —80 — A1Xe — aX2 — agx3), and we can linearize around any of them. Suppose
that we try to linearize around the origin of the system 0, u = 0. If we drop the
higher-order terms iw, then we get

dx_ +ayX+u
dt_ao 1 )

which isnotthe Jacobian linearization & # 0. The constant term must be kept,
and itis not present in (5.33). Furthermore, even if we kepttmstant term in the
approximate model, the system would quickly move away frioisipoint (since it

is “driven” by the constant terrag), and hence the approximation could soon fail
to hold.

Software for modeling and simulation frequently has faesitfor performing
linearization symbolically or numerically. The MATLAB commai r i mfinds
the equilibrium, andl i nnod extracts linear state space models from a SIMULINK
system around an operating point.

Example 5.12 Vehicle steering

Consider the vehicle steering system introduced in Examjle The nonlinear
equations of motion for the system are given by equatior3}2(2.25) and can
be written as

4 (> vcos(a(d)+0) ans

i atan
—ly| =[vsin a(d)+0) : a(8) = arcta :
o [6] %tané r( b )

wherex, y and 8 are the position and orientation of the center of mass of the
vehicle,vy is the velocity of the rear whedb,is the distance between the front and
rear wheels and is the angle of the front wheel. The functior{d) is the angle
between the velocity vector and the vehicle’s length axis.
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We are interested in the motion of the vehicle about a sttdigé path @ = 6)
with fixed velocityvg # 0. To find the relevant equilibrium point, we first gt 0
and we see that we must hagie= 0, corresponding to the steering wheel being
straight. This also yieldg = 0. Looking at the first two equations in the dynamics,
we see that the motion in the direction is by definitiomot at equilibrium since
X2 +y2 = V2 + 0. Therefore we cannot formally linearize the full model.

Suppose instead that we are concerned with the lateral aeviaftthe vehicle
from a straight line. For simplicity, we le. = 0, which corresponds to driving
along thex axis. We can then focus on the equations of motion inytlaeand 6
directions. With some abuse of notation we introduce thte sta (y, 8) andu= 9.
The system is then in standard form with

vsin(a(u) +x2)
f(x,u) =

atanu>’ h(x.) = 1.

Voo , oa(u) arctar( b
b

The equilibrium point of interest is given by= (0,0) andu = 0. To compute
the linearized model around this equilibrium point, we malke of the formu-
las (5.34). A straightforward calculation yields

A— ﬂ . 0 Vo B— ﬂ _ aVo/b
~ dx|x=0 (0 0)~ ~ dulx=0 | W/b}’
u=0 u=0
oh Jdh
c 0X | x=0 ( ] ’ D OU|x=0 07
u=0 u=0
and the linearized system
dx = Ax+ Bu, y=Cx+Du (5.35)

dt
thus provides an approximation to the original nonlinearadyics.

The linearized model can be simplified further by introduciogmalized vari-
ables, as discussed in Section 2.3. For this system, we chitomséheel base as
the length unit and the unit as the time required to travel eevbase. The nor-
malized state is thus= (x1/b,x2), and the new time variable is= Vgt /b. The
model (5.35) then becomes

dz  (z+w) (0 1 y B

dr_[ y =1lo olZt 1w y= (1 0] Z (5.36)
wherey = a/b. The normalized linear model for vehicle steering with ngoshg
wheels is thus a linear system with only one parameter. O

Feedback Linearization

Another type of linearization is the use of feedback to contree dynamics of a
nonlinear system into those of a linear one. We illustrateliasic idea with an
example.
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Linearized dynamics

Nonlinear|
Process

Linear
Controller

—1 |-

Figure 5.15: Feedback linearization. A nonlinear feedback of the form a(x,v) is used
to modify the dynamics of a nonlinear process so that the responsettimmputv to the
outputy is linear. A linear controller can then be used to regulate the system’s dysiam

Example 5.13 Cruise control
Consider again the cruise control system from Example 5.hbse dynamics are
given in equation (5.29):

mdﬁv = apuT(apv) —mgG sgnv) — %pCdA\/2 —mgsin®.

dt
If we chooseu as a feedback law of the form
_ / 1
u= T (o) <u +mgG sgrv) + 2pC\,A\/z , (5.37)
then the resulting dynamics become
dv
ma =u+d, (5.38)

whered = —mgsing@ is the disturbance force due the slope of the road. If we
now define a feedback law fof (such as a proportional-integral-derivative [PID]
controller), we can use equation (5.37) to compute the fir@itithat should be
commanded.

Equation (5.38) is a linear differential equation. We haszasally “inverted”
the nonlinearity through the use of the feedback law (5.8fjs requires that we
have an accurate measurement of the vehicle velacdg well as an accurate
model of the torque characteristics of the engine, geangatirag and friction
characteristics and mass of the car. While such a model igarwrally available
(remembering that the parameter values can change), if sigrda good feedback
law for U, then we can achieve robustness to these uncertainties. O

More generally, we say that a system of the form

dx

dt - f(X,U), y_ h(X)a
is feedback linearizablé we can find a control lawu = a(x,v) such that the
resulting closed loop system is input/output linear withutv and outputy, as
shown in Figure 5.15. To fully characterize such systems yote the scope of
this text, but we note that in addition to changes in the iniietgeneral theory also
allows for (nonlinear) changes in the states that are useggoribe the system,
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keeping only the input and output variables fixed. More defilthis process can
be found in the textbooks by Isidori [Isi95] and Khalil [KhEO

One case that comes up relatively frequently, and is hencehwspecial mention,@
is the set of mechanical systems of the form

M(q)d+C(a,q) = B(q)u.

Hereq € R" is the configuration of the mechanical systévh,g) € R"*" is the
configuration-dependent inertia matr,q, q) € R" represents the Coriolis forces
and additional nonlinear forces (such as stiffness antdrirandB(q) € R™P is

the input matrix. Ifp = n, then we have the same number of inputs and config-
uration variables, and if we further have th&(g) is an invertible matrix for all
configurationgy, then we can choose

u=B"(q)(M(q)v+C(q,q)). (5.39)
The resulting dynamics become
M(@)g=M(v = 4=V

which is a linear system. We can now use the tools of linearesygheory to
analyze and design control laws for the linearized systemgembering to apply
equation (5.39) to obtain the actual input that will be aggblio the system.

This type of control is common in robotics, where it goes byrtame ofcom-
puted torqueand in aircraft flight control, where it is calledi/namic inversion
Some modeling tools like Modelica can generate the code ®inbverse model
automatically. One caution is that feedback linearizatian often cancel out ben-
eficial terms in the natural dynamics, and hence it must be witedcare. Exten-
sions that do not require complete cancellation of nontitiea are discussed in
Khalil [Kha01] and Krst€ et al. [KKK95].

5.5 Further Reading

The majority of the material in this chapter is classical aad be found in most
books on dynamics and control theory, including early warkscontrol such as
James, Nichols and Phillips [JNP47] and more recent textbso&is as Dorf and
Bishop [DB04], Franklin, Powell and Emami-Naeini [FPENO5] and ag®ga01].
An excellent presentation of linear systems based on theixr@tponential is
given in the book by Brockett [Bro70], a more comprehengigatment is given by
Rugh [Rug95] and an elegant mathematical treatment is givSontag [Son98].
Material on feedback linearization can be found in booksamlinear control the-
ory such as Isidori [I1si95] and Khalil [Kha01]. The idea of caeterizing dynamics
by considering the responses to step inputs is due to Hdayisé also introduced
an operator calculus to analyze linear systems. The unitstaprefore also called
theHeaviside step functiodnalysis of linear systems was simplified significantly,
but Heaviside’s work was heavily criticized because of latknathematical rigor,
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as described in the biography by Nahin [Nah88]. The difficaltiesre cleared up
later by the mathematician Laurent Schwartz who develajdbution theoryin
the late 1940s. In engineering, linear systems have toadiiy been analyzed us-
ing Laplace transforms as described in Gardner and Barne4J{zBse of the ma-
trix exponential started with developments of control tlydn the 1960s, strongly
stimulated by a textbook by Zadeh and Desoer [ZD63]. Use ofixigchniques
expanded rapidly when the powerful methods of numeric linégebra were pack-
aged in programs like LabVIEW, MATLAB and Mathematica.

Exercises

5.1(Response to the derivative of a signal) Show thwtif is the output of a linear
system corresponding to inpugt), then the output corresponding to an inp(it) -
is given byy(t). (Hint: Use the definition of the derivativg(t) = Iim£_>o(y(t +

£)—y(t))/€)
5.2(Impulse response and convolution) Show that a sigialcan be decomposed
in terms of the impulse functiod(t)

/6t—r

and use this decomposition plus the principle of superposib show that the
response of a linear system to an inp(tt) (assuming a zero initial condition) can

be written as i
yit) = [ hit=Du(n)ar,
0

whereh(t) is the impulse response of the system.

5.3 (Pulse response for a compartment model) Consider the commgatr model
given in Example 5.7. Compute the step response for the systehtompare
it with Figure 5.10b. Use the principle of superposition tongpate the response
to the 5 s pulse input shown in Figure 5.10c. Use the paramateesky = 0.1,
ki = 0.1, k> = 0.5 andby = 1.5.

5.4 (Matrix exponential for second-order system) Assume ¢hatl and letwy =

woy/1— 2. Show that

lon ]t— [e‘f‘*’otcoswdt e—z‘*btsinwdt]

ex )
p[ —wy  —{wo —e {@igingyt e ¢t cosuyt

5.5 (Lyapunov function for a linear system) Consider a lineatasnx = Ax with
ReA; < O for all eigenvalued j of the matrixA. Show that the matrix

P:/OmeATTQe‘\Tdr

defines a Lyapunov function of the forh(x) = x" Px.
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5.6 (Nondiagonal Jordan form) Consider a linear system withrdaloform that
is non-diagonal.

(a) Prove Proposition 5.3 by showing that if the system costaireal eigenvalue
A = 0 with a nontrivial Jordan block, then there exists an iht@andition with a
solution that grows in time.

(b) Extend this argument to the case of complex eigenvaluds ReA = 0 by ?2
using the block Jordan form

0 w 1 O
3o | 0O 0 1
' 10 0 0 w
0 0 —w O
5.7 (Rise time for a first-order system) Consider a first-orderesysaf the form
T dx_ —X+u =X
dt ’ y=x

We say that the parameteis thetime constantor the system since the zero input
system approaches the origined/?. For a first-order system of this form, show
that the rise time for a step response of the system is appat&ly 2r, and that
1%, 2%, and 5% settling times approximately correspondsan 4t and 3.

5.8 (Discrete-time systems) Consider a linear discrete-tiyséesn of the form
x[k+ 1] = AXK] + Bulk], y[k] = Cx[k] 4 DulK].

(a) Show that the general form of the output of a discrete-limear system is
given by the discrete-time convolution equation:

y[k] = CAX[0] + kiCAk—i—lsu[ j] + Dulk].
=

(b) Show that a discrete-time linear system is asymptoyicadible if and only if
all the eigenvalues oA have a magnitude strictly less than 1.

(c) Letulk] = sin(wk) represent an oscillatory input with frequenay< 1 (to
avoid “aliasing”). Show that the steady-state componenhefresponse has gain
M and phasé, where

Me® =Cc(é®l —A)"B+D.
(d) Show that if we have a nonlinear discrete-time system
xk+1] = f(xK,ulk),  xK €R"ueR,
ylk =h(x[k],ulk}),  yeR,

then we can linearize the system around an equilibrium geinte) by defining
the matriced, B, C andD as in equation (5.34).
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5.9 (Keynesian economics) Consider the following simple Keyae macroeco-
nomic model in the form of a linear discrete-time systemulsed in Exercise 5.8:

[CI:[[ttill]]] = [aba—b ;b] [CI:[[tt]]] - [;b] Gltl
Y[t] = Clt) +1[t] + GIt.

Determine the eigenvalues of the dynamics matrix. Whertarenagnitudes of the
eigenvalues less than 1? Assume that the system is in equititwith constant
values capital spendin@, investmentt and government expenditute Explore
what happens when government expenditure increases by W6éothe values
a=0.25andb=0.5.

5.10 Consider a scalar system

dx

—=1-x+u

dt *
Compute the equilibrium points for the unforced systera-(0) and use a Taylor
series expansion around the equilibrium point to compugditiearization. \Verify

that this agrees with the linearization in equation (5.33).

5.11 (Transcriptional regulation) Consider the dynamics of aajie circuit that
implementsself-repressionthe protein produced by a gene is a repressor for that
gene, thus restricting its own production. Using the mogeésented in Exam-
ple 2.13, the dynamics for the system can be written as

dm__a

dt  14+kp?
whereu is a disturbance term that affects RNA transcription amg > 0. Find
the equilibrium points for the system and use the lineardggthmics around each

equilibrium point to determine the local stability of theuddprium point and the
step response of the system to a disturbance.

+ag—ym—u, ((jthO:Bm—ép, (5.40)



Chapter Six
State Feedback

Intuitively, the state may be regarded as a kind of information storage orameor ac-
cumulation of past causes. We must, of course, demand that theistdrofl states> be
sufficiently rich to carry all information about the past history2ofo predict the effect of the
past upon the future. We do not insist, however, that the state iedisésuch information
although this is often a convenient assumption.

R. E. Kalman, P. L. Falb and M. A. Arbiippics in Mathematical System Theat969 [KFA69].

This chapter describes how the feedback of a system’s statbeaised to
shape the local behavior of a system. The concept of readlabihtroduced and
used to investigate how to design the dynamics of a systeoughrassignment
of its eigenvalues. In particular, it will be shown that undertain conditions it
is possible to assign the system eigenvalues arbitrarilygmyopriate feedback of
the system state.

6.1 Reachability

One of the fundamental properties of a control system is wogbf points in the
state space can be reached through the choice of a contutl itfurns out that the
property of reachability is also fundamental in undersiagdhe extent to which
feedback can be used to design the dynamics of a system.

Definition of Reachability

We begin by disregarding the output measurements of thersyaihd focusing on
the evolution of the state, given by

dx

i Ax+ Bu, (6.1)
wherex € R", u € R, Ais ann x n matrix andB a column vector. A fundamental
guestion is whether it is possible to find control signals sb &my point in the state
space can be reached through some choice of input. To stigjyw define the
reachable seZ(xp, < T) as the set of all points; such that there exists an input
u(t), 0<t <T that steers the system frax(0) = Xo to X(T) = X¢, as illustrated in
Figure 6.1a.

Definition 6.1 (Reachability) A linear system iseachableif for any X, x; € R"
there exists & > 0 andu: [0, T] — R such that the corresponding solution satisfies
X(0) = xp andx(T) = Xs.
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4

i
4 *ﬁ Ei/

X0 3 i
A (%0, <T) :

(a) Reachable set (b) Reachability through control

Figure 6.1: The reachable set for a control system. TheZgty, < T) shown in (a) is the set
of points reachable fromy in time less thaf. The phase portrait in (b) shows the dynamics
for a double integrator, with the natural dynamics drawn as horizontakarand the control
inputs drawn as vertical arrows. The set of achievable equilibrium pi@rite x axis. By
setting the control inputs as a function of the state, it is possible to steer teensicsthe
origin, as shown on the sample path.

The definition of reachability addresses whether it is possibteach all points
in the state space inteansientfashion. In many applications, the set of points that
we are most interested in reaching is the set of equilibriwmntp of the system
(since we can remain at those points once we get there). Trad a#itpossible
equilibria for constant controls is given by

& = {Xe : A%+ Bu. = 0 for someue € R}.

This means that possible equilibria lie in a one- (or posditidjrer) dimensional
subspace. If the matri& is invertible, this subspace is spannediyB.
The following example provides some insight into the podisids.

Example 6.1 Double integrator
Consider a linear system consisting of a double integratovse dynamics are
given by

dxg dxo

at ~® dt
Figure 6.1b shows a phase portrait of the system. The open jogpmcs (1= 0)
are shown as horizontal arrows pointed to the rightdor- O and to the left for
X2 < 0. The control input is represented by a double-headed arrdtei vertical
direction, corresponding to our ability to set the valugofThe set of equilibrium
points& corresponds to the axis, withue = 0.

Suppose first that we wish to reach the origin from an initialditon (a, 0).
We can directly move the state up and down in the phase plah&dmust rely
on the natural dynamics to control the motion to the left agtitr If a > 0, we
can move the origin by first setting< 0, which will causex; to become negative.
Oncex; < 0, the value ofk; will begin to decrease and we will move to the left.
After a while, we can sai, to be positive, moving, back toward zero and slowing
the motion in the; direction. If we bringx, > 0, we can move the system state in
the opposite direction.
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Figure 6.1b shows a sample trajectory bringing the systememtigin. Note
that if we steer the system to an equilibrium point, it is flolgsto remain there
indefinitely (sincex; = 0 whenx, = 0), but if we go to any other point in the state
space, we can pass through the point only in a transientdfashi O

To find general conditions under which a linear system is raialeh we will
first give a heuristic argument based on formal calculatiatiswpulse functions.
We note that if we can reach all points in the state space gifreaome choice of
input, then we can also reach all equilibrium points.

Testing for Reachability

When the initial state is zero, the response of the system toputu(t) is given
by .
X(t) = / A-DBY(T) dr. 6.2)
0

If we choose the input to be a impulse functidft) as defined in Section 5.3, the
state becomes

t
X5 = / A-DBS(T)dT = (:;[S — B
0

(Note that the state changes instantaneously in resporibe tmpulse.) We can
find the response to the derivative of an impulse function kintathe derivative
of the impulse response (Exercise 5.1):

X5 = ij‘t“ = Ae'B.
Continuing this process and using the linearity of the systée input
u(t) = a18(t) + 028(t) + azd(t) + - + and ™V (t)
gives the state
X(t) = a1 B+ a,AMNB + azA2EN B+ - - - + a, AT 1B,
Taking the limit ag goes to zero through positive values, we get

lim x(t) = a1B+ 02AB+ azA?B+ - - - + a, A" 1B.
t—0+
On the right is a linear combination of the columns of the iratr
W — [B AB ... A”—ls] . (6.3)

To reach an arbitrary point in the state space, we thus rethat there ara linear
independent columns of the mathY. The matrixW; is called thereachability
matrix.

An input consisting of a sum of impulse functions and themasives is a very
violent signal. To see that an arbitrary point can be reaghigdsmoother signals
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we can make use of the convolution equation. Assuming tleainitial condition
is zero, the state of a linear system is given by

- /Ot A-UBu(T)dT = /Ot TBU(t — T)dT.

It follows from the theory of matrix functions, specificallge Cayley—Hamilton
theorem (see Exercise 6.10), that

el = lao(T) +Ad(T)+--- +A”*1an,1(r),
whereq; (1) are scalar functions, and we find that

B/ ao(T)u(t — 1) dr+AB/ a1 (T)u(t—1)dr

+-- +A”‘1B/ On-1(T)u(t — 1) dr.
0

Again we observe that the right-hand side is a linear contioinaf the columns
of the reachability matri¥\f given by equation (6.3). This basic approach leads to
the following theorem.

Theorem 6.1 (Reachability rank condition)A linear system is reachable if and
only if the reachability matrix Wis invertible.

The formal proof of this theorem is beyond the scope of this lbex follows
along the lines of the sketch above and can be found in modktsboo linear
control theory, such as Callier and Desoer [CD91] or Lewis [08JvWe illustrate
the concept of reachability with the following example.

Example 6.2 Balance system
Consider the balance system introduced in Example 2.1 andsimoFigure 6.2.
Recall that this system is a model for a class of examples iichwtine center
of mass is balanced above a pivot point. One example is the BeBersonal
Transporter shown in Figure 6.2a, about which a natural aqures ask is whether
we can move from one stationary point to another by apprtggagaplication of
forces through the wheels.

The nonlinear equations of motion for the system are givergiragon (2.9)
and repeated here:

(M+m)p—mlcosd 6 = —cp—mlsing 62 +F, (6.4

(J+ml?)6 — mlcosh p = —yO + mglsiné. '
For simplicity, we takec = y = 0. Linearizing around the equilibrium poirg =
(p,0,0,0), the dynamics matrix and the control matrix are

O 0 10 0
o 0 01 0
A=lo mazgu o o BT |aml|
0 Mimgl/u 0 O Im/u
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(a) Segway (b) Cart-pendulum system

Figure 6.2: Balance system. The Segway Personal Transporter shown in (esaanple of
a balance system that uses torque applied to the wheels to keep the riget. dpsimplified
diagram for a balance system is shown in (b). The system consists a§samuen a rod of
lengthl connected by a pivot to a cart with mags

whereu = My — 12, My = M +mandJ;, = J+ ml2. The reachability matrix is

0 J/u 0 gl3m? /2
| o Im/u 0 gl?m?(m-+M)/u?
= k/p 0 gi*m?/u? 0 (:9)
Im/u 0 glPmA(m+M)/u? 0
The determinant of this matrix is
g?l4m?

detW) = 2—— £0,
W) () .

and we can conclude that the system is reachable. This inthi¢sve can move
the system from any initial state to any final state and, ini@aer, that we can
always find an input to bring the system from an initial statemoequilibrium
point. O

It is useful to have an intuitive understanding of the medras that make a
system unreachable. An example of such a system is given urd=i§3. The
system consists of two identical systems with the same irpletarly, we cannot
separately cause the first and the second systems to do sogndifiérent since
they have the same input. Hence we cannot reach arbitraegséand so the system
is not reachable (Exercise 6.3).

More subtle mechanisms for nonreachability can also odeur.example, if
there is a linear combination of states that always remainstant, then the system
is not reachable. To see this, suppose that there exists @eaarH such that

0= %Hx: H(Ax+Bu), forallu.
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Figure 6.3: An unreachable system. The cart—-pendulum system shown on the $e# ha
single input that affects two pendula of equal length and mass. Sincertiesfaffecting the
two pendula are the same and their dynamics are identical, it is not possnleiti@rily
control the state of the system. The figure on the right is a block diagrarasentation of
this situation.

ThenH is in the left null space of botA andB and it follows that
HW = H [B AB ... A“—ls] =0,

Hence the reachability matrix is not full rank. In this cageye have an initial
conditionXp and we wish to reach a staxg for which Hxp # HX;, then since
Hx(t) is constant, no input can move fromxg to X;.

Reachable Canonical Form

As we have already seen in previous chapters, it is oftenesvent to change
coordinates and write the dynamics of the system in the fomamgd coordinates
z= Tx One application of a change of coordinates is to conversgesyinto a
canonical form in which it is easy to perform certain typesioélysis.

A linear state space system isreachable canonical fornf its dynamics are
given by

—a; —ad —ag ... —adn 1

g 1 0 0 .. 0 0

gz2_l1o 1 0 ... 0]z4]|0fy

dt : e : (6.6)
0 1 0 0

y— [bl b, by ... bn]z+du.

A block diagram for a system in reachable canonical form ashin Figure 6.4.
We see that the coefficients that appear inAlend B matrices show up directly
in the block diagram. Furthermore, the output of the system smple linear
combination of the outputs of the integration blocks.

The characteristic polynomial for a system in reachable wigabform is given
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d bl b2 bnfl bn
u \Z/ f VAl f %) 4»]‘ Zn—1 f Zn
-1 a ap an_1 an
' ' '

Figure 6.4: Block diagram for a system in reachable canonical form. The indiVistates
of the system are represented by a chain of integrators whose inridiepn the weighted
values of the states. The output is given by an appropriate combinatibe sf/stem input
and other states.

by
A(S)="+ars" 1+ +a, 15+an (6.7)

The reachability matrix also has a relatively simple strrectu

1 —a a2—a *
0 1 —ay *
W = [B AB ... Anle] T
00 0 1 =«
0 0 0 1

wherex indicates a possibly nonzero term. This matrix is full rarmcsi no col-
umn can be written as a linear combination of the others tsecafithe triangular
structure of the matrix.

We now consider the problem of changing coordinates sudtitibalynamics
of a system can be written in reachable canonical form.A & represent the
dynamics of a given system aAdB be the dynamics in reachable canonical form.
Suppose that we wish to transform the original system intohalale canonical
form using a coordinate transformatias= T x. As shown in the last chapter, the
dynamics matrix and the control matrix for the transformgstem are

A=TAT 1 B=TB.
The reachability matrix for the transformed system then bexo

W — [é AB ... A”—lé].
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Transforming each element individually, we have
AB=TAT TB=TAB,
A’B = (TAT 1)2TB=TAT TAT !TB=TAB,

A"B = TA"B,
and hence the reachability matrix for the transformed sys$se
W =T [B AB ... A”—lB] —TW. (6.8)
SinceW; is invertible, we can thus solve for the transformatibrthat takes the
system into reachable canonical form:
T=Ww 1.
The following example illustrates the approach.

Example 6.3 Transformation to reachable form
Consider a simple two-dimensional system of the form

dx a o 0

We wish to find the transformation that converts the systemrieachable canon-

ical form: 1
A_ | —& 5 _
(T 5= (o)

The coefficientsa; anda, can be determined from the characteristic polynomial
for the original system:

a;=—2d,

A(s) =det(sl—A) =& —2as+ (a? + w?) — R
=0 "+ w".

The reachability matrix for each system is

[0 w ~ (1 —&
U i B e
The transformatio becomes

vt —(alljcj)/w é] _ [‘i’//;" cl)]

and hence the coordinates

[Zl —Tx— [axl/w+xz]
Vi) X]_/O.)

put the system in reachable canonical form. O

We summarize the results of this section in the followingtieen.
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Controller Process

X = Ax+Bu
y=Cx+Du

Figure 6.5: A feedback control system with state feedback. The controller useystens
statex and the reference inputto command the process through its inputWe model
disturbances via the additive inpait

Theorem 6.2(Reachable canonical form).et A and B be the dynamics and con-
trol matrices for a reachable system. Then there exists asfmmation z= Tx
such that in the transformed coordinates the dynamics antt@anatrices are in
reachable canonical forr(6.6) and the characteristic polynomial for A is given by

detsl—A) ="+ a;s" 1+ ... +a,_15+an.

One important implication of this theorem is that for anyategble system, we
can assume without loss of generality that the coordinatestesen such that the
system is in reachable canonical form. This is particulaskgful for proofs, as we
shall see later in this chapter. However, for high-ordetesys, small changes in
the coefficients; can give large changes in the eigenvalues. Hence, the fgacha
canonical form is not always well conditioned and must belwgigh some care.

6.2 Stabilization by State Feedback

The state of a dynamical system is a collection of variablasghrmits prediction
of the future development of a system. We now explore the adekesigning the
dynamics of a system through feedback of the state. We vgillrag that the system
to be controlled is described by a linear state model and teasghe input (for
simplicity). The feedback control law will be developed shgystep using a single
idea: the positioning of closed loop eigenvalues in dedoedtions.

State Space Controller Structure

Figure 6.5 is a diagram of a typical control system using dtdback. The full
system consists of the process dynamics, which we take fodwr] the controller
elementsK andk;, the reference input (or command signaland process dis-
turbancedd. The goal of the feedback controller is to regulate the ouguhe
systemy such that it tracks the reference input in the presence tafrtiances and
also uncertainty in the process dynamics.

An important element of the control design is the perforneasigecification.
The simplest performance specification is that of stabilitythe absence of any
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disturbances, we would like the equilibrium point of theteys to be asymptoti-
cally stable. More sophisticated performance specificattgpically involve giv-
ing desired properties of the step or frequency responsheosystem, such as
specifying the desired rise time, overshoot and settlimg tof the step response.
Finally, we are often concerned with the disturbance attémuaroperties of the
system: to what extent can we experience disturbance impatsl still hold the
outputy near the desired value?

Consider a system described by the linear differential tgua

:1( = Ax+ Bu, y = Cx+ Du, (6.9)

where we have ignored the disturbance sigh&dr now. Our goal is to drive the
outputy to a given reference valueand hold it there. Notice that it may not be
possible to maintain all equilibria; see Exercise 6.8.

We begin by assuming that all components of the state vectomaasured.
Since the state at timecontains all the information necessary to predict the futur
behavior of the system, the most general time-invariantrobtaw is a function
of the state and the reference input:

u=a(xr).
If the feedback is restricted to be linear, it can be written a
u=—Kx-+kr, (6.10)

wherer is the reference value, assumed for now to be a constant.

This control law corresponds to the structure shown in Figube Bhe nega-
tive sign is a convention to indicate that negative feedligtie normal situation.
The closed loop system obtained when the feedback (6.10pigeddo the sys-
tem (6.9) is given by

dx

dt
We attempt to determine the feedback giiiso that the closed loop system has
the characteristic polynomial

(A= BK)X+ Bk r. (6.11)

p(s) ="+ pas” 4+ + pr1S+ . (6.12)

This control problem is called theigenvalue assignment problampole place-
ment problerm{we will define poles more formally in Chapter 8).

Note thatk, does not affect the stability of the system (which is detaadiby
the eigenvalues oh — BK) but does affect the steady-state solution. In particular,
the equilibrium point and steady-state output for the aldsep system are given
by

Xe = _(A—BK)ilBK'r, Ye = CXe+ DuUe,

hencek. should be chosen such that=r (the desired output value). Sinkeis a
scalar, we can easily solve to show thaDif= 0 (the most common case),

k- =-1/(C(A—BK)'B). (6.13)
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Notice thatk, is exactly the inverse of the zero frequency gain of the cldsep
system. The solution fdD # O is left as an exercise.

Using the gainK andk,, we are thus able to design the dynamics of the closed
loop system to satisfy our goal. To illustrate how to condtauch a state feedback
control law, we begin with a few examples that provide som&ddiatuition and
insights.

Example 6.4 Vehicle steering
In Example 5.12 we derived a normalized linear model for Velsteering. The
dynamics describing the lateral deviation were given by

)
cz[l o], D=0.

The reachability matrix for the system is thus

we o 0e) - 1 1)

The system is reachable since\det= —1 £ 0.

We now want to design a controller that stabilizes the dyearand tracks a
given reference valueof the lateral position of the vehicle. To do this we introduc
the feedback

U= —KX+kr = —kixg — koxo + ki,

and the closed loop system becomes

%:(A—BK)X+BM= [__ﬁl 1_yk2] - [ﬁj] "

dt —ko (6.14)
y=Cx+Du= [1 O] X.

The closed loop system has the characteristic polynomial

B st+yki yke—1) _
det(sI—A+BK)_det[ K S+k2]_sz+(yk1+k2)s+k1.

Suppose that we would like to use feedback to design the dysamhthe system
to have the characteristic polynomial

p(S) = §° + 2{c S+ W2

Comparing this polynomial with the characteristic polynahof the closed loop
system, we see that the feedback gains should be chosen as

ki=wf, ko =2{ctx— yof.
Equation (6.13) givek: = k; = «w?, and the control law can be written as

U= Ky(r — 1) — kaXp = G2(r — X1) — (2Zctx — Yo2)Xe.
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Figure 6.6: State feedback control of a steering system. Step responses obtétinedmy
trollers designed witl{; = 0.7 andaw, = 0.5, 1 and 2 [rad/s] are shown in (a). Notice that
response speed increases with increasigout that largew also give large initial control
actions. Step responses obtained with a controller designedawith 1 and{; = 0.5, 0.7
and 1 are shown in (b).

The step responses for the closed loop system for differdnesaf the de-
sign parameters are shown in Figure 6.6. The effect.dé shown in Figure 6.6a,
which shows that the response speed increases with incgaasi The responses
for wx = 0.5 and 1 have reasonable overshoot. The settling time is atsocarl
lengths fora, = 0.5 (beyond the end of the plot) and decreases to about 6 car
lengths fora, = 1. The control signad is large initially and goes to zero as time
increases because the closed loop dynamics have an imtedriag initial value
of the control signal isi(0) = k; = w?r, and thus the achievable response time is
limited by the available actuator signal. Notice in paréeuhe dramatic increase
in control signal wherw, changes from 1 to 2. The effect ¢f is shown in Fig-
ure 6.6b. The response speed and the overshoot increasesaiading damping.
Using these plots, we conclude that reasonable values ditsign parameters are
to havewy in the range of 0.5to 1 angt ~ 0.7. O

The example of the vehicle steering system illustrates hate $eedback can
be used to set the eigenvalues of a closed loop system toeaybialues.

State Feedback for Systems in Reachable Canonical Form

The reachable canonical form has the property that the paeasnaf the system
are the coefficients of the characteristic polynomial. lhisrefore natural to con-
sider systems in this form when solving the eigenvalue assent problem.
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Consider a system in reachable canonical form, i.e,

—a; —a —az ... —ap 1

q 1 0 o ... 0 0

% _RerBu=|0 1 0 ... 0 |zif:|u

at : S 0 (6.15)
0 1 0 0

y=Cz= [bl by - bn] z

It follows from(6.7) that the open loop system has the chargstic polynomial
detsl—A) ="+ ays" 1+ ... +a,_15+an.

Before making a formal analysis we can gain some insight bgstigating the
block diagram of the system shown in Figure 6.4. The charatiepolynomial
is given by the parametegk in the figure. Notice that the parametsy can be
changed by feedback from statgto the inputu. It is thus straightforward to
change the coefficients of the characteristic polynomialtaiefeedback.

Returning to equations, introducing the control law

U= —Kz+kr = —kiz1 —kozp — - - — knzn + ki, (6.16)

the closed loop system becomes

—ay -k —ap—ky —az—ks ... —an—kn K
1 0 O .. 0O 0
z_ [ o 1 0 .. 0 |z|o]|r
dt : : : (6.17)
0 1 0 0
y— [bl by - bn] z

The feedback changes the elements of the first row oAthetrix, which corre-
sponds to the parameters of the characteristic polynoiftig.closed loop system
thus has the characteristic polynomial

' (A +k)S" 4 (a2 + ko) 2 (@1 +Kno1)S+ @n + k.
Requiring this polynomial to be equal to the desired closeg [polynomial
P(s) ="+ pas™ T+ -+ pr-1S+ P,
we find that the controller gains should be chosen as
ki=p1—ay, ko= p2—ay, kn= pn—an.

This feedback simply replaces the parameggiis the system (6.15) by;. The
feedback gain for a system in reachable canonical form & thu

Kz[pl—al p2—ag - pn—an). (6.18)
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To have zero frequency gain equal to unity, the paranietehould be chosen
as
_antke _pn

ke b bn’

(6.19)

Notice that it is essential to know the precise values of ipatarsa, andb, in
order to obtain the correct zero frequency gain. The zeraufray gain is thus
obtained by precise calibration. This is very different froftaining the correct
steady-state value by integral action, which we shall sémtén sections.

Eigenvalue Assignment

We have seen through the examples how feedback can be usedigo the dy-
namics of a system through assignment of its eigenvaluesolVe the problem in
the general case, we simply change coordinates so that skensys in reachable
canonical form. Consider the system

dx
Fri Ax+ Bu, y =Cx+Du. (6.20)
We can change the coordinates by a linear transformatienT x so that the
transformed system is in reachable canonical form (6.1&) skch a system the
feedback is given by equation (6.16), where the coefficierdsgaven by equa-
tion (6.18). Transforming back to the original coordinagess the feedback

u=—Kz+kr=—KTx+kr.
The results obtained can be summarized as follows.

Theorem 6.3 (Eigenvalue assignment by state feedbadBdnsider the system
given by equatiol§6.20), with one input and one output. L&ts) = " +a;s" 1 +
---+an_1S+ an be the characteristic polynomial of A. If the system is reatha
then there exists a feedback

U= —Kx+kr
that gives a closed loop system with the characteristicrpmtyial
P(s) ="+ piS" -+ pro1S+ Pn
and unity zero frequency gain between r and y. The feedbaokiggiven by
K=RT=(pi-a pe-a - po—an) W (6.21)

where a are the coefficients of the characteristic polynomial of tietrix A and
the matrices WandW; are given by
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1l a1 & an—1
0 1 & an-2
Wr:(B AB ... A“—ls], W= | : S
0 O 1 a1
00 0 .- 1

The reference gain is given by
k- =—1/(C(A—BK) 'B).

For simple problems, the eigenvalue assignment problenbeaolved by in-
troducing the elementg of K as unknown variables. We then compute the char-
acteristic polynomial

A(s) = def(sl — A+ BK)

and equate coefficients of equal powers td the coefficients of the desired char-
acteristic polynomial

p(s) ="+ P18 1+ + pn_1S+ pn-

This gives a system of linear equations to deternkin@he equations can always
be solved if the system is reachable, exactly as we did in Elag.

Equation (6.21), which is called Ackermann’s formula [AckZAZk85], can
be used for numeric computations. It is implemented in theTM#®B function
acker . The MATLAB function pl ace is preferable for systems of high order
because it is better conditioned numerically.

Example 6.5 Predator—prey

Consider the problem of regulating the population of an gstesn by modulating
the food supply. We use the predator—prey model introducegiection 3.7. The
dynamics for the system are given by

dH H aHL

_ == >
i (r+u)H<1 k) o H=zo
dL aHL
— =pb———dL, L>0.
dt bC+H dL, 20

We choose the following nominal parameters for the systenigiwcorrespond to
the values used in previous simulations:

a=32, b=06, c=50,
d=056, k=125 r=16.

We take the parameteycorresponding to the growth rate for hares, as the input to
the system, which we might modulate by controlling a foodreedor the hares.
This is reflected in our model by the terfn+ u) in the first equation. We choose
the number of lynxes as the output of our system.

To control this system, we first linearize the system aroumdetuilibrium
point of the systen{He,Le), which can be determined numerically to ke~
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(20.6,29.5). This yields a linear dynamical system

d (z 013 -0.93) (= 17.2 z

ai () = 057 07 (&) (6] w0 2],
wherezz =H —He, 2 = L — Le andv = u. It is easy to check that the system
is reachable around the equilibriufm v) = (0,0), and hence we can assign the
eigenvalues of the system using state feedback.

Determining the eigenvalues of the closed loop system regjlialancing the
ability to modulate the input against the natural dynamiafie system. This can
be done by the process of trial and error or by using some ahtbre systematic
techniques discussed in the remainder of the text. For nevgimply choose the
desired closed loop eigenvalues to ba at {—0.1,—-0.2}. We can then solve for
the feedback gains using the techniques described earliah results in

K — (0.025 —0.052] .

Finally, we solve for the reference gakp, using equation (6.13) to obtalp =
0.002.
Putting these steps together, our control law becomes

v=—Kz+kLy,

wherelq is the desired number of lynxes. In order to implement therobtaw,
we must rewrite it using the original coordinates for theteys yielding

U=Ue— K(X—Xe) +kr (Lg — Ye)
H - 206

= (0.025 —0.052] [L_29.5

] +0.002(Lg — 29.5).

This rule tells us how much we should modulatas a function of the current
number of lynxes and hares in the ecosystem. Figure 6.7a shewsulation of

the resulting closed loop system using the parameters dedineek and starting
with an initial population of 15 hares and 20 lynxes. Note tha system quickly
stabilizes the population of lynxes at the reference valge=(30). A phase por-
trait of the system is given in Figure 6.7b, showing how otimétial conditions

converge to the stabilized equilibrium population. Notibat the dynamics are
very different from the natural dynamics (shown in Figure03.2 O

The results of this section show that we can use state feedbatsign the
dynamics of a system, under the strong assumption that weeasure all of the
states. We shall address the availability of the statesaméxt chapter, when we
consider output feedback and state estimation. In addifibeorem 6.3, which
states that the eigenvalues can be assigned to arbitratydos, is also highly ide-
alized and assumes that the dynamics of the process are kndvigh precision.
The robustness of state feedback combined with state eetisnatconsidered in
Chapter 12 after we have developed the requisite tools.
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Figure 6.7: Simulation results for the controlled predator—prey system. The population
lynxes and hares as a function of time is shown in (a), and a phaseipfrtthe controlled
system is shown in (b). Feedback is used to make the population staie=a0.6 and
Le =30.

6.3 State Feedback Design

The location of the eigenvalues determines the behavioreofldsed loop dynam-
ics, and hence where we place the eigenvalues is the maignddscision to be
made. As with all other feedback design problems, thereradetoffs among the
magnitude of the control inputs, the robustness of the sysbeperturbations and
the closed loop performance of the system. In this sectiorexenine some of
these trade-offs starting with the special case of secodédraystems.

Second-Order Systems

One class of systems that occurs frequently in the analpsisiasign of feedback
systems is second-order linear differential equationsaBse of their ubiquitous
nature, it is useful to apply the concepts of this chapteh#d specific class of
systems and build more intuition about the relationshipveen stability and per-
formance.

The canonical second-order system is a differential equatiche form

G+ 2¢ an+ whd = kagu, y=g. (6.22)
In state space form, this system can be represented as
dx (O wo 0 -
pri [—wo —ZZwo] X+ [kwo] u, y= (1 O] X. (6.23)

The eigenvalues of this system are given by

A= —Za+/wB(72-1),

and we see that the origin is a stable equilibrium poimbgf> 0 and{ > 0. Note
that the eigenvalues are complex{if< 1 and real otherwise. Equations (6.22)
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and (6.23) can be used to describe many second-order systeinsging damped
oscillators, active filters and flexible structures, as showthé examples below.
The form of the solution depends on the valu€ pivhich is referred to as the
damping ratiofor the system. I > 1, we say that the systemaserdampegdand
the natural response & 0) of the system is given by
_ BxiotXe0 ot OX10+X20 _pi

y(t) B-a B a ;
wherea = ap({ ++/{?—1) andB = wn({ — /(% —1). We see that the response

consists of the sum of two exponentially decaying sign&ié = 1, then the system
is critically dampedand solution becomes

y(t) = e_Zabt (X10+ (X20+ ZO.leo)t) .

Note that this is still asymptotically stable as longwias> 0, although the second
term in the solution is increasing with time (but more slowan the decaying
exponential that is multiplying it).

Finally, if 0 < { < 1, then the solution is oscillatory and equation (6.22) id sa
to beunderdampedTlhe parametemy is referred to as theatural frequencyf the
system, stemming from the fact that for sm@llthe eigenvalues of the system are
A = —{wyEiwg/1— 2. The natural response of the system is given by

_ o {ot dan 1 i
y(t)=e <xlocoswdt+ < o X10+ wdxzo) smwdt> ,

wherewy = woy/1— {2 is called thedamped frequencyor < 1, ay ~ wy de-
fines the oscillation frequency of the solution ahdives the damping rate relative
to wy.

Because of the simple form of a second-order system, it isiplesto solve
for the step and frequency responses in analytical form. dhaisn for the step
response depends on the magnitudé:of

Z
V1-22

k(1-e (1+ant)), (=1

y(t) =k <1—e‘5‘“Ot COSyt — e‘Z‘*btsina)dt) , (<1

y(t)

6.24)
_ Y —aot({—+/{%-1) (
Y(t)_k<1 §<m+1)e
1 Z _ 2_1
+§( fz_l_l)e wt(¢+v/¢ )), Z>1,

where we have takex(0) = 0. Note that for the lightly damped cas¢ € 1) we
have an oscillatory solution at frequenay.

Step responses of systems witk= 1 and different values of are shown in
Figure 6.8. The shape of the response is determined, land the speed of the
response is determined loy (included in the time axis scaling): the response is
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Figure 6.8: Step response for a second-order system. Normalized step respdos the
system (6.23) fo{ = 0, 0.4, 0.7, 1 and 1.2. As the damping ratio is increased, the rise time
of the system gets longer, but there is less overshoot. The horizoigakan scaled units
wot; higher values oty result in a faster response (rise time and settling time).

faster ifwy is larger.

In addition to the explicit form of the solution, we can alsorgute the proper-
ties of the step response that were defined in Section 5.3. Bor@g, to compute
the maximum overshoot for an underdamped system, we retdteutput as

\/11_7Z2e‘5‘*’Ot sin(wgt + ¢)> : (6.25)

y(t) =k (1—

where¢ = arccog . The maximum overshoot will occur at the first time in which
the derivative ofy is zero, which can be shown to be

My = e VL

Similar computations can be done for the other charactesisfia step response.
Table 6.1 summarizes the calculations.
The frequency response for a second-order system can alsonfjmited ex-

Table 6.1: Properties of the step response for a second-order system withQ 1.

Property Value (=05 ¢=1/vV2 (=1
Steady-state value k k k k
Rise time T ~1/ap -e?/@%  18/wy 2.2/ 2.7/
Overshoot Mp=e™/VI-C 1606 4% 0%

Settling time (2%) Ts~ 4/l wo 8.0/wpy 5.9/uwp 5.8/wy
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Figure 6.9: Frequency response of a second-order system (6.23). (a)Malges as a func-
tion of {. (b) Frequency response as a functior{ofThe upper curve shows the gain ratio
M, and the lower curve shows the phase s8ift-or small{ there is a large peak in the
magnitude of the frequency response and a rapid change in phaseedesico = . As {

is increased, the magnitude of the peak drops and the phase chamgesmoothly between

0° and -180.

plicitly and is given by
o _ ke kg
(iw)2+20wp(iw)+wg  f— w?+ 2 wpw
A graphical illustration of the frequency response is giveRigure 6.9. Notice the
resonant peak that increases with decreaginthe peak is often characterized by

its Q-value defined a$) = 1/2¢. The properties of the frequency response for a
second-order system are summarized in Table 6.2.

Example 6.6 Drug administration
To illustrate the use of these formulas, consider the twogrtment model for
drug administration, described in Section 3.6. The dynanfitiseosystem are

dC_ —ko—ki kg bo B
i [ ko —kz] c+ [O u, y= [O 1) c,

wherec; andc; are the concentrations of the drug in each compartnigmt=

Table 6.2: Properties of the frequency response for a second-order syster@ w { < 1.

Property Value (=01 (=05 (=1/V2
Zero frequency gain Mg k k k
Bandwidth Wy 154wy 127w o

Resonant peak gain M, 1.54k 127k k
Resonant frequency wmnr wp 0.7070y O
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Figure 6.10: Open loop versus closed loop drug administration. Comparison betwagn d
administration using a sequence of doses versus continuously monttegingncentrations
and adjusting the dosage continuously. In each case, the concentratampisximately)
maintained at the desired level, but the closed loop system has substansaiat@bility

in drug concentration.

0,...,2 andbg are parameters of the systemis the flow rate of the drug into
compartment 1 angis the concentration of the drug in compartment 2. We assume
that we can measure the concentrations of the drug in eachartmment, and we
would like to design a feedback law to maintain the output given reference
valuer.

We choose& = 0.9 to minimize the overshoot and choose the rise time to be
T, = 10 min. Using the formulas in Table 6.1, this gives a valuedgr= 0.22.
We can now compute the gain to place the eigenvalues at tbatidm. Setting
u= —Kx+Kkr, the closed loop eigenvalues for the system satisfy

A(s) = —0.198- 0.0954.

Choosingk; = —0.2027 andk, = 0.2005 gives the desired closed loop behavior.
Equation (6.13) gives the reference géjn= 0.0645. The response of the con-
troller is shown in Figure 6.10 and compared with an open ldgiegy involving
administering periodic doses of the drug. O

Higher-Order Systems

Our emphasis so far has considered only second-order syskamhigher-order
systems, eigenvalue assignment is considerably more dliffespecially when
trying to account for the many trade-offs that are preseatfeedback design.
One of the other reasons why second-order systems play suchpeortant
role in feedback systems is that even for more complicatetisys the response is
often characterized by theiominant eigenvalueJo define these more precisely,
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consider a system with eigenvalugs j = 1,...,n. We define thelamping ratio
for a complex eigenvalug to be

—ReA
Al

We say that a complex conjugate pair of eigenvalligs* is adominant pairif it
has the lowest damping ratio compared with all other eigergof the system.

Assuming that a system is stable, the dominant pair of eajaag tends to be
the most important element of the response. To see thismasthat we have a
system in Jordan form with a simple Jordan block correspantb the dominant
pair of eigenvalues:

A

7=

A*
th: J z+Bu, y=Cz

J

(Note that the state may be complex because of the Jordan transformation.) The
response of the system will be a linear combination of thpaeses from each
of the individual Jordan subsystems. As we see from Figurefér& < 1 the
subsystem with the slowest response is precisely the ohdlgtsmallest damping
ratio. Hence, when we add the responses from each of thedndivsubsystems,
it is the dominant pair of eigenvalues that will be the priynfaictor after the initial
transients due to the other terms in the solution die outl&\this simple analysis
does not always hold (e.g., if some nondominant terms hagedaoefficients
because of the particular form of the system), it is oftercte that the dominant
eigenvalues determine the (step) response of the system.

The only formal requirement for eigenvalue assignment i ttha system be
reachable. In practice there are many other constraintsulsecthe selection of
eigenvalues has a strong effect on the magnitude and ratenfje of the control
signal. Large eigenvalues will in general require large argignals as well as
fast changes of the signals. The capability of the actuatdrsherefore impose
constraints on the possible location of closed loop eigelega These issues will
be discussed in depth in Chapters 11 and 12.

We illustrate some of the main ideas using the balance syassesn example.

Example 6.7 Balance system
Consider the problem of stabilizing a balance system, whigsamics were given
in Example 6.2. The dynamics are given by

0 0 1 0 0
A 0 0 0 1 B_ 0
|0 mA%g/u —cd/u —ydIm/u > T X/

0 Mimgl/u —clm/u  —yMi/u Im/u
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whereM; =M +m, J = J+ml?, u = Mg — @12 and we have left andy nonzero.
We use the following parameters for the system (correspgnaiughly to a human
being balanced on a stabilizing cart):

M = 10kg, m= 80 kg c=0.1Ns/m
J =100 kg nf/<, | =1m, y=0.01Nms

The eigenvalues of the open loop dynamics are giveh#y0,4.7, — 1.9+ 2.7i.
We have verified already in Example 6.2 that the system is rééehand hence
we can use state feedback to stabilize the system and prawigsired level of
performance.

To decide where to place the closed loop eigenvalues, wethaté¢he closed
loop dynamics will roughly consist of two components: a sefast dynamics
that stabilize the pendulum in the inverted position andtatelower dynamics
that control the position of the cart. For the fast dynamies look to the natural
period of the pendulum (in the hanging-down position), Whi given bywy =

mgl/(J+ ml2) ~ 2.1 rad/s. To provide a fast response we choose a damping rati
of { = 0.5 and try to place the first pair of eigenvaluesAab ~ —{wpy £iwp ~
—14 2i, where we have used the approximation thét — {2 ~ 1. For the slow
dynamics, we choose the damping ratio to bétd provide a small overshoot and
choose the natural frequency to b& @o give a rise time of approximately 5 s.
This gives eigenvalueks 4 = —0.35+ 0.35i.

The controller consists of a feedback on the state and a feeeaifd gain for
the reference input. The feedback gain is given by

g=9.8m/g.

K::[—156 1730 -50.1 443,

which can be computed using Theorem 6.3 or using the MATIpABICe com-
mand. The feedforward gain k¢ = —1/(C(A—BK)~!B) = —15.5. The step re-
sponse for the resulting controller (applied to the lineedli system) is given in
Figure 6.11a. While the step response gives the desiredathestics, the input
required (bottom left) is excessively large, almost thiees the force of gravity
at its peak.

To provide a more realistic response, we can redesign thiatien to have
slower dynamics. We see that the peak of the input force samuthe fast time
scale, and hence we choose to slow this down by a factor o&@ing the damp-
ing ratio unchanged. We also slow down the second set of wadjgs, with the
intuition that we should move the position of the cart mo@my than we sta-
bilize the pendulum dynamics. Leaving the damping ratio fier slow dynamics
unchanged at.@ and changing the frequency to 1 (corresponding to a rise ¢ifm
approximately 10 s), the desired eigenvalues become

A ={—0.3340.66i, —0.18--0.18i}.

The performance of the resulting controller is shown in Figufelb. O

As we see from this example, it can be difficult to determine nette place



190 CHAPTER 6. STATE FEEDBACK

2 2
E E
Q. Q.
§1 §1
3 3
o o
D_ O Il Il Il i D- 0 Il Il Il ]
0 5 10 15 0 10 20 30 40
_., 30 _. 30
Z Z
u 20r R u 20 b
8 8
5 10f, R 8 10 B
3 o 3
c c
- _10 1 ! ! —_ _10 ! ! !
0 5 10 15 0 10 20 30 40
Timet [s] Timet [s]
@A p=-1%2 (b) A2 = —0.33+0.66i

Figure 6.11: State feedback control of a balance system. The step response mifalleo
designed to give fast performance is shown in (a). Although the nsspoharacteristics
(top left) look very good, the input magnitude (bottom left) is very large. #s laggressive
controller is shown in (b). Here the response time is slowed down, but e magnitude
is much more reasonable. Both step responses are applied to the lidebnizenics.

the eigenvalues using state feedback. This is one of theipaidonitations of this
approach, especially for systems of higher dimension.ragdtcontrol techniques,
such as the linear quadratic regulator problem discusseil axe@ one approach
that is available. One can also focus on the frequency ragpion performing the
design, which is the subject of Chapters 8-12.

Linear Quadratic Regulators

As an alternative to selecting the closed loop eigenvaloations to accomplish a
certain objective, the gains for a state feedback controdla instead be chosen is
by attempting to optimize a cost function. This can be paldityuseful in helping
balance the performance of the system with the magnitudeeoinputs required
to achieve that level of performance.

The infinite horizon, linear quadratic regulator (LQR) probl&one of the

most common optimal control problems. Given a multi-inpogér system
dx

dt
we attempt to minimize the quadratic cost function

= [T T
J= /0 (xTQux+uT Quu) dt, (6.26)

whereQy > 0 andQy > 0 are symmetric, positive (semi-) definite matrices of
the appropriate dimensions. This cost function represetreda-off between the
distance of the state from the origin and the cost of the obimput. By choosing

= Ax+Bu, x€R", ucRP,
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the matricegQx andQ,, we can balance the rate of convergence of the solutions
with the cost of the control.
The solution to the LQR problem is given by a linear control ldhe form

u=-Q,'B"Px
whereP € R™" is a positive definite, symmetric matrix that satisfies the égna

PA+ATP—PBQ;B"P+Q,=0. (6.27)
Equation (6.27) is called thalgebraic Riccati equatioand can be solved numer-
ically (e.g., using thé gr command in MATLAB).

One of the key questions in LQR design is how to choose the wsei@hand
Qu. To guarantee that a solution exists, we must l@ver 0 andQy > 0. In addi-
tion, there are certain “observability” conditions Qg that limit its choice. Here
we assume&)y > 0 to ensure that solutions to the algebraic Riccati equatiways
exist.

To choose specific values for the cost function weigtandQ,, we must use
our knowledge of the system we are trying to control. A patédy simple choice
is to use diagonal weights

a1 0 pP1 0
QX: ) QU:
0 qn 0 Pn

For this choice o)y andQy, the individual diagonal elements describe how much
each state and input (squared) should contribute to thalbeest. Hence, we can
take states that should remain small and attach higher tvegdjies to them. Sim-
ilarly, we can penalize an input versus the states and otipeits through choice
of the corresponding input weigpt

Example 6.8 Vectored thrust aircraft
Consider the original dynamics of the system (2.26), writtestate space form as

) 0
0
% 0
dz Zs 1 1
at - _%24 5 COsOFy — . sinfF,
—g— <2z L Sin6F,+ LcosOF,
0 r
ik

(see also Example 5.4). The system parametersased kg, J = 0.0475 kgm,
r=0.25mg=29.8 m/2, ¢ = 0.05 N 's/m, which corresponds to a scaled model of
the system. The equilibrium point for the system is giverFby= 0, / = mgand

Ze = (Xe,Ye,0,0,0,0). To derive the linearized model near an equilibrium poirg, w
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compute the linearization according to equation (5.34):

(0 0 O 1 0 O 0 0
0 0 O 0 1 0 0 0
A 0 0 O 0 0 1 B_ 0 0
10 0 g -¢/m 0 0O}’ ~|1/m O |’
00 O 0 —-c¢/moO 0 1/m
0 0 O 0 0 O (. r/3 0 )
1 000O0O0 00
C:\01oooo]7 D:oo]'
Letting{ = z— z. andv = F — F, the linearized system is given by
dé
— =A¢{+B =Cg¢.
gt = A+ BV y=C¢

It can be verified that the system is reachable.
To compute a linear quadratic regulator for the system, vige\ihre cost func-
tion as

_ ° T T
1= [ Qe v awat

whereé = z— z, andv = F — F; again represent the local coordinates around the
desired equilibrium poinfz, Fe). We begin with diagonal matrices for the state
and input costs:

_ _[p O

OO PrOOoOOo
R OOOOoO
elelololo]

(oNolNoNoNol
oNolNoNol el
oNeoNeoh ool

0

This gives a control law of the form= —K¢&, which can then be used to derive
the control law in terms of the original variables:

F=v+FR=-K(z—2)+F.

As computed in Example 5.4, the equilibrium points h&ye= (0,mg) andz. =
(Xe,Ye,0,0,0,0). The response of the controller to a step change in the desired
position is shown in Figure 6.12a fpr= 1. The response can be tuned by adjusting
the weights in the LQR cost. Figure 6.12b shows the respondesixdirection

for different choices of the weiglg. O

Linear quadratic regulators can also be designed for destiree systems, as
illustrated by the following example.

Example 6.9 Web server control
Consider the web server example given in Section 3.4, whaseeete-time model
for the system was given. We wish to design a control law tk& the server
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Figure 6.12: Step response for a vectored thrust aircraft. The plot in (a) showsahdy
positions of the aircraft when it is commanded to move 1 m in each diredtigi) the x
motion is shown for control weights = 1, 1%, 10*. A higher weight of the input term in
the cost function causes a more sluggish response.

parameters so that the average server processor load isamaiah at a desired
level. Since other processes may be running on the servewedheserver must
adjust its parameters in response to changes in the load.

A block diagram for the control system is shown in Figure 6 \\& focus
on the special case where we wish to control only the procédsad using both
theKeepAl i ve andMaxCl i ent s parameters. We also include a “disturbance”
on the measured load that represents the use of the progesgiles by other
processes running on the server. The system has the samestoastare as the
generic control system in Figure 6.5, with the variation thatdisturbance enters
after the process dynamics.

The dynamics of the system are given by a set of differencetiemsaof the
form

X[k+ 1] = Axk] + Bulk], Yepu[K] = Cepux[K] + depulK],

wherex = (Xcpu, Xmem) IS the statey = (Uka, Umc) is the inputdcpy is the processing
load from other processes on the computer yagglis the total processor load.

Feedback d
Precompensation Controller Server
lcpu e u n y
— Kk C = P —
1 |-

Figure 6.13: Feedback control of a web server. The controller sets the values efdhe
server parameters based on the difference between the nominalgtera (determined by
krr) and the current loagkpy. The disturbance represents the load due to other processes
running on the server. Note that the measurement is taken after thebdisterso that we
measure the total load on the server.
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We choose our controller to be a state feedback controllgreoform

u:—K[ﬁW]+h&m
Xmem
wherercpy is the desired processor load. Note that we have used theinedgso-
cessor loadcpy instead of the state to ensure that we adjust the systemtimpera
based on the actual load. (This modification is necessary bea#ithe nonstan-
dard way in which the disturbance enters the process dyisamic

The feedback gain matrik can be chosen by any of the methods described in
this chapter. Here we use a linear quadratic regulator, tivéttcost function given

by
(5 0 _ (1/5¢° 0
E=lo 1] X=|"0 1/100C )

The cost function for the sta®y is chosen so that we place more emphasis on
the processor load versus the memory use. The cost functidghdanputsQy is
chosen so as to normalize the two inputs, wike2pAl i ve timeout of 50 s hav-
ing the same weight asNaxCl i ent s value of 1000. These values are squared
since the cost associated with the inputs is givens®,u. Using the dynamics in
Section 3.4 and thél gr command in MATLAB, the resulting gains become

«_ [~223 101
~ (3827 777}

As in the case of a continuous-time control system, the eefa gairk; is
chosen to yield the desired equilibrium point for the syst&®ttingx[k + 1] =
X[K] = e, the steady-state equilibrium point and output for a givefanence input
r are given by

Xe = (A—BK)xe+ Bk, Ye = CXe.

This is a matrix differential equation in whidh is a column vector that sets the
two inputs values based on the desired reference. If we bekddsired output to
be of the formye = (r,0), then we must solve

[é] =C(A—BK—1)"1Bk.

Solving this equation fok,, we obtain

- en-ncm)” (3 - ()

The dynamics of the closed loop system are illustrated in Eigut4. We apply
a change in load adcp, = 0.3 at timet = 10 s, forcing the controller to adjust the
operation of the server to attempt to maintain the desirad bt 057. Note that
both theKeepAl i ve andMaxCl i ent s parameters are adjusted. Although the
load is decreased, it remains approximately 0.2 above tbiedesteady state.
(Better results can be obtained using the techniques ofeakiesection.) O
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Figure 6.14:Web server with LQR control. The plot in (a) shows the state of the system un
der a change in external load appliedat 10 ms. The corresponding web server parameters
(system inputs) are shown in (b). The controller is able to reduce tha effthe disturbance

by approximately 40%.

6.4 Integral Action

Controllers based on state feedback achieve the corredysttate response to
command signals by careful calibration of the gairHowever, one of the primary
uses of feedback is to allow good performance in the presaineecertainty, and
hence requiring that we have axactmodel of the process is undesirable. An
alternative to calibration is to make use of integral featthan which the controller
uses an integrator to provide zero steady-state error. T$ie bancept of integral
feedback was given in Section 1.5 and in Section 3.1; here wddar@ more
complete description and analysis.

The basic approach in integral feedback is to create a st#iewhe controller
that computes the integral of the error signal, which is theed as a feedback
term. We do this by augmenting the description of the systé@imawmnew state:

d (x] _ (Ax+Bu) _ (Ax+Bu

a)-(57)- (%) ew
The statezis seen to be the integral of the difference between the thabautput
y and desired outpuit Note that if we find a compensator that stabilizes the system,
then we will necessarily have= 0 in steady state and henge- r in steady state.

Given the augmented system, we design a state space centrothe usual
fashion, with a control law of the form

u=—Kx—kz+kcr, (6.29)

whereK is the usual state feedback terknjs the integral term ang; is used to
set the nominal input for the desired steady state. The negudtjuilibrium point
for the system is given as

Xe = —(A—BK) 'B(k —kize).

Note that the value df; is not specified but rather will automatically settle to the
value that makeg =y —r = 0, which implies that at equilibrium the output will
equal the reference value. This holds independently of teeip values ofA,
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B andK as long as the system is stable (which can be done througb@gie
choice ofK andk;).
The final compensator is given by

dz
u=—Kx—kz+kr, Frimb At

where we have now included the dynamics of the integratoagsgb the specifi-
cation of the controller. This type of compensator is knowa dgnamic compen-
satorsince it has its own internal dynamics. The following exanililstrates the
basic approach.

Example 6.10 Cruise control
Consider the cruise control example introduced in SectitraBd considered fur-
ther in Example 5.11. The linearized dynamics of the processnar an equilib-
rium pointve, Ue are given by
dx
dt
wherex =v— Ve, W= U— Ug, Mis the mass of the car arftiis the angle of the road.
The constana depends on the throttle characteristic and is given in Examyll.
If we augment the system with an integrator, the processrdigsabecome
dx
dt
or, in state space form,

(=129 () () () (u2)

Note that when the system is at equilibrium, we have z5a0, which implies that
the vehicle speed= v+ x should be equal to the desired reference speedur
controller will be of the form

dz
a:y—Vr7 W:—kpX—k|Z+krVr,

and the gaing,, ki andk; will be chosen to stabilize the system and provide the
correct input for the reference speed.

Assume that we wish to design the closed loop system to havehdracteristic
polynomial

= ax— bg6 + bw, Y =V=X+ Vg,

d
= ax— bg6 + bw, d—tzzy—vr:ve+x—vr,

A(s) = 52+als+ ap.

Setting the disturbanc@ = 0, the characteristic polynomial of the closed loop
system is given by

det(sl — (A—BK)) = & + (bk, — a)s+ bk,

and hence we set
a;+a _
k=TS k=22 k=-1/(C(A-BK)'B)

_a
. ==

b
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Figure 6.15: Velocity and throttle for a car with cruise control based on proportional
(dashed) and PI control (solid). The PI controller is able to adjust thutlito compen-
sate for the effect of the hill and maintain the speed at the reference e&lu= 20 m/s.

The resulting controller stabilizes the system and henecggbd=y — v; to zero,
resulting in perfect tracking. Notice that even if we haverab error in the values
of the parameters defining the system, as long as the clospaigenvalues are
still stable, then the tracking error will approach zero. Jltve exact calibration
required in our previous approach (usikg is not needed here. Indeed, we can
even choos& = 0 and let the feedback controller do all of the work.

Integral feedback can also be used to compensate for comBsinrbances.
Figure 6.15 shows the results of a simulation in which the caoenters a hill
with angle@ = 4° att = 8 s. The stability of the system is not affected by this
external disturbance, and so we once again see that thevetotsty converges
to the reference speed. This ability to handle constant riiatices is a general
property of controllers with integral feedback (see Exer&st). O

6.5 Further Reading

The importance of state models and state feedback was déstirsthe seminal
paper by Kalman [Kal60], where the state feedback gain wéaidd by solving
an optimization problem that minimized a quadratic losscfiom. The notions
of reachability and observability (Chapter 7) are also dud&alman [Kal61b]
(see also [Gil63, KHN63]). Kalman defines controllabilitydareachability as the
ability to reach the origin and an arbitrary state, respebttiKFA69]. We note that
in most textbooks the term “controllability” is used insdeaf “reachability,” but
we prefer the latter term because it is more descriptivesfuhdamental property
of being able to reach arbitrary states. Most undergradieateooks on control
contain material on state space systems, including, fanple Franklin, Powell
and Emami-Naeini [FPENO5] and Ogata [Oga01l]. Friedland’s tekld&ri04]
covers the material in the previous, current and next chapt®nsiderable detail,
including the topic of optimal control.
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Exercises

6.1 (Double integrator) Consider the double integrator. Findeagwise constant
control strategy that drives the system from the origin todtatex = (1,1).

6.2 (Reachability from nonzero initial state) Extend the argotie Section 6.1 to
show that if a system is reachable from an initial state aob zieis reachable from
a nonzero initial state.

6.3 (Unreachable systems) Consider the system shown in Fig8reAgite the
dynamics of the two systems as

dx dz

i AX—+ BuU, Frie Az+Bu.

If x andz have the same initial condition, they will always have thmeastate
regardless of the input that is applied. Show that this vialahe definition of

reachability and further show that the reachability matvxs not full rank.

6.4 (Integral feedback for rejecting constant disturbances)stier a linear system
of the form

:li(—AX—i—Bu—i—Fd, y=Cx

whereu is a scalar and is a disturbance that enters the system through a distur-
bance vectoF € R". Assume that the matrikis invertible and the zero frequency
gainCA 1B is nonzero. Show that integral feedback can be used to coraiecios

a constant disturbance by giving zero steady-state outputeven wherd # O.

6.5(Rear-steered bicycle) A simple model for a bicycle wasmgiwequation (3.5)
in Section 3.2. A model for a bicycle with rear-wheel steerggbtained by revers-
ing the sign of the velocity in the model. Determine the ctinds under which
this systems is reachable and explain any situations inhwttie system is not
reachable.

6.6 (Characteristic polynomial for reachable canonical foBhpw that the char-
acteristic polynomial for a system in reachable canonicahfis given by equa-
tion (6.7) and that

d" dn-t d d"ku
dtﬁ( Far By 1 Aok =

dtn-1 dt dtn-k’
wherez is thekth state.

6.7 (Reachability matrix for reachable canonical form) Coesi@system in reach-
able canonical form. Show that the inverse of the reachglildtrix is given by

1 a a - an
0 1 a -+ an-1

W1i=1]10 0 1
E . al
00 0 -~ 1
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6.8 (Non-maintainable equilibria) Consider the normalizeddelf a pendulum

on a cart
a2 d20

—=u
dt? ’ dt?

wherex is cart position and@ is pendulum angle. Can the an@le= 6, for 6y £ 0
be maintained?

=—-0+u,

6.9 (Eigenvalue assignment for unreachable system) Consideysiem

dx 01 1
dt [o o] X+ [o] Y v=(1 0)x
with the control law
U= —kix1 —koxo + k.

Show that eigenvalues of the system cannot be assigned tmayhbialues.

6.10 (Cayley—Hamilton theorem) LeA € R™" be a matrix with characteristic
polynomialA (s) = det(sl — A) = s+ a;s" 1 + .- + a, 1S+ a,. Assume that the
matrix A can be diagonalized and show that it satisfies

AA) =A"+a A" ay 1A+anl =0,

Use the result to show tha¥, k > n, can be rewritten in terms of powers Afof
order less than.

6.11 (Motor drive) Consider the normalized model of the motowverin Exer-
cise 2.10. Using the following normalized parameters,

J1 = 10/9, Jo =10, c=0.1, k= 1 k = 1,

verify that the eigenvalues of the open loop system afe-00.05+i. Design a
state feedback that gives a closed loop system with eigeesal, —1 and—1+1.
This choice implies that the oscillatory eigenvalues wilvizell damped and that
the eigenvalues at the origin are replaced by eigenvaluéseomegative real axis.
Simulate the responses of the closed loop system to stepehanthe command
signal for6, and a step change in a disturbance torque on the second rotor.

6.12(Whipple bicycle model) Consider the Whipple bicycle mogiekn by equa-
tion (3.7) in Section 3.2. Using the parameters from the cangoaweb site, the
model is unstable at the velociy= 5 m/s and the open loop eigenvalues are -1.84,
-14.29 and 130+ 4.60i. Find the gains of a controller that stabilizes the bicycle
and gives closed loop eigenvalues at -2, -10 aiddt i. Simulate the response of
the system to a step change in the steering reference of tad02
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6.13 (Atomic force microscope) Consider the model of an AFM in eabimode
given in Example 5.9:

0 1 0 0 0
ax [ —ke/(m+mp) —Cz/(M+mp) 1/mp O w2,
dt 0 0 0 w3 ol

0 0 —w3  —2{3003 w3

my [ mka mc 4 o] «
Mm+Mm LM+ M+

Use the MATLAB scriptaf m dat a. mfrom the companion web site to generate the
system matrices.

y:

(a) Compute the reachability matrix of the system and nura#yi determine its
rank. Scale the model by using milliseconds instead of secaadime units. Re-
peat the calculation of the reachability matrix and its rank

(b) Find a state feedback controller that gives a closed lgefem with complex
poles having damping ratio 0.707. Use the scaled model écdmputations.

(c) Compute state feedback gains using linear quadratitaoiExperiment by
using different weights. Compute the gains@er=qgo = 0,03 = s = 1 andp; =
0.1 and explain the result. Chooge= 0> = g3 = g4 = 1 and explore what happens
to the feedback gains and closed loop eigenvalues when yemgelp;. Use the
scaled system for this computation.

6.14 Consider the second-order system
d?y dy du
@_’—OSE +y= aa—FU.

Let the initial conditions be zero.

(a) Show that the initial slope of the unit step response Biscuss what it means
whena < 0.

(b) Show that there are points on the unit step response thatariant witha.
Discuss qualitatively the effect of the parametem the solution.

(c) Simulate the system and explore the effec ofi the rise time and overshoot.

6.15(Bryson’s rule) Bryson and Ho [BH75] have suggested thefaihg method
for choosing the matriceQyx and Q, in equation (6.26). Start by choosiri@
and Q, as diagonal matrices whose elements are the inverses ofjtlaees of
the maxima of the corresponding variables. Then modify theehts to obtain a
compromise among response time, damping and control effpply this method
to the motor drive in Exercise 6.11. Assume that the largdsiegeof theg; and

¢ are 1, the largest values ¢f and¢, are 2 and the largest control signal is 10.
Simulate the closed loop system ifp(0) = 1 and all other states are initialized to
0. Explore the effects of different values of the diagonafredats forQ, andQ.



Chapter Seven
Output Feedback

One may separate the problem of physical realization into two stages:utatign of the
“best approximation”X(t; ) of the state from knowledge aftyfort <t; and computation of
u(ty) givenx(ty).

R. E. Kalman, “Contributions to the Theory of Optimal Control,” 1960 [K3I6

In this chapter we show how to use output feedback to modiéydynamics
of the system through the use of observers. We introducecheept of observ-
ability and show that if a system is observable, it is possiblrecover the state
from measurements of the inputs and outputs to the systenth&eshow how to
design a controller with feedback from the observer stateindportant concept is
the separation principle quoted above, which is also proved structure of the
controllers derived in this chapter is quite general andisioed by many other
design methods.

7.1 Observability

In Section 6.2 of the previous chapter it was shown that it issgade to find a

state feedback law that gives desired closed loop eigeesagbovided that the
system is reachable and that all the states are measurethdefyr situations, it

is highly unrealistic to assume that all the states are nmedsin this section we
investigate how the state can be estimated by using a maticailmaodel and a
few measurements. It will be shown that computation of th&estcan be carried
out by a dynamical system called abserver

Definition of Observability
Consider a system described by a set of differential equsitio

3? = Ax+ Bu, y =Cx+Du, (7.1)

wherex € R" is the stateu € RP the input andy € RY the measured output. We
wish to estimate the state of the system from its inputs amplubs, as illustrated

in Figure 7.1. In some situations we will assume that theranig one measured
signal, i.e., that the signglis a scalar and th& is a (row) vector. This signal may
be corrupted by noise, although we shall start by considering the noise-free.case
We write X for the state estimate given by the observer.
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n

Process
u Xx=Ax+Bu | Y X
- Observer —
y=Cx+Du

A

Figure 7.1: Block diagram for an observer. The observer uses the processursezenty

(possibly corrupted by nois®) and the inputi to estimate the current state of the process,
denotedk”

Definition 7.1 (Observability) A linear system ibservabléf forany T > 0 it is
possible to determine the state of the syst€) through measurements wft)
andu(t) on the intervalO, T].

The definition above holds for nonlinear systems as well, aaddbults dis-
cussed here have extensions to the nonlinear case.

The problem of observability is one that has many importaptiegtions, even
outside feedback systems. If a system is observable, ttreza #re no “hidden”
dynamics inside it; we can understand everything that isgy@n through ob-
servation (over time) of the inputs and outputs. As we sted|, $she problem of
observability is of significant practical interest becauseili determine if a set of
sensors is sufficient for controlling a system. Sensors coadbivith a mathemat-
ical model can also be viewed as a “virtual sensor” that gisésmation about
variables that are not measured directly. The process ohecdiomy signals from
many sensors with mathematical models is also caldatsor fusion

Testing for Observability

When discussing reachability in the last chapter, we néggkethe output and fo-
cused on the state. Similarly, it is convenient here to itizeglect the input and
focus on the autonomous system

dx
dt
We wish to understand when it is possible to determine the &tam observations
of the output.
The output itself gives the projection of the state on vedtwasare rows of the
matrix C. The observability problem can immediately be solved if trarir C is

invertible. If the matrix is not invertible, we can take detives of the output to
obtain

AX, y=CXx (7.2)

dy _dx
a_Ca_CAx

From the derivative of the output we thus get the projectiotihefstate on vectors
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that are rows of the matri€A. Proceeding in this way, we get

y C
y CA
y | =] ¢S |x (7.3)
-1 CA™1
We thus find that the state can be determined ifabgervability matrix
C
CA
Wo= | CA° (7.4)
CA.n—l

hasn independent rows. It turns out that we need not consider anyalives
higher thann — 1 (this is an application of the Cayley—Hamilton theorem [Exe
cise 6.10]).

The calculation can easily be extended to systems with infphtsstate is then
given by a linear combination of inputs and outputs and thigiher derivatives.
The observability criterion is unchanged. We leave this essen exercise for the
reader.

In practice, differentiation of the output can give largeoes when there is
measurement noise, and therefore the method sketched ebowe particularly
practical. We will address this issue in more detail in thetisection, but for now
we have the following basic result.

Theorem 7.1(Observability rank condition)A linear system of the forify.1) is
observable if and only if the observability matrix V¥ full rank.

Proof. The sufficiency of the observability rank condition followsifn the analy-@
sis above. To prove necessity, suppose that the systemasvabte but/\, is not
full rank. Letv € R", v # 0, be a vector in the null space 8§, so thatW,v = 0.

If we let x(0) = v be the initial condition for the system and choase 0, then
the output is given by(t) = Cev. Sincee™ can be written as a power seriesiin
and sinceA" and higher powers can be rewritten in terms of lower powers (bfy
the Cayley—Hamilton theorem), it follows that the outputl e identically zero
(the reader should fill in the missing steps if this is not gledowever, if both the
input and output of the system are 0, then a valid estimateen$tate ix = O for
all time, which is clearly incorrect sinog0) = v # 0. Hence by contradiction we
must have that\,, is full rank if the system is observable. Ol

Example 7.1 Compartment model
Consider the two-compartment model in Figure 3.18a, butasshat the concen-
tration in the first compartment can be measured. The systeps@ided by the
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Figure 7.2: An unobservable system. Two identical subsystems have outputs thab-ad
gether to form the overall system output. The individual states of theystdm cannot be
determined since the contributions of each to the output are not distinglésfide circuit
diagram on the right is an example of such a system.

linear system

dC_ —ko—kl kl bo .
dt_[ ko —kz] c+[0 u, y= (1 0] C.

The first compartment represents the drug concentration ibltioel plasma, and
the second compartment the drug concentration in the tisheee it is active. To

determine if it is possible to find the concentration in theusscompartment from
a measurement of blood plasma, we investigate the obsétyalbithe system by

forming the observability matrix

C 10
el AR B |

The rows are linearly independentkf # 0, and under this condition it is thus
possible to determine the concentration of the drug in thieeacompartment from
measurements of the drug concentration in the blood. 0

It is useful to have an understanding of the mechanisms tla&era system
unobservable. Such a system is shown in Figure 7.2. The systenmposed
of two identical systems whose outputs are added. It seemisiviely clear that
it is not possible to deduce the states from the output sineecannot deduce
the individual output contributions from the sum. This casodbe seen formally
(Exercise 7.2).

Observable Canonical Form

As in the case of reachability, certain canonical forms W@l useful in studying
observability. A linear single-input, single-output gt@pace system is imbserv-
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Figure 7.3: Block diagram of a system in observable canonical form. The stateseof th
system are represented by individual integrators whose inputs areghtag combination

of the next integrator in the chain, the first state (rightmost integratorjrengystem input.
The output is a combination of the first state and the input.

able canonical fornif its dynamics are given by

—az 10 0 bl
—ap 0 1 0 b,
dz_1 . 2+ |+ |u
dt - : ’
—anfl O 0 l bnfl
-a2 0 O 0 bn

y=(1 00 0)z+pu

The definition can be extended to systems with many inputs;nhedifference is
that the vector multiplyingi is replaced by a matrix.

Figure 7.3 is a block diagram for a system in observable caabform. As
in the case of reachable canonical form, we see that the deafidn the system
description appear directly in the block diagram. The charétic polynomial for
a system in observable canonical form is

A() =s"+as" 1+ +a,15+an. (7.5)

It is possible to reason about the observability of a systeabservable canonical
form by studying the block diagram. If the inputand the outpuy are available,
the statez; can clearly be computed. Differentiatizg we obtain the input to the
integrator that generates, and we can now obtai» = z + a;z; — byu. Proceed-
ing in this way, we can compute all states. The computatioh molvever, require
that the signals be differentiated.

To check observability more formally, we compute the obakeitity matrix for
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a system in observable canonical form, which is given by

1 0O O .. O
—az 1 0 ... 0

W, = —a?-a -—a 1 of
* * o1

where * represents an entry whose exact value is not imporféwe rows of this
matrix are linearly independent (since it is lower triaraglil and henc®\, is full
rank. A straightforward but tedious calculation shows tihatinverse of the ob-
servability matrix has a simple form given by

1 0 0 0

a 1 0 0

\/\/0—1 — ar a1 1 0
-1 A2 A3 - 1

As in the case of reachability, it turns out that if a systernbservable then
there always exists a transformatidnthat converts the system into observable
canonical form. This is useful for proofs since it lets us assuhat a system
is in observable canonical form without any loss of gengralihe observable
canonical form may be poorly conditioned numerically.

7.2 State Estimation

Having defined the concept of observability, we now returrieduestion of how
to construct an observer for a system. We will look for obsesthat can be repre-
sented as a linear dynamical system that takes the inputsldapdts of the system
we are observing and produces an estimate of the systertés Flaat is, we wish
to construct a dynamical system of the form

dx
— =FX+Gu+H
at +Gu+hRy,
whereu andy are the input and output of the original system and R" is an
estimate of the state with the property tiét) ~ x(t) ast — .

The Observer

We consider the system in equation (7.1) witlset to zero to simplify the expo-
sition:
dx

at = Ax+Bu, y=Cx (7.6)
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We can attempt to determine the state simply by simulatiegetiuations with the
correct input. An estimate of the state is then given by
dx

4t =A% +Bu (7.7)

To find the properties of this estimate, introduce the estonatrrorX’= x — X. It
follows from equations (7.6) and (7.7) that

dX .

i AX.
If matrix A has all its eigenvalues in the left half-plane, the erraiill'go to zero,
and hence equation (7.7) is a dynamical system whose outpneyes to the
state of the system (7.6).

The observer given by equation (7.7) uses only the process inphe mea-
sured signal does not appear in the equation. We must alsoedhat the system
be stable, and essentially our estimator converges betaistate of both the ob-
server and estimator are going to zero. This is not very usefalcontrol design
context since we want to have our estimate converge quiokdyrtonzero state so
that we can make use of it in our controller. We will therefateempt to modify
the observer so that the output is used and its convergeonpenies can be de-
signed to be fast relative to the system’s dynamics. Thisvessill also work for
unstable systems.

Consider the observer

dx

G = ARFBUL(Y—CR). (7.8)

This can be considered as a generalization of equation egdback from the
measured output is provided by adding the térfy— CX), which is proportional
to the difference between the observed output and the optpdicted by the ob-
server. It follows from equations (7.6) and (7.8) that

dx

If the matrixL can be chosen in such a way that the ma#yix LC has eigenval-
ues with negative real parts, the ersowill go to zero. The convergence rate is
determined by an appropriate selection of the eigenvalues.

Notice the similarity between the problems of finding a statedback and
finding the observer. State feedback design by eigenvalugrmssint is equivalent
to finding a matrixk so thatA — BK has given eigenvalues. Designing an observer
with prescribed eigenvalues is equivalent to finding a matréo thatA — LC has
given eigenvalues. Since the eigenvalues of a matrix andhitspose are the same
we can establish the following equivalences:

Ae AT, B+~ CT, KoL,  WeWw.

The observer design problem is theal of the state feedback design problem.
Using the results of Theorem 6.3, we get the following theooerabserver design.
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Theorem 7.2(Observer design by eigenvalue assignme@®nsider the system
given by

dx

pri Ax+Bu, y=CXx, (7.9)
with one input and one output. L&t(s) = " +a; "1+ --- 4 a,_ 1S+ a, be the
characteristic polynomial for A. If the system is observaliien the dynamical

system
Y dx

at = AR+ Bu+L(y—CX) (7.10)
is an observer for the system, with L chosen as
P1—a1
~ | P2—a
L =W, W, , (7.11)
Pn—2an
and the matrices WandW, given by
(1 0 0 0 0y *
C a 1 0 0 O
CA - ap al 1 0 0
Wo - ) Wo - .
CA1 -2 8-3 an-4 10
a1 @2 a3 a 1

The resulting observer erréf= x— X is governed by a differential equation having
the characteristic polynomial

p(s) ="+ P+ + pn.

The dynamical system (7.10) is called alpserverfor (the states of) the sys-
tem (7.9) because it will generate an approximation of théestof the system
from its inputs and outputs. This form of an observer is a muohenuseful form
than the one given by pure differentiation in equation (7.3)

Example 7.2 Compartment model
Consider the compartment model in Example 7.1, which is ctaraed by the
matrices

_[~ko—ki ki _ [bo _
A_[ - —kz]’ B_[O], c- (1 9.
The observability matrix was computed in Example 7.1, whereoveeluded that

the system was observablekif = 0. The dynamics matrix has the characteristic
polynomial

s+ko+ki -k

)\(s):det[ ko Stk

] = 4 (Kot ka + kp)s-+ koko.
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Figure 7.4: Observer for a two compartment system. A two compartment modebisrsh
on the left. The observer measures the input concentratoa output concentration= c;
to determine the compartment concentrations, shown on the right. Thedngentrations
are shown by solid lines and the estimates generated by the observestieyldiaes.

Let the desired characteristic polynomial of the observes®e p1s+ p2, and
equation (7.11) gives the observer gain

L= - 0y~ 1 o) * p1—ko— ki — ko
—ko—ki kg Ko+ki+k 1 P2 — koko
_ p1— ko — ki —ko
(P2 — pike +kiko +K3) /ky )

Notice that the observability conditioky = O is essential. The behavior of the
observer is illustrated by the simulation in Figure 7.4b.ib®how the observed
concentrations approach the true concentrations. O

The observer is a dynamical system whose inputs are the gringegu and the
process output. The rate of change of the estimate is composed of two termes. On
term, AX+ Bu, is the rate of change computed from the model witubstituted
for x. The other terml_(y— V), is proportional to the differenae=y—y between
measured outpytand its estimatg = CX. The observer gaih is a matrix that tells
how the errore is weighted and distributed among the states. The obserusr th
combines measurements with a dynamical model of the sy#druack diagram
of the observer is shown in Figure 7.5.

Computing the Observer Gain

For simple low-order problems it is convenient to introdtice elements of the
observer gairk as unknown parameters and solve for the values required/éo gi
the desired characteristic polynomial, as illustratechanfbllowing example.

Example 7.3 Vehicle steering
The normalized linear model for vehicle steering derived iafBgples 5.12 and 6.4
gives the following state space model dynamics relatirgyétpath deviationy to
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Figure 7.5: Block diagram of the observer. The observer takes the sigreatslu as inputs
and produces an estimateNotice that the observer contains a copy of the process model
that is driven byy — y through the observer galn

steering angle:

dx (0 1 y _

i [0 0] X+ [l] u, y= (1 0) X. (7.12)
Recall that the state; represents the lateral path deviation and thaepresents
the turning rate. We will now derive an observer that usessifsgem model to

determine the turning rate from the measured path deviation
The observability matrix is

10
WOZ [O 1]7

i.e., the identity matrix. The system is thus observable,thadigenvalue assign-
ment problem can be solved. We have

(-1 1
A—LC= [_|2 0] ,
which has the characteristic polynomial

S—|—|1 -1

det(sl—A+LC) :det[ I, S

] :Sz+|1S+|2.

Assuming that we want to have an observer with the charatitepolynomial
S+ P15+ P2 = £+ 2owpS+ W,

the observer gains should be chosen as

li=p1=20w, l2=p2=ak.

The observer is then

ﬁ:AﬂBquL(y—CX): [8 (1)] R+ [i’] u-+ [:;] (Y —%0).
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Figure 7.6: Simulation of an observer for a vehicle driving on a curvy road (leftle Bb-
server has an initial velocity error. The plots on the middle show the latevétibnx;, the
lateral velocityx, by solid lines and their estimatag andx, by dashed lines. The plots on
the right show the estimation errors.

A simulation of the observer for a vehicle driving on a curegd is simulated
in Figure 7.6. The vehicle length is the time unit in the noraedi model. The
figure shows that the observer error settles in about 3 veleioghs. O

For systems of high order we have to use numerical calcastidhe duality
between the design of a state feedback and the design of arvebmeans that the
computer algorithms for state feedback can also be usedtiéooliserver design;
we simply use the transpose of the dynamics matrix and theubumtatrix. The
MATLAB commandacker , which essentially is a direct implementation of the
calculations given in Theorem 7.2, can be used for systentsamé output. The
MATLAB commandpl ace can be used for systems with many outputs. It is also
better conditioned numerically.

7.3 Control Using Estimated State

In this section we will consider a state space system of tira fo

dx
— =Ax+B
at X+ Bu,

Notice that we have assumed that there is no direct term isytheem D = 0).
This is often a realistic assumption. The presence of a diegct in combination
with a controller having proportional action creates arehlgic loop, which will
be discussed in Section 8.3. The problem can be solved eveerd th a direct
term, but the calculations are more complicated.

We wish to design a feedback controller for the system whehg the output
is measured. As before, we will assume thandy are scalars. We also assume
that the system is reachable and observable. In Chapter 6unel fa feedback of
the form

y=CX (7.13)

U= —Kx+kr
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for the case that all states could be measured, and in SecBowe? developed
an observer that can generate estimates of thestaised on inputs and outputs.
In this section we will combine the ideas of these sectiorftba feedback that
gives desired closed loop eigenvalues for systems wheyeootputs are available
for feedback.

If all states are not measurable, it seems reasonable toarfgedback

u=—KX+Kkr, (7.14)
wherexis the output of an observer of the state, i.e.,
dx . .
gt = AX+Bu+L(y—CxX). (7.15)

Since the system (7.13) and the observer (7.15) are bothtefditaensiom, the
closed loop system has state dimensionth state &, X). The evolution of the
states is described by equations (7.13)—(7.15). To an#ilyzelosed loop system,
the state variablg is replaced by

X=X—X (7.16)
Subtraction of equation (7.15) from equation (7.13) gives
dx
dit‘ — AX— AR~ L(CX—CR) = AX— LCX = (A— LC)%.

Returning to the process dynamics, introducinrom equation (7.14) into
equation (7.13) and using equation (7.16) to eliminegi/és
d
d%( — Ax+BuU= Ax— BKR+ Bkt = Ax— BK(x— %) + Bk
= (A—BK)x+BKX+ Bkr.

The closed loop system is thus governed by

d (x A—BK BK X Bk

a i) - (70 W) () (T) - om
Notice that the statg, Tepresenting the observer error, is not affected by the ref
erence signaf. This is desirable since we do not want the reference signal to
generate observer errors.

Since the dynamics matrix is block diagonal, we find that therattaristic
polynomial of the closed loop system is

A(s) = det(sl — A+ BK)det(sl — A+ LC).

This polynomial is a product of two terms: the characteriptitynomial of the

closed loop system obtained with state feedback and thecteaistic polynomial

of the observer error. The feedback (7.14) that was motivaedistically thus

provides a neat solution to the eigenvalue assignmentgmoblhe result is sum-
marized as follows.
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Figure 7.7: Block diagram of an observer-based control system. The obsesesrthe mea-
sured outpuy and the inpuiu to construct an estimate of the state. This estimate is used
by a state feedback controller to generate the corrective input. Theotentonsists of the
observer and the state feedback; the observer is identical to that ire Hidur

Theorem 7.3(Eigenvalue assignment by output feedbadBpnsider the system

dx
gt~ XHBL y=Ex
The controller described by
%
dit‘ — A%+ BU+L(y—CR) = (A— BK — LC)R+ Bk +Ly,
U= —KX+Kkr

gives a closed loop system with the characteristic polyabmi
A(s) = det(sl — A+ BK)det(sl - A+ LC).

This polynomial can be assigned arbitrary roots if the sysiemeachable and
observable.

The controller has a strong intuitive appeal: it can be thoofjas being com-
posed of two parts, one state feedback and one observer. Tiaeniys of the
controller are generated by the observer. The feedbackKaian be computed
as if all state variables can be measured, and it depends lgnAcaind B. The
observer gairL depends on onhA andC. The property that the eigenvalue as-
signment for output feedback can be separated into an egenassignment for
a state feedback and an observer is callecg#paration principle

A block diagram of the controller is shown in Figure 7.7. Nettbat the con-
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Figure 7.8: Simulation of a vehicle driving on a curvy road with a controller based on
state feedback and an observer. The left plot shows the lane baem(tiotted), the vehicle
position (solid) and its estimate (dashed), the upper right plot shows kb&tygsolid) and

its estimate (dashed), and the lower right plot shows the control sigimgj siate feedback
(solid) and the control signal using the estimated state (dashed).

troller contains a dynamical model of the plant. This is chlleeinternal model
principle: the controller contains a model of the process being ctatro

Example 7.4 Vehicle steering
Consider again the normalized linear model for vehiclersigan Example 6.4.
The dynamics relating the steering angte the lateral path deviatiopis given by
the state space model (7.12). Combining the state feedlmaisled in Example 6.4
with the observer determined in Example 7.3, we find that therobher is given
by

ag o [0 1) y l1 .

at =AR+Bu+L(y—Cx) = [0 0] X+ [1] u+ [|2] (y—%1),

u=—Kg+kr=Kky(r—=%x1)— k.

Elimination of the variablel gives

j)t( = (A—BK—LC)X+Ly+Bkr

—li—yk 1-vke) o (1 y

= [ kg1, ko ] X+ [lz] y+ [1] Kar.
The controller is a dynamical system of second order, with itwputsy andr
and one outputl. Figure 7.8 shows a simulation of the system when the vehicle
is driven along a curvy road. Since we are using a normalizedeimehe length
unit is the vehicle length and the time unit is the time it ®k@travel one vehicle
length. The estimator is initialized with all states equatéoo but the real system
has an initial velocity of 0.5. The figures show that the estamabnverge quickly
to their true values. The vehicle tracks the desired pathchvisiin the middle of

the road, but there are errors because the road is irreglilartracking error can
be improved by introducing feedforward (Section 7.5). O
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7.4 Kalman Filtering %

One of the principal uses of observers in practice is to edérthe state of a sys-
tem in the presence ofoisymeasurements. We have not yet treated noise in our
analysis, and a full treatment of stochastic dynamicalesystis beyond the scope
of this text. In this section, we present a brief introductio the use of stochastic
systems analysis for constructing observers. We work pifiyniam discrete time
to avoid some of the complications associated with contisttone random pro-
cesses and to keep the mathematical prerequisites to a ummiifhis section as-
sumes basic knowledge of random variables and stochastegses; see Kumar
and Varaiya [KV86] orAstrom [,&st06] for the required material.

Consider a discrete-time linear system with dynamics

X[k+ 1] = AXK] + Bulk] + Fv([k], y[K] = CxK] 4+ wlk], (7.18)
wherev[k] andw[k] are Gaussian white noise processes satisfying
E{vk} =0, E{wlk]} =0,
o0 k#] )0 k#]
EQVVT]]} = {RV i EwlkwTi = {RW i 19
E{vKw'[j]} =0.

E{v[K} represents the expected value/fi andE{Vvk]v'[j]} the correlation ma-
trix. The matricesR, andR,, are the covariance matrices for the process distur-
bancev and measurement noise We assume that the initial condition is also
modeled as a Gaussian random variable with

E{x[0]} =x0,  E{x[0x[0]} = Po. (7.20)

We would like to find an estimatelk] that minimizes the mean square error
E{(x[K —X[K])(x[k] —X[K])T} given the measuremenfg(1) : 0< T <t}. We con-
sider an observer in the same basic form as derived preyiousl|

X[k+ 1] = AX[K] + Bu[k] + L[K] (y[k] — CX[K]). (7.21)
The following theorem summarizes the main result.
Theorem 7.4 (Kalman, 1961) Consider a random processkk with dynamics
given by equatiorf7.18)and noise processes and initial conditions described by

equationg7.19)and (7.20) The observer gain L that minimizes the mean square

error is given by
L[K = APKICT (Ry+CPKCT)*,

where T T T
Plk+1] = (A—LC)PK|(A—LC)T + FRFT +LR,L

Po = E{x[0x"[0]}.

Before we prove this result, we reflect on its form and functieimst, note
that the Kalman filter has the form ofracursivefilter: given mean square error

(7.22)
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P[k] = E{(x[K] — R[K])(x[K] — R[K]) "} at timek, we can compute how the estimate
and errorchange Thus we do not need to keep track of old values of the output.
Furthermore, the Kalman filter gives the estimalid and the error covariance
Pk}, so we can see how reliable the estimate is. It can also berstiwat the
Kalman filter extracts the maximum possible information almuiput data. If we
form the residual between the measured output and the estroatput,

elk] = y[k] — CX[k],
we can show that for the Kalman filter the correlation matrix is
1 j=k
0 j#k

In other words, the error is a white noise process, so therelismaining dynamic
information content in the error.

The Kalman filter is extremely versatile and can be used evdreiptocess,
noise or disturbances are nonstationary. When the syststatisnary andf P[K]
converges, then the observer gain is constant:

L =APCT (Ry+CPCT),

Re(],K) = E{elile" K} ~WIK3y, Ok — {

whereP satisfies
P=APA" +FRFT — APCT (Ry+CPCT) "CPAT.

We see that the optimal gain depends on both the processaruisithe measure-
ment noise, but in a nontrivial way. Like the use of LQR to chostsge feedback
gains, the Kalman filter permits a systematic derivation efdbserver gains given
a description of the noise processes. The solution for thetaohgain case is
solved by thadl ge command in MATLAB.

Proof of theorem.We wish to minimize the mean square of the erfedi(x[k] —
R[K]) (x[k] — X[K])T}. We will define this quantity aB[k] and then show that it sat-
isfies the recursion given in equation (7.22). By definition,

Plk+1] = E{(x|k+ 1] — Rk+ 1] ) (x[k+ 1] — K[k +1))T}
= (A—LC)P[K(A—LC)T + FRFT +LR,LT
= APKAT + FR,FT — APKCTLT — LCP[KAT

+L(Ry+CPKCTLT.
LettingRe = (Ry+CP[K|CT), we have
Plk+1] = APKAT + FRFT — APK|ICTLT — LCPKAT 4 LRLT
— APIKAT + FRFT + (L—APKCTR; )R (L—APKCTR )"
—APKICTR;ICPTKIAT.
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To minimize this expression, we chooke= APKICTR; %, and the theorem is
proved. O]

The Kalman filter can also be applied to continuous-time stetdhprocesses.
The mathematical derivation of this result requires morehstigated tools, but
the final form of the estimator is relatively straightforward

Consider a continuous stochastic system

(;f[( = Ax+Bu+Fy, E{v(s)V' (1)} = R,(1)d(t—s),
y=Cx+w, E{w(s)w' (t)} = Ru(t)8(t —s),

whered(7) is the unit impulse function. Assume that the disturbaneed noise
w are zero mean and Gaussian (but not necessarily stationary)

1 1,TR-1 1 1,TR-1
df(v) = ————e 2V RV pdfw) =— " e 2WRW
pdf(v) v2m/detR, pdf(w) v 21m/detRy,
We wish to find the estimatgt) that minimizes the mean square erEr(x(t) —
%(t))(x(t) —X(t))T} given{y(t): 0 < T <t}.
Theorem 7.5(Kalman—Bucy, 1961) The optimal estimator has the form of a lin-
ear observer

3): = AX+Bu+L(y—Cx),
where L(t) = P(t)CTR,* and Rt) = E{(x(t) — X(t))(x(t) —X(t))T} and satisfies
ZT = AP+PAT — PCTR,}(t)CP+FR,(t1)FT, P[0} = E{x[0)x"[0]}.

As in the discrete case, when the system is stationary d@d)itonverges, the
observer gain is constant:

L=PC'R,>  where AP+PA" —PC'R,'CP+FRF' =0.
The second equation is tlagebraic Riccati equation

Example 7.5 Vectored thrust aircraft

We consider the lateral dynamics of the system, consistinthe subsystems
whose states are given by= (x, 6, x, 0). To design a Kalman filter for the system,
we must include a description of the process disturbanadth&rsensor noise. We
thus augment the system to have the form

d
d—tZ:Az+ Bu+Fv, y=Cz+w,

whereF represents the structure of the disturbances (includiegtiects of non-
linearities that we have ignored in the linearizationjepresents the disturbance
source (modeled as zero mean, Gaussian white noise) aedresents that mea-
surement noise (also zero mean, Gaussian and white).

For this example, we choos$eas the identity matrix and choose disturbances
vi,i=1,...,n, to be independent disturbances with covariance giveRiby 0.1,
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Figure 7.9: Kalman filter design for a vectored thrust aircraft. In the first desigro(dy
the lateral position of the aircraft is measured. Adding a direct meamsneof the roll
angle produces a much better observer (b). The initial condition for siathlations is
(0.1,0.01750.01,0).

Rj =0, i # j. The sensor noise is a single random variable which we model as
having covarianc®, = 10~%. Using the same parameters as before, the resulting
Kalman gain is given by
37.0
—46.9
185
-316

L—

The performance of the estimator is shown in Figure 7.9a. Wehsgavhile the
estimator converges to the system state, it contains signtfiovershoot in the
state estimate, which can lead to poor performance in aclos® setting.

To improve the performance of the estimator, we explorertigaict of adding
a new output measurement. Suppose that instead of measusirthg output po-
sition x, we also measure the orientation of the airc@aff he output becomes

(1000, (wm
Y=1o0 10 0 W, |

and if we assume that; andw, are independent noise sources each with covari-
anceRy, = 104, then the optimal estimator gain matrix becomes

326  —0.150
L— —-0.150 326
32.7 -9.79
—0.0033 316

These gains provide good immunity to noise and high perfoomaas illustrated
in Figure 7.9b. O
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Figure 7.10:Block diagram of a controller based on a structure with two degreesexfdra
which combines feedback and feedforward. The controller condiattrajectory generator,
state feedback and an observer. The trajectory generation subsysterutes a feedforward
commandy; along with the desired staxg. The state feedback controller uses the estimated
state and desired state to compute a corrective ingut

7.5 A General Controller Structure

State estimators and state feedback are important comgookatcontroller. In
this section, we will add feedforward to arrive at a geneostwller structure that
appears in many places in control theory and is the heart st modern control
systems. We will also briefly sketch how computers can be uséuglement a
controller based on output feedback.

Feedforward

In this chapter and the previous one we have emphasizeddekdls a mechanism
for minimizing tracking error; reference values were idoed simply by adding
them to the state feedback through a gainA more sophisticated way of doing
this is shown by the block diagram in Figure 7.10, where therotlar consists of
three parts: an observer that computes estimates of tles stased on a model and
measured process inputs and outputs, a state feedback tiajelctory generator
that generates the desired behavior of all stageand a feedforward signak.
Under the ideal conditions of no disturbances and no moglelirors the signalk;
generates the desired behavigivhen applied to the process. The signatan be
generated by a system that gives the desired response aatbe™ generate the
the signaluz, we must also have a model of the inverse of the process dgsami

To get some insight into the behavior of the system, we assatéhere are no
disturbances and that the system is in equilibrium with estaont reference signal
and with the observer stateequal to the process state When the reference
signal is changed, the signalg andxy will change. The observer tracks the state
perfectly because the initial state was correct. The estdstatecis thus equal to
the desired statey, and the feedback signag, = K(xq — X) will also be zero. All
action is thus created by the signals from the trajectorgegsor. If there are some
disturbances or some modeling errors, the feedback sighaltiempt to correct
the situation.

This controller is said to havevo degrees of freedolmecause the responses
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to command signals and disturbances are decoupled. Dastcebresponses are
governed by the observer and the state feedback, while spemse to command
signals is governed by the trajectory generator (feedfaitjva
For an analytic description we start with the full nonlinemamics of the

process

dx

Fri f(x,u), y =h(x,u). (7.23)
Assume that the trajectory generator is able to computeieeddsajectory(Xy, Us )
that satisfies the dynamics (7.23) and satisfiesh(xg, U ). To design the con-
troller, we construct the error system. Lzt x — X4 andv = u— ug and compute
the dynamics for the error:

Z=X—xq = f(x,u) — f(Xq, Us)
= f(z4+ X4, V+usr) — F(Xq, Ui ) =: F(Z,V,Xq(t), U (1)).

In general, this system is time-varying. Note that —e in Figure 7.10 due to the
convention of using negative feedback in the block diagram.

For trajectory tracking, we can assume that small (if our controller is doing
a good job), and so we can linearize arour€dO:

_OF _OF
OZ | (xy(t).ug (1)) OV | (xgt).ug (1))

It is often the case thak(t) andB(t) depend only orxg, in which case it is conve-
nient to writeA(t) = A(xg) andB(t) = B(xq).

Assume now thaty andug are either constant or slowly varying (with respect
to the performance criterion). This allows us to considet flus (constant) linear
system given byA(xq),B(xq)). If we design a state feedback controlkefxy) for
eachxy, then we can regulate the system using the feedback

gtzzA(t)er Bv. A) . B()

v=—K(xq)z

Substituting back the definitions afandv, our controller becomes

U= —K(Xq)(X—Xq) + U

This form of controller is called gain scheduledinear controller withfeedfor-
ward Us.

Finally, we consider the observer. The full nonlinear dynanaign be used for
the prediction portion of the observer and the linearizesiesy for the correction
term: 4%

4 = FRWHLE(Y—hER W),

whereL (X) is the observer gain obtained by linearizing the systemratdiie cur-

rently estimated state. This form of the observer is knowmesxgended Kalman
filter and has proved to be a very effective means of estimatingate af a non-

linear system.
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Figure 7.11: Trajectory generation for changing lanes. We wish to change from thieutef
to the right lane over a distance of 30 min 4 s. The planned trajectory kythlane is shown
in (@) and the lateral positiopand the steering ang®over the maneuver time interval are
shown in (b).

There are many ways to generate the feedforward signal, @nd Hre also
many different ways to compute the feedback giimnd the observer gaib.
Note that once again the internal model principle applies.controller contains a
model of the system to be controlled through the observer.

Example 7.6 Vehicle steering

To illustrate how we can use a two degree-of-freedom desigmprove the per-
formance of the system, consider the problem of steering tba@nange lanes on
aroad, as illustrated in Figure 7.11a.

We use the non-normalized form of the dynamics, which weriweigin Exam-
ple 2.8. Using the center of the rear wheels as the referenee(), the dynamics
can be written as
dx dy . de v
qt = cosbv, qt — sin@v, dt — b
wherev is the forward velocity of the vehicle arddis the steering angle. To gener-
ate a trajectory for the system, we note that we can solvehtostates and inputs
of the system giveR, y by solving the following sets of equations:

tand,

X = vcosH, % = vcost —vOsing,
y = vsiné, Y =Vvsin@ + v coso, (7.24)
6 = (v/b)tand.

This set of five equations has five unknow#fs e v, v and9) that can be solved
using trigonometry and linear algebra. It follows that wa campute a feasible
trajectory for the system given any pattt), y(t). (This special property of a sys-
tem is known aglifferential flatnes$FLMR92, FLMR95].)

To find a trajectory from an initial stateo, yo, 6o) to a final statéxs,ys, 6¢) at



222 CHAPTER 7. OUTPUT FEEDBACK

atimeT, we look for a pathx(t), y(t) that satisfies

X(0) = Xo, X(T) = Xxt,

y(0) = Yo, y(T) =ys, (7.25)
X(0) sinBy — y(0) cosBp = O, X(T)sinBs —y(T)cosds =0,

y(0) sinB + x(0) cosfp = Vo, y(T)sinB; +x(T)cosBs = vs.

One such trajectory can be found by choosiftg andy(t) to have the form
Xd(t) = do+ ant + azt® + agt®, Ya(t) = Bo+ Bt + Bat®+ Bat®.

Substituting these equations into equation (7.25), we drevith a set of linear
equations that can be solved oy, 3, i = 0,1,2, 3. This gives a feasible trajectory
for the system by using equation (7.24) to solvefigrvq anddy.

Figure 7.11b shows a sample trajectory generated by a sejledhorder equa-
tions that also set the initial and final steering angle to.Zz¢atice that the feedfor-
ward input is quite different from 0, allowing the contralte command a steering
angle that executes the turn in the absence of errors. O

Kalman’s Decomposition of a Linear System

In this chapter and the previous one we have seen that twafoedtal properties
of a linear input/output system are reachability and olzgghty. It turns out that
these two properties can be used to classify the dynamicssgétem. The key
result is Kalman’s decomposition theorem, which says thisiear system can be
divided into four subsystem&;, which is reachable and observaligs which is
reachable but not observabl; which is not reachable but is observable aipgl
which is neither reachable nor observable.

We will first consider this in the special case of systems whezenatrixA has
distinct eigenvalues. In this case we can find a set of coahnguch that thé
matrix is diagonal and, with some additional reorderinghaf states, the system
can be written as

Ao 0 0 0 Bro
dx | 0 Ag O 0 Bro
gt [0 0 Ao o [of" (7.26)
0O 0 0 Ag 0 '

y— [cro 0 Cro o) X+ Du.

All statesx, such thatBy # O are reachable, and all states such @a# 0 are

observable. If we set the initial state to zero (or equiviljelook at the steady-

state response A is stable), the states given By andxqs will be zero andx,g

does not affect the output. Hence the outpaén be determined from the system
dxo

at AroXro + BroU, y = CioXro + Du.
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Figure 7.12: Kalman’s decomposition of a linear system. The decomposition in (a) & for
system with distinct eigenvalues and the one in (b) is the general cassy3tee is bro-
ken into four subsystems, representing the various combinationsabiaiele and observable
states. The input/output relationship only depends on the subset of stttassthoth reach-
able and observable.

Thus from the input/output point of view, it is only the reableaand observable
dynamics that matter. A block diagram of the system illustgathis property is
given in Figure 7.12a.

The general case of the Kalman decomposition is more congdicand re-
guires some additional linear algebra; see the originatphg Kalman, Ho and
Narendra [KHNG63]. The key result is that the state space c¢hibstdecomposed
into four parts, but there will be additional coupling sotttiee equations have the

form
Ao O * 0 Bro
dx | x Ag * Bro
@t |o o Ay of*|o|Y

0 0 * Ay 0

y= [Cro 0 G 0] X,

(7.27)

wherex denotes block matrices of appropriate dimensions. The fopiptut re-
sponse of the system is given by
I _ - 7.28
ar AroXro + BroU, y = CroXro + DU, (7.28)
which are the dynamics of the reachable and observable st@ns¥,,. A block
diagram of the system is shown in Figure 7.12b.
The following example illustrates Kalman’s decomposition.

Example 7.7 System and controller with feedback from observer state

Consider the system

dx
pri Ax+ Bu, y=Cx

The following controller, based on feedback from the obsestate, was given in
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Theorem 7.3:

4%
d%(:AﬁJrBquL(y—C)A(), U= —KX+Kkr.

Introducing the statesandx= x — X, the closed loop system can be written as

d (x A—BK BK X Bk X

dt[i]:[ 0 A—LC] [)”(]+[O]r’ y= (C o] [)”(]
which is a Kalman decomposition like the one shown in Figude@.with only
two subsystem&,, and 2. The subsystenz,,, with statex, is reachable and
observable, and the subsysteig, with statex; is not reachable but observable.
It is natural that the stateiS not reachable from the reference signakcause it
would not make sense to design a system where changes inriraasad signal

could generate observer errors. The relationship betweereference and the
outputy is given by

C(:[(:(A—BK)M—Bkrr, y=CXx,
which is the same relationship as for a system with full seg¢elback. O

Computer Implementation

The controllers obtained so far have been described by axddierential equa-

tions. They can be implemented directly using analog compisnghether elec-
tronic circuits, hydraulic valves or other physical dewc8ince in modern engi-
neering applications most controllers are implementedgusomputers, we will

briefly discuss how this can be done.

A computer-controlled system typically operates periatijc every cycle, sig-
nals from the sensors are sampled and converted to digital iy the A/D con-
verter, the control signal is computed and the resultinguiLis converted to ana-
log form for the actuators, as shown in Figure 7.13. To illastthe main princi-
ples of how to implement feedback in this environment, wesaar the controller
described by equations (7.14) and (7.15), i.e.,

dx

a:A)“(—kBu—kL(y—Cf(), u=—Kx+Kkr.

The second equation consists only of additions and muléiptias and can thus
be implemented directly on a computer. The first equation campkemented by
approximating the derivative by a difference

?t? N X(tk+1)h—x(tk) = AR(t) +Bu(ti) + L (y(t) — CX(t)),

wherety are the sampling instants ahd- ty . ; —ty is the sampling period. Rewrit-
ing the equation to isolatety 1), we get the difference equation

R(tki1) = R(t) + h(AR(tx) +Bu(te) + L(y(t) —CR(t))).  (7.29)
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Figure 7.13: Components of a computer-controlled system. The controller consists of
analog-to-digital (A/D) and digital-to-analog (D/A) converters, as welaaomputer that
implements the control algorithm. A system clock controls the operation afdh#oller,
synchronizing the A/D, D/A and computing processes. The operatot isjalso fed to the
computer as an external input.

The calculation of the estimated state at tigng requires only addition and mul-
tiplication and can easily be done by a computer. A sectigusefidocode for the
program that performs this calculation is

% Control algorithm- main |oop

r = adin(chl) % read reference

y = adin(ch2) % get process out put

u = Ke(xd - xhat) + uff % conput e control variable
daout (chl, u) % set anal og out put

xhat = xhat + hx(A*x+Bxu+L*(y-Crx)) % update state estinate

The program runs periodically at a fixed rateNotice that the number of com-
putations between reading the analog input and settingnéieg output has been
minimized by updating the state after the analog output lees lset. The pro-
gram has an array of statebat that represents the state estimate. The choice of
sampling period requires some care.

There are more sophisticated ways of approximating a differeequation
by a difference equation. If the control signal is constagtileen the sampling
instants, it is possible to obtain exact equations; MQ?].

There are several practical issues that also must be dehltkdt example, it
is necessary to filter measured signals before they are sdmmplthat the filtered
signal has little frequency content abofgg2, wherefs is the sampling frequency.
This avoids a phenomena known alg&asing If controllers with integral action
are used, it is also necessary to provide protection so lieaintegral does not
become too large when the actuator saturates. This isslex] icaiegrator windup
is studied in more detail in Chapter 10. Care must also bentakdhat parameter
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changes do not cause disturbances.

7.6 Further Reading

The notion of observability is due to Kalman [Kal61b] and, ¢coned with the dual
notion of reachability, it was a major stepping stone towestblishing state space
control theory beginning in the 1960s. The observer first apgukas the Kalman
filter, in the paper by Kalman [Kal61a] on the discrete-timeecand Kalman and
Bucy [KB61] on the continuous-time case. Kalman also cdojed that the con-
troller for output feedback could be obtained by combinirgjae feedback with
an observer; see the quote in the beginning of this chapterrd$ult was formally
proved by Josep and Tou [JT61] and Gunckel and Franklin [GF7¥H.cbmbined
result is known as the linear quadratic Gaussian contrarihe compact treat-
ment is given in the books by Anderson and Moore [AM90] Astom [,&st06].
Much later it was shown that solutions to robust control pepis also had a sim-
ilar structure but with different ways of computing obseremd state feedback
gains [DGKF89]. The general controller structure discusaesiction 7.5, which
combines feedback and feedforward, was described by Hrawi 963 [Hor63].
The particular form in Figure 7.10 appeared MQ?], which also treats digital
implementation of the controller. The hypothesis that motiontrol in humans
is based on a combination of feedback and feedforward wgsopeal by Ito in
1970 [Ito70].

Exercises

7.1 (Coordinate transformations) Consider a system under edtwde transfor-
mationz= T x, whereT € R"™"is an invertible matrix. Show that the observability
matrix for the transformed system is given\bly =W, T~ and hence observability
is independent of the choice of coordinates.

7.2 Show that the system depicted in Figure 7.2 is not observable.

7.3 (Observable canonical form) Show that if a system is obségyaihen there
exists a change of coordinates= T x that puts the transformed system into ob-
servable canonical form.

7.4(Bicycle dynamics) The linearized model for a bicycle is giv@equation (3.5),
which has the form

d’¢ Dvpdd mgh

a2 b dr mImE o
whereg is the tilt of the bicycle and is the steering angle. Give conditions under

which the system is observable and explain any specialtgingawhere it loses
observability.
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7.5 (Integral action) The model (7.1) assumes that the inpttO corresponds
to x = 0. In practice, it is very difficult to know the value of the conitsignal
that gives a precise value of the state or the output bechisebduld require a
perfectly calibrated system. One way to avoid this asswnpsito assume that the
model is given by

d
d—f[(:Aer B(u+up), y = Cx+Du,

whereug is an unknown constant that can be modeledlag'dt = 0. Consider

Ug as an additional state variable and derive a controllercdbasgeedback from
the observed state. Show that the controller has integrialneahd that it does not
require a perfectly calibrated system.

7.6 (Vectored thrust aircraft) The lateral dynamics of the vesdathrust aircraft
example described in Example 6.8 can be obtained by consgéne motion
described by the states= (x,0,%,0). Construct an estimator for these dynam-
ics by setting the eigenvalues of the observer intBudterworth patternwith
Apw = —3.83+9.24i, —9.24+ 3.83i. Using this estimator combined with the state
space controller computed in Example 6.8, plot the step respof the closed
loop system.

7.7 (Uniqueness of observers) Show that the design of an obseyweigenvalue
assignment is unique for single-output systems. Constsanples that show that
the problem is not necessarily unique for systems with manguds.

7.8(Observers using differentiation) Consider the lineatays(7.2), and assume
that the observability matriMy, is invertible. Show that

T
£ =Wt (y y oy o y(nfl)]

is an observer. Show that it has the advantage of giving the ststantaneously

but that it also has some severe practical drawbacks.

7.9 (Observer for Teorell's compartment model) Teorell's camment model,
shown in Figure 3.17, has the following state space repratent

—kq 0 0 0 0 1

o |k ek 0 ko0 0
— = 0 kg 0 0 O] x+ (0] u,
dt 0 ky O —ka—ks O 0

0 0 0 ks O 0

where representative parameters lkre= 0.02, ko = 0.1, kg3 = 0.05, kg = ks =
0.005. The concentration of a drug that is active in compartriesimeasured in
the bloodstream (compartment 2). Determine the compattnieat are observable
from measurement of concentration in the bloodstream asjl@n estimator
for these concentrations base on eigenvalue assignments€lthe closed loop
eigenvalues-0.03,—0.05 and—0.1. Simulate the system when the input is a pulse
injection.
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7.10 (Observer design for motor drive) Consider the normalizestieh of the
motor drive in Exercise 2.10 where the open loop system ha®itfenvalues
0,0,—0.05+i. A state feedback that gave a closed loop system with eiffenva
uesin—2, —1 and—1+i was designed in Exercise 6.11. Design an observer for
the system that has eigenvalued, —2 and—2+ 2i. Combine the observer with
the state feedback from Exercise 6.11 to obtain an outpubfesdand simulate
the complete system.

7.11 (Feedforward design for motor drive) Consider the normdlizedel of the
motor drive in Exercise 2.10. Design the dynamics of the blatleled “trajec-
tory generation” in Figure 7.10 so that the dynamics relatiregoutputn to the
reference signal has the dynamics

dSYm szm dym

— — —=n = 7.

g@ Tam gz T amej- T amaym = amsr, (7.30)
with parameterayy = 2.5, amp = 2.5wW? andang = @, Discuss how the largest
value of the feedforward signal for a unit step in the commsigdal depends on
W

7.12(Whipple bicycle model) Consider the Whipple bicycle mogiekn by equa-
tion (3.7) in Section 3.2. A state feedback for the system vemsgthed in Exer-
cise 6.12. Design an observer and an output feedback foythers.

7.13(Discrete-time random walk) Suppose that we wish to estitsgosition
of a particle that is undergoing a random walk in one dimean§ie., along a line).
We model the position of the particle as

X[k+ 1] = x[K] 4 u[K],

wherexis the position of the particle ands a white noise processes wE{ u[i] } =
0 andE{uli]u[j]} = Rud(i — ). We assume that we can measxbject to ad-
ditive, zero-mean, Gaussian white noise with covariance 1.

(a) Compute the expected value and covariance of the aatich function ok.

(b) Construct a Kalman filter to estimate the position of thetipl@ given the
noisy measurements of its position. Compute the steadg-sipected value and
covariance of the error of your estimate.

(c) Suppose thaE{u[0]} = u # 0 but is otherwise unchanged. How would your
answers to parts (a) and (b) change?

7.14 (Kalman decomposition) Consider a linear system chariaetéby the ma-
trices

2 1 -1 2 2
1 -3 0 2 2

A=1 T 4 5l B=5] cz[o 1 -1 o], D=0
0 1 -1 -1 1

Construct a Kalman decomposition for the system. (Hint:tdrgliagonalize.)



Chapter Eight

Transfer Functions

The typical regulator system can frequently be described, in essentadfférential equa-
tions of no more than perhaps the second, third or fourth order. . .ohtrast, the order of
the set of differential equations describing the typical negative feedbaghifeer used in
telephony is likely to be very much greater. As a matter of idle curiosity, ¢ aocnted to
find out what the order of the set of equations in an amplifier | had jusigded would have
been, if | had worked with the differential equations directly. It turnedtodtte 55.

Hendrik Bode, 1960 [Bod60].

This chapter introduces the concept of ttamsfer functionwhich is a compact
description of the input/output relation for a linear systeCombining transfer
functions with block diagrams gives a powerful method foaldey with complex
linear systems. The relationship between transfer funstiom other descriptions
of system dynamics is also discussed.

8.1 Frequency Domain Modeling

Figure 8.1 is a block diagram for a typical control system,sisting of a process
to be controlled and a controller that combines feedbackfeedforward. We
saw in the previous two chapters how to analyze and desigm sygtems using
state space descriptions of the blocks. As mentioned in €h&p an alternative
approach is to focus on the input/output characteristitise$ystem. Since it is the
inputs and outputs that are used to connect the systemspatteexpect that this
point of view would allow an understanding of the overall &ebr of the system.

i Reference Feedback d Process n
' shaping controller, dynamics
ro e ru 1% n y
— F C P -
l -1 |-
! Controller |

Figure 8.1: A block diagram for a feedback control system. The reference lsigisafed
through a reference shaping block, which produces the signal thdienithcked. The error
between this signal and the output is fed to a controller, which producesgbeto the
process. Disturbances and noise are included as external signadsi@pub and output of
the process dynamics.
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Transfer functions are the main tool in implementing thigpof view for linear
systems.

The basic idea of the transfer function comes from lookinghatftequency
response of a system. Suppose that we have an input signéd frexiodic. Then
we can decompose this signal into the sum of a set of sinesasites,

u(t) = i ay sin(kawt) 4 b cogkat),
K=0

where w is the fundamental frequency of the periodic input. Each eftdrms
in this input generates a corresponding sinusoidal outpustéady state), with
possibly shifted magnitude and phase. The gain and phaselafreguency are
determined by the frequency response given in equatiod)5.2

G(s) =C(sl—A)"1B+D, (8.1)

where we ses= i(kw) for eachk = 1, ..., % andi = /—1. If we know the steady-
state frequency respon€gs), we can thus compute the response to any (periodic)
signal using superposition.

The transfer function generalizes this notion to allow a desalass of input
signals besides periodic ones. As we shall see in the netsethe transfer func-
tion represents the response of the system texgonential inputu = €. It turns
out that the form of the transfer function is precisely themgaas that of equa-
tion (8.1). This should not be surprising since we derivedatiqu (8.1) by writing
sinusoids as sums of complex exponentials. Formally, sresfer function is the
ratio of the Laplace transforms of output and input, althoogk does not have
to understand the details of Laplace transforms in order tkenuse of transfer
functions.

Modeling a system through its response to sinusoidal andrexgial signals
is known adrequency domain modelinghis terminology stems from the fact that
we represent the dynamics of the system in terms of the géreztdrequencys
rather than the time domain varialtleThe transfer function provides a complete
representation of a linear system in the frequency domain.

The power of transfer functions is that they provide a paldidy convenient
representation in manipulating and analyzing complexalirfeedback systems.
As we shall see, there are many graphical representatidrensffer functions that
capture interesting properties of the underlying dynamiicansfer functions also
make it possible to express the changes in a system becausedeling error,
which is essential when considering sensitivity to proogssations of the sort
discussed in Chapter 12. More specifically, using transfestfans, it is possible to
analyze what happens when dynamic models are approximgtgetic models or
when high-order models are approximated by low-order nsdahe consequence
is that we can introduce concepts that express the degréahilfty of a system.

While many of the concepts for state space modeling and sisadpply di-
rectly to nonlinear systems, frequency domain analysi$iepprimarily to linear
systems. The notions of gain and phase can be generalizedhliogar systems
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and, in particular, propagation of sinusoidal signals digio a nonlinear system
can approximately be captured by an analog of the frequersponse called the
describing function. These extensions of frequency respuiils be discussed in
Section 9.5.

8.2 Derivation of the Transfer Function

As we have seen in previous chapters, the input/output dipgsaofh a linear sys-
tem have two components: the initial condition responsethadorced response.
In addition, we can speak of the transient properties of yiséesn and its steady-
state response to an input. The transfer function focuseseostéady-state forced
response to a given input and provides a mapping betweetsiapd their corre-
sponding outputs. In this section, we will derive the trengtinction in terms of
the exponential response of a linear system.

Transmission of Exponential Signals

To formally compute the transfer function of a system, wd wiake use of a
special type of signal, called axponential signalpf the forme®, wheres =
0 +iwis a complex number. Exponential signals play an importastirolinear
systems. They appear in the solution of differential equatiand in the impulse
response of linear systems, and many signals can be refgdsssnexponentials
or sums of exponentials. For example, a constant signahiglgie® with a = 0.
Damped sine and cosine signals can be represented by

eloHOt — gt — 9t (coswt + i sinwt),

whereog < 0 determines the decay rate. Figure 8.2 gives examples dlsigmt
can be represented by complex exponentials; many othealsigan be repre-
sented by linear combinations of these signals. As in the eisinusoidal signals,
we will allow complex-valued signals in the derivation thi@llows, although in
practice we always add together combinations of signatsrésailt in real-valued
functions.

To investigate how a linear system responds to an expohéniat u(t) = e
we consider the state space system

d
d%(:Ax+ B, y = Cx+Du. 8.2)

Let the input signal bei(t) = €™ and assume tha£ Aj(A), j = 1,...,n, where
Aj(A) is the jth eigenvalue oA. The state is then given by

X(t) = M(0) + /O CAt-TIgeT g — eMx(0) + e /0 L (S-ATR .
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Figure 8.2: Examples of exponential signals. The top row corresponds to expal&gnals

with a real exponent, and the bottom row corresponds to those with coexpexents. The
dashed line in the last two cases denotes the bounding envelope for iletaycsignals.

In each case, if the real part of the exponent is negative then thd diggeys, while if the
real part is positive then it grows.

As we saw in Section 5.3, §# A (A), the integral can be evaluated and we get
x(t) = eMx(0) + eAl(sl —A)*1<e(s'*A)t - I)B
v <x(0) (sl —A)*lB> +(sl—A)lBet,
The output of equation (8.2) is thus
y(t) = Cx(t) + Du(t)

—ceM (X(O) (sl —A)’lB> + (C(sl A B D) e, (8.3)
a linear combination of the exponential functiogts and €. The first term in
equation (8.3) is the transient response of the systemIRleate™ can be written
in terms of the eigenvalues @f (using the Jordan form in the case of repeated
eigenvalues), and hence the transient response is a liogdniration of terms of
the formeit, whereA; are eigenvalues dk. If the system is stable, thet — 0
ast — co and this term dies away.

The second term of the output (8.3) is proportional to the timgt) = €. This
term is called theure exponential responsk the initial state is chosen as

x(0) = (sl—A)"1B,

then the output consists of only the pure exponential respamd both the state
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and the output are proportional to the input:

X(t) = (sl—A)~1Be = (sl — A)"1Bu(t),
y(t) = (C(sl —A)'B+D)e™ = (C(sl —A) !B+ D)u(t).

This is also the output we see in steady state, when the traasipresented by
the first term in equation (8.3) have died out. The map from tpatito the output,

Gyu(s) =C(sl—A)"1B+D, (8.4)

is thetransfer functionfrom u to y for the system (8.2), and we can wrigét) =
Gyu(s)u(t) for the case thati(t) = €. Compare with the definition of frequency
response given by equation (5.24).

An important point in the derivation of the transfer functis the fact that
we have restricted so thats # Aj(A), the eigenvalues oA. At those values of
s, we see that the response of the system is singular (sineé\ will fail to be
invertible). Ifs=A;(A), the response of the system to the exponential inpuéhit
is y = p(t)e'it, wherep(t) is a polynomial of degree less than or equal to the
multiplicity of the eigenvalue\j (see Exercise 8.2).

Example 8.1 Damped oscillator
Consider the response of a damped linear oscillator, whase space dynamics
were studied in Section 6.3:

dx 0 [ 0
= [—wo —25000] X+ [kouo] u, y= [1 O] X. (8.5)

This system is stable f > 0, and so we can look at the steady-state response to
an inputu = e,

Gu(s) =C(si-A) 8= (1 0 [5 — ]1 [ko ]

w S+2{wy o
B 1 S+2{w —wp 0
B (1 0) (32+2Zwos+w§[ o s ]) [kwo] (8.6)
ke
P42 WS+ W

To compute the steady-state response to a step functioretse-90 and we see
that
u=1 = y=Gy(Ou=k.

If we wish to compute the steady-state response to a sinugeidrite

u=sinwt = % (ie 71t —je'@t)

LGy iw)e ™ — iGyy(iw)e™).

y:i
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We can now writé5(iw) in terms of its magnitude and phase,
G(iw) = sz+2?c(fs+w§ = Me?
where the magnitude (or gail¥) and phas@ are given by
ko sin@  —2{ ww
@ o a0
We can also make use of the fact ti&t-iw) is given by its complex conjugate

G*(iw), and it follows thatG(—iw) = Me '¢. Substituting these expressions into
our output equation, we obtain

)

M =

y=1 (ime®)eiex —i(me?)de)

2
1/ i .
=M 5 (le—l(wt+6) _ |e|(wt+9)) = Msin(wt + 6).
The responses to other signals can be computed by writingnthe as an appro-
priate combination of exponential responses and usingtitye O

Coordinate Changes

The matricesA, B andC in equation (8.2) depend on the choice of coordinate
system for the states. Since the transfer function relafag o outputs, it should
be invariant to coordinate changes in the state space. W #fig, consider the
model (8.2) and introduce new coordinardsy the transformatioz = T x, where

T is a nonsingular matrix. The system is then described by

d - a

d{ — T(Ax+Bu) = TAT 1z+ TBu=: Az+ Bu,
y=Cx+Du=CT 'z4+Du=:Cz+Du.

This system has the same form as equation (8.2), but the es&i@ andC are

different: . . .
A=TAT ! B=T1B, C=CTLl (8.7)

Computing the transfer function of the transformed model get
G(s) =C(sl -A) "B+D=CT *(sI -TAT ) "'TB+D
=C(T (sl —TAT*l)T)—lBjL D—C(sl—A)"'B+D=G(s),

which is identical to the transfer function (8.4) computeahi the system descrip-
tion (8.2). The transfer function is thus invariant to changéthe coordinates in
the state space.

Another property of the transfer function is that it corresgs to the portion of
the state space dynamics that is both reachable and obkerimlparticular, if
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we make use of the Kalman decomposition (Section 7.5), thetrémsfer func-
tion depends only on the dynamics in the reachable and dddslersubspacg,
(Exercise 8.7).

Transfer Functions for Linear Systems

Consider a linear input/output system described by therotbed differential equa-
tion
dy d"ly dMu d™ 1y
w—i_aldtn_l ++any— bOﬁ‘i‘le
whereu is the input andy is the output. This type of description arises in many
applications, as described briefly in Section 2.2; bicycleaghyits and AFM mod-
eling are two specific examples. Note that here we have gérextadur previous
system description to allow both the input and its derivettito appear.
To determine the transfer function of the system (8.8),Hetihput beu(t) =
e, Since the system is linear, there is an output of the systamishalso an
exponential functiory(t) = yoe™. Inserting the signals into equation (8.8), we find

(" + a4+ an)yoe™ = (bpS" 4+ bys™ L by)e,
and the response of the system can be completely describi@lpolynomials
ais) =" +as" 4 tay, b(s) = bos™+ b s+ + by (8.9)

The polynomiak(s) is the characteristic polynomial of the ordinary diffeiaht
equation. Ifa(s) # 0, it follows that

+ -+ bmu, (8.8)

y(t) = yoe™' = zges? (8.10)

The transfer function of the system (8.8) is thus the ratifunadtion

b(s)

G(s) = a9 (8.11)
where the polynomiala(s) andb(s) are given by equation (8.9). Notice that the
transfer function for the system (8.8) can be obtained byenson since the co-
efficients ofa(s) andb(s) are precisely the coefficients of the derivativesi@ind
y. The order of the transfer function is defined as the order of the denaimina
polynomial.

Equations (8.8)—(8.11) can be used to compute the trangietiéis of many
simple ordinary differential equations. Table 8.1 givesneoof the more com-
mon forms. The first five of these follow directly from the an&yabove. For the
proportional-integral-derivative (PID) controller, we keause of the fact that the
integral of an exponential input is given 10/s)e™.

The last entry in Table 8.1 is for a pure time delay, in whichab#put is iden-
tical to the input at an earlier time. Time delays appear imyrgystems: typical
examples are delays in nerve propagation, communicatidmess transport. A



236 CHAPTER 8. TRANSFER FUNCTIONS

Table 8.1: Transfer functions for some common ordinary differential equations

Type ODE Transfer Function
. 1
Integrator y=u <
Differentiator y=u s
1
First-order system y+{ay=u —
Y yray s+a
. . 1
Double integrator y=u 2
Damped oscillator y 27 wpy+ wfy = u .
£+ 2 wos+ wf

ki

PID controller y=Kpu+kqU+ki fu kp+kds+§

Time delay y(t) =ult—1) e’

system with a time delay has the input/output relation
y(t) =u(t—1). (8.12)

As before, let the input be(t) = €. Assuming that there is an output of the form
y(t) = yoe™ and inserting into equation (8.12), we get

y(t) = yoeot = 170 — eSSt — e STy(t).

The transfer function of a time delay is thGgs) = €, which is not a rational
function but is analytic except at infinity. (A complex furani is analytic in a
region if it has no singularities in the region.)

Example 8.2 Electrical circuit elements

Modeling of electrical circuits is a common use of transtardtions. Consider, for
example, a resistor modeled by Ohm’s l8w= IR, whereV is the voltage across
the resisten is the current through the resistor aRdk the resistance value. If we
consider current to be the input and voltage to be the outpetresistor has the
transfer functiorZ(s) = R. Z(s) is also called thémpedancef the circuit element.

Next we consider an inductor whose input/output charastteris given by
dl
Ldt =V.

Letting the current beé(t) = €, we find that the voltage ¥ (t) = Lse" and the
transfer function of an inductor is thigs) = Ls. A capacitor is characterized by

oV _

gt b
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Figure 8.3: Stable amplifier based on negative feedback around an operatiopéfi@m

The block diagram on the left shows a typical amplifier with low-frequegan Ry /Ry . If

we model the dynamic response of the op am@@s = ak/(s+a), then the gain falls off at
frequencyw = aR1k/Rp, as shown in the gain curves on the right. The frequency response
is computed fok = 107, a= 10rad/sR, =10° Q, andR; = 1, 1(%, 10* and 16 Q.

and a similar analysis gives a transfer function from curtervoltage ofZ(s) =
1/(Cs). Using transfer functions, complex electrical circuits te analyzed alge-
braically by using the complex impedar£es) just as one would use the resistance
value in a resistor network. O

Example 8.3 Operational amplifier circuit

To further illustrate the use of exponential signals, wesider the operational am-
plifier circuit introduced in Section 3.3 and reproduced in Fég8.3a. The model
introduced in Section 3.3 is a simplification because the tibehavior of the am-
plifier was modeled as a constant gain. In reality there arg@fgignt dynamics in
the amplifier, and the static model,; = —kv (equation (3.10)) should therefore be
replaced by a dynamic model. In the linear range of the amplifie can model
the operational amplifier as having a steady-state frequessponse

Vout ak

v sta— G(s). (8.13)
This response corresponds to a first-order system with timstaonl/a. The
parametek is called theopen loop gainand the producék is called thegain-
bandwidth producttypical values for these parameters ke 10’ andak = 10'—
10° rad/s.

Since all of the elements of the circuit are modeled as beiregl if we drive
the inputvy with an exponential signa®™, then in steady state all signals will be
exponentials of the same form. This allows us to manipulaetuations describ-
ing the system in an algebraic fashion. Hence we can write

Vi —V . V—\Vo
RR R
using the fact that the current into the amplifier is very spelwe did in Sec-

tion 3.3. Eliminatingv between these equations gives the following transfer func-
tion of the system

\ - —RzG(S) —Roak

Vi Ri+R+RiG(S) Riakt (Ri+Ry)(s+a)

and  vo=-G(s)v, (8.14)
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The low-frequency gain is obtained by settiig 0, hence
kR R
(k+D)Ri+R ~ Ry’

which is the result given by (3.11) in Section 3.3. The bandwaftthe amplifier
circuit is

szvl (O) =

aRl(k+ D+R N aRilk
Ri+R Ry’

where the approximation holds f8 /Ry > 1. The gain of the closed loop system
drops off at high frequencies &k/(w(R; + Ry)). The frequency response of the
transfer function is shown in Figure 8.3b for= 107, a= 10 rad/sR, = 1¢° Q and
Ry =1, 1¢, 10* and 16 Q.

Note that in solving this example, we bypassed explicitlitimg the signals as
v = Vpe® and instead worked directly with assuming it was an exponential. This
shortcut is handy in solving problems of this sort and whemimaating block
diagrams. A comparison with Section 3.3, where we made the sabculation
whenG(s) was a constant, shows analysis of systems using transfetidos is
as easy as using static systems. The calculations are thaf¢ameesistance®;
andR; are replaced by impedances, as discussed in Example 8.2. O

Q)O:

Although we have focused thus far on ordinary differentiqliaions, transfer
functions can also be used for other types of linear syst&¥uesillustrate this
via an example of a transfer function for a partial differaihequation.

Example 8.4 Heat propagation
Consider the problem of one-dimensional heat propagatiarsemi-infinite metal
rod. Assume that the input is the temperature at one end anthi output is the
temperature at a point along the rod. l&¥i,t) be the temperature at position
and timet. With a proper choice of length scales and units, heat paiiayis
described by the partial differential equation

00 0%6

— = =5 8.15

ot 9%’ (8.15)
and the point of interest can be assumed to kxavel. The boundary condition for
the partial differential equation is

0(0,t) = u(t).

To determine the transfer function we choose the input(s= €. Assume that
there is a solution to the partial differential equationtef form6(x,t) = @(x)e™
and insert this into equation (8.15) to obtain
d2
=38

dx2’
with boundary conditiony(0) = 1. This ordinary differential equation (with inde-
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pendent variable&) has the solution
W(X) = A8VS+Be S,
Matching the boundary conditions givAs= 0 andB = 1, so the solution is
y(t) =60(Lt) = P(1)et = e Vet = e Vou(t).

The system thus has the transfer funct®fs) = e V5. As in the case of a time
delay, the transfer function is not a rational function i analytic function.
O

Gains, Poles and Zeros

The transfer function has many useful interpretations aadgatures of a transfer
function are often associated with important system ptigmrThree of the most
important features are the gain and the locations of thesgid zeros.

The zero frequency gaiof a system is given by the magnitude of the transfer
function ats= 0. It represents the ratio of the steady-state value of thgubwith
respect to a step input (which can be represented-as™ with s= 0). For a state
space system, we computed the zero frequency gain in equatzR):

G(0)=D-CA!B.

For a system written as a linear differential equation
dvy d"1y dMu d™ 1y
dtn g T Y = Dogm TP gm

if we assume that the input and output of the system are ausstaandug, then

we find thata,yp = bmup. Hence the zero frequency gain is

_ Yo _ bm

U an
Next consider a linear system with the rational transfectiom

G(s) = @

a(s)

+ -+ bmu,

G(0) (8.16)

The roots of the polynomiad(s) are called thgolesof the system, and the roots
of b(s) are called theerosof the system. Ifp is a pole, it follows thag/(t) = eP

is a solution of equation (8.8) with = 0 (the homogeneous solution). A pgbe
corresponds to enodeof the system with corresponding modal solut&th The
unforced motion of the system after an arbitrary excitat®oa weighted sum of
modes.

Zeros have a different interpretation. Since the pure expaleutput corre-
sponding to the inputi(t) = €™ with a(s) # 0 is G(s)e%, it follows that the pure
exponential output is zero i(s) = 0. Zeros of the transfer function thus block
transmission of the corresponding exponential signals.
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For a state space system with transfer func@®gs) = C(sl — A)~*B+ D, the
poles of the transfer function are the eigenvalues of theixnatin the state space
model. One easy way to see this is to notice that the valu&®fis unbounded
whensis an eigenvalue of a system since this is precisely the gebiofs where
the characteristic polynomial (s) = det(sl — A) = 0 (and hencesl — A is non-
invertible). It follows that the poles of a state space gystepend only on the
matrix A, which represents the intrinsic dynamics of the system. 8yetkat a
transfer function is stable if all of its poles have negat®al part.

To find the zeros of a state space system, we observe that theeazercomplex
numberss such that the inputi(t) = uge®™ gives zero output. Inserting the pure
exponential responsét) = xoe™ andy(t) = 0 in equation (8.2) gives

s€xg = Axpe™ + Buge™ 0 = Ce'xy + De’up,

which can be written as
A—sl B X0 | st
"™ o) (&) #-o

This equation has a solution with nonzeg) ug only if the matrix on the left does
not have full rank. The zeros are thus the valsisach that the matrix

A—sl B
[c D] (8.17)

loses rank.

Since the zeros depend @y B, C andD, they therefore depend on how the
inputs and outputs are coupled to the states. Notice ingodatti that if the matrix
B has full row rank, then the matrix in equation (8.17) ndmearly independent
rows for all values of. Similarly there aren linearly independent columns if the
matrix C has full column rank. This implies that systems where the im&ior C
is square and full rank do not have zeros. In particular itmadhat a system has
no zeros if it is fully actuated (each state can be contratiddpendently) or if the
full state is measured.

A convenient way to view the poles and zeros of a transfertfondés through
apole zero diagramas shown in Figure 8.4. In this diagram, each pole is marked
with a cross, and each zero with a circle. If there are m@tmbles or zeros at
a fixed location, these are often indicated with overlappirgses or circles (or
other annotations). Poles in the left half-plane corresgorgtable modes of the
system, and poles in the right half-plane correspond toabiestmodes. We thus
call a pole in the left-half plane stable poleand a pole in the right-half plane an
unstable poleA similar terminology is used for zeros, even though thegeato
not directly relate to stability or instability of the systeNotice that the gain must
also be given to have a complete description of the tranafeation.

Example 8.5 Balance system
Consider the dynamics for a balance system, shown in FigbreT®e transfer
function for a balance system can be derived directly froensiacond-order equa-
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Re

x -2

Figure 8.4: A pole zero diagram for a transfer function with zeros-&tand—1 and poles at
—3and—-2+2j. The circles represent the locations of the zeros, and the crossesdtiers
of the poles. A complete characterization requires we also specify thefjdia system.

tions, given in Example 2.1:

2 2
dp —mlﬂcost9+cﬁ)+mlsin9(@)2 =F,

M ez dt2 dt dt

d?p d?e . -

—mlcosf— — —maglsin6+y6 = 0.
de g ~melsin v

If we assume thafl and6 are small, we can approximate this nonlinear system by

a set of linear second-order differential equations,

d?p d?6  dp
Mgz ~ Mg +oqr = F
d?p .d%0 de

If we let F be an exponential signal, the resulting response satisfies

Ms®p—mls’ 6 +csp=F,
%s?6 —mIg p+ys8 —mglo =0,
where all signals are exponential signals. The resultingstea functions for the

position of the cart and the orientation of the pendulum arergby solving forp
and@ in terms off to obtain

mls
Hor = (Mt — mP12)s® + (yMy 4 ¢&)s? + (cy — Mimgl)s— mglc’
H 3s? + ys—mgl
pF =

(MeJy — m212)s* + (yMg + ¢3)s3 + (cy — Mimgl)s? — mglcs

where each of the coefficients is positive. The pole zero dmagror these two
transfer functions are shown in Figure 8.5 using the parasmétamn Example 6.7.
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(a) Cart—pendulum system (c) Pole zero diagram fdfl e

Figure 8.5: Poles and zeros for a balance system. The balance system (a) cauékedn
around its vertical equilibrium point by a fourth order linear system. Tdlegpand zeros for
the transfer functionBlgr andHpr are shown in (b) and (c), respectively.

If we assume the damping is small andset 0 andy = 0, we obtain

ml

Hor = (Mt — mP12)s? — Mymgll’
2 —mgl

Hor — J g

(Mg — mP12)s? — Mymgl) -
This gives nonzero poles and zeros at

. mgiM _ ., /mgl
p_i,/MtJt_nﬂzNiz.as, 2=y 3~ +209

We see that these are quite close to the pole and zero losatidiigure 8.5. [

8.3 Block Diagrams and Transfer Functions

The combination of block diagrams and transfer functions peaerful way to
represent control systems. Transfer functions relatiffgréint signals in the sys-
tem can be derived by purely algebraic manipulations of rhwesfer functions of
the blocks usindlock diagram algebraTo show how this can be done, we will
begin with simple combinations of systems.

Consider a system that is a cascade combination of systetinghei transfer
functionsGs (s) andGy(s), as shown in Figure 8.6a. Let the input of the system
beu = €. The pure exponential output of the first block is the expomaéstgnal
G1u, which is also the input to the second system. The pure expiahentput of

the second system is
y= Gz(Glu) = (GzGl)U.
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Gy
u y u % y u € Y
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Gy T
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() Gyu = G261 (b) Gyu =G+ G, __ G
© Gyu 1+ GGy

Figure 8.6: Interconnections of linear systems. Series (a), parallel (b) antbéekdc) con-
nections are shown. The transfer functions for the composite systembecderived by
algebraic manipulations assuming exponential functions for all signals.

The transfer function of the series connection is tGus G,G;, i.e., the product
of the transfer functions. The order of the individual tramdtinctions is due to
the fact that we place the input signal on the right-hand eidiis expression,
hence we first multiply bys; and then byG,. Unfortunately, this has the opposite
ordering from the diagrams that we use, where we typicallyehibe signal flow
from left to right, so one needs to be careful. The orderingjsdrtant if eitheiGy
or G is a vector-valued transfer function, as we shall see in ssxaeples.

Consider next a parallel connection of systems with thesfearfunctionsGy
andG,, as shown in Figure 8.6b. Letting= €% be the input to the system, the
pure exponential output of the first system is tlygr= Gyu and the output of the
second system s = G,u. The pure exponential output of the parallel connection
is thus

y = Giu+ Gou = (G1+ Go)u,

and the transfer function for a parallel connectiofis- G1 + G».

Finally, consider a feedback connection of systems withriduester functions
G; andGg, as shown in Figure 8.6c¢. Lat= € be the input to the systembe the
pure exponential output, ambe the pure exponential part of the intermediate sig-
nal given by the sum af and the output of the second block. Writing the relations
for the different blocks and the summation unit, we find

y=G16 e=u—Gyy.
Elimination ofe gives
Gy
=G (u—G 1+G1Gly=G =——Uu.
y=Gi(u-Gy) = ([1+GiG)y=6Giu = vy 1JrGleu
The transfer function of the feedback connection is thus
146Gy

These three basic interconnections can be used as the basisrfputing transfer
functions for more complicated systems.
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Figure 8.7: Block diagram of a feedback system. The inputs to the system are thenege
signalr, the process disturbanceand the measurement noiseThe remaining signals in
the system can all be chosen as possible outputs, and transfer furmetiobs used to relate
the system inputs to the other labeled signals.

Control System Transfer Functions

Consider the system in Figure 8.7, which was given at the beggrof the chapter.
The system has three blocks representing a prdgesteedback controll€® and a
feedforward controlleF. TogetherC andF define thecontrol lawfor the system.
There are three external signals: the reference (or commigndlpr, the load
disturbanceal and the measurement noiseA typical problem is to find out how
the erroreis related to the signals d andn.

To derive the relevant transfer functions we assume thatigtials are expo-
nential signals, drop the arguments of signals and trafisfetions and trace the
signals around the loop. We begin with the signal in which weiaterested, in
this case the control errey given by

e=Fr—y.
The signaly is the sum oh andn, wheren is the output of the process:
y=n+n, n="P(d+u), u=_Ce
Combining these equations gives
e=Fr—y=Fr—(n+n)=Fr—(n+P(d+u))
=Fr—(n+P(d+Ceg),
and hence
e=Fr—n—Pd—PCe
Finally, solving this equation fog gives
e F .1 P
1+PC 1+PC 1+4PC

and the error is thus the sum of three terms, depending orefeeencer, the
measurement noigeand the load disturbanak The functions

F -1 -P
“1ipc % Tiipe ST iipc
are transfer functions from referencenoisen and disturbancd to the errore.

d = Gerl + Gen + Gegd, (8.18)

Ger (8.19)
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Figure 8.8: Example of block diagram algebra. The results from multiplying the poaed
controller transfer functions (from Figure 8.7) are shown in (a).I&=pg the feedback loop
with its transfer function equivalent yields (b), and finally multiplying the temgining
blocks gives the reference to output representation in (c).

We can also derive transfer functions by manipulating tleekodiagrams di-
rectly, as illustrated in Figure 8.8. Suppose we wish to comphe transfer func-
tion between the referenceand the outpuy. We begin by combining the process
and controller blocks in Figure 8.7 to obtain the diagram iruFég3.8a. We can
now eliminate the feedback loop using the algebra for a faekimterconnection
(Figure 8.8b) and then use the series interconnection rudbtiin

PCF
Y 14PC
Similar manipulations can be used to obtain the other trarfgfections (Exer-
cise 8.8).

The derivation illustrates an effective way to manipulategquations to obtain
the relations between inputs and outputs in a feedbackmy3iee general idea is
to start with the signal of interest and to trace signalsiaddbe feedback loop until
coming back to the signal we started with. With some practcgiations (8.18)
and (8.19) can be written directly by inspection of the bld@gram. Notice, for
example, that all terms in equation (8.19) have the samerdigradors and that the
numerators are the blocks that one passes through when djogagly from input
to output (ignoring the feedback). This type of rule can belise&ompute transfer
functions by inspection, although for systems with muétifdedback loops it can
be tricky to compute them without writing down the algebral@itly.

(8.20)

Example 8.6 Vehicle steering

Consider the linearized model for vehicle steering intitlin Example 5.12. In
Examples 6.4 and 7.3 we designed a state feedback compeardtstate esti-
mator for the system. A block diagram for the resulting colnglystem is given in
Figure 8.9. Note that we have split the estimator into two conemts Gg,(s) and
Ggy(s), corresponding to its inputsandy. The controller can be described as the
sum of two (open loop) transfer functions

U= Guy(s)y+ Gur(s)r.

The first transfer functionGyy(s), describes the feedback term and the second,
Gur(s), describes the feedforward term. We call thepen looptransfer functions
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Figure 8.9: Block diagram for a steering control system. The control system is nkesigp
maintain the lateral position of the vehicle along a reference curve (I¢f) sTructure of the
control system is shown on the right as a block diagram of transfetifursc The estimator
consists of two components that compute the estimated»steden the combination of the
input u and outputy of the process. The estimated state is fed through a state feedback
controller and combined with a reference gain to obtain the commandethgtaagleu.

because they represent the relationships between thdssigitlhout considering
the dynamics of the process (e.g., remowitig) from the system description). To
derive these functions, we compute the transfer functiongdch block and then
use block diagram algebra.

We begin with the estimator, which takasandy as its inputs and produces
an estimate."The dynamics for this process were derived in Example 7.3 ead a
given by

‘;)t( — (A—LC)%+Ly+Bu,
2= (sl— (A—LC)) 'Bu+ (sl — (A—LC)) Ly.

Gsu G)?y

Using the expressions féy, B, C andL from Example 7.3, we obtain

ys+1 l1s+15
L +1is+1o S+11s+15
Gau(s) = ) G)Zy(s) = )
S+l —vylo los
L +11s+15 S +11s+15

wherel; andl, are the observer gains amds the scaled position of the center
of mass from the rear wheels. The controller was a state fekdtmmpensator,
which can be viewed as a constant, multi-input, single-autiansfer function of
the formu = —KX.

We can now proceed to compute the transfer function for threzadlvcontrol
system. Using block diagram algebra, we have

_ —Kny(S) _ S(k1|1+k2|2)+k1|2
1+ KGgy(s) P +s(yki +ka+11) + ki + 12+ kalp — ykol2

Guy(s)
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and

_ Kr _ ki (S +115+12)
1+KGgry(s) S?+s(yki+ko+11) +ki+12+koly — ykolo’

wherek; andk; are the state feedback gains ands the reference gain.

Finally, we compute the full closed loop dynamics. We begirdbyiving the
transfer function for the proceg%s). We can compute this directly from the state
space description of the dynamics, which was given in Exarsdl2. Using that
description, we have

P(S) = Gyu(s) = C(sl~A) "B+ D= (1 0) [8 —31] -’ [‘1’] _ vs;ll

The transfer function for the full closed loop system betw#eninputr and the
outputy is then given by

Gur(S)

PG ke(ys+1)
~ 1-P(9Guy(s) P+ (kiy+k)s+ki

Note that the observer gaihsandl, do not appear in this equation. This is because
we are considering steady-state analysis and, in steatdy gtae estimated state
exactly tracks the state of the system assuming perfect Isiodde will return to
this example in Chapter 12 to study the robustness of thiecpéar approach. [

Gyr

Pole/Zero Cancellations

Because transfer functions are often polynomials,iit can sometimes happen
that the numerator and denominator have a common factogchwddan be can-
celed. Sometimes these cancellations are simply algebrafdifications, but in
other situations they can mask potential fragilities intti@del. In particular, if a
pole/zero cancellation occurs because terms in sepaxatkdihat just happen to
coincide, the cancellation may not occur if one of the systerslightly perturbed.
In some situations this can result in severe differencesdsat the expected be-
havior and the actual behavior.

To illustrate when we can have pole/zero cancellationssiden the block dia-
gram in Figure 8.7 witlk = 1 (no feedforward compensation) a@andP given

by

cl="9  pg =09

T do(9)’ dp(s)’
The transfer function from to e is then given by
1 de(s)dp(S)

Ger(9)

T 1+PC  de(5)dp(S) + Ne(S)Np(S)”

If there are common factors in the numerator and denominetiynomials, then
these terms can be factored out and eliminated from bothuhesrator and de-
nominator. For example, if the controller has a zers-at—a and the process has
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a pole ats = —a, then we will have

Gor(s) = (s+a)d(s)dy(s) B de(s)dp(s)
S (s+a)de(8)dp(s) + (s+aNL(INp(s)  de(S)dp(S) + Ne(S)Np(S)”

wheren;(s) anddj,(s) represent the relevant polynomials with the tesma fac-
tored out. In the case wherx 0O (so that the zero or pole is in the right half-plane),
we see that there is no impact on the transfer fundBgn

Suppose instead that we compute the transfer functiondrtme, which repre-
sents the effect of a disturbance on the error between theerefe and the output.
This transfer function is given by

de(s)np(s)
(s+a)de(s)dy(s) + (s+a)ne(s)np(s)

Ged(s) - -

Notice that ifa < 0, then the pole is in the right half-plane and the transfecfion
Geg is unstable Hence, even though the transfer function froto e appears to be
okay (assuming a perfect pole/zero cancellation), thesteafiunction fromd to e
can exhibit unbounded behavior. This unwanted behaviopis#y of anunstable
pole/zero cancellatian

It turns out that the cancellation of a pole with a zero can bisunderstood in
terms of the state space representation of the systemsh&tsbity or observability
is lost when there are cancellations of poles and zeros (EExe8cll). A conse-
guence is that the transfer function represents the dyrsaomiy in the reachable
and observable subspace of a system (see Section 7.5).

Example 8.7 Cruise control

The input/output response from throttle to velocity for thmeérized model for a
car has the transfer functig®(s) = b/(s—a), a < 0. A simple (but not necessarily
good) way to design a PI controller is to choose the paramet¢ine Pl controller
so that the controller zero at= —k; /kp cancels the process pole s a. The
transfer function from reference to velocity@s, (s) = bkp/(s+ bkp), and control
design is simply a matter of choosing the gainThe closed loop system dynamics
are of first order with the time constantiikp.

Figure 8.10 shows the velocity error when the car encounteirscaease in the
road slope. A comparison with the controller used in FiguBb3Jreproduced in
dashed curves) shows that the controller based on poletaecellation has very
poor performance. The velocity error is larger, and it takksng time to settle.

Notice that the control signal remains practically constftert = 15 even
if the error is large after that time. To understand what leagpwe will analyze
the system. The parameters of the systenaare—0.0101 ando = 1.32, and the
controller parameters akg = 0.5 andk; = 0.0051. The closed loop time constant
is 1/(bkp) = 2.5's, and we would expect that the error would settle in ahOwst
(4 time constants). The transfer functions from road slopeetocity and control
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Figure 8.10: Car with PI cruise control encountering a sloping road. The velocity ésro
shown on the left and the throttle is shown on the right. Results with a Pl contvatle

kp = 0.5 andk; = 0.0051, where the process pale- —0.0101, is shown by solid lines, and
a controller withkp = 0.5 andk; = 0.5 is shown by dashed lines. Compare with Figure 3.3b.

signals are

bys bk
(s—a)(s+bkp)’ ~ s+bky’

Notice that the canceled mode= a = —0.0101 appears iG,g but not inGg.
The reason why the control signal remains constant is thaiathgoller has a zero
ats= —0.0101, which cancels the slowly decaying process mode. dlthiat the
error would diverge if the canceled pole was unstable. O

Guo(s) = Gus(S)

The lesson we can learn from this example is that it is a bad toldgy to
cancel unstable or slow process poles. A more detailed sksmu of pole/zero
cancellations is given in Section 12.4.

Algebraic Loops

When analyzing or simulating a system described by a bloaggrdim, it is neces-
sary to form the differential equations that describe thmmgete system. In many
cases the equations can be obtained by combining the diffekrequations that
describe each subsystem and substituting variables. Thigesprocedure cannot
be used when there are closed loops of subsystems that elatdikect connection
between inputs and outputs, known asaégebraic loop
To see what can happen, consider a system with two blockst-@ftter non-

linear system,

% = f(x,u), y =h(x), (8.21)
and a proportional controller described by= —ky. There is no direct term since
the functionh does not depend am In that case we can obtain the equation for
the closed loop system simply by replacimgy —kyin (8.21) to give

dx
a - f(Xv_ky)a y= h(X)

Such a procedure can easily be automated using simple formargulation.
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The situation is more complicated if there is a direct terny.# h(x,u), then

replacingu by —ky gives

% = f(x,—ky), y = h(x, —ky).
To obtain a differential equation fog, the algebraic equatiop= h(x, —ky) must
be solved to givey = a(x), which in general is a complicated task.

When algebraic loops are present, it is necessary to sajebirdic equations
to obtain the differential equations for the complete aystResolving algebraic
loops is a nontrivial problem because it requires the symtmalution of alge-
braic equations. Most block diagram-oriented modelingyleages cannot handle
algebraic loops, and they simply give a diagnosis that soopd are present. In
the era of analog computing, algebraic loops were elimahateintroducing fast
dynamics between the loops. This created differential éopmtvith fast and slow
modes that are difficult to solve numerically. Advanced modelanguages like
Modelica use several sophisticated methods to resolvémgdoops.

8.4 The Bode Plot

The frequency response of a linear system can be computedtftransfer func-
tion by settings= iw, corresponding to a complex exponential

u(t) = €t = cog wt) +isin(wt).
The resulting output has the form
y(t) = G(iw)e™ = Me(@+9) — Mcog wt + @) +iM sin(wt + ¢),

whereM and¢ are the gain and phase Gf
. I
M= |G(iw)], ¢:arctann;7..

The phase of is also called thargumenbf G, a term that comes from the theory
of complex variables.

It follows from linearity that the response to a single siids(sin or cos) is
amplified byM and phase-shifted b§. Note that—m < ¢ < 1, so the arctangent
must be taken respecting the signs of the numerator and deatom It will often
be convenient to represent the phase in degrees rathettians. \We will use the
notation/G(iw) for the phase in degrees and &(@w) for the phase in radians.
In addition, while we always take a@iw) to be in the rangé—r, 11}, we will
take Z/G(iw) to be continuous, so that it can take on values outside trgerah
—180 to 180.

The frequency respon$&iw) can thus be represented by two curves: the gain
curve and the phase curve. Téi@n curvegives|G(iw)| as a function of frequency
w, and thephase curvegives ZG(iw). One particularly useful way of drawing
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Figure 8.11:Bode plot of the transfer functid@(s) = 20+ 10/s+ 10s corresponding to an
ideal PID controller. The top plot is the gain curve and the bottom plot is thsehurve.
The dashed lines show straight-line approximations of the gain curve amttiesponding
phase curve.

these curves is to use a log/log scale for the gain plot ang/krlear scale for the
phase plot. This type of plot is calledB®de plotand is shown in Figure 8.11.

Sketching and Interpreting Bode Plots

Part of the popularity of Bode plots is that they are easy &ictkand interpret.
Since the frequency scale is logarithmic, they cover theviehaf a linear system

over a wide frequency range.
Consider a transfer function that is a rational functionhaf form

_ by(s)b2(s)
G(s) = m

We have
log|G(s)| = log|bi(s)| +log|bz(s)| —log|as(s)| — log|ax(s)|,

and hence we can compute the gain curve by simply adding drtchsting gains
corresponding to terms in the numerator and denominatoileBiyn

LG(S) = £bi(s) + £by(s) — Zay(s) — Zax(9),

and so the phase curve can be determined in an analogousrfaSimce a poly-
nomial can be written as a product of terms of the type

k, s, s+a, S +2{ws+ag,

it suffices to be able to sketch Bode diagrams for these ternesBblde plot of a
complex system is then obtained by adding the gains and plof$lee terms.
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Figure 8.12:Bode plots of the transfer functios) = Kfork=-2,-1,0,1,2.0na log-
log scale, the gain curve is a straight line with sldpé&Jsing a log-linear scale, the phase
curves for the transfer functions are constants, with phase equat tol00

The simplest term in a transfer function is one of the fafnwherek > 0 if
the term appears in the numerator &nd O if the term is in the denominator. The
gain and phase of the term are given by

log|G(iw)| =klogw, ZG(iw)=90k.

The gain curve is thus a straight line with sldpend the phase curve is a constant

at 90 x k. The case whek= 1 corresponds to a differentiator and has slope 1 with

phase 90. The case whek = —1 corresponds to an integrator and has slefe

with phase-90°. Bode plots of the various powers loare shown in Figure 8.12.
Consider next the transfer function of a first-order systexgrgby

a
==
We have
El
G(s)| = , /G(s) = Z(a) — Z(s+a),
69 = o1 a (9= (@) - Z(s+a)
and hence

log|G(iw)| = loga— % log(w?+a?), /G(iw)= —Liic)arctang.

The Bode plot is shown in Figure 8.13a, with the magnitude nbzed by the
zero frequency gain. Both the gain curve and the phase carvbeapproximated
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Figure 8.13: Bode plots for first- and second-order systems. (a) The first-cgsiem

G(s) = a/(s+a) can be approximated by asymptotic curves (dashed) in both the gain and
the frequency, with the breakpoint in the gain curvevat a and the phase decreasing by 90
over a factor of 100 in frequency. (b) The second-order sySésn= aﬁ/(sz+25abs+ wg)

has a peak at frequeneyand then a slope of2 beyond the peak; the phase decreases from
0° to —180°. The height of the peak and the rate of change of phase depending dartip-

ing ratio (¢ =0.02,0.1, 0.2, 0.5 and 1.0 shown).

by the following straight lines

log|G(ie)| ~ {O

ZG(iw) ~

ifw<a
loga—logw if w>a,

0 if w<a/l0
—45—45(logw—loga) a/10< w < 10a
-90 if w > 10a.

The approximate gain curve consists of a horizontal line ufpeguencyw = a,
called thebreakpointor corner frequencyafter which the curve is a line of slope
—1 (on a log-log scale). The phase curve is zero up to frequafit§ and then
decreases linearly by 4slecade up to frequency a0at which point it remains
constant at 90 Notice that a first-order system behaves like a constantofor |
frequencies and like an integrator for high frequenciespgare with the Bode
plot in Figure 8.12.
Finally, consider the transfer function for a second-orgstem,

_ w5
G(s) = S+ 2w0{s+ W’
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for which we have
. 1
log|G(icw)| = 2logay — 5 log (w* + 20 w?(20% — 1) + o),

/G(iw) = —@arctanzgﬂ.
m wh — W?
The gain curve has an asymptote with zero slopediox «y. For large val-
ues ofw the gain curve has an asymptote with slop2. The largest gaiQ =
max, |G(iw)| ~ 1/(2¢), called theQ-value is obtained forw ~ wy. The phase is
zero for low frequencies and approaches 1 large frequencies. The curves
can be approximated with the following piecewise linearregpions

0g/Glio) ~ 4 if w <

g "] 2logan — 2logw  if w> ,
/Gliw) ~ 0 if <y
T ]1-180 ifw> w.

The Bode plot is shown in Figure 8.13b. Note that the asympapjizoximation is
poor neaiw = wy and that the Bode plot depends stronglyamear this frequency.

Given the Bode plots of the basic functions, we can now skittetirequency
response for a more general system. The following exampistifites the basic
idea.

Example 8.8 Asymptotic approximation for a transfer function
Consider the transfer function given by

B k(s+b)
Gls) = (s+a)(+2 wos+ wg)’

The Bode plot for this transfer function appears in Figure Bulith the complete
transfer function shown as a solid line and the asymptotic@pmation shown as
a dashed line.

We begin with the gain curve. At low frequency, the magnitigdgiven by

G(0) = akbz.

Wo
When we reaclw = a, the effect of the pole begins and the gain decreases with
slope—1. At w = b, the zero comes into play and we increase the slope by 1,
leaving the asymptote with net slope 0. This slope is used tgtieffect of the
second-order pole is seen@at= an, at which point the asymptote changes to slope
—2. We see that the gain curve is fairly accurate except ingg®mn of the peak
due to the second-order pole (since for this cadsereasonably small).

The phase curve is more complicated since the effect of theepbietches
out much further. The effect of the pole beginsuat= a/10, at which point we
change from phase 0 to a slope -efi5°/decade. The zero begins to affect the
phase atw = b/10, producing a flat section in the phase.@At 10a the phase

a<k< b« wp.
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Figure 8.14: Asymptotic approximation to a Bode plot. The thin line is the Bode plot for

the transfer functioB(s) = k(s+b)/(s+a)(s* + 2{ wps+ wf), wherea < b < ap. Each

segment in the gain and phase curves represents a separate pottienapproximation,
where either a pole or a zero begins to have effect. Each segmentagpheximation is a
straight line between these points at a slope given by the rules for comphéreffects of
poles and zeros.

contributions from the pole end, and we are left with a sldped®°/decade (from

the zero). At the location of the second-order pske,icy, we get a jump in phase

of —180C. Finally, atcw = 10b the phase contributions of the zero end, and we are
left with a phase of-180 degrees. We see that the straight-line approximation fo
the phase is not as accurate as it was for the gain curve, doe# capture the
basic features of the phase changes as a function of freguenc O

The Bode plot gives a quick overview of a system. Since any bicgna be
decomposed into a sum of sinusoids, it is possible to viseidlie behavior of a
system for different frequency ranges. The system can beedew a filter that can
change the amplitude (and phase) of the input signals aiogpta the frequency
response. For example, if there are frequency ranges whergain curve has
constant slope and the phase is close to zero, the actiore afygiem for signals
with these frequencies can be interpreted as a pure gaina8imior frequencies
where the slope is +1 and the phase close tQ 8@ action of the system can be
interpreted as a differentiator, as shown in Figure 8.12.

Three common types of frequency responses are shown in Figlise Bhe
system in Figure 8.15a is called@w-pass filterbecause the gain is constant for
low frequencies and drops for high frequencies. Notice tih@tphase is zero for
low frequencies and-180 for high frequencies. The systems in Figure 8.15b and
c are called dand-pass filteandhigh-pass filteifor similar reasons.

To illustrate how different system behaviors can be reachftibe Bode plots
we consider the band-pass filter in Figure 8.15b. For freqasranioundo = ),
the signal is passed through with no change in gain. Howéseirequencies well
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Figure 8.15: Bode plots for low-pass, band-pass and high-pass filters. The topapéotae
gain curves and the bottom plots are the phase curves. Each systers foagsencies in a
different range and attenuates frequencies outside of that range.

below or well abovewy, the signal is attenuated. The phase of the signal is also
affected by the filter, as shown in the phase curve. For fretjastbeloway /100
there is a phase lead of 9Q@and for frequencies above 1d§there is a phase lag

of 90°. These actions correspond to differentiation and integmatf the signal in
these frequency ranges.

Example 8.9 Transcriptional regulation
Consider a genetic circuit consisting of a single gene. Wehwo study the re-
sponse of the protein concentration to fluctuations in the wRIjnamics. We
consider two cases: eonstitutive promotefno regulation) and self-repression
(negative feedback), illustrated in Figure 8.16. The dynaroicthe system are
given by
dm
dt
wherev is a disturbance term that affects mRNA transcription.
For the case of no feedback we havep) = ap, and the system has an equi-
librium point atme = aop/y, pe = Bao/(dy). The transfer function fromr to p is

given by 8
Go(S) =
pv(S) (s+Yy)(s+9)
For the case of negative regulation, we have

d
a(p)-ym-v, = pm-3p,

(o}
a(p):ﬁ—i—ao,

and the equilibrium points satisfy
yo

o) a
me:Bpea m—l—ﬁo:wﬂe:?p&
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RNAP
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Figure 8.16: Noise attenuation in a genetic circuit. The open loop system (a) consists of a
constitutive promoter, while the closed loop circuit (b) is self-regulated nétpative feed-
back (repressor). The frequency response for each circuibigrsim (c).

The resulting transfer function is given by

cl B nalkrg_l
Gpuls) = (s+y)(s+9)+Bo’ 9= (14+kp)2’

Figure 8.16¢ shows the frequency response for the two cirdive see that the
feedback circuit attenuates the response of the systenstorioiinces with low-
frequency content but slightly amplifies disturbances at fiigquency (compared
to the open loop system). Notice that these curves are vmilasito the frequency
response curves for the op amp shown in Figure 8.3b. O

Transfer Functions from Experiments

The transfer function of a system provides a summary of thetioptput response
and is very useful for analysis and design. However, moddiiom first prin-
ciples can be difficult and time-consuming. Fortunately, \aa often build an
input/output model for a given application by directly maidsg the frequency
response and fitting a transfer function to it. To do so, weupkrthe input to the
system using a sinusoidal signal at a fixed frequency. Whewlgt&ate is reached,
the amplitude ratio and the phase lag give the frequencynsspfor the excitation
frequency. The complete frequency response is obtained bgEng over a range
of frequencies.

By using correlation techniques it is possible to deterntireefrequency re-
sponse very accurately, and an analytic transfer functionbe obtained from the
frequency response by curve fitting. The success of this apjproas led to in-
struments and software that automate this process, cglectrum analyzerdVe
illustrate the basic concept through two examples.

Example 8.10 Atomic force microscope
To illustrate the utility of spectrum analysis, we considee dynamics of the
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Figure 8.17: Frequency response of a preloaded piezoelectric drive for an aforoemi-
croscope. The Bode plot shows the response of the measurecetramsttion (solid) and
the fitted transfer function (dashed).

atomic force microscope, introduced in Section 3.5. Expantaledetermination
of the frequency response is particularly attractive fas #ystem because its dy-
namics are very fast and hence experiments can be doneyidipical example
is given in Figure 8.17, which shows an experimentally deteeghfrequency re-
sponse (solid line). In this case the frequency responsebtamed in less than a
second. The transfer function

kKBRS + 20 s+ WD) (S + 20acus+ wf)e
 QPR( + 2005+ W) (F + 2030ns+ wF) (P + 25w+ wE)’

with w = 2rtfy and f; = 2.42 kHz,{; = 0.03, f, = 2.55 kHZ,Zz =0.03, f3 =
6.45 kHz,{3 = 0.042,f4=8.25 kHz,{4 = 0.025, f5 = 9.3 kHz,{5 = 0.032,1 = 10*s
andk =5, was fit to the data (dashed line). The frequencies assoeigtethe ze-
ros are located where the gain curve has minima, and thedneigs associated
with the poles are located where the gain curve has localmexihe relative
damping ratios are adjusted to give a good fit to maxima andmanWhen a
good fit to the gain curve is obtained, the time delay is adjuigyive a good fit
to the phase curve. The piezo drive is preloaded, and a simgdelof its dynam-
ics is derived in Exercise 3.7. The pole at 2.42 kHz corresptmtize trampoline
mode derived in the exercise; the other resonances arerhygiues.

G(s)

O

Example 8.11 Pupillary light reflex dynamics

The human eye is an organ that is easily accessible for expetant has a control

system that adjusts the pupil opening to regulate the liglehisity at the retina.
This control system was explored extensively by Stark in the0$gSta68].

To determine the dynamics, light intensity on the eye wagdasinusoidally and

the pupil opening was measured. A fundamental difficulty & the closed loop
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Figure 8.18: Light stimulation of the eye. In (a) the light beam is so large that it always
covers the whole pupil, giving closed loop dynamics. In (b) the light isi$ed into a beam
which is so narrow that it is not influenced by the pupil opening, givingrdpop dynamics.

In (c) the light beam is focused on the edge of the pupil opening, whishtheeffect of
increasing the gain of the system since small changes in the pupil openiegttarge effect

on the amount of light entering the eye. From Stark [Sta68].

system is insensitive to internal system parameters, slysasiaf a closed loop
system thus gives little information about the internalpenies of the system.
Stark used a clever experimental technique that allowed bimviestigate both
open and closed loop dynamics. He excited the system byngiie intensity
of a light beam focused on the eye and measured pupil areldysisated in Fig-
ure 8.18. By using a wide light beam that covers the wholelptf@ measurement
gives the closed loop dynamics. The open loop dynamics wegsenala by using
a narrow beam, which is small enough that it is not influencethbypupil open-
ing. The result of one experiment for determining open loopagiyics is given
in Figure 8.19. Fitting a transfer function to the gain curveegia good fit for
G(s) = 0.17/(1+0.08s)3. This curve gives a poor fit to the phase curve as shown
by the dashed curve in Figure 8.19. The fit to the phase curve isirag by
adding a time delay, which leaves the gain curve unchangel@ whbstantially
modifying the phase curve. The final fit gives the model

— 0.17 —0.2s
C9= a7 0085°
The Bode plot of this is shown with solid curves in Figure 8.1%ddling of the
pupillary reflex from first principles is discussed in detai[K$01]. O

Notice that for both the AFM drive and pupillary dynamics inist easy to de-
rive appropriate models from first principles. In practi¢és bften fruitful to use a
combination of analytical modeling and experimental idfesattion of parameters.
Experimental determination of frequency response is lgsacéive for systems
with slow dynamics because the experiment takes a long time.

8.5 Laplace Transforms @

Transfer functions are conventionally introduced usinglaeg transforms, and in
this section we derive the transfer function using this falism. We assume basic
familiarity with Laplace transforms; students who are notifaar with them can
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Figure 8.19: Sample curves from an open loop frequency response of the et)eafhef a
Bode plot for the open loop dynamics (right). The solid curve showsdd fite data using a
third-order transfer function with time delay. The dashed curve in theeBdat is the phase
of the system without time delay, showing that the delay is needed to pragagtyre the
phase. (Figure redrawn from the data of Stark [Sta68].)

safely skip this section. A good reference for the matherahtnaterial in this
section is the classic book by Widder [Wid41].

Traditionally, Laplace transforms were used to computeaeses of linear
systems to different stimuli. Today we can easily generageresponses using
computers. Only a few elementary properties are neededafic lwontrol appli-
cations. There is, however, a beautiful theory for Laplacestfi@ms that makes
it possible to use many powerful tools from the theory of timts of a complex
variable to get deep insights into the behavior of systems.

Consider a functiorf (t), f : R™ — R, that is integrable and grows no faster
thane™ for some finitesy € R and larget. The Laplace transform magdsto a
functionF = Zf : C — C of a complex variable. It is defined by

F(s) = /OooeStf(t)dt, Res> . (8.22)

The transform has some properties that makes it well suiteteébd with linear

systems.
First we observe that the transform is linear because
Z(af +bg) = / e S(af(t) + bg(t))dt
% o - (8.23)
— a/ e St (1) dt + b/ e Sg(t)dt = a2 + b.zg.
0 0

Next we calculate the Laplace transform of the derivative fofrgtion. We have

00

xdf—/ e_Stf’(t)dt:e_Stf(t)’:+S/ e S (t)dt = —f(0) +sZf,
0

dt 0
where the second equality is obtained using integrationaoispWe thus obtain
iﬂg =sZf —f(0) =sF(s)— f(0). (8.24)

dt
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This formula is particularly simple if the initial conditisrare zero because it fol-
lows that differentiation of a function corresponds to riplitation of the trans-
form bys.

Since differentiation corresponds to multiplication §ywe can expect that
integration corresponds to division byThis is true, as can be seen by calculating
the Laplace transform of an integral. Using integration btgpave get

x/ dr—/ (e‘S‘/tf( )dr)dt
:—St/f dr

t 1 1
.z/o f(r)dr =2 =ZF(s) (8.25)

Next consider a linear time-invariant system with zeroiahistate. We saw in
Section 5.3 that the relation between the inpand the outpuy is given by the

convolution integral N
:/ h(t—t)u(t)dt
0

whereh(t) is the impulse response for the system. Taking the Laplaosfoem
of this expression, we have

Y(s):/ dt—/ St/ h(t — 7)u(T) drdt

0

_ / e Th(t — T)u(7)dr dt

:/ e Tu(t dr/ e Sth(t)dt =H(s)U(s).
0 JO

Thus, the input/output response is given¥ayg) = H(s)U(s), whereH, U andY
are the Laplace transforms bf u andy. The system theoretic interpretation is
that the Laplace transform of the output of a linear system psoauct of two
terms, the Laplace transform of the infuifs) and the Laplace transform of the
impulse response of the systet{s). A mathematical interpretation is that the
Laplace transform of a convolution is the product of the tframss of the functions
that are convolved. The fact that the formiés) = H(s)U (s) is much simpler
than a convolution is one reason why Laplace transforms hewerbe popular in
engineering.

We can also use the Laplace transform to derive the transfetiéun for a state
space system. Consider, for example, a linear state spat@sygescribed by

((jjt = Ax+ Bu, y=Cx+Du.

Taking Laplace transformsnder the assumption that all initial values are zero
gives

1 ® —ST
5/0 e > f(r)dr,

hence

sX(s) = AX(s) +BU(s) Y(s) =CX(s)+DU(s).
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Elimination of X(s) gives
Y(s) = (C(sI—A)*lBJr D)U(s). (8.26)

The transfer function i§(s) = C(sl — A) "B+ D (compare with equation (8.4)).

8.6 Further Reading

The idea of characterizing a linear system by its steadg-sé&ponse to sinusoids
was introduced by Fourier in his investigation of heat caridu in solids [Fou07].
Much later, it was used by the electrical engineer Steinmétziwtroduced théw
method for analyzing electrical circuits. Transfer funos were introduced via the
Laplace transform by Gardner Barnes [GB42], who also used thealculate the
response of linear systems. The Laplace transform was veyriarg in the early
phase of control because it made it possible to find transiéatsibles (see, e.g.,
[JNP47]). Combined with block diagrams, transfer functiansl Laplace trans-
forms provided powerful techniques for dealing with compgystems. Calcu-
lation of responses based on Laplace transforms is less tampdoday, when
responses of linear systems can easily be generated usimguters. There are
many excellent books on the use of Laplace transforms andféafunctions for
modeling and analysis of linear input/output systems. ifi@thl texts on control
such as [DBO04], [FPENO5] and [Oga01] are representative exasmplole/zero
cancellation was one of the mysteries of early control thebis clear that com-
mon factors can be canceled in a rational function, but diatioes have system
theoretical consequences that were not clearly understotild<alman’s decom-
position of a linear system was introduced [KHN63]. In thikdi@ing chapters, we
will use transfer functions extensively to analyze stépiind to describe model
uncertainty.

Exercises

8.1 Let G(s) be the transfer function for a linear system. Show that if we ap
ply an inputu(t) = Asin(wt), then the steady-state output is given yiy) =
|G(iw)|Asin(wt + argG(iw)). (Hint: Start by showing that the real part of a com-
plex number is a linear operation and then use this fact.)

8.2 Consider the system

d—x—ax+u
dt ’

Compute the exponential response of the system and use tesive the transfer
function fromu to x. Show that whers = a, a pole of the transfer function, the
response to the exponential input) = €% is x(t) = €x(0) +te.



EXERCISES 263

8.3 (Inverted pendulum) A model for an inverted pendulum wasonhiced in
Example 2.2. Neglecting damping and linearizing the pendwtound the upright
position gives a linear system characterized by the matrice

A= [mgcl)/Jt 3] B:[]_;)Jt], C:(l 0), D=0

Determine the transfer function of the system.
8.4 (Solutions corresponding to poles and zeros) Consider ffegetitial equation
dny dnfly dnflu dnfzu

+o by

(a) LetA be aroot of the characteristic polynomial
S+as 4. 4a,=0.
Show that ifu(t) = 0, the differential equation has the solutigh) = €.
(b) Letk be a zero of the polynomial
b(s) = byt + b8 2+ - + by,

Show that if the input isu(t) = €, then there is a solution to the differential
equation that is identically zero.

8.5 (Operational amplifier) Consider the operational amplifig¢raduced in Sec-
tion 3.3 and analyzed in Example 8.3. A PI controller can be ttoaed using
an op amp by replacing the resis®s with a resistor and capacitor in series, as
shown in Figure 3.10. The resulting transfer function of thiewst is given by

1 kCs
Gls) =~ (R”Cs) ' (((k+ 1)R.C+R,C)s+ 1) :

wherek is the gain of the op am|R; andR; are the resistances in the compensation
network andC is the capacitance.

(a) Sketch the Bode plot for the system under the assumptaik tis R, > R;.
You should label the key features in your plot, including ¢iaén and phase at low
frequency, the slopes of the gain curve, the frequenciehatiwvthe gain changes
slope, etc.
(b) Suppose now that we include some dynamics in the ampliSesudined in
Example 8.1. This would involve replacing the g&iwith the transfer function
k
H(s) = .
8 =1sT
Compute the resulting transfer function for the system, (ieplacek with H(s))
and find the poles and zeros assuming the following paramelees
Ro

Ezloq k=1CP, R.C =1, T=0.01
1
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(c) Sketch the Bode plot for the transfer function in part (bing straight line
approximations and compare this to the exact plot of thesfeairfunction (using
MATLAB). Make sure to label the important features in your plot

8.6 (Transfer function for state space system) Consider tlealistate space sys-

tem
dx

— =Ax+B =C
gt X+ Bu, y X.
Show that the transfer function is
by 14+ by 24...+b
G(s) = 1 + 271 + -+ Dp
S+t +---+ap

)

where
bi=CB, by=CAB+aiCB, ..., b,=CA™'B+a,CA"?B+---+a,_1CB
andA (s) = "+ a1 + - - + a, is the characteristic polynomial féx.

8.7 (Kalman decomposition) Show that the transfer function ofsdéesn depends
only on the dynamics in the reachable and observable subsgaihe Kalman
decomposition. (Hint: Consider the representation giweaduation (7.27).)

8.8 Using block diagram algebra, show that the transfer funstioomd to y and
ntoyin Figure 8.7 are given by

P 1
Gug=-—— Gyp= -
Y4 = 15 PC M= 11pPC

8.9 (Bode plot for a simple zero) Show that the Bode plot for tran$finction
G(s) = (s+a)/acan be approximated by

_ 0 ifw<a
log|G ~
0g|G(iw)] {|ng_|oga if w>a,

0 if w<a/l0
ZG(iw) ~ < 45+ 45(logw—loga) a/10< w < 10a
90 if w> 10a.

8.10(Vectored thrust aircraft) Consider the lateral dynamitca @ectored thrust
aircraft as described in Example 2.9. Show that the dynamicsheadescribed
using the following block diagram:

r 0 % v 1
th T2 = -md m2 +cs X
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Use this block diagram to compute the transfer functionsifug to 6 andx and
show that they satisfy

J$ —mgr

r
Hou, = -, Hw = 55 =

8.11(Common poles) 1Con]sﬁ‘%nler a closled &%ﬁ@%&e‘?ﬁ) of the form airEi§.7,

with F = 1 andP andC having a pole/zero cancellation. Show that if each syst

is written in state space form, the resulting closed loopesyss not reachable and

not observable.

8.12(Congestion control) Consider the congestion control rhdescribed in Sec-
tion 3.4. Letw represent the individual window size for a setbidentical sources,
g represent the end-to-end probability of a dropped pabkepresent the number
of packets in the router’s buffer anglrepresent the probability that a packet is
dropped by the router. We writg = Nw to represent the total number of packets
being received from aM sources. Show that the linearized model can be described
by the transfer functions
e TfS N
Goils) Ga(9) Oe(TeS+ QeWe)’

TS+ e 1Y
where(we, be) is the equilibrium point for the syster is the steady-state round-
trip time andt; is the forward propagation time.

pr(S) =P,

8.13(Inverted pendulum with PD control) Consider the normalizeerted pen-
dulum system, whose transfer function is giverAigg) = 1/(s> — 1) (Exercise 8.3).
A proportional-derivative control law for this system heaisfer functiorC(s) =
Kp + kys (see Table 8.1). Suppose that we cho0$8) = a(s— 1). Compute the
closed loop dynamics and show that the system has good rnitpaokireference
signals but does not have good disturbance rejection preper

8.14(Vehicle suspension [HB90]) Active and passive dampinguse in cars to
give a smooth ride on a bumpy road. A schematic diagram of withia damping
system in shown in the figure below.

(Porter Class | race car driven by Todd Cuffaro)

This model is called guarter car modeland the car is approximated with two
masses, one representing one fourth of the car body and hiee @twheel. The
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actuator exerts a forde between the wheel and the body based on feedback from
the distance between the body and the center of the wheeaktiespacg.

Let Xy, Xw andx; represent the heights of body, wheel and road measured from
their equilibria. A simple model of the system is given by News equations for
the body and the wheel,

mpXp = F, MyXw = —F + ke (% — Xw),

wheremy, is a quarter of the body massy, is the effective mass of the wheel
including brakes and part of the suspension systemuitisprung magsandk; is
the tire stiffness. For a conventional damper consisting sibring and a damper,
we haveF = k(xw — Xp) + C(Xw — Xp). FOr an active damper the forée can be
more general and can also depend on riding conditions. Ridexfort can be
characterized by the transfer functi@y from road heightx, to body acceler-
ationa = X,. Show that this transfer function has the prope&ty, (ic) = ki /My,
whereaw = /k/my (thetire hop frequency The equation implies that there are
fundamental limitations to the comfort that can be achievigd any damper.

8.15(Vibration absorber) Damping vibrations is a common engiimg problem.
A schematic diagram of a damper is shown below:

TF
e T
5

=l kl%
my

T

The disturbing vibration is a sinusoidal force acting on mmagsand the damper
consists of the massy, and the sprind,. Show that the transfer function from
disturbance force to heighi of the massn, is

mps? + ko
myMps* + My S8 + (meka + mp (kg + kz))Sz +koCiS+kiko
How should the massy and the stiffnes&, be chosen to eliminate a sinusoidal

oscillation with frequencyw. (More details are vibration absorbers is given in the
classic text by Den Hartog [DH85, pp. 87-93].)

GX]_F -



Chapter Nine

Frequency Domain Analysis

Mr. Black proposed a negative feedback repeater and proved by tedti ffossessed the
advantages which he had predicted for it. In particular, its gain was consteahigh degree,
and it was linear enough so that spurious signals caused by the interaafithe various
channels could be kept within permissible limits. For best results the felkdetor u3 had
to be numerically much larger than unity. The possibility of stability with a feddbzztor
larger than unity was puzzling.

Harry Nyquist, “The Regeneration Theory,” 1956 [Nyq56].

In this chapter we study how the stability and robustnessoskcl loop systems
can be determined by investigating how sinusoidal signaiéffierent frequencies
propagate around the feedback loop. This technique allow® wusason about
the closed loop behavior of a system through the frequennyadtoproperties of
the open loop transfer function. The Nyquist stability thesors a key result that
provides a way to analyze stability and introduce measurdegrees of stability.

9.1 The Loop Transfer Function

Determining the stability of systems interconnected bylfeek can be tricky be-
cause each system influences the other, leading to potgrdiaiular reasoning.
Indeed, as the quote from Nyquist above illustrates, thaiehof feedback sys-
tems can often be puzzling. However, using the mathemdtexalework of trans-
fer functions provides an elegant way to reason about sugtbsyg, which we call
loop analysis

The basic idea of loop analysis is to trace how a sinusoidabsjgropagates in
the feedback loop and explore the resulting stability bygtigating if the propa-
gated signal grows or decays. This is easy to do because tisarission of sinu-
soidal signals through a linear dynamical system is chari&ed by the frequency
response of the system. The key result is the Nyquist stabiorem, which pro-
vides a great deal of insight regarding the stability of deys Unlike proving sta-
bility with Lyapunov functions, studied in Chapter 4, thed\yst criterion allows
us to determine more than just whether a system is stablestalie. It provides a
measure of the degree of stability through the definition abiity margins. The
Nyquist theorem also indicates how an unstable systemdlbeuthanged to make
it stable, which we shall study in detail in Chapters 10-12.

Consider the system in Figure 9.1a. The traditional way tordete if the
closed loop system is stable is to investigate if the closegd tharacteristic poly-
nomial has all its roots in the left half-plane. If the pragasid the controller have
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r e u y B A
C(s) —= P(9) - —= —= LO

(@) (b)

Figure 9.1: The loop transfer function. The stability of the feedback system (a) eateb
termined by tracing signals around the loop. Letting= PC represent the loop transfer
function, we break the loop in (b) and ask whether a signal injected atainé A& has the
same magnitude and phase when it reaches point B.

rational transfer function®(s) = np(s)/dp(s) andC(s) = n¢(s)/dc(s), then the
closed loop system has the transfer function

~ PC Np(S)Nne(s)

~ 1+PC  dp(s)de(s) +np(s)ne(s)’
and the characteristic polynomial is

A(S) = dp(s)dc(s) + np(s)ne(s).

To check stability, we simply compute the roots of the chi@nastic polynomial
and verify that they each have negative real part. This apgprizestraightforward
but it gives little guidance for design: it is not easy to telv the controller should
be modified to make an unstable system stable.

Nyquist’s idea was to investigate conditions under whidtilizgions can occur
in a feedback loop. To study this, we introduce kbep transfer function [s) =
P(s)C(s), which is the transfer function obtained by breaking thelbeek loop,
as shown in Figure 9.1b. The loop transfer function is simpéyttansfer function
from the input at position A to the output at position B muigg by —1 (to account
for the usual convention of negative feedback).

We will first determine conditions for having a periodic okatibn in the loop.
Assume that a sinusoid of frequenay is injected at point A. In steady state the
signal at point B will also be a sinusoid with the frequenay It seems reasonable
that an oscillation can be maintained if the signal at B hast#ime amplitude and
phase as the injected signal because we can then disconeétjected signal and
connect A to B. Tracing signals around the loop, we find thastpeals at A and
B are identical if

Gyi(s)

L(iwn) = 1, 9.1)

which then provides a condition for maintaining an osditlat The key idea of
the Nyquist stability criterion is to understand when thas diappen in a general
setting. As we shall see, this basic argument becomes mbtle suhen the loop
transfer function has poles in the right half-plane.

Example 9.1 Operational amplifier circuit
Consider the op amp circuit in Figure 9.2a, whgfeandZ, are the transfer func-
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V 7 e 7 Vv Vo
1. 72 1 - —G(S) -
Z1 Z1+2p
o o)
(a) Amplifier circuit (b) Block diagram

Figure 9.2: Loop transfer function for an op amp. The op amp circuit (a) has aimedm
transfer functionvy/v1 = Z»(s)/Z1(s), whereZ; andZ, are the impedances of the circuit
elements. The system can be represented by its block diagram (b wharow include
the op amp dynamids(s). The loop transfer function is = Z1G/(Z1 + Z5).

tions of the feedback elements from voltage to current. Thefieedback because
voltagev is related to voltage through the transfer functionG describing the op
amp dynamics and voltageis related to voltag®, through the transfer function
Z1/(Z1+ Z). The loop transfer function is thus

oz
L+ 2y

Assuming that the curremtis zero, the current through the elemeBtsandZ, is
the same, which implies

(9.2)

Vi —V V—\Vo
Z; Zp

Solving forv gives
v Zov1 + Z1Vo _ Zovi — Z1Gv _ Zo L

= =—=Vvi—Lv
Z1+ 2 21+ 25 Z,G "
Sincevp; = —Gvthe input/output relation for the circuit becomes
Z, L
Gy =—=o—.
Tz 1L

A block diagram is shown in Figure 9.2b. It follows from (9.hpat the condition
for oscillation of the op amp circuit is
Z;1(iw)G(iw)

Li6) = 7zt~ - (9.3)

O

One of the powerful concepts embedded in Nyquist’s appraastability anal-
ysis is that it allows us to study the stability of the feedbagstem by looking at
properties of the loop transfer function. The advantage aiglthis is that it is
easy to see how the controller should be chosen to obtainisedésop transfer
function. For example, if we change the gain of the contrptlee loop transfer
function will be scaled accordingly. A simple way to stabélian unstable system
is then to reduce the gain so that th& point is avoided. Another way is to in-
troduce a controller with the property that it bends the lbapsfer function away
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Figure 9.3: The Nyquist contouf and the Nyquist plot. The Nyquist contour (a) encloses
the right half-plane, with a small semicircle around any polels(sf on the imaginary axis
(illustrated here at the origin) and an arc at infinity, represente® by «. The Nyquist
plot (b) is the image of the loop transfer functibfs) whens traversed in the clockwise
direction. The solid line corresponds to > 0, and the dashed line @ < 0. The gain
and phase at the frequenayareg = |L(iw)| and¢ = ZL(iw). The curve is generated for
L(s) = 1.4e"S/(s+1)2.

from the critical point, as we shall see in the next sectioiffelEnt ways to do
this, called loop shaping, will be developed and will be di&sed in Chapter 11.

9.2 The Nyquist Criterion

In this section we present Nyquist's criterion for deteriminthe stability of a
feedback system through analysis of the loop transfer imctVe begin by intro-
ducing a convenient graphical tool, the Nyquist plot, anashow it can be used
to ascertain stability.

The Nyquist Plot

We saw in the last chapter that the dynamics of a linear sysgamnbe represented
by its frequency response and graphically illustrated byedeBplot. To study the
stability of a system, we will make use of a different reprgagon of the fre-
quency response called\yquist plot The Nyquist plot of the loop transfer func-
tion L(s) is formed by tracing € C around the Nyquist “D contour,” consisting
of the imaginary axis combined with an arc at infinity connegtihe endpoints
of the imaginary axis. The contour, denotedas C, is illustrated in Figure 9.3a.
The image ofL(s) whens traversed™ gives a closed curve in the complex plane
and is referred to as the Nyquist plot fofs), as shown in Figure 9.3b. Note that
if the transfer functiorlL(s) goes to zero asgets large (the usual case), then the
portion of the contour “at infinity” maps to the origin. Furthesre, the portion of
the plot corresponding t@ < 0 is the mirror image of the portion witte > O.

There is a subtlety in the Nyquist plot when the loop transterction has
poles on the imaginary axis because the gain is infinite atdhespTo solve this
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problem, we modify the contour to include small deviations that avoid any poles
on the imaginary axis, as illustrated in Figure 9.3a (assgraipole ofL(s) at the
origin). The deviation consists of a small semicircle to tiglatr of the imaginary
axis pole location.

The condition for oscillation given in equation (9.1) imglithat the Nyquist
plot of the loop transfer function go through the poin& —1, which is called
the critical point. Let w. represent a frequency at whiefl (i) = 180°, corre-
sponding to the Nyquist curve crossing the negative real &xiuitively it seems
reasonable that the system is stablf{iw)| < 1, which means that the critical
point—1 is on the left-hand side of the Nyquist curve, as indicatefigure 9.3b.
This means that the signal at point B will have smaller amgétahan the in-
jected signal. This is essentially true, but there are ségelztleties that require
a proper mathematical analysis to clear up. We defer thelsléda now and state
the Nyquist condition for the special case whe(s) is a stable transfer function.

Theorem 9.1(Simplified Nyquist criterion) Let L(s) be the loop transfer function
for a negative feedback system (as shown in Figure 9.1a) asdmae that L has
no poles in the closed right half-plan&¢s > 0) except for single poles on the
imaginary axis. Then the closed loop system is stable if artg ibthe closed
contour given by = {L(iw) : —o < w < o} C C has no net encirclements of the
critical point s= —1.

The following conceptual procedure can be used to deternhiaethere are
no encirclements. Fix a pin at the critical pos¥= —1, orthogonal to the plane.
Attach a string with one end at the critical point and the ptrethe Nyquist plot.
Let the end of the string attached to the Nyquist curve travdre whole curve.
There are no encirclements if the string does not wind up opithehen the curve
is encircled.

Example 9.2 Third-order system
Consider a third-order transfer function

L(s) = Grap

To compute the Nyquist plot we start by evaluating pointstaitnaginary axis
s=iw, which yields
L(iw) - 1 (a-iw)® a—3aw? iw3—3a2w
- (iw+a)p (@4 w?)d  (@+w?)d (a2 +w?)d
This is plotted in the complex plane in Figure 9.4, with the poitorresponding
to w > 0 drawn as a solid line ana < 0 as a dashed line. Notice that these curves
are mirror images of each other.
To complete the Nyquist plot, we computgs) for s on the outer arc of the
Nyquist D contour. This arc has the fosa= R® for R— . This gives

- 1
6y _
L(RE) = (pgo g 70 8 R
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, ImL(iw)

Figure 9.4: Nyquist plot for a third-order transfer function. The Nyquist plot sists of a
trace of the loop transfer functidn(s) = 1/(s+a)3. The solid line represents the portion
of the transfer function along the positive imaginary axis, and the ddstethe negative
imaginary axis. The outer arc of the D contour maps to the origin.

Thus the outer arc of the contour maps to the origin on the Nyquist plot. [

An alternative to computing the Nyquist plot explicitly sdetermine the plot
from the frequency response (Bode plot), which gives theuistgurve fors= i cw,
w > 0. We start by plottind_(iw) from w = 0 to w = , which can be read off
from the magnitude and phase of the transfer function. We et L (R€®) with
0 € [-m/2,1/2] andR — o, which almost always maps to zero. The remaining
parts of the plot can be determined by taking the mirror in@fdbe curve thus far
(normally plotted using a dashed line). The plot can then belé& with arrows
corresponding to a clockwise traversal around the D con(iier same direction
in which the first portion of the curve was plotted).

Example 9.3 Third-order system with a pole at the origin
Consider the transfer function

k

L(s) = W’

where the gain has the nominal value 1. The Bode plot is shown in Figure 9.5a.
The system has a single polesat 0 and a double pole at= —1. The gain curve
of the Bode plot thus has the slopd. for low frequencies, and at the double pole
s= 1 the slope changes te3. For smalls we havel ~ k/s, which means that the
low-frequency asymptote intersects the unit gain linevat k. The phase curve
starts at—90° for low frequencies, it is-180° at the breakpointv = 1 and it is
—270 at high frequencies.

Having obtained the Bode plot, we can now sketch the Nyquatt phown
in Figure 9.5b. It starts with a phase B0° for low frequencies, intersects the
negative real axis at the breakpoint= 1 wherel (i) = —0.5 and goes to zero along
the imaginary axis for high frequencies. The small half{eiaf thel" contour at
the origin is mapped on a large circle enclosing the right- plaine. The Nyquist
curve does not encircle the critical point, and it followsrfr the simplified Nyquist
theorem that the closed loop is stable. Sih¢e = —k/2, we find the system
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Figure 9.5: Sketching Nyquist and Bode plots. The loop transfer functidriss = 1/(s(s+

1)2). The large semicircle is the map of the small semicircle offtheontour around the
pole at the origin. The closed loop is stable because the Nyquist cursendbencircle the
critical point. The point where the phase+480° is marked with a circle in the Bode plot.

becomes unstable if the gain is increasek 102 or beyond. O

The Nyquist criterion does not require thatia)| < 1 for all . correspond-
ing to a crossing of the negative real axis. Rather, it sagsttie number of en-
circlements must be zero, allowing for the possibility ttiet Nyquist curve could
cross the negative real axis and cross back at magnitudategtban 1. The fact
that it was possible to have high feedback gains surpriseenly designers of
feedback amplifiers, as mentioned in the quote in the begywiithis chapter.

One advantage of the Nyquist criterion is that it tells us leaystem is in-
fluenced by changes of the controller parameters. For exaihgdevery easy to
visualize what happens when the gain is changed since gtisgales the Nyquist
curve.

Example 9.4 Congestion control
Consider the Internet congestion control system desciib8éction 3.4. Suppose
we haveN identical sources and a disturbandeepresenting an external data
source, as shown in Figure 9.6a. Welatepresent the individual window size for
a sourceq represent the end-to-end probability of a dropped patketpresent
the number of packets in the router’s buffer gmcepresent the probability that a
packet is dropped by the router. We wnitefor the total number of packets being
received from alN sources. We also include a time delay between the router and
the senders, representing the time delays between therserdieeceiver.

To analyze the stability of the system, we use the transfestions computed
in Exercise 8.12:

- 1 1
GbW(S) GWQ(S) - Qe<Te3+ CIeWe) 5

TSt e TS
where(wg, be) is the equilibrium point for the syster, is the number of sources,
Te is the steady-state round-trip time andis the forward propagation time. We

pr(S) =p,
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Figure 9.6: Internet congestion control. A set Nfsources using TCP/Reno send messages
through a single router with admission control (left). Link delays are iregifdr the forward
and backward directions. The Nyquist plot for the loop transfer fundgoshown on the
right.

useGpy to represent the transfer function with the forward timeagielemoved

since this is accounted for as a separate block in Figure Si6alarly, Gyg =

Gwg/N since we have pulled out the multipliras a separate block as well.
The loop transfer function is given by

N 1

. . —TeS
TeS+€ 1% Oe(TeSH+ QeWe)

L(s)=p
Using the fact thatje ~ 2N /w2 = 2N3/(1¢C)? andwe = be/N = Tec/N from equa-
tion (3.22), we can show that

N
TeS+€ 1S 2N3(ctés+ 2N2)

L(s)=p

Note that we have chosen the signlLdb) to use the same sign convention as in
Figure 9.1b. The exponential term representing the time dgilass significant
phase abovev = 1/1¢, and the gain at the crossover frequency will determine
stability.

To check stability, we require that the gain be sufficienthaliat crossover. If
we assume that the pole due to the queue dynamics is sufficfastithat the TCP
dynamics are dominant, the gain at the crossover frequepncy/given by

¢ pPTe
2NSct2ar  2N2wy

lL(iax)|=p-N

Using the Nyquist criterion, the closed loop system will Ibstable if this quantity

is greater than 1. In particular, for a fixed time delay, theeyswill become un-
stable as the link capacityis increased. This indicates that the TCP protocol may
not be scalable to high-capacity networks, as pointed outdwy et al. [LPD02].
Exercise 9.7 provides some ideas of how this might be overcome O
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Figure 9.7: Nyquist curve for the loop transfer functidus) = ig:ﬁ;j . The plot on the right

is an enlargement of the box around the origin of the plot on the left. Trguisycurve
intersects the negative real axis twice but has no net encirclementk. of

Conditional Stability

Normally, we find that unstable systems can be stabilizedIgilmpreducing the
loop gain. There are, however, situations where a system eaiabilized by in-
creasing the gain. This was first encountered by electricahergs in the design
of feedback amplifiers, who coined the teconditional stability The problem was
actually a strong motivation for Nyquist to develop his thedVe will illustrate
by an example.

Example 9.5 Third-order system
Consider a feedback system with the loop transfer function

3(s+6)2

L(s) = Ssr1?2 (9.4)
The Nyquist plot of the loop transfer function is shown in Figg@:7. Notice that
the Nyquist curve intersects the negative real axis twice. first intersection oc-
curs atL = —12 for w = 2, and the second &t= —4.5 for w = 3. The intuitive
argument based on signal tracing around the loop in Figutei9.4trongly mis-
leading in this case. Injection of a sinusoid with frequeBayd/s and amplitude
1 at A gives, in steady state, an oscillation at B that is insghaith the input and
has amplitude 12. Intuitively it seems unlikely that cl@siof the loop will result
in a stable system. However, it follows from Nyquist's stiyicriterion that the
system is stable because there are no net encirclements cfiical point. Note,
however, that if walecreasehe gain, then we can get an encirclement, implying
that the gain must be sufficiently large for stability. O

General Nyquist Criterion

Theorem 9.1 requires thats) have no poles in the closed right half-plane. In
some situations this is not the case and a more general iesetjuired. Nyquist
originally considered this general case, which we sumraa&za theorem.

Theorem 9.2 (Nyquist’s stability theorem)Consider a closed loop system with
the loop transfer function (s) that has P poles in the region enclosed by the
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Figure 9.8: PD control of an inverted pendulum. (a) The system consists of a maisis th
balanced by applying a force at the pivot point. A proportional-dévigacontroller with
transfer functiorC(s) = k(s+ 2) is used to command based orf. (b) A Nyquist plot of
the loop transfer function for gaik= 1. There is one counterclockwise encirclement of the
critical point, givingN = —1 clockwise encirclements.

Nyquist contour. Let N be the net number of clockwise enairetds of—1 by
L(s) when s encircles the Nyquist contduin the clockwise direction. The closed
loop system then has=Z2 N + P poles in the right half-plane.

The full Nyquist criterion states thatlif(s) hasP poles in the right half-plane,
then the Nyquist curve fok(s) should haveP counterclockwise encirclements
of —1 (so thatN = —P). In particular, thigequiresthat|L(iw)| > 1 for somecx
corresponding to a crossing of the negative real axis. Casédbe taken to get the
right sign of the encirclements. The Nyquist contour has ttrdoeersed clockwise,
which means thatv moves from—o to o andN is positive if the Nyquist curve
winds clockwise. If the Nyquist curve winds counterclockei thenN will be
negative (the desired caseAt~ 0).

As in the case of the simplified Nyquist criterion, we use sreathicircles of
radiusr to avoid any poles on the imaginary axis. By letting> O, we can use
Theorem 9.2 to reason about stability. Note that the imagees$inall semicircles
generates a section of the Nyquist curve whose magnitudeagies infinity,
requiring care in computing the winding number. When phoftNyquist curves
on the computer, one must be careful to see that such polgsarerly handled,
and often one must sketch those portions of the Nyquist glbgind, being careful
to loop the right way around the poles.

Example 9.6 Stabilized inverted pendulum

The linearized dynamics of a normalized inverted pendulumbesrepresented by
the transfer functio®(s) = 1/(s* — 1), where the input is acceleration of the pivot
and the output is the pendulum an@leas shown in Figure 9.8 (Exercise 8.3). We
attempt to stabilize the pendulum with a proportional~give (PD) controller
having the transfer functio@(s) = k(s+ 2). The loop transfer function is

L(s) = kiff i).
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The Nyquist plot of the loop transfer function is shown in Fg@.8b. We have
L(0) = —2k andL(e) = 0. If k > 0.5, the Nyquist curve encircles the critical point
s= —1in the counterclockwise direction when the Nyquist contpis encircled

in the clockwise direction. The number of encirclements issth = —1. Since
the loop transfer function has one pole in the right halfapl& = 1), we find that

Z =N+ P =0 and the system is thus stable for- 0.5. If k < 0.5, there is no
encirclement and the closed loop will have one pole in thiettglf-plane. [

Derivation of Nyquist’s Stability Theorem @

We will now prove the Nyquist stability theorem for a gendoalp transfer func-
tion L(s). This requires some results from the theory of complex véegkfor
which the reader can consult Ahlfors [Ahl66]. Since some igien is needed in
stating Nyquist's criterion properly, we will use a more hmemnatical style of pre-
sentation. We also follow the mathematical convention afntimg encirclements
in the counterclockwise direction for the remainder of ggstion. The key result
is the following theorem about functions of complex varehl

Theorem 9.3(Principle of variation of the argument).et D be a closed region
in the complex plane and I€tbe the boundary of the region. Assume the function
f : C — Cis analytic in D and orT", except at a finite number of poles and zeros.
Then thewinding numbem, is given by
1 1 f'(2)
Wh = —A arfz:—./ dz=7Z-P

n=gnbraet@ = oo r f(2)
whereAr is the net variation in the angle when z traverses the confounr the
counterclockwise direction, Z is the number of zeros in D Brid the number of
poles in D. Poles and zeros of multiplicity m are counted neéim

Proof. Assume thaz = ais a zero of multiplicitym. In the neighborhood aof=a

we have
f(2) = (z—a)"9(2),

where the functiomg is analytic and different from zero. The ratio of the derivati
of f to itself is then given by

f'g _ m d@
f(z2 z-a 92
and the second term is analyticat a. The functionf’/f thus has a single pole

atz= a with the residuem. The sum of the residues at the zeros of the function is
Z. Similarly, we find that the sum of the residues for the polesks and hence

1 [ f(2) 1 [d 1

9

where/Ar again denotes the variation along the contouvwe have

log f(z) =log|f(z)| +iargf(z),
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and since the variation of (z)| around a closed contour is zero it follows that
Arlogf(z) =iArargf(z),
and the theorem is proved. O

This theorem is useful in determining the number of poles amndszof a func-
tion of complex variables in a given region. By choosing aprapriate closed
regionD with boundaryl", we can determine the difference between the number
of poles and zeros through computation of the winding number

Theorem 9.3 can be used to prove Nyquist’s stability theongohbosing™ as
the Nyquist contour shown in Figure 9.3a, which enclosesigtg half-plane. To
construct the contour, we start with part of the imaginarig ajR < s< jRand a
semicircle to the right with radiur. If the functionf has poles on the imaginary
axis, we introduce small semicircles with radtiio the right of the poles as shown
in the figure. The Nyquist contour is obtained by lettRg+ c andr — 0. Note
thatI" has orientatioroppositethat shown in Figure 9.3a. (The convention in
engineering is to traverse the Nyquist contour in the cldskwlirection since this
corresponds to moving upwards along the imaginary axisghvitiakes it easy to
sketch the Nyquist contour from a Bode plot.)

To see how we use the principle of variation of the argumenbtopute stabil-
ity, consider a closed loop system with the loop transfecfiom L(s). The closed
loop poles of the system are the zeros of the funcfi®) = 1+ L(s). To find the
number of zeros in the right half-plane, we investigate tivedwg number of the
function f(s) = 1+ L(s) ass moves along the Nyquist contolirrin the counter-
clockwisedirection. The winding number can conveniently be deterchiftem
the Nyquist plot. A direct application of Theorem 9.3 gives tiyquist criterion,
taking care to flip the orientation. Since the image efll(s) is a shifted version
of L(s), we usually state the Nyquist criterion as net encirclesefthe—1 point
by the image oL (s).

9.3 Stability Margins

In practice itis not enough that a system is stable. There atssbe some margins
of stability that describe how stable the system is and isisthess to perturba-
tions. There are many ways to express this, but one of the nooston is the
use of gain and phase margins, inspired by Nyquist's stalfiterion. The key
idea is that it is easy to plot the loop transfer functlgis). An increase in con-
troller gain simply expands the Nyquist plot radially. Arciease in the phase of
the controller twists the Nyquist plot. Hence from the Nygjuilot we can easily
pick off the amount of gain or phase that can be added withausiag the system
to become unstable.
Formally, thegain margin g, of a system is defined as the smallest amount that

the open loop gain can be increased before the closed lotgnsygmes unstable.
For a system whose phase decreases monotonically as aofuétirequency
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Figure 9.9: Stability margins. The gain margay, and phase margigm, are shown on the the
Nyquist plot (a) and the Bode plot (b). The gain margin corresponttetemallest increase
in gain that creates an encirclement, and the phase margin is the smadlegedh phase
that creates an encirclement. The Nyquist plot also shows the stabilitymsaygvhich is
the shortest distance to the critical point.

starting at 0, the gain margin can be computed based on the smallest fregue
where the phase of the loop transfer functiofs) is —180°. Let wyc represent
this frequency, called thghase crossover frequenchhen the gain margin for the
system is given by
1
On=——+- (9.5)
" Lo
Similarly, thephase margins the amount of phase lag required to reach the sta-
bility limit. Let wyc be thegain crossover frequencthe smallest frequency where
the loop transfer functioh(s) has unit magnitude. Then for a system with mono-
tonically decreasing gain, the phase margin is given by

Om = mr+argL (iwyc). (9.6)

These margins have simple geometric interpretations on ylogiilst diagram
of the loop transfer function, as shown in Figure 9.9a, whezdhawve plotted the
portion of the curve corresponding o> 0. The gain margin is given by the in-
verse of the distance to the nearest point betwetand 0 where the loop transfer
function crosses the negative real axis. The phase margineas §y the small-
est angle on the unit circle betweerl and the loop transfer function. When the
gain or phase is monotonic, this geometric interpretatgmees with the formulas
above.

A drawback with gain and phase margins is that it is necedsagive both of
them in order to guarantee that the Nyquist curve is not dioske critical point.
An alternative way to express margins is by a single numhbeistability margin
Sm, Which is the shortest distance from the Nyquist curve tcctiteeal point. This
number is related to disturbance attenuation, as will beudised in Section 11.3.

For many systems, the gain and phase margins can be detdrimme the
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Figure 9.10: Stability margins for a third-order transfer function. The Nyquist plotioa
left allows the gain, phase and stability margins to be determined by megheidistances
of relevant features. The gain and phase margins can also be fedidhaf Bode plot on the
right.

Bode plot of the loop transfer function. To find the gain mangm first find the
phase crossover frequenay. where the phase is180°. The gain margin is the
inverse of the gain at that frequency. To determine the phesgin we first de-
termine the gain crossover frequenay, i.e., the frequency where the gain of the
loop transfer function is 1. The phase margin is the phasesdbthp transfer func-
tion at that frequency plus 180Figure 9.9b illustrates how the margins are found
in the Bode plot of the loop transfer function. Note that tloelB plot interpretation
of the gain and phase margins can be incorrect if there argpteurequencies at
which the gain is equal to 1 or the phase is equat180°.

Example 9.7 Third-order system

Consider a loop transfer functidr(s) = 3/(s+ 1)3. The Nyquist and Bode plots
are shown in Figure 9.10. To compute the gain, phase andistabérgins, we
can use the Nyquist plot shown in Figure 9.10. This yields tlievidng values:

Om = 2.67, Om=41.7, Sm = 0.464
The gain and phase margins can also be determined from theuide O

The gain and phase margins are classical robustness me#sairbéave been
used for a long time in control system design. The gain masyimell defined if
the Nyquist curve intersects the negative real axis oncaldgously, the phase
margin is well defined if the Nyquist curve intersects the wimitle at only one
point. Other more general robustness measures will bedinted in Chapter 12.

Even if both the gain and phase margins are reasonable, ttersysay still
not be robust, as is illustrated by the following example.

Example 9.8 Good gain and phase margins but poor stability margins
Consider a system with the loop transfer function
(8 = 0.38(s? +0.1s+ 0.55)
~ 5(s+1)(s?+0.06s+0.5)




9.3. STABILITY MARGINS 281

ImL(iw) 10 ‘ 15
- 3
// \\ 5 } \/\\ > 1 AVAVI\VI\VI\VAVAVAVA Ad
/ ReL(iw 10 3
| L ( : -90 £
\ ! I~ o
\ / g \\//\ >
N\ 7 =
AN 7 \]
Sl -18 ,
0
10t 10° 0 50 100 150

Frequencyw [rad/s] Timet [s]

@) (b) (©

Figure 9.11: System with good gain and phase margins but a poor stability margin. Nyquis
(a) and Bode (b) plots of the loop transfer function and step respahser (@ system with
good gain and phase margins but with a poor stability margin. The Nydloissipows on

the portion of the curve correspondingan> 0.

A numerical calculation gives the gain marginggs= 266, and the phase margin
is 70°. These values indicate that the system is robust, but the istyqurve is
still close to the critical point, as shown in Figure 9.11. Thebgity margin is
sn = 0.27, which is very low. The closed loop system has two resonanttes,
one with damping ratid = 0.81 and the other witl§ = 0.014. The step response
of the system is highly oscillatory, as shown in Figure 9.11c. O

The stability margin cannot easily be found from the Bode plothe loop
transfer function. There are, however, other Bode plotswiibgive sy; these will
be discussed in Chapter 12. In general, it is best to use ti@iblyplot to check
stability since this provides more complete informatioartithe Bode plot.

When designing feedback systems, it will often be usefulefing the robust-
ness of the system using gain, phase and stability margirselmumbers tell us
how much the system can vary from our nominal model and stiktable. Rea-
sonable values of the margins are phase mapgia- 30°—60°, gain margingm =
2-5 and stability margis, = 0.5-0.8.

There are also other stability measures, such addlay margin which is the
smallest time delay required to make the system unstabtdoBp transfer func-
tions that decay quickly, the delay margin is closely raldtethe phase margin,
but for systems where the gain curve of the loop transfertiantas several peaks
at high frequencies, the delay margin is a more relevant aneas

Example 9.9 Nanopositioning system for an atomic force microscope
Consider the system for horizontal positioning of the samplan atomic force
microscope. The system has oscillatory dynamics, and asimptlel is a spring—
mass system with low damping. The normalized transfer fanas given by

2
P8 = oot o 5-7)
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Figure 9.12:Nyquist and Bode plots of the loop transfer function for the AFM systeif) (9
with an integral controller. The frequency in the Bode plot is normalized. fjhe parame-
ters arel = 0.01 andk; = 0.008.

where the damping ratio typically is a very small number,, &g 0.1.
We will start with a controller that has only integral actidrhe resulting loop
transfer function is ko2
L(9) = “

(P + 20 wos+ ag)’
wherek; is the gain of the controller. Nyquist and Bode plots of thepldransfer
function are shown in Figure 9.12. Notice that the part of tlygWNst curve that is
close to the critical point-1 is approximately circular.

From the Bode plot in Figure 9.12b, we see that the phase crasequency
iSs wpe = a, which will be independent of the gaky. Evaluating the loop transfer
function at this frequency, we haldiwy) = —ki/(2{ an), which means that the
stability margin issy = 1 — ki /(2 ap). To have a desired stability margin s the
integral gain should be chosen as

ki =2 (1~ sm).

Figure 9.12 shows Nyquist and Bode plots for the system with gergingm, =

2.5 and stability margirs, = 0.6. The gain curve in the Bode plot is almost a
straight line for low frequencies and has a resonant peak atwy. The gain
crossover frequency is approximately equakitorhe phase decreases monotoni-
cally from —90° to —270: it is equal to—180° atw = wy. The curve can be shifted
vertically by changingd: increasings; shifts the gain curve upward and increases
the gain crossover frequency. Since the phaseli8Q® at the resonant peak, it is
necessary that the peak not touch the |Ingw)| = 1. 0

9.4 Bode’s Relations and Minimum Phase Systems

An analysis of Bode plots reveals that there appears to blatore between the
gain curve and the phase curve. Consider, for example, tlie Bots for the
differentiator and the integrator (shown in Figure 8.12). the differentiator the
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slope is+1 and the phase is a constan® radians. For the integrator the slope is
—1 and the phase is1/2. For the first-order systef@(s) = s+ a, the amplitude
curve has the slope 0 for small frequencies and the stdp#or high frequencies,
and the phase is 0 for low frequencies ar@ for high frequencies.

Bode investigated the relations between the curves foesyswith no poles
and zeros in the right half-plane. He found that the phaseunagiely given by
the shape of the gain curve, and vice versa:

LT[ dlog|G(iw)| _ mdlog|G(iw)|
argG(iawyp) = 2/0 f(w)idlogw dlogw ~ 2 dlogw w:wo, (9.8)
wheref is the weighting kernel
2 W+ Wy
f(w) = nzlog‘w—ab .

The phase curve is thus a weighted average of the derivatitteeajain curve. If
the gain curve has constant slapehe phase curve has constant vatug 2.

Bode’s relations (9.8) hold for systems that do not havesgatel zeros in the
right half-plane. Such systems are caltethimum phase systerbecause systems
with poles and zeros in the right half-plane have a largeseleg. The distinction
is important in practice because minimum phase systemsarereo control than
systems with a larger phase lag. We will now give a few exagpl@onminimum
phase transfer functions.

The transfer function of a time delay ofunits isG(s) = e . This transfer
function has unit gaifG(iw)| = 1, and the phase is aBfiw) = —wt. The corre-
sponding minimum phase system with unit gain has the trafsfietionG(s) = 1.
The time delay thus has an additional phase lag)of Notice that the phase lag
increases linearly with frequency. Figure 9.13a shows ttaeBuot of the transfer
function. (Because we use a log scale for frequency, theepladis off exponen-
tially in the plot.)

Consider a system with the transfer functi®(s) = (a—s)/(a+s) witha> 0,
which has a zergs = a in the right half-plane. The transfer function has unit gain
|G(iw)| = 1, and the phase is aBfiw) = —2arctar{w/a). The corresponding
minimum phase system with unit gain has the transfer fundB¢s) = 1. Fig-
ure 9.13b shows the Bode plot of the transfer function. A lsimanalysis of the
transfer functiorG(s) = (s+a)/(s— a) with a > 0, which has a pole in the right
half-plane, shows that its phase is &@w) = —2arctarfa/w). The Bode plot is
shown in Figure 9.13c.

The presence of poles and zeros in the right half-plane ingpeseere limita-
tions on the achievable performance. Dynamics of this tyyeilsl be avoided by
redesign of the system whenever possible. While the potemainsic properties
of the system and they do not depend on sensors and actubaweeros depend
on how inputs and outputs of a system are coupled to the sidBss can thus be
changed by moving sensors and actuators or by introduciwgseasors and ac-
tuators. Nonminimum phase systems are unfortunately gaitemon in practice.
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Figure 9.13:Bode plots of systems that are not minimum phase. (a) Time Glgly=e 57,
(b) system with a right half-plane (RHP) ze@{s) = (a—s)/(a+s) and (c) system with
right half-plane pole. The corresponding minimum phase system hasatiefer function
G(s) = lin all cases, the phase curves for that system are shown as dagsed lin

The following example gives a system theoretic interpretatif the common
experience that it is more difficult to drive in reverse geat dlnstrates some of
the properties of transfer functions in terms of their paled zeros.

Example 9.10 Vehicle steering
The nonnormalized transfer function from steering anglateral velocity for the
simple vehicle model is

avps+ V3
~ bs
wherev is the velocity of the vehicle aral b > 0 (see Example 5.12). The transfer
function has a zero a = vp/a. In normal driving this zero is in the left half-
plane, but it is in the right half-plane when driving in reseg < 0. The unit step
response is

G(s)

av Vit

The lateral velocity thus responds immediately to a steeramymand. For reverse
steeringvp is negative and the initial response is in the wrong directzobehavior
that is representative for nonminimum phase systems (tafiewverse responge

Figure 9.14 shows the step response for forward and revergagdrin this
simulation we have added an extra pole with the time con3taotapproximately
account for the dynamics in the steering system. The parasnatea=b =1,
T =0.1, vo = 1 for forward driving and/qg = —1 for reverse driving. Notice that
for t > to = a/vp, wheretyp is the time required to drive the distanagthe step
response for reverse driving is that of forward driving witile time delayy. The
position of the zerap/a depends on the location of the sensor. In our calculation
we have assumed that the sensor is at the center of mass. Dhe #ee transfer
function disappears if the sensor is located at the rear whke difficulty with
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Figure 9.14:Vehicle steering for driving in reverse. (a) Step responses fromisgegngle to
lateral translation for a simple kinematics model when driving forwaesiied) and reverse
(solid). With rear-wheel steering the center of mass first moves in thagwdirection and
that the overall response with rear-wheel steering is significantly détzympared with that
for front-wheel steering. (b) Frequency response for drivimgvéod (dashed) and reverse
(solid). Notice that the gain curves are identical, but the phase cungrifang in reverse
has nonminimum phase.

zeros in the right half-plane can thus be visualized by aghbaxperiment where
we drive a car in forward and reverse and observe the latesitipn through a
hole in the floor of the car. O

9.5 Generalized Notions of Gain and Phase @

A key idea in frequency domain analysis is to trace the behmaifisinusoidal sig-
nals through a system. The concepts of gain and phase ref@é$srthe transfer
function are strongly intuitive because they describe #oge and phase relations
between input and output. In this section we will see how termrc the concepts
of gain and phase to more general systems, including sonimeansystems. We
will also show that there are analogs of Nyquist’s stabititiferion if signals are
approximately sinusoidal.

System Gain

We begin by considering the case of a static linear systemAu, whereA is
a matrix whose elements are complex numbers. The matrix dutelsane to be
square. Let the inputs and outputs be vectors whose elenrerdsraplex numbers

and use the Euclidean norm
Jul = /=2 (0.9)

ly|? = uA*Au,

The norm of the output is
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wherex denotes the complex conjugate transpose. The mAtéxis symmetric
and positive semidefinite, and the right-hand side is a qtiadcam. The square
root of eigenvalues of the matr&‘A are all real, and we have

V1% < Amax(AA) [Jul®.

The gain of the system can then be defined as the maximum ratie o@iutput to
the input over all possible inputs:

y= mlj’;lx"’z’”| = v/ Amax(A*A). (9.10)
The square root of the eigenvalues of the mai¥iA are called thesingular values
of the matrixA, and the largest singular value is denotg@).

To generalize this to the case of an input/output dynamigstiesn, we need
to think of the inputs and outputs not as vectors of real numbet as vectors of
signals For simplicity, consider first the case of scalar signals lehdhe signal
spacel, be square-integrable functions with the norm

lulo =/ [ lu2(mar.

This definition can be generalized to vector signals by reptattie absolute value
with the vector norm (9.9). We can now formally define the gdia system taking
inputsu € L, and producing outputge L, as

y= supM (9.11)

uel, HUH ’

where sup is thsupremumdefined as the smallest number that is larger than its
argument. The reason for using the supremum is that the maximay not be
defined foru € L,. This definition of the system gain is quite general and can even
be used for some classes of nonlinear systems, though ouls tedée careful
about how initial conditions and global nonlinearities haadled.

The norm (9.11) has some nice properties in the case of lineterss. In
particular, given a single-input, single-output stableeéir system with transfer
functionG(s), it can be shown that the norm of the system is given by

VZSOLjIOIG(iw)\ = [|Glfoo- (9.12)

In other words, the gain of the system corresponds to the palale of the fre-
quency response. This corresponds to our intuition that potiproduces the
largest output when we are at the resonant frequencies dfystem.||G||., is
called theinfinity normof the transfer functioi(s).

This notion of gain can be generalized to the multi-input, tiraditput case as
well. For a linear multivariable system with a real ratiotrahsfer function matrix
G(s) we can define the gain as

Y= [Glle ZSSPE(G(W))- (9.13)
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Figure 9.15: A feedback connection of two general nonlinear systemandH,. The sta-
bility of the system can be explored using the small gain theorem.

Thus we can combine the idea of the gain of a matrix with the aldhe gain of
a linear system by looking at the maximum singular value alldrequencies.

Small Gain and Passivity

For linear systems it follows from Nyquist's theorem that thosed loop is stable
if the gain of the loop transfer function is less than 1 foffilfuencies. This result
can be extended to a larger class of systems by using the giooicthe system
gain defined in equation (9.11).

Theorem 9.4 (Small gain theorem)Consider the closed loop system shown in
Figure 9.15, where IHand H, are stable systems and the signal spaces are properly
defined. Let the gains of the systemsadd H, be y; and . Then the closed loop
system is input/output stableyifys < 1, and the gain of the closed loop system is

Vi
1-wy

Notice that if systembl; andH, are linear, it follows from the Nyquist stability
theorem that the closed loop is stable becausew < 1, the Nyquist curve is
always inside the unit circle. The small gain theorem is thugxension of the
Nyquist stability theorem.

Although we have focused on linear systems, the small gaiorém also holds
for nonlinear input/output systems. The definition of gaindgo&tion (9.11) holds
for nonlinear systems as well, with some care needed in hagntifie initial condi-
tion.

The main limitation of the small gain theorem is that it does cansider the
phasing of signals around the loop, so it can be very consegvdo define the
notion of phase we require that there be a scalar productsdicare-integrable
functions this can be defined as

wy) = [ umymr.
The phaseé between two signals can now be defined as

(uy) = [ullllyllcos(¢).

Systems where the phase between inputs and outputs isr3ess for all inputs
are calledpassive systemét follows from the Nyquist stability theorem that a
closed loop linear system is stable if the phase of the loapsfer function is

y:
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Figure 9.16: Describing function analysis. A feedback connection between a statimnon
earity and a linear system is shown in (a). The linear system is charadtesiats transfer
functionL(s), which depends on frequency, and the nonlinearity by its describirgifum
N(a), which depends on the amplitudef its input. The Nyquist plot ok (iw) and the plot

of the —1/N(a) are shown in (b). The intersection of the curves represents a possilile lim
cycle.

between—randr. This result can be extended to nonlinear systems as wedl. It i
called thepassivity theorenand is closely related to the small gain theorem. See
Khalil [KhaO1] for a more detailed description.

Additional applications of the small gain theorem and itplegation to robust
stability are given in Chapter 12.

Describing Functions

For special nonlinear systems like the one shown in Figurés which consists
of a feedback connection between a linear system and a stailnearity, it is
possible to obtain a generalization of Nyquist’s stabititiferion based on the idea
of describing functiong~ollowing the approach of the Nyquist stability condition
we will investigate the conditions for maintaining an oftibn in the system. If
the linear subsystem has low-pass character, its outpppi®gimately sinusoidal
even if its input is highly irregular. The condition for odation can then be found
by exploring the propagation of a sinusoid that correspaadse first harmonic.

To carry out this analysis, we have to analyze how a sinukeidaal propa-
gates through a static nonlinear system. In particular wesitigate how the first
harmonic of the output of the nonlinearity is related to gm(soidal) input. Let-
ting F represent the nonlinear function, we exp#&r@ ') in terms of its harmon-
ics:

F(ad”) = S Mn(a)e"* (@),
n=0
whereM,(a) and ¢n(a) represent the gain and phase of tile harmonic, which
depend on the input amplitude since the functioms nonlinear. We define the
describing function to be the complex gain of the first harraoni

N(a) = My (a)g®@. (9.14)
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Figure 9.17: Describing function analysis for a relay with hysteresis. The input/ouglat r
tion of the hysteresis is shown in (a) and the input with amplitage2, the output and its
first harmonic are shown in (b). The Nyquist plots of the transfertiond.(s) = (s+1)~*
and the negative of the inverse describing function for the relay ith3 andc =1 are
shown in (c).

The function can also be computed by assuming that the infpusisusoid and
using the first term in the Fourier series of the resulting outp

Arguing as we did when deriving Nyquist’s stability criteni, we find that an
oscillation can be maintained if

L(iw)N(a) = —1. (9.15)

This equation means that if we inject a sinusoid at A in Figufe9the same
signal will appear at B and an oscillation can be maintaingaddnnecting the
points. Equation (9.15) gives two conditions for finding theginencyw of the
oscillation and its amplituda: the phase must be 180and the magnitude must
be unity. A convenient way to solve the equation is to plgtv) and—1/N(a) on
the same diagram as shown in Figure 9.16b. The diagram is siimillae Nyquist
plot where the critical point-1 is replaced by the curvel/N(a) anda ranges
from O toco.

It is possible to define describing functions for types of ispother than si-
nusoids. Describing function analysis is a simple methad,itbis approximate
because it assumes that higher harmonics can be neglectesllebk treatments
of describing function techniques can be found in the texta\therton [Ath75]
and Graham and McRuer [GM61].

Example 9.11 Relay with hysteresis

Consider a linear system with a nonlinearity consisting oélay with hystere-
sis. The output has amplitudeand the relay switches when the inputiis, as
shown in Figure 9.17a. Assuming that the inputuis- asin(wt), we find that
the output is zero ifa < ¢, and if a > ¢, the output is a square wave with am-
plitudeb that switches at timest = arcsir(c/a) + n7t. The first harmonic is then
y(t) = (4b/m)sin(wt — a), where sirr = c/a. Fora > c the describing function
and its inverse are

mm—%(l—@qﬁ,

1  m/a-c2 .
= —

N(a) b 'ay
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where the inverse is obtained after simple calculationsurei®.17b shows the
response of the relay to a sinusoidal input with the first hasimof the output
shown as a dashed line. Describing function analysis istitded in Figure 9.17c,
which shows the Nyquist plot of the transfer functibfs) = 2/(s+ 1)* (dashed
line) and the negative inverse describing function of ayrelih b= 1 andc = 0.5.
The curves intersect fa = 1 andw = 0.77 rad's, indicating the amplitude and
frequency for a possible oscillation if the process and #éh@yrare connected in a
a feedback loop. O

9.6 Further Reading

Nyquist’s original paper giving his now famous stabilityterion was published in
theBell Systems Technical Jourrnial1932 [Nyq32]. More accessible versions are
found in the book [BK64], which also includes other intemegtearly papers on
control. Nyquist's paper is also reprinted in an IEEE collectof seminal papers
on control [Bas01]. Nyquist usedl as the critical point, but Bode changed it to
—1, which is now the standard notation. Interesting persgexion early devel-
opments are given by Black [Bla77], Bode [Bod60] and Benjizgn93]. Nyquist
did a direct calculation based on his insight into the prapiag of sinusoidal sig-
nals through systems; he did not use results from the thdagroplex functions.
The idea that a short proof can be given by using the principleation of the
argument is presented in the delightful book by MacColl [M&ic Bode made
extensive use of complex function theory in his book [Bod4&hich laid the
foundation for frequency response analysis where the matfaninimum phase
was treated in detail. A good source for complex functiorotiiés the classic by
Ahlfors [Ahl66]. Frequency response analysis was a key ehltinghe emergence
of control theory as described in the early texts by Jamds[@i\NP47], Brown and
Campbell [BC48] and Oldenburger [Old56], and it became drtkeocornerstones
of early control theory. Frequency response methods undea@surgence when
robust control emerged in the 1980s, as will be discussedhap@r 12.

Exercises

9.1 (Operational amplifier) Consider an op amp circuit with= Z, that gives
a closed loop system with nominally unit gain. Let the tran$fimction of the
operational amplifier be

ka]_az

GO = sraGra)cra)

whereaz, ap > a. Show that the condition for oscillation ks< a; + a; and com-
pute the gain margin of the system. Hint: Assuane 0.

9.2 (Atomic force microscope) The dynamics of the tapping modaroatomic
force microscope are dominated by the damping of the castitebrations and
the system that averages the vibrations. Modeling thelegsatias a spring—mass
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system with low damping, we find that the amplitude of the \ibres decays as
exp(—{ wt), where( is the damping ratio an@ is the undamped natural frequency
of the cantilever. The cantilever dynamics can thus be mddejethe transfer

function a
G(S) = <
s+a
wherea= { an. The averaging process can be modeled by the input/outjatitone!

v =1 [ ua

T Jt—1

where the averaging time is a multipief the period of the oscillation72/ w. The
dynamics of the piezo scanner can be neglected in the firsbeippation because
they are typically much faster than A simple model for the complete system is
thus given by the transfer function

a(l—e =)

P(s) = st(s+a)

Plot the Nyquist curve of the system and determine the gain mfoportional
controller that brings the system to the boundary of stigbili

9.3 (Heat conduction) A simple model for heat conduction in ads@ given by

the transfer function
P(s) = ke VS,

Sketch the Nyquist plot of the system. Determine the frequevitere the phase
of the process is-180° and the gain at that frequency. Show that the gain required
to bring the system to the stability boundarkis- €™

9.4 (Vectored thrust aircraft) Consider the state space chatrdesigned for the@
vectored thrust aircraft in Examples 6.8 and 7.5. The comtraobnsists of two
components: an optimal estimator to compute the state alytstem from the out-
put and a state feedback compensator that computes thegimpaotthe (estimated)
state. Compute the loop transfer function for the systemdatermine the gain,
phase and stability margins for the closed loop dynamics.

9.5 (Vehicle steering) Consider the linearized model for vihiteering with a
controller based on state feedback discussed in Exampl€&he4ransfer functions
for the process and controller are given by

ys+1 S(k1|1+k2|2)+k1|2
P(s)=——, C(s = )
(s s? () SZ+S(yk1+k2+|1)+k1+|2+k2|1—yk2|2
as computed in Example 8.6. Let the process parametes=l@5 and assume that

the state feedback gains de= 1 andk, = 0.914 and that the observer gains are
I = 2.828 and, = 4. Compute the stability margins numerically.

9.6 (Stability margins for second-order systems) A process wlhysiamics is
described by a double integrator is controlled by an ideal Bitroller with the
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transfer functiorC(s) = kys+ kp, where the gains arky = 2{ wp andkp = w?.
Calculate and plot the gain, phase and stability marginsfasaion ¢ .

9.7 (Congestion control in overload conditions) A strongly glified flow model
of a TCP loop under overload conditions is given by the loopdfer function

L(s) = ge*ST,

where the queuing dynamics are modeled by an integratofl, @fewindow con-

trol is a time delayr and the controller is simply a proportional controller. Ajora

difficulty is that the time delay may change significantly dgrthe operation of
the system. Show that if we can measure the time delay, it silpleso choose a
gain that gives a stability margin gf, > 0.6 for all time delayst.

9.8 (Bode’s formula) Consider Bode's formula (9.8) for the tiela between gain
and phase for a transfer function that has all its singigarin the left half-plane.
Plot the weighting function and make an assessment of thadrages where the
approximation ar@ ~ (11/2)dlog|G|/dlogw is valid.

9.9 (Pacdk approximation to a time delay) Consider the transfer fonst
st 1-st/2

1+sr/2
Show that the minimum phase properties of the transfer fonstare similar for

frequenciesv < 1/71. A long time delayr is thus equivalent to a small right half-
plane zero. The approximation (9.16) is called a first-oR#gE approximation

Gi(s) =€ 7, Gy(s) = (9.16)

9.10(Inverse response) Consider a system whose input/outgpimnse is modeled
by G(s) = 6(—s+1)/(s?>+5s+ 6), which has a zero in the right half-plane. Com-
pute the step response for the system, and show that thet gatpsiin the wrong
direction initially, which is also referred to as amverse response€Compare the
response to a minimum phase system by replacing the zere atwith a zero at
s=-1.

9.11(Describing function analysis) . Consider the system withiilock diagram
shown on the left below.

Yy

R() = P(S) -

cV

1 |

The blockR s a relay with hysteresis whose input/output responseowston the

right and the process transfer functionAgs) = e 3" /s. Use describing function
analysis to determine frequency and amplitude of possilie tycles. Simulate
the system and compare with the results of the describingfiumanalysis.



Chapter Ten
PID Control

Based on a survey of over eleven thousand controllers in the refiffiegjicals and pulp and
paper industries, 97% of regulatory controllers utilize PID feedback.

L. Desborough and R. Miller, 2002 [DMO02].

This chapter treats the basic properties of proportionaigiral-derivative (P1D)
control and the methods for choosing the parameters of theallers. We also
analyze the effects of actuator saturation and time dedayjrhportant features of
many feedback systems, and describe methods for compem$atithese effects.
Finally, we will discuss the implementation of PID controfleas an example of
how to implement feedback control systems using analoggitadlicomputation.

10.1 Basic Control Functions

PID control, which was introduced in Section 1.5 and has beed imsseveral ex-
amples, is by far the most common way of using feedback innemging systems.
It appears in simple devices and in large factories with saods of controllers.
PID controllers appear in many different forms: as standw@loontrollers, as part
of hierarchical, distributed control systems and builbietnbedded components.
Most PID controllers do not use derivative action, so theyusdhetrictly speaking
be called PI controllers; we will, however, use PID as a gerterin for this class
of controller. There is also growing evidence that PID cordppears in biological
systems [YHSDOO].

Block diagrams of closed loop systems with PID controlleessdrown in Fig-
ure 10.1. The control signal for the system in Figure 10.1a is formed entirely
from the errore; there is no feedforward term (which would correspond;toin
the state feedback case). A common alternative in whichgstigmal and deriva-
tive action do not act on the reference is shown in Figure 1@dimbinations of
the schemes will be discussed in Section 10.5. The commandl sigs called
the reference signal in regulation problems, orgbgpointin the literature of PID
control. The input/output relation for an ideal PID controldgth error feedback
is

t de 1/t de
u_kpe+k./0e(r)dr+kda—kp(e+f/oe(r)dH—Tda). (10.1)

The control action is thus the sum of three terms: proportiteedback, the in-
tegral term and derivative action. For this reason PID cdletiowere originally
calledthree-term controllersThe controller parameters are the proportional gain
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Figure 10.1: Block diagrams of closed loop systems with ideal PID controllers. Both con
trollers have one output, the control signalThe controller in (a), which is based on error
feedback, has one input, the control ereer r —y. For this controller proportional, integral
and derivative action acts on the ereoe r —y. The two degree-of-freedom controller in (b)
has two inputs, the referencand the process outputIntegral action acts on the error, but
proportional and derivative action act on the process ouytput

kp, the integral gairk; and the derivative gaiky. The time constant$; and Ty,
called integral time (constant) and derivative time (cangt are sometimes used
instead of the integral and derivative gains.

The controller (10.1) represents an idealized controltas & useful abstrac-
tion for understanding the PID controller, but several modifans must be made
to obtain a controller that is practically useful. Beforealissing these practical
issues we will develop some intuition about PID control.

We start by considering pure proportional feedback. Figlrgd.shows the re-
sponses of the process output to a unit step in the referehee for a system with
pure proportional control at different gain settings. la #ibsence of a feedforward
term, the output never reaches the reference, and henceavieftawith nonzero
steady-state error. Letting the process and the controdlee transfer functions
P(s) andC(s), the transfer function from reference to output is

~ PC
T 1+PC
and thus the steady-state error for a unit step is
B 1
"~ 1+kpP(0)°
For the system in Figure 10.2a with gaigs= 1, 2 and 5, the steady-state error is
0.5, 0.33 and 0.17. The error decreases with increasing lpaiirihe system also
becomes more oscillatory. Notice in the figure that the iniiédue of the control
signal equals the controller gain.
To avoid having a steady-state error, the proportional ambe changed to
u(t) = kpe(t) + us, (10.3)

whereus is a feedforward term that is adjusted to give the desireddststate

(10.2)

1- Gy (0)



10.1. BASIC CONTROL FUNCTIONS 295

1.5/ | o 1.5/ A ko 1.5/ |
Non A L A ) M Ja\

[y

Outputy

0 10 20 0 10 20 0 10 20

Inputu

N
S

Inputu
o N

E |

Inputu
(=] N

0 \/ Y V V kg
-2 : -2 : -2 :
0 10 20 0 10 20 0 10 20
Timet Timet Timet
(a) Proportional control (b) PI control (c) PID control

Figure 10.2: Responses to step changes in the reference value for a system withoa pro
tional controller (a), PI controller (b) and PID controller (c). The meg has the transfer
function P(s) = 1/(s+ 1), the proportional controller has parametkgs= 1, 2 and 5, the

Pl controller has parametekg = 1,k =0, 0.2, 0.5 and 1, and the PID controller has param-
eterskp = 2.5,k = 1.5andkq =0, 1, 2 and 4.

value. If we choosewr; = r/P(0) = kr, then the output will be exactly equal to
the reference value, as it was in the state space case, @dothdt there are no
disturbances. However, this requires exact knowledge efptlocess dynamics,
which is usually not available. The paramatgr calledresetin the PID literature,
must therefore be adjusted manually.

As we saw in Section 6.4, integral action guarantees that theeps output
agrees with the reference in steady state and provides ematit/e to the feed-
forward term. Since this result is so important, we will pawia general proof.
Consider the controller given by equation (10.1). Assunagttiere exists a steady
state withu = up ande = ey. It then follows from equation (10.1) that

Uo = Kpeo + kieot,

which is a contradiction unlegg ork; is zero. We can thus conclude that with inte-
gral action the error will be zero if it reaches a steady stdtsice that we have not
made any assumptions about the linearity of the processeadigturbances. We
have, however assumed that an equilibrium exists. Usimgiat action to achieve
zero steady-state error is much better than using feedfdrwehich requires a
precise knowledge of process parameters.

The effect of integral action can also be understood fromue@gy domain
analysis. The transfer function of the PID controller is

qg:m+§+ms (10.4)

The controller has infinite gain at zero frequen€y) = «), and it then follows
from equation (10.2) thaBy,(0) = 1, which implies that there is no steady-state
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Figure 10.3:Implementation of Pl and PD controllers. The block diagram in (a) shams h
integral action is implemented usipgsitive feedbaclith a first-order system, sometimes
called automatic reset. The block diagram in (b) shows how derivati@nazan be imple-
mented by taking differences between a static system and a first-osdensy

error for a step input.

Integral action can also be viewed as a method for generttaégedforward
term ug in the proportional controller (10.3) automatically. Onaywo do this
is shown in Figure 10.3a, where the controller output is l@sspfiltered and fed
back with positive gain. This implementation, call@gtomatic resetwas one of
the early inventions of integral control. The transfer fumciof the system in Fig-
ure 10.3a is obtained by block diagram algebra; we have

1+sT

Kp
Gue = kpsi_ll_ kp + ﬁ,

which is the transfer function for a PI controller.

The properties of integral action are illustrated in FigurebGor a step input.
The proportional gain is constark; = 1, and the integral gains ake= 0, 0.2,
0.5 and 1. The cade = 0 corresponds to pure proportional control, with a steady-
state error of 50%. The steady-state error is eliminated vifitegral gain action
is used. The response creeps slowly toward the referencmfdhgalues ok; and
goes faster for larger integral gains, but the system alsorbhes more oscillatory.

The integral gairk; is a useful measure for attenuation of load disturbances.
Consider a closed loop system under PID control and assurh¢éhthaystem is
stable and initially at rest with all signals being zero. Apg unit step disturbance
at the process input. After a transient the process outpeg tgozero and the con-
troller output settles at a value that compensates for thirtiance. It follows
from (10.1) that

u(eo) = k /O " e(t)dt.

The integrated error is thus inversely proportional to thegral gairk;. The inte-
gral gain is thus a measure of the effectiveness of distadattenuation. A large
gaink; attenuates disturbances effectively, but too large a gasgscillatory
behavior, poor robustness and possibly instability.

We now return to the general PID controller and consider thecebf the
derivative ternmky. Recall that the original motivation for derivative feedkavas
to provide predictive or anticipatory action. Notice thhé tcombination of the
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proportional and the derivative terms can be written as

de de
u= kpe+ kda — kp(e+Tda) == kpep,

whereep(t) can be interpreted as a prediction of the error at tirrély by linear
extrapolation. The prediction tinlg = ky/kp is the derivative time constant of the
controller.

Derivative action can be implemented by taking the diffeeebetween the
signal and its low-pass filtered version as shown in FigurellOrBe transfer
function for the system is

Gue(s) = kp<1

1 K STy

1+sTd) T P14 sTy
The system thus has the transfer funct®fs) = sTy/(1+ sTy), which approxi-
mates a derivative for low frequencigs| (< 1/Tq).

Figure 10.2c illustrates the effect of derivative actiore flystem is oscillatory
when no derivative action is used, and it becomes more dampéee derivative
gain is increased. Performance deteriorates if the derevgtin is too high. When
the input is a step, the controller output generated by thizatee term will be
an impulse. This is clearly visible in Figure 10.2c. The impulaa be avoided by
using the controller configuration shown in Figure 10.1b.

Although PID control was developed in the context of engimegapplications,
it also appears in nature. Disturbance attenuation by fegdm biological sys-
tems is often calleddaptation A typical example is the pupillary reflex discussed
in Example 8.11, where it is said that the eye adapts to chgrgjht intensity.
Analogously, feedback with integral action is called pertdaptation [YHSDOQ].
In biological systems proportional, integral and deriv@taction is generated by
combining subsystems with dynamical behavior similarlyvuat is done in en-
gineering systems. For example, Pl action can be generatdtebgteraction of
several hormones [ESGKO02].

(10.5)

Example 10.1 PD action in the retina
The response of cone photoreceptors in the retina is an egavhgire proportional
and derivative action is generated by a combination of caneshorizontal cells.
The cones are the primary receptors stimulated by light, vimiturn stimulate the
horizontal cells, and the horizontal cells give inhibitgnggative) feedback to the
cones. A schematic diagram of the system is shown in Figu#alOhe system
can be modeled by ordinary differential equations by regmesg neuron signals
as continuous variables representing the average putsdmgiVil99] it is shown
that the system can be represented by the differential emqsat

dx 1 dx 1

R Ty —k T xq —
ot TC( X1 — kxo+u), at Th(X1 X2),

whereu is the light intensity anc; andx, are the average pulse rates from the
cones and the horizontal cells. A block diagram of the systeshown in Fig-
ure 10.4b. The step response of the system shown in Figure 4i0otes that the
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Figure 10.4: Schematic diagram of cone photoreceptors (C) and horizontal celis (H@
retina. In the schematic diagram in (a), excitatory feedback is indicatedrbws and in-
hibitory feedback by circles. A block diagram is shown in (b) and the sispanse in (c).

system has a large initial response followed by a lower, tamsteady-state re-
sponse typical of proportional and derivative action. Theapeeters used in the
simulation arek = 4, T, = 0.025 andT, = 0.08. O

10.2 Simple Controllers for Complex Systems

Many of the design methods discussed in previous chapteses e property
that the complexity of the controller is directly reflectedthg complexity of the
model. When designing controllers by output feedback ingidrar, we found for
single-input, single-output systems that the order of th@roller was the same as
the order of the model, possibly one order higher if integclon was required.
Applying similar design methods for PID control will requitieat we have low-
order models of the processes to be able to easily analyzeghks.

Low-order models can be obtained from first principles. Anylgtasystem
can be modeled by a static system if its inputs are sufficiesitiw. Similarly a
first-order model is sufficient if the storage of mass, momertu@energy can be
captured by only one variable; typical examples are thecitylof a car on a road,
angular velocity of a stiff rotational system, the level iteak and the concentra-
tion in a volume with good mixing. System dynamics are of secorder if the
storage of mass, energy and momentum can be captured byateovatiables;
typical examples are the position of a car on the road, thaliziion of stiff
satellites, the levels in two connected tanks and two-cotmEnt models. A wide
range of techniques for model reduction are also availdbléis chapter we will
focus on design techniques where we simplify the modelsptuca the essential
properties that are needed for PID design.

We begin by analyzing the case of integral control. A stapétesm can be con-
trolled by an integral controller provided that the reqaoients on the closed loop
system are modest. To design the controller we assume thatatsfer function
of the process is a constalit= P(0). The loop transfer function under integral
control then becomesk; /s, and the closed loop characteristic polynomial is sim-
ply s+ Kk;. Specifying performance by the desired time constgntf the closed
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Figure 10.5: Integral control for AFM in tapping mode. An integral controller is desidn
based on the slope of the process transfer function at 0. The congrieksrgood robustness
properties based on a very simple analysis.

loop system, we find that the integral gain is given by
ki =1/(TaP(0)).

The analysis requires th® be sufficiently large that the process transfer function
can be approximated by a constant.

For systems that are not well represented by a constant gaircan obtain
a better approximation by using the Taylor series expansidhe loop transfer
function:
_ kiP(s) _ ki(P(0)+5sP(0)) kiP(0)

~ = kP —_—.
S S ki (0)+ S

L(s)
ChoosingkP'(0) = —0.5 gives a system with good robustness, as will be discussed
in Section 12.5. The controller gain is then given by

1
ki = _2P’7(0)’ (10.6)

and the expected closed loop time constaftjisz —P'(0)/P(0).

Example 10.2 Integral control of AFM in tapping mode

A simplified model of the dynamics of the vertical motion of araic force
microscope in tapping mode was discussed in Exercise 9.2.r&hsfér function
for the system dynamics is

—ST
P(s) a(l—e®)
st(s+a)
wherea = {wy, T = 2rn/wy and the gain has been normalized to 1. We have
P(0) =1 andP'(0) = —1/2—1/a, and it follows from (10.6) that the integral gain
can be chosen d¢ = a/(2+ art). Nyquist and Bode plots for the resulting loop
transfer function are shown in Figure 10.5. O

Y
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A first-order system has the transfer function

P(S) L

“sta
With a PI controller the closed loop system has the charatie@golynomial

S(s+a) + bkys+ bk = s>+ (a-+ bkp)s+ bk.

The closed loop poles can thus be assigned arbitrary valupsaper choice of
the controller gains. Requiring that the closed loop sydtene the characteristic
polynomial

p(s) = & +ars+a,

we find that the controller parameters are

a—a ap

Ko = b ki = b (10.7)
If we require a response of the closed loop system that iseslthan that of the
open loop system, a reasonable choicajis- a+ o anda, = aa. If a response
faster than that of the open loop system is required, it isceable to choose
a1 =2{wp anday = wg whereay and ¢ are undamped natural frequency and
damping ratio of the dominant mode. These choices have signifimpact on
the robustness of the system and will be discussed in Se@idn An upper limit
to ayp is given by the validity of the model. Large values @f will require fast
control actions, and actuators may saturate if the valueddarge. A first-order
model is unlikely to represent the true dynamics for higlyfiencies. We illustrate
the design by an example.

Example 10.3 Cruise control using Pl feedback

Consider the problem of maintaining the speed of a car asds gp a hill. In
Example 5.14 we found that there was little difference betwbe linear and non-
linear models when investigating Pl control, provided thatthrottle did not reach
the saturation limits. A simple linear model of a car was gireExample 5.11:

d(v—ve)
dt

wherev is the velocity of the cany is the input from the engine ar@lis the slope
of the hill. The parameters wege= 0.0101,b = 1.3203,g = 9.8, v = 20 and
Ue = 0.1616. This model will be used to find suitable parameters of &lespeed
controller. The transfer function from throttle to velocitya first-order system.
Since the open loop dynamics is so slow, it is natural to spedifister closed loop
system by requiring that the closed loop system be of secodel with damping
ratio { and undamped natural frequenay. The controller gains are given by
(10.7).

Figure 10.6 shows the velocity and the throttle for a car thaiailly moves
on a horizontal road and encounters a hill with a slope°cdtdtimet = 6 s. To
design a PI controller we chooge= 1 to obtain a response without overshoot, as

— —a(V—Ve) +b(u—Ue) — gb, (10.8)
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Figure 10.6: Cruise control using Pl feedback. The step responses for theartoinput
illustrate the effect of parameteds= 1 andwy on the response of a car with cruise control.
A change in road slope from"Go 4° is applied betweenh=5 and 6 s. (a) Responses for
wp =0.5and = 0.5, 1 and 2. Choosing = 1 gives no overshoot. (b) Responses{ct 1
anday = 0.2, 0.5 and 1.0.

shown in Figure 10.6a. The choice@§ is a compromise between response speed
and control actions: a large value gives a fast responset befuires fast con-
trol action. The trade-off is illustrated in Figure 10.6b. Thegkst velocity error
decreases with increasing, but the control signal also changes more rapidly. In
the simple model (10.8) it was assumed that the force resgposthntaneously to
throttle commands. For rapid changes there may be additignamics that have

to be accounted for. There are also physical limitationseéa#ite of change of the
force, which also restricts the admissible valuewmf A reasonable choice afy

is in the range 0.5-1.0. Notice in Figure 10.6 that even wih= 0.2 the largest
velocity error is only 1 m/s. O

A Pl controller can also be used for a process with secondragdemics, but
there will be restrictions on the possible locations of tlused loop poles. Using
a PID controller, it is possible to control a system of secorakpin such a way
that the closed loop poles have arbitrary locations; seedise10.2.

Instead of finding a low-order model and designing contrslfer them, we
can also use a high-order model and attempt to place only ademnant poles.
An integral controller has one parameter, and it is posgiblgosition one pole.
Consider a process with the transfer functi®{s). The loop transfer function with
an integral controller i&(s) = kiP(s)/s. The roots of the closed loop characteristic
polynomial are the roots af+ ki P(s) = 0. Requiring thas= —a be a root, we find
that the controller gain should be chosen as

a
ki= P(—a)

(10.9)
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Figure 10.7: Ziegler-Nichols step and frequency response experiments. Thetepites
sponse in (a) is characterized by the parametarsdt. The frequency response method (b)
characterizes process dynamics by the point where the Nyquist ofttve process transfer
function first intersects the negative real axis and the frequenaeyhere this occurs.

The poles= —awill be dominant ifa is small. A similar approach can be applied
to Pl and PID controllers.

10.3 PID Tuning

Users of control systems are frequently faced with the tdsidjusting the con-
troller parameters to obtain a desired behavior. There arg mifferent ways to

do this. One approach is to go through the conventional stépsodeling and

control design as described in the previous section. Sire@tb controller has
so few parameters, a number of special empirical methods &laso been devel-
oped for direct adjustment of the controller parameters.firbetuning rules were
developed by Ziegler and Nichols [ZN42]. Their idea was to penfa simple

experiment, extract some features of process dynamics thenexperiment and
determine the controller parameters from the features.

Ziegler—Nichols’ Tuning

In the 1940s, Ziegler and Nichols developed two methods fotrotler tuning
based on simple characterization of process dynamics itirtteeand frequency
domains.

The time domain method is based on a measurement of part op#reloop
unit step response of the process, as shown in Figure 10.7at@heesponse is
measured by applying a unit step input to the process anddiagathe response.
The response is characterized by parameieasd r, which are the intercepts of
the steepest tangent of the step response with the coadiras. The parameter
T is an approximation of the time delay of the system afis the steepest slope
of the step response. Notice that it is not necessary to vmiit steady state is
reached to find the parameters, it suffices to wait until theaesp has had an
inflection point. The controller parameters are given in TdBld.. The parameters
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Table 10.1:Ziegler—Nichols tuning rules. (a) The step response methods give thmpters
in terms of the interce@ and the apparent time delay(b) The frequency response method
gives controller parameters in termsasitical gain k. andcritical period T.

Type  kp Ti Ty Type  kp T Ty

P 1/a P 0.9

PI 09a 3 PI 0.4 0.8T¢
PID 12/a 2 0.1 PID 0.&k 0.5T¢ 0.1257;
(a) Step response method (b) Frequency response method

were obtained by extensive simulation of a range of reptasea processes. A
controller was tuned manually for each process, and an pttesass then made to
correlate the controller parameters wétlhndr.

In the frequency domain method, a controller is connectati¢grocess, the
integral and derivative gains are set to zero and the prigpaitgain is increased
until the system starts to oscillate. The critical value af groportional gairk;
is observed together with the period of oscillatign It follows from Nyquist's
stability criterion that the loop transfer functidn= k:P(s) intersects the critical
point at the frequencyx. = 27/T.. The experiment thus gives the point on the
Nyquist curve of the process transfer function where thespHag is 1860, as
shown in Figure 10.7b.

The Ziegler—Nichols methods had a huge impact when they wémadinced
in the 1940s. The rules were simple to use and gave initialiond for manual
tuning. The ideas were adopted by manufacturers of contsdiée routine use.
The Ziegler—Nichols tuning rules unfortunately have two sevdrawbacks: too
little process information is used, and the closed loopesystthat are obtained
lack robustness.

The step response method can be improved significantly by atieaizang the
unit step response by parametirst andT in the model

K

P(s) = TisT
The parameters can be obtained by fitting the model to a meastegdesponse.
Notice that the experiment takes a longer time than the @xpet in Figure 10.7a
because to determinié it is necessary to wait until the steady state has been
reached. Also notice that the intercepin the Ziegler—Nichols rule is given by
a=Krt/T.

The frequency response method can be improved by measurirggpoimts on
the Nyquist curve, e.g., the zero frequency ddior the point where the process
has a 90 phase lag. This latter point can be obtained by connectingtegral
controller and increasing its gain until the system reathesstability limit. The
experiment can also be automated by using relay feedbackilldse discussed
later in this section.

es, (10.10)
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Figure 10.8: PI control of an AFM in tapping mode. Nyquist plots (a) and step resgmons
(b) for PI control of the vertical motion of an atomic force microscop&pping mode. The
averaging parameter i$= 20. Results with Ziegler—Nichols tuning are shown by dashed
lines, and modified Ziegler—Nichols tuning is shown by solid lines. The Nyglis of the
process transfer function is shown by dotted lines.

There are many versions of improved tuning rules. As an ithiisin we give
the following rules for Pl control, based oAHO05]:

_ 0.15T|;|—TO.35I' <0k9: ) k= 0.46TK—|—T§).02T (?(iil’ ) ’

kP
(10.11)

|<p=o.22<c—0‘707 (0.4kc), hzo'f%Jr?ﬁf (O'TSCkC).

The values for the Ziegler—Nichols rule are given in parergheblotice that the
improved formulas typically give lower controller gainsththe Ziegler—Nichols
method. The integral gain is higher for systems where the micsgare delay-
dominatedr > T.

Example 10.4 Atomic force microscope in tapping mode
A simplified model of the dynamics of the vertical motion of aoraic force
microscope in tapping mode was discussed in Example 10.2rahgfer function

is normalized by choosing/a as the time unit. The normalized transfer function

'S 1—eSh

PO = st )

whereT,, = 2nma/w = 2n71{. The Nyquist plot of the transfer function is shown
in Figure 10.8a fo = 0.002 andh = 20. The leftmost intersection of the Nyquist
curve with the real axis occurs at Re: —0.0461 forw = 13.1. The critical gain
is thusk; = 21.7 and the critical period i = 0.48. Using the Ziegler—Nichols
tuning rule, we find the parameteks = 8.87 andk; = 22.6 (T = 0.384) for a PI
controller. With this controller the stability margin &, = 0.31, which is quite
small. The step response of the controller is shown in Figur®. MNbtice in par-
ticular that there is a large overshoot in the control signal
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Figure 10.9:Block diagram of a process with relay feedback (a) and typical sighal3 e
process outputis a solid line, and the relay outpuis a dashed line. Notice that the signals
u andy have opposite phases.

The modified Ziegler—Nichols rule (10.11) gives the contrgii@rameterk, =
3.47 andk; = 8.73 (T; = 0.459) and the stability margin becomgs= 0.61. The
step response with this controller is shown in Figure 10.8omparison of the re-
sponses obtained with the original Ziegler—Nichols rulevghthat the overshoot
has been reduced. Notice that the control signal reacheteisly-state value al-
most instantaneously. It follows from Example 10.2 that sepategral controller
has the normalized galp=1/(2+T,) = 0.44. Comparing this with the gains of a
P1 controller, we can conclude that a PI controller gives musttelo performance
than a pure integral controller. O

Relay Feedback

The Ziegler—Nichols frequency response method increasegaiineof a propor-
tional controller until oscillation to determine the cciil gaink; and the corre-
sponding critical periody or, equivalently, the point where the Nyquist curve in-
tersects the negative real axis. One way to obtain thisrimftion automatically is
to connect the process in a feedback loop with a nonlineanesié having a relay
function as shown in Figure 10.9a. For many systems therehweili be an oscilla-
tion, as shown in Figure 10.9b, where the relay outpigta square wave and the
process outpwy is close to a sinusoid. Moreover the input and the output ate o
of phase, which means that the system oscillates with thieadrperiodTc, where
the process has a phase lag of 1L8(otice that an oscillation with constant period
is established quickly.

The critical period is simply the period of the oscillatioro @ietermine the
critical gain we expand the square wave relay output in aiepsgeries. Notice
in the figure that the process output is practically sinuddiéaause the process
attenuates higher harmonics effectively. It is then sufficte consider only the
first harmonic component of the input. Lettidgoe the relay amplitude, the first
harmonic of the square wave input has amplitudér If ais the amplitude of the
process output, the process gain at the critical frequegey 211/ T¢ is |P(iw)| =
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ma/(4d) and the critical gain is
4d
am
Having obtained the critical gaild; and the critical periodg, the controller pa-
rameters can then be determined using the Ziegler—Nichigs.mmproved tuning
can be obtained by fitting a model to the data obtained fromelay experiment.
The relay experiment can be automated. Since the amplitudhe afcillation
is proportional to the relay output, it is easy to control yt &djusting the relay
output.Automatic tuningbased on relay feedback is used in many commercial PID
controllers. Tuning is accomplished simply by pushing adwuthat activates relay
feedback. The relay amplitude is automatically adjustedeiepkthe oscillations
sufficiently small, and the relay feedback is switched to a RiBtller as soon
as the tuning is finished.

Ke (10.12)

10.4 Integrator Windup

Many aspects of a control system can be understood fronrlinedels. There are,
however, some nonlinear phenomena that must be taken inbwac These are
typically limitations in the actuators: a motor has limitgaeed, a valve cannot be
more than fully opened or fully closed, etc. For a system dipatrates over a wide
range of conditions, it may happen that the control variabéehes the actuator
limits. When this happens, the feedback loop is broken aedsystem runs in
open loop because the actuator remains at its limit indegrethydof the process
output as long as the actuator remains saturated. The ihtegrawill also build
up since the error is typically nonzero. The integral term tedcontroller output
may then become very large. The control signal will then rensaiturated even
when the error changes, and it may take a long time beforentbgrator and the
controller output come inside the saturation range. Theemunsnce is that there
are large transients. This situation is referred tmgsgyrator windupillustrated in
the following example.

Example 10.5 Cruise control

The windup effect is illustrated in Figure 10.10a, which shewsit happens when
a car encounters a hill that is so steep) (Bat the throttle saturates when the cruise
controller attempts to maintain speed. When encountehiegliope at timé =5,
the velocity decreases and the throttle increases to germae torque. However,
the torque required is so large that the throttle saturateserror decreases slowly
because the torque generated by the engine is just a litjerlghan the torque
required to compensate for gravity. The error is large andrttegyral continues
to build up until the error reaches zero at time 30, but thdrotlar output is still
larger than the saturation limit and the actuator remaitsrated. The integral
term starts to decrease, and at time 45 and the velocitgseitiickly to the desired
value. Notice that it takes considerable time before thérotiar output comes into
the range where it does not saturate, resulting in a largesbwet. O
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Figure 10.10: Simulation of PI cruise control with windup (a) and anti-windup (b). The
figure shows the speethnd the throttlel for a car that encounters a slope that is so steep that
the throttle saturates. The controller output is a dashed line. The contrati@mpters are

kp = 0.5 andk; = 0.1. The anti-windup compensator eliminates the overshoot by preventing
the error for building up in the integral term of the controller.

There are many methods to avoid windup. One method is illiestren Fig-
ure 10.11: the system has an extra feedback path that isajeddsy measuring
the actual actuator output, or the output of a mathematicalehof the saturating
actuator, and forming an error signal as the difference between the output of
the controllerv and the actuator output The signales is fed to the input of the
integrator through gaik;. The signaksis zero when there is no saturation and the
extra feedback loop has no effect on the system. When thatactsaturates, the
signales is fed back to the integrator in such a way teagoes toward zero. This
implies that controller output is kept close to the satoralimit. The controller
output will then change as soon as the error changes sigmésgtal windup is
avoided.

The rate at which the controller output is reset is governedhkyfeedback
gaink;; a large value ok; gives a short reset time. The paramét¢ezannot be too
large because measurement noise can then cause an urldessab A reasonable
choice is to choosk as a fraction of IT;. We illustrate how integral windup can
be avoided by investigating the cruise control system.

Example 10.6 Cruise control with anti-windup

Figure 10.10b shows what happens when a controller withveinttup is applied
to the system simulated in Figure 10.10a. Because of the &ekdibom the ac-
tuator model, the output of the integrator is quickly reseatvalue such that the
controller output is at the saturation limit. The behaviatrastically different from
thatin Figure 10.10a and the large overshoot is avoided. Blkitrg gain ik; = 2
in the simulation. O
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Figure 10.11: PID controller with a filtered derivative and anti-windup. The input to the
integrator (¥s) consists of the error term plus a “reset” based on input saturatione If th
actuator is not saturated, then= u— v, otherwisees will decrease the integrator input to
prevent windup.

10.5 Implementation

There are many practical issues that have to be consideradimpémenting PID
controllers. They have been developed over time based otigadaexperience. In
this section we consider some of the most common. Similarideretions also
apply to other types of controllers.

Filtering the Derivative

A drawback with derivative action is that an ideal derivatihas high gain for high-
frequency signals. This means that high-frequency measurenoise will gener-
ate large variations in the control signal. The effect of meament noise may be
reduced by replacing the terkgs by kys/(1+ sT;), which can be interpreted as
an ideal derivative of a low-pass filtered signal. For sradhie transfer function
is approximatelykys and for larges it is equal toky/Ts. The approximation acts
as a derivative for low-frequency signals and as a constntfgr high-frequency
signals. The filtering time is chosen &s= (kq/kp)/N, with N in the range 2-20.
Filtering is obtained automatically if the derivative is ilemented by taking the
difference between the signal and its filtered version as shiowigure 10.3b (see
equation (10.5)).

Instead of filtering just the derivative, it is also possildeuse an ideal con-
troller and filter the measured signal. The transfer functibsuzh a controller
with a filter is then

1 1
=k 14+ —=+sT 10.1
C(s) p< +s'ﬁ+s d) 15T 5 (ST 22 (10.13)

where a second-order filter is used.
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Setpoint Weighting

Figure 10.1 shows two configurations of a PID controller. Theesysin Fig-
ure 10.1a has a controller witrror feedbackwhere proportional, integral and
derivative action acts on the error. In the simulation of Plihtcollers in Fig-
ure 10.2c there is a large initial peak in the control signdiich is caused by the
derivative of the reference signal. The peak can be avoidecsing the controller
in Figure 10.1b, where proportional and derivative acticts aoly on the process
output. An intermediate form is given by

t
u=kp(Br—y)+k /0 (r(t) —y(1)) dr + kg <y(;|; - ((jji/)’ (10.14)

where the proportional and derivative actions act on foast3 andy of the ref-
erence. Integral action has to act on the error to make satghb error goes to
zero in steady state. The closed loop systems obtained feretit values of3
andy respond to load disturbances and measurement noise inrtteevgay. The
response to reference signals is different because it dspemthe values g8 and
y, which are calledeference weightser setpoint weightsWe illustrate the effect
of setpoint weighting by an example.

Example 10.7 Cruise control with setpoint weighting

Consider the PI controller for the cruise control systemweetin Example 10.3.
Figure 10.12 shows the effect of setpoint weighting on thparse of the system
to a reference signal. Wit = 1 (error feedback) there is an overshoot in velocity
and the control signal (throttle) is initially close to thetgration limit. There is no
overshoot with3 = 0 and the control signal is much smaller, clearly a much bette
drive comfort. The frequency responses gives another vidheodame effect. The
parametei is typically in the range 0-1, andis normally zero to avoid large
transients in the control signal when the reference is obéng O

The controller given by equation (10.14) is a special cas@®fyeneral con-
troller structure having two degrees of freedom, which waswubsed in Sec-
tion 7.5.

Implementation Based on Operational Amplifiers

PID controllers have been implemented in different techgiel® Figure 10.13
shows how PI and PID controllers can be implemented by feediaxind oper-
ational amplifiers.

To show that the circuit in Figure 10.13b is a PID controller wi# use the
approximate relation between the input voltagend the output voltage of the
operational amplifier derived in Example 8.3,

In this equatiorZ; is the impedance between the negative input of the amplifier
and the input voltage, andZ, is the impedance between the zero input of the
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Figure 10.12: Time and frequency responses for PI cruise control with setpointhtie@
Step responses are shown in (a), and the gain curves of the frggesponses in (b). The
controller gains aré&p = 0.74 andk; = 0.19. The setpoint weights afe=0, 0.5 and 1, and
y=0.

amplifier and the output voltage The impedances are given by
Ry 1
Z1(8) = ————— Zy(s) =Ro+ —
1(s) 1+RGCS’ 2(8) 2+Czs’
and we find the following relation between the input voltagand the output volt-

ageu:
Zy,_ R (1+RICiS)(1+ReCos)

_Z Ry R.Cos
This is the input/output relation for a PID controller of therfo(10.1) with pa-
rameters

u=

RiC1 + RCy R1RC,C;
k= ——-—"=, Ti = RiC1 + RoCy, Tg= ———7—.
P RCo ! 1 22 d Ri1C1 + RoCo
|1
11
C
o—WA—T—W—{|— o——wW—r—{}—
R | B2 R R,
e
u u
o o o o
(a) PI controller (b) PID controller

Figure 10.13:Schematic diagrams for Pl and PID controllers using op amps. Thatditcu
(a) uses a capacitor in the feedback path to store the integral of theTreocircuit in (b)
adds a filter on the input to provide derivative action.
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The corresponding results for a Pl controller are obtainedelyngC; = O (re-
moving the capacitor).

Computer Implementation

In this section we briefly describe how a PID controller may bplemented us-
ing a computer. The computer typically operates periodicallth signals from

the sensors sampled and converted to digital form by the Afiverter, and the
control signal computed and then converted to analog fomthi® actuators. The
sequence of operation is as follows:

1. Wait for clock interrupt 4. Send output to the actuator
2. Read input from sensor 5. Update controller variables
3. Compute control signal 6. Repeat

Notice that an output is sent to the actuators as soon as\vhikhble. The time
delay is minimized by making the calculations in step 3 astsi® possible and
performing all updates after the output is commanded. Thipks way of reducing
the latency is, unfortunately, seldom used in commercistesys.

As an illustration we consider the PID controller in Figure1lQ.which has
a filtered derivative, setpoint weighting and protectioniagfaintegral windup.
The controller is a continuous-time dynamical system. Tolémgnt it using a
computer, the continuous-time system has to be approxihiatex discrete-time
system.

A block diagram of a PID controller with anti-windup is showrRigure 10.11.
The signalv is the sum of the proportional, integral and derivative t®rand the
controller output is1 = sa{V), where sat is the saturation function that models the
actuator. The proportional terka(Br —y) is implemented simply by replacing the
continuous variables with their sampled versions. Hence

P(tk) = kp (Br(tk) — Y(t)) , (10.15)

where{tc} denotes the sampling instants, i.e., the times when the e@npeads
its input. We leth represent the sampling time, so that; =ty + h. The integral
term is obtained by approximating the integral with a sum,

| (tep1) = | () + kihet) + 2 (sa(v) —v), (10.16)

whereT; = h/k; represents the anti-windup term. The filtered derivative tris
given by the differential equation

dD )
Tfa—i-D: —kdy

Approximating the derivative with a backward differencees

D(tk) —D(t-1) Ky y(tk) — y(t—1)

Ts h h ;

+D(t) = —
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which can be rewritten as

D(t) = 7 Db 1)~ 1 o (M8 —Y(hcn). (1017

The advantage of using a backward difference is that the e /(T + h)

is nonnegative and less than 1 for lali> 0, which guarantees that the difference
equation is stable. Reorganizing equations (10.15)-7)0the PID controller can
be described by the following pseudocode:

% Precomput e controller coefficients
bi =ki *h

ad=Tf/ ( Tf +h)

bd=kd/ ( Tf +h)

br=h/ Tt

% Control algorithm- nmain |oop
whi l e (running) {

r=adi n(chl) %read setpoint fromchl

y=adi n(ch2) % read process variable fromch2
P=kpx* (b*r-vy) % conput e proportional part

D=ad* D- bd* (y-yol d) % updat e derivative part

v=P+| +D % conput e tenporary out put

u=sat (v, ul ow, uhi gh) % si mul at e actuator saturation
daout (chl) % set anal og output chl

I =l +bi *(r-y)+br*(u-v) % updat e integral

yol d=y % update ol d process out put

sl eep(h) % wait until next update interval

}

Precomputation of the coefficiertts , ad, bd andbr saves computer time in
the main loop. These calculations have to be done only wheinadlem parameters
are changed. The main loop is executed once every samplirggip&he program
has three stategol d, | , andD. One state variable can be eliminated at the cost
of less readable code. The latency between reading the amgogand setting
the analog output consists of four multiplications, foudiéidns and evaluation
of thesat function. All computations can be done using fixed-point gittons
if necessary. Notice that the code computes the filtered aterévof the process
output and that it has setpoint weighting and anti-windugigmtion.

10.6 Further Reading

The history of PID control is very rich and stretches back tolteginning of the
foundation of control theory. Very readable treatmentgjaren by Bennett [Ben79,
Ben93] and Mindel [Min02]. The Ziegler—Nichols rules for tngiPID controllers,
first presented in 1942 [ZN42], were developed based on exteesperiments
with pneumatic simulators and Vannevar Bush’s differdratimlyzer at MIT. An
interesting view of the development of the Ziegler—Nicholkes is given in an in-
terview with Ziegler [Bli90]. An industrial perspective on[PIcontrol is given
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in [Bia95], [Shi96] and [YH91] and in the paper [DMO02] cited the begin-
ning of this chapter. A comprehensive presentation of PIDtrobis given in
[,&HOS]. Interactive learning tools for PID control can be ddeaded from http:
/lwww.calerga.com/contrib.

Exercises

10.1(Ideal PID controllers) Consider the systems representetthdyplock dia-
grams in Figure 10.1. Assume that the process has the trdnsigion P(s) =
b/(s+a) and show that the transfer functions frerto y are

B bkys? + bkys+ bk

(@) Gy(s) = (14 bky) + (a+bky)s+ bk’
B bk;

(b) Gy(s) = (14 bky) + (a+bky)s+ bk

Pick some parameters and compare the step responses oftdrasys

10.2 Consider a second-order process with the transfer function

b
P(S) N S+ a;s+ay
The closed loop system with a Pl controller is a third-ordetesys Show that
it is possible to position the closed loop poles as long assthm of the poles
is —a;. Give equations for the parameters that give the closed dbapacteristic
polynomial
(s+ Qo) ($* + 2JoanS+ ).

10.3 Consider a system with the transfer functiefs) = (s+ 1)~2. Find an in-
tegral controller that gives a closed loop polesat —a and determine the value
of a that maximizes the integral gain. Determine the other pofethe system
and judge if the pole can be considered dominant. Compalethgt value of the
integral gain given by equation (10.6).

10.4 (Ziegler-Nichols tuning) Consider a system with transferction P(s) =
e 5/s. Determine the parameters of P, Pl and PID controllers usirgjetieNichols
step and frequency response methods. Compare the paraaletes obtained by
the different rules and discuss the results.

10.5 (Vehicle steering) Design a proportional-integral colémofor the vehicle
steering system that gives the closed loop characterisly;mpmial

$* + 2008” + 2apS+ 6.

10.6 (Congestion control) A simplified flow model for TCP transmissie de-
rived in [HMTGOO, LPDO02]. The linearized dynamics are modeledhytransfer
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function b
_ —STe

Corl® = srayra)C
which describes the dynamics relating the expected quenghe) to the ex-
pected packet drop. The parameters are given by = 2N?/(ct2), ap = 1/Te
andb = ¢?/(2N). The parametec is the bottleneck capacit) is the number of
sources feeding the link and is the round-trip delay time. Use the parameter val-
uesN = 75 sourcesC = 1250 packets/s ank = 0.15 and find the parameters of
a PI controller using one of the Ziegler—Nichols rules and theesponding im-
proved rule. Simulate the responses of the closed loop sgstéained with the
PI controllers.

10.7 (Motor drive) Consider the model of the motor drive in Exeec’&10. De-
velop an approximate second-order model of the system amdt ts design an
ideal PD controller that gives a closed loop system with eigkres in{ g +
iapy/1— 2. Add low-pass filtering as shown in equation (10.13) and explo
how largewy can be made while maintaining a good stability margin. Siteula
the closed loop system with the chosen controller and coeparresults with the
controller based on state feedback in Exercise 6.11.

10.8 Consider the system in Exercise 10.7 investigate what hagptre second-
order filtering of the derivative is replace by a first-order filte

10.9(Tuning rules) Apply the Ziegler—Nichols and the modified hgrules to
design PI controllers for systems with the transfer funcion
e s e’

p= - —e s
1 S, S+17 P3

Compute the stability margins and explore any patterns.

10.10 (Windup and anti-windup) Consider a PI controller of the fo@ts) =
1+ 1/s for a process with input that saturates wHeh> 1, and whose linear
dynamics are given by the transfer functiBfs) = 1/s. Simulate the response of
the system to step changes in the reference signal of magnit2 and 3. Repeat
the simulation when the windup protection scheme in FiguréLi used.

10.11 (Windup protection by conditional integration) Many medischave been
proposed to avoid integrator windup. One method catledditional integration
is to update the integral only when the error is sufficientlaBnTo illustrate this
method we consider a system with PI control described by

dx, Je if g <e
dt |0 if g > ep,

dx
ditl =u, u = saty, (kpe+kixz),

wheree = r — x. Plot the phase portrait of the system for the parameter salue
kp =1,k =1,uUp = 1 andep = 1 and discuss the properties of the system. The ex-
ample illustrates the difficulties of introducing ad hoc noeérities without care-

ful analysis.



Chapter Eleven
Frequency Domain Design

Sensitivity improvements in one frequency range must be paid for with signsiéiteriora-
tions in another frequency range, and the price is higher if the plant is -bpam unstable.
This applies to every controller, no matter how it was designed.

Gunter Stein in the inaugural IEEE Bode Lecture, 1989 [Ste03].

In this chapter we continue to explore the use of frequencyado techniques
with a focus on the design of feedback systems. We begin witbra thorough de-
scription of the performance specifications for control syt and then introduce
the concept of “loop shaping” as a mechanism for designimgrobtiers in the fre-
guency domain. We also introduce some fundamental liroitatio performance
for systems with time delays and right half-plane poles aTdz

11.1 Sensitivity Functions

In the previous chapter, we considered the use of propattiotegral-derivative
(PID) feedback as a mechanism for designing a feedback dientfor a given
process. In this chapter we will expand our approach to dekiricher repertoire
of tools for shaping the frequency response of the closepl $ystem.

One of the key ideas in this chapter is that we can design theviier of the
closed loop system by focusing on the open loop transfettiumcT his same ap-
proach was used in studying stability using the Nyquiseddn: we plotted the
Nyquist plot for theopenloop transfer function to determine the stability of the
closedloop system. From a design perspective, the use of loop asdbals is
very powerful: since the loop transfer functionlis= PC, if we can specify the
desired performance in terms of properties pfve can directly see the impact of
changes in the controll€. This is much easier, for example, than trying to rea-
son directly about the tracking response of the closed lgsfem, whose transfer
function is given byGy, = PC/(1+ PC).

We will start by investigating some key properties of thedtesck loop. A
block diagram of a basic feedback loop is shown in Figure Th&.system loop is
composed of two components: the process and the contrbfiercontroller itself
has two blocks: the feedback blo€kand the feedforward blodk. There are two
disturbances acting on the process, the load disturbdrasel the measurement
noisen. The load disturbance represents disturbances that devertdtess away
from its desired behavior, while the measurement noiseesgmts disturbances
that corrupt information about the process given by the@ansn the figure, the
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Figure 11.1: Block diagram of a basic feedback loop with two degrees of freedora. Th
controller has a feedback blo€kand a feedforward block. The external signals are the
reference signal, the load disturbance and the measurement noiseThe process output
is n, and the control signal is.

load disturbance is assumed to act on the process input. §hisimplification
since disturbances often enter the process in many differays, but it allows us
to streamline the presentation without significant loss oiegality.

The process output is the real variable that we want to control. Control is
based on the measured siggalvhere the measurements are corrupted by mea-
surement noisa. The process is influenced by the controller via the contrat var
ableu. The process is thus a system with three inputs—the contri@htau, the
load disturbance and the measurement noise-and one output—the measured
signaly. The controller is a system with two inputs and one output. Tipeitis
are the measured signahnd the reference signgland the output is the control
signalu. Note that the control signalis an input to the process and the output of
the controller, and that the measured signa the output of the process and an
input to the controller.

The feedback loop in Figure 11.1 is influenced by three exteigahts, the
reference, the load disturbanced and the measurement noiseAny of the re-
maining signals can be of interest in controller designetelng on the particular
application. Since the system is linear, the relations betvtke inputs and the in-
teresting signals can be expressed in terms of the transfetibns. The following
relations are obtained from the block diagram in Figure 11.1:

PCF P 1
11PC 1+PC 1+tPC
y PCF P —PC
n 1+PC 1+PC L14PC| .,
CF 1 —C
VI = | 13pc 1:PC 11PC [d] (11.1)
u CF  -PC -C n
e 1+PC 1+PC 1+PC
F —p —1

\1+PC 1+PC 1+PC

In addition, we can write the transfer function for the eoetween the reference
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r and the outpufy (not an explicit signal in the diagram), which satisfies

1 PCF —P q PC
e=r-n=( JAP¢y+1+NZ+l+Wﬁ

There are several interesting conclusions we can draw fresetlequations.
First we can observe that several transfer functions areaime ind that the ma-
jority of the relations are given by the following set of siansfer functions, which
we call theGang of Six

PCF PC P
TF=1rpc T=1rpc PS=17pc

CF C 1 (11.2)
CFS=1rpc CS=17pe S=1ypC

The transfer functions in the first column give the responséefrocess output
and control signal to the reference signal. The second colyiuas the response
of the control variable to the load disturbance and the naisd the final col-
umn gives the response of the process output to those twisirigatice that only
four transfer functions are required to describe how théesyseacts to load dis-
turbances and measurement noise, and that two additi@redfér functions are
required to describe how the system responds to refereguoalsi

The linear behavior of the system is determined by the sixsfearfunctions
in equation (11.2), and specifications can be expressednrstef these transfer
functions. The special case whEn= 1 is called a system with (pure) error feed-
back. In this case all control actions are based on feedivankthe error only and
the system is completely characterized by four transfectfans, namely, the four
rightmost transfer functions in equation (11.2), whichénapecific names:

1 sensitivity P load
S= ; PS= sensitivity
1+PC function 1+PC function
(11.3)
pc  complementary C noise
T=-——= sensitivity CS= sensitivity
1+PC function 1+PC function

These transfer functions and their equivalent systems #ieszl¢che Gang of Four
The load sensitivity function is sometimes called the inguisstivity function and
the noise sensitivity function is sometimes called the ougensitivity function.
These transfer functions have many interesting propettigswill be discussed
in detail in the rest of the chapter. Good insight into thesmperties is essential
in understanding the performance of feedback systems &ptiposes of both
analysis and design.

Analyzing the Gang of Six, we find that the feedback contradllenfluences
the effects of load disturbances and measurement noiseeNbat measurement
noise enters the process via the feedback. In Section 12.@ ibevshown that
the controller influences the sensitivity of the closed loogptocess variations.
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Figure 11.2: A more general representation of a feedback system. The propess iepre-
sents the control signal, which can be manipulated, and the processvingpitesents other
signals that influence the process. The process owtuthe vector of measured variables
andz are other signals of interest.

The feedforward paif of the controller influences only the response to command
signals.

In Chapter 9 we focused on the loop transfer function, andoved that its
properties gave useful insights into the properties of #éesysTo make a proper
assessment of a feedback system it is necessary to cortmdmoperties of all the
transfer functions (11.2) in the Gang of Six or the Gang of Fasrillustrated in
the following example.

Example 11.1 The loop transfer function gives only limited insight

Consider a process with the transfer functi(s) = 1/(s—a) controlled by a PI
controller with error feedback having the transfer funct@is) = k(s—a)/s. The
loop transfer function i& = k/s, and the sensitivity functions are

_ PC :L PS_ P _ S

1+PC s+k’ 1+PC (s—a)(s+k)’
cs— C :k(s—a) _ 1 s

1+PC  s+k ’ 1+PC  s+k

Notice that the factos— a is canceled when computing the loop transfer function
and that this factor also does not appear in the sensitivitgtion or the comple-
mentary sensitivity function. However, cancellation o flactor is very serious if

a > 0 since the transfer functiddSrelating load disturbances to process output is
then unstable. In particular, a small disturbad@an lead to an unbounded output,
which is clearly not desirable. O

The system in Figure 11.1 represents a special case becasiss$uimed that
the load disturbance enters at the process input and thatebeured output is the
sum of the process variable and the measurement noiserlizistes can enter in
many different ways, and the sensors may have dynamics. A& aostract way
to capture the general case is shown in Figure 11.2, which higstwo blocks
representing the proces$?) and the controller®). The process has two inputs,
the control signall and a vector of disturbances and two outputs, the measured
signaly and a vector of signalsthat is used to specify performance. If we omit the
reference input, the system in Figure 11.1 can be captured by choosiagd, n)
andz= (n,v,e¢). The process transfer functio® is a 5x 3 matrix, and the
controller transfer functiof® is a 1x 1 matrix; compare with Exercise 11.3.
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Figure 11.3: Block diagram of a system with feedforward compensation for impraeed
sponse to reference signals and measured disturbances (2 DOR)syidtece feedforward
elements are preserfy(s) sets the desired output valug,(s) generates the feedforward
command; andFy(s) attempts to cancel disturbances.

Processes with multiple inputs and outputs can also be canesidy regarding
u andy as vectors. Representations at these higher levels ohatbietr are useful
for the development of theory because they make it possitftectis on fundamen-
tals and to solve general problems with a wide range of agipdias. However, care
must be exercised to maintain the coupling to the real-woolatrol problems we
intend to solve.

11.2 Feedforward Design

Most of our analysis and design tools up to this point haveded on the role of
feedback and its effect on the dynamics of the system. Fegdfdris a simple
and powerful technique that complements feedback. It canseé both to im-
prove the response to reference signals and to reduce dut effmeasurable dis-
turbances. Feedforward compensation admits perfect eltioimof disturbances,
but it is much more sensitive to process variations thantfaekicompensation. A
general scheme for feedforward was discussed in Sectionsih§ &igure 7.10.
A simple form of feedforward for PID controllers was discus$e Section 10.5.
The controller in Figure 11.1 also has a feedforward block forove response to
command signals. An alternative version of feedforwarchims in Figure 11.3,
which we will use in this section to understand some of thderaffs between
feedforward and feedback.

Controllers with two degrees of freedom (feedforward aretifeck) have the
advantage that the response to reference signals can pael@andependently of
the design for disturbance attenuation and robustness. \\Vérst consider the
response to reference signals, and we will therefore llyiteessume that the load

disturbancel is zero. Let, represent the ideal response of the system to reference

signals. The feedforward compensator is characterized dyréimsfer functions
F. andFy,. When the reference is changed, the transfer fundtiogenerates the
signalug, which is chosen to give the desired output when applied@ag ito the

process. Under ideal conditions the outgus then equal tyn, the error signal
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is zero and there will be no feedback action. If there areutisinces or modeling
errors, the signalgy, andy will differ. The feedback then attempts to bring the
error to zero.
To make a formal analysis, we compute the transfer functiomfreference
input to process output:
P(CFn+Fy) PR, —Fm

Sr®=—37pc ~Mt1ipc (11.4)

whereP = P,P;. The first term represents the desired transfer function. Té¢mnske
term can be made small in two ways. Feedforward compensatiome used to
makePF, — Fy, small, or feedback compensation can be used to makedlarge.
Perfect feedforward compensation is obtained by choosing
|
Design of feedforward using transfer functions is thus & wimple task. Notice
that the feedforward compensat®rcontains an inverse model of the process dy-
namics.

Feedback and feedforward have different properties. Fesdfdraction is ob-
tained by matching two transfer functions, requiring psedinowledge of the pro-
cess dynamics, while feedback attempts to make the errdt Byndividing it by
a large quantity. For a controller having integral actidrg toop gain is large for
low frequencies, and it is thus sufficient to make sure thattralition for ideal
feedforward holds at higher frequencies. This is easier thang to satisfy the
condition (11.5) for all frequencies.

We will now consider reduction of the effects of the load alibanced in Fig-
ure 11.3 by feedforward control. We assume that the dishwdaignal is mea-
sured and that the disturbance enters the process dynanddsniown way (cap-
tured byP, andP,). The effect of the disturbance can be reduced by feeding the
measured signal through a dynamical system with the trafigietionFy. Assum-
ing that the referenceis zero, we can use block diagram algebra to find that the
transfer function from the disturbance to the process dugpu

P(1+FgPy)

Gya=—""1pc (11.6)

whereP = P,P,. The effect of the disturbance can be reduced by makindriP;
small (feedforward) or by making-& PC large (feedback). Perfect compensation
is obtained by choosing

(11.5)

Fa=—-P% (11.7)

requiring inversion of the transfer functid.

As in the case of reference tracking, disturbance attemmiatan be accom-
plished by combining feedback and feedforward control. &lowe/-frequency dis-
turbances can be eliminated by feedback, we require thefusedforward only
for high-frequency disturbances, and the transfer fundigin equation (11.7)
can then be computed using an approximatioRy,ddr high frequencies.
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Figure 11.4: Feedforward control for vehicle steering. The plot on the left shoedrtjec-
tory generated by the controller for changing lanes. The plots on thegfight the lateral
deviationy (top) and the steering angée (bottom) for a smooth lane change control using
feedforward (based on the linearized model).

Equations (11.5) and (11.7) give analytic expressions ®fekrdforward com-
pensator. To obtain a transfer function that can be impléeaanithout difficulties
we require that the feedforward compensator be stable adt thoes not require
differentiation. Therefore there may be constraints oniptesshoices of the de-
sired responsEéy, and approximations are needed if the process has zeros in th
right half-plane or time delays.

Example 11.2 Vehicle steering
A linearized model for vehicle steering was given in Exampfe Bhe normalized
transfer function from steering angfeto lateral deviatioty is P(s) = (ys+1)/s%.
For a lane transfer system we would like to have a nice regpwiteout overshoot,
and we therefore choose the desired respon$e,& = a?/(s+ a)?, where the
response speed or aggressiveness of the steering is go\mriiee parameted.
Equation (11.5) gives

. Fm a’s?

TP (ystD)(sta)?

which is a stable transfer function as longyas 0. Figure 11.4 shows the responses
of the system fom = 0.5. The figure shows that a lane change is accomplished in
about 10 vehicle lengths with smooth steering angles. Thyeirsteering angle
is slightly larger than 0.1 rad {§ Using the scaled variables, the curve showing
lateral deviationsy as a function ot) can also be interpreted as the vehicle path
(y as a function ok) with the vehicle length as the length unit. O

A major advantage of controllers with two degrees of freedbat combine
feedback and feedforward is that the control design proldambe split in two
parts. The feedback controll€can be designed to give good robustness and ef-
fective disturbance attenuation, and the feedforwardgaarte designed indepen-
dently to give the desired response to command signals.
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11.3 Performance Specifications

A key element of the control design process is how we spebifydesired per-
formance of the system. It is also important for users to tstdad performance
specifications so that they know what to ask for and how to tegstem. Specifi-
cations are often given in terms of robustness to procesatizars and responses
to reference signals and disturbances. They can be givennrs tef both time
and frequency responses. Specifications for the step respmreference signals
were given in Figure 5.9 in Section 5.3 and in Section 6.3. Rolesst specifica-
tions based on frequency domain concepts were provided ito8ex3 and will
be considered further in Chapter 12. The specifications diecugreviously were
based on the loop transfer function. Since we found in Sectioh that a single
transfer function did not always characterize the propsitif the closed loop com-
pletely, we will give a more complete discussion of speciitrat in this section,
based on the full Gang of Six.

The transfer function gives a good characterization of thea behavior of a
system. To provide specifications it is desirable to captueecharacteristic prop-
erties of a system with a few parameters. Common featuresnf@ responses
are overshoot, rise time and settling time, as shown in Figi@eCommon fea-
tures of frequency responses are resonant peak, peak fi@gumin crossover
frequency and bandwidth. fesonant peaks a maximum of the gain, and the
peak frequency is the corresponding frequency. aie crossover frequendg
the frequency where the open loop gain is equal one bEmelwidthis defined as
the frequency range where the closed loop gairig2 of the low-frequency gain
(low-pass), mid-frequency gain (band-pass) or high-fezmqy gain (high-pass).
There are interesting relations between specifications iritie and frequency
domains. Roughly speaking, the behavior of time respormeshiort times is re-
lated to the behavior of frequency responses at high freziegnand vice versa.
The precise relations are not trivial to derive.

Response to Reference Signals

Consider the basic feedback loop in Figure 11.1. The responségrence signals
is described by the transfer functio, = PCF/(1+ PC) andGy, = CF/(1+
PC) (F = 1 for systems with error feedback). Notice that it is usefutonsider
both the response of the output and that of the control signgbarticular, the
control signal response allows us to judge the magnituderatedof the control
signal required to obtain the output response.

Example 11.3 Third-order system

Consider a process with the transfer functis) = (s+1)~2 and a PI controller
with error feedback having the gaiks= 0.6 andk; = 0.5. The responses are illus-
trated in Figure 11.5. The solid lines show results for a propaoal-integral (PI)
controller with error feedback. The dashed lines show redaita controller with
feedforward designed to give the transfer funct®p = (0.5s+ 1)=3. Looking
at the time responses, we find that the controller with feeddod gives a faster
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Figure 11.5: Reference signal responses. The responses in process guwpdtcontrol
signalu to a unit step in the reference sigmadre shown in (a), and the gain curvesGj
and Gy, are shown in (b). Results with PI control with error feedback are shmyvsolid
lines, and the dashed lines show results for a controller with a feedfdivoanpensator.

response with no overshoot. However, much larger contgolads are required to
obtain the fast response. The largest value of the controakig 8, compared to
1.2 for the regular PI controller. The controller with feedfard has a larger band-
width (marked witho) and no resonant peak. The transfer functi&p also has
higher gain at high frequencies. O

Response to Load Disturbances and Measurement Noise

A simple criterion for disturbance attenuation is to conep#re output of the
closed loop system in Figure 11.1 with the output of the cpoading open loop
system obtained by settil@= 0. If we let the disturbances for the open and closed
loop systems be identical, the output of the closed loopesyss then obtained
simply by passing the open loop output through a system \ihriansfer func-
tion S The sensitivity function tells how the variations in theuitare influenced
by feedback (Exercise 11.7). Disturbances with frequersties thaiS(iw)| < 1
are attenuated, but disturbances with frequencies suthShe)| > 1 are am-
plified by feedback. The maximum sensitivit§s, which occurs at the frequency
s is thus a measure of the largest amplification of the dishaoés. The max-
imum magnitude of (14 L) is also the minimum ofl + L|, which is precisely
the stability margirs, defined in Section 9.3, so thits = 1/s,,. The maximum
sensitivity is therefore also a robustness measure.

If the sensitivity function is known, the potential imprawents by feedback
can be evaluated simply by recording a typical output andifilgeit through the
sensitivity function. A plot of the gain curve of the senstiy function is a good
way to make an assessment of the disturbance attenuatiare i@ sensitivity
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Figure 11.6: Graphical interpretation of the sensitivity function. Gain curves of the loop
transfer function and the sensitivity function (a) can be used to calcuf@tiperties of the
sensitivity function through the relatidh= 1/(1+L). The sensitivity crossover frequency
wsc and the frequencyams where the sensitivity has its largest value are indicated in the
sensitivity plot. The Nyquist plot (b) shows the same information in a diffeform. All
points inside the dashed circle have sensitivities greater than 1.

function depends only on the loop transfer function, itspernties can also be vi-
sualized graphically using the Nyquist plot of the loop &fan function. This is
illustrated in Figure 11.6. The complex numbef L (iw) can be represented as
the vector from the point-1 to the pointL(iw) on the Nyquist curve. The sensi-
tivity is thus less than 1 for all points outside a circle wildius 1 and center at
—1. Disturbances with frequencies in this range are attedlay the feedback.

The transfer functiorGyq from load disturbance to process outpuy for the
system in Figure 11.1is

P T

= 1+PC_PS_C. (11.8)
Since load disturbances typically have low frequencies,nitural to focus on the
behavior of the transfer function at low frequencies. Foystem withP(0) # 0
and a controller with integral action, the controller gaoeg to infinity for small
frequencies and we have the following approximation forlsma

_T.1l.s
“CcTCcT Kk’

wherek; is the integral gain. Since the sensitivity functiSigoes to 1 for largs,
we have the approximatidByq ~ P for high frequencies.

Measurement noise, which typically has high frequenciesegates rapid vari-
ations in the control variable that are detrimental bec#lusgcause wear in many
actuators and can even saturate an actuator. It is thustiampdo keep variations
in the control sighal due to measurement noise at reasofeMalis—a typical re-
quirement is that the variations are only a fraction of thenspf the control signal.
The variations can be influenced by filtering and by proper desighe high-

Gyd (11.9)
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Figure 11.7: Disturbance responses. The time and frequency responses espraatpuy/
to load disturbancd are shown in (a) and the responses of control sigitalmeasurement
noisen are shown in (b).

frequency properties of the controller.
The effects of measurement noise are captured by the trafusfetion from
the measurement noise to the control signal,

C T
-~ _ —CS=—. 11.10
1+PC P ( )
The complementary sensitivity function is close to 1 for lawguencies @ <
wyc), andGyp, can be approximated by1/P. The sensitivity function is close to 1

for high frequenciesc > wyc), andGyn can be approximated byC.

—Gun

Example 11.4 Third-order system
Consider a process with the transfer functi®fis) = (s+ 1)~2 and a proportional-
integral-derivative (PID) controller with gairkg = 0.6, ki = 0.5 andky = 2.0. We
augment the controller using a second-order noise filter Witk 0.1, so that its
transfer function is

kS + kps+ ki

cle = S(PT?/2+sTi+1)

The system responses are illustrated in Figure 11.7. The resmdnhe output to
a step in the load disturbance in the top part of Figure 11.%ah@meak of 0.28 at
timet = 2.73 s. The frequency response in Figure 11.7a shows that ith@ama
maximum of 0.58 atv = 0.7 rad/s.

The response of the control signal to a step in measuremesd i®oshown in
Figure 11.7b. The high-frequency roll-off of the transferdtion Gyn(iw) is due
to filtering; without it the gain curve in Figure 11.7b would tiome to rise after
20 rad's. The step response has a peak of 13-a0.08 s. The frequency response
has its peak 20 ab = 14 rad/s. Notice that the peak occurs far above the peak
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Figure 11.8: Gain curve and sensitivity functions for a typical loop transfer functidme
plot on the left shows the gain curve and the plots on the right show theigénfunction
and complementary sensitivity function. The gain crossover frequagg and the slope
ngc of the gain curve at crossover are important parameters that degetineimobustness of
closed loop systems. At low frequency, a large magnitudé forovides good load distur-
bance rejection and reference tracking, while at high frequency b e gain is used to
avoid amplifying measurement noise.

of the response to load disturbances and far above the gassarer frequency
wyc = 0.78 rad/s. An approximation derived in Exercise 11.9 givag|@S(iw)| ~

kq/Ts = 20, which occurs ao = /2/Ty = 14.1 rad/s. O

11.4 Feedback Design via Loop Shaping

One advantage of the Nyquist stability theorem is that itisdal on the loop trans-
fer function, which is related to the controller transfendtion throughL = PC.

It is thus easy to see how the controller influences the loapstea function. To
make an unstable system stable we simply have to bend theigtymuve away
from the critical point.

This simple idea is the basis of several different design oulcollectively
calledloop shaping These methods are based on choosing a compensator that
gives a loop transfer function with a desired shape. Oneilpitigsis to determine
a loop transfer function that gives a closed loop system thighdesired properties
and to compute the controller &= L/P. Another is to start with the process
transfer function, change its gain and then add poles arah zentil the desired
shape is obtained. In this section we will explore differeap-shaping methods
for control law design.

Design Considerations

We will first discuss a suitable shape for the loop transfection that gives good
performance and good stability margins. Figure 11.8 showgpiaal loop trans-
fer function. Good robustness requires good stability mar@or good gain and
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phase margins), which imposes requirements on the loopfenrafunction around
the crossover frequencies,. and wyc. The gain ofL at low frequencies must be
large in order to have good tracking of command signals aratl gdtenuation
of low-frequency disturbances. SinBe-=1/(1+L), it follows that for frequencies
where|L| > 101 disturbances will be attenuated by a factor of 100 antécking
error is less than 1%. It is therefore desirable to have alargssover frequency
and a steep (negative) slope of the gain curve. The gain atrleguéncies can
be increased by a controller with integral action, whichlsoaalledlag compen-
sation To avoid injecting too much measurement noise into theesysthe loop
transfer function should have low gain at high frequenacidsch is calledhigh-
frequency roll-off The choice of gain crossover frequency is a compromise among
attenuation of load disturbances, injection of measurémeise and robustness.

Bode's relations (see Section 9.4) impose restrictions erstiape of the loop
transfer function. Equation (9.8) implies that the slopeha gain curve at gain
crossover cannot be too steep. If the gain curve has a cosébae, we have the
following relation between slopgy. and phase margigim:

2
Nge= —2+ ":Tm (11.11)

This formula is a reasonable approximation when the gainecdoes not deviate
too much from a straight line. It follows from equation (11)lhat the phase
margins 30, 45° and 60 correspond to the slopesb/3, —3/2 and—4/3.

Loop shaping is a trial-and-error procedure. We typicallytsvith a Bode plot
of the process transfer function. We then attempt to shapletp transfer function
by changing the controller gain and adding poles and zertigetoontroller trans-
fer function. Different performance specifications are estedd for each controller
as we attempt to balance many different requirements bystidgucontroller pa-
rameters and complexity. Loop shaping is straightforwampialy to single-input,
single-output systems. It can also be applied to systentsamié input and many
outputs by closing the loops one at a time starting with timeimost loop. The
only limitation for minimum phase systems is that large ghlasds and high con-
troller gains may be required to obtain closed loop systeiitis avfast response.
Many specific procedures are available: they all require epee, but they also
give good insight into the conflicting requirements. Therefanelamental limita-
tions to what can be achieved for systems that are not minipisse; they will
be discussed in the next section.

Lead and Lag Compensation

A simple way to do loop shaping is to start with the transfeiction of the process
and add simple compensators with the transfer function

. Sta

Cls) =k . (11.12)
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Figure 11.9: Frequency response for lead and lag compens&@s= k(s+a)/(s+ b).
Lead compensation (a) occurs wteen b and provides phase lead betweer- aandw = b.
Lag compensation (b) correspondsate- b and provides low-frequency gain. Pl control is
a special case of lag compensation and PD control is a special caselafdmpensation.
PI/PD frequency responses are shown by dashed curves.

The compensator is calledead compensataf a < b, and alag compensatoif

a > b. The PI controller is a special case of a lag compensatorlwtld, and the
ideal PD controller is a special case of a lead compensathranit 0. Bode plots
of lead and lag compensators are shown in Figure 11.9. Lag ewapen, which
increases the gain at low frequencies, is typically usedniorove tracking per-
formance and disturbance attenuation at low frequenciemp@énsators that are
tailored to specific disturbances can be also designed, asishdexercise 11.10.
Lead compensation is typically used to improve phase maifdia.following ex-
amples give illustrations.

Example 11.5 Atomic force microscope in tapping mode
A simple model of the dynamics of the vertical motion of annaimforce micro-
scope in tapping mode was given in Exercise 9.2. The transfatiin for the

system dynamics is
a(l—e®)
P(S) T T e
st(s+a)
wherea = {wp, T = 2rm/wyp and the gain has been normalized to 1. A Bode plot
of this transfer function for the parametexrs- 1 andt = 0.25 is shown in dashed
curves in Figure 11.10a. To improve the attenuation of loatuddances we in-
crease the low-frequency gain by introducing an integratr@dler. The loop trans-
fer function then becomds= k;P(s)/s, and we adjust the gain so that the phase
margin is zero, giving; = 8.3. Notice the increase of the gain at low frequencies.
The Bode plot is shown by the dash-dotted line in Figure 11 \/Bare the critical
point is indicated by. To improve the phase margin we introduce proportional
action and we increase the proportional gigirgradually until reasonable values
of the sensitivities are obtained. The vakje= 3.5 gives maximum sensitivity



11.4. FEEDBACK DESIGN VIA LOOP SHAPING 329

_10 0

3 \ 10

a0 N 310 PN B

= =~ ~P(s) = o 10"

3 | —np \ = o

107 - - Integral "

‘ 10_1 2 0 2 10_2 2 0 2

107 10° 10° 107 10 10 107 10 10
0 10

10

(iw), ZP(iw)
ICSiw)|
[S(ic)|

J AR AR
-270 AL 10
107 0’ 10° 107 10° 10° 107 10° 10
Freqow [rad/s] Freqw [rad/s] Freqw [rad/s]

(a) Loop shaping (b) Gang of Four

-1

2

Figure 11.10:Loop-shaping design of a controller for an atomic force microscopejpitig
mode. (a) Bode plots of the process (dashed), the loop transfdaiduificr an integral con-
troller with critical gain (dash-dotted) and a PI controller (solid) adjustedv igasonable
robustness. (b) Gain curves for the Gang of Four for the system.

Ms = 1.6 and maximum complementary sensitiviy = 1.3. The loop transfer
function is shown in solid lines in Figure 11.10a. Notice tlgmgicant increase of
the phase margin compared with the purely integral comtrétiash-dotted line).
To evaluate the design we also compute the gain curves afthsfer functions
in the Gang of Four. They are shown in Figure 11.10b. The peakeddnsitivity
curves are reasonable, and the plotP& shows that the largest value BSis
0.3, which implies that the load disturbances are well atiéed. The plot 0€S
shows that the largest controller gain is 6. The controllerdgain of 3.5 at high
frequencies, and hence we may consider adding high-fregueii-off. O

A common problem in the design of feedback systems is thgitihee margin
is too small, and phadead must then be added to the system. If weasetb in
equation (11.12), we add phase lead in the frequency rarigeée the pole/zero
pair (and extending approximately £0n frequency in each direction). By appro
priately choosing the location of this phase lead, we camigecadditional phase
margin at the gain crossover frequency.

Because the phase of a transfer function is related to tpe siithe magnitude,
increasing the phase requires increasing the gain of theettaasfer function over
the frequency range in which the lead compensation is apgdleExercise 11.11
it is shown that the gain increases exponentially with theamhof phase lead. We
can also think of the lead compensator as changing the sfdpe transfer func-
tion and thus shaping the loop transfer function in the @esisregion (although
it can be applied elsewhere as well).

Example 11.6 Roll control for a vectored thrust aircraft
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Symbol  Description Value
m Vehicle mass 4.0 kg
J Vehicle inertia,¢3 axis  0.0475 kgrh
r Force moment arm 25.0cm
y c Damping coefficient 0.05 kgm/s
g Gravitational constant 9.8 ntls
(a) Simplified model (b) Parameter values

Figure 11.11:Roll control of a vectored thrust aircraft. (a) The roll an§lé controlled by
applying maneuvering thrusters, resulting in a moment generatésgl. [fip) The table lists
the parameter values for a laboratory version of the system.

Consider the control of the roll of a vectored thrust aircsafch as the one il-
lustrated in Figure 11.11. Following Exercise 8.10, we mobelgystem with a
second-order transfer function of the form

-
INES

with the parameters given in Figure 11.11b. We take as ouope&nce speci-
fication that we would like less than 1% error in steady statklass than 10%
tracking error up to 10 rad/s.

The open loop transfer function is shown in Figure 11.12a. Toesxe our
performance specification, we would like to have a gain ofadtl&0 at a frequency
of 10 rad/s, requiring the gain crossover frequency to behigtzer frequency. We
see from the loop shape that in order to achieve the desiréorp@nce we cannot
simply increase the gain since this would give a very low phaargin. Instead,
we must increase the phase at the desired crossover frggquenc

To accomplish this, we use a lead compensator (11.12)awitt2 andb = 50.
We then set the gain of the system to provide a large loop gaito the desired
bandwidth, as shown in Figure 11.12b. We see that this systsra bain of greater
than 10 at all frequencies up to 10 rad/s and that it has mere 8 of phase
margin. O

P(s)

The action of alead compensator is essentially the sametasf tha derivative
portion of a PID controller. As described in Section 10.5, weiuse a filter for
the derivative action of a PID controller to limit the higke§uency gain. This same
effect is present in a lead compensator through the pae-di.

Equation (11.12) is a first-order compensator and can provideo D0 of
phase lead. Larger phase lead can be obtained by using a-oiglezrlead com-
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Figure 11.12: Control design for a vectored thrust aircraft using lead compensakios
Bode plot for the open loop proceBsis shown in (a) and the loop transfer functibn=
PC using a lead compensator in (b). Note the phase lead in the crossoieT negrw =
100 rad/s.

pensator (Exercise 11.11):

11.5 Fundamental Limitations

Although loop shaping gives us a great deal of flexibility irsidaing the closed
loop response of a system, there are certain fundamentis lon what can be
achieved. We consider here some of the primary performamigtions that can
occur because of difficult dynamics; additional limitatiosakted to robustness are

considered in the next chapter.

Right Half-Plane Poles and Zeros and Time Delays

There are linear systems that are inherently difficult to @dnirhe limitations are
related to poles and zeros in the right half-plane and timiayde To explore the
limitations caused by poles and zeros in the right half-phlame factor the process

transfer function as
P(S) = Pmp(S)Pap(s), (11.13)

wherePnypis the minimum phase part afy, is the nonminimum phase part. The
factorization is normalized so thfRsp(iw)| = 1, and the sign is chosen so tiRap
has negative phase. The transfer functapis called arall-pass systerbecause
it has unit gain for all frequencies. Requiring that the ghiasargin bep,, we get

argl (iwyc) = argPap(icye) + argPmp(iwye) +argCiwye) > —m+ ¢m, (11.14)
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whereC is the controller transfer function. Lec be the slope of the gain curve
at the crossover frequency. Sinégp(iw)| = 1, it follows that

_ dlog|L(iw)| _ dlog|Pnp(iw)C(iw)|

Nge = .
g¢ dlogw | o dlogw oy
= C = C

Assuming that the slopey is negative, it has to be larger thai2 for the system
to be stable. It follows from Bode’s relations, equatior8f9that

argPmp(iw) +argC(iw) ~ ngcg .
Combining this with equation (11.14) gives the followingquality for the allow-
able phase lag of the all-pass part at the gain crossovardrey:

—argPap(iwye) < mM— ¢m+ ngc%T =: 4. (11.15)

This condition, which we call thgain crossover frequency inequalishows that
the gain crossover frequency must be chosen so that the wmed the non-
minimum phase component is not too large. For systems wgh hbbustness
requirements we may choose a phase margin 6f (@@, = 11/3) and a slope
ngc = —1, which gives an admissible phase lag= 11/6 = 0.52 rad (30). For
systems where we can accept a lower robustness we may chpbsseamargin
of 45° (¢m = 11/4) and the slopegc = —1/2, which gives an admissible phase lag
¢ = /2= 1.57 rad (90).

The crossover frequency inequality shows that nonminimuas@lcomponents
impose severe restrictions on possible crossover fredgegnit also means that
there are systems that cannot be controlled with sufficietilgly margins. We
illustrate the limitations in a number of commonly encouatksituations.

Example 11.7 Zero in the right half-plane
The nonminimum phase part of the process transfer functioa 8ystem with a
right half-plane zero is
z—s
~z+¢

wherez > 0. The phase lag of the nonminimum phase part is

Pap(s)

: W
—argPp(iw) =2 arctar?

Since the phase lag &%, increases with frequency, the inequality (11.15) gives
the following bound on the crossover frequency:

Wyc < ztan(¢;/2). (11.16)

With ¢, = 11/3 we getwyc < 0.6z Slow right half-plane zerogzgmall) therefore
give tighter restrictions on possible gain crossover fegguies than fast right half-
plane zeros. O
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Time delays also impose limitations similar to those givgrzéros in the right
half-plane. We can understand this intuitively from the @agproximation
st 1-05st _ 2/T—s
1+0.5st 2/T+S

A long time delay is thus equivalent to a slow right half-pareroz=2/1.

Example 11.8 Pole in the right half-plane
The nonminimum phase part of the transfer function for a systéth a pole in
the right half-plane is

_S+p
Pap(s) = .1 0’
wherep > 0. The phase lag of the nonminimum phase part is

—argPap(iw) =2 arctan(%,

and the crossover frequency inequality becomes

W > o (11.17)

tan(¢;/2)
Right half-plane poles thus require that the closed loopesy$ave a sufficiently
high bandwidth. Withp, = 11/3 we getwyc > 1.7p. Fast right half-plane polegp(
large) therefore give tighter restrictions on possiblegabssover frequencies than
slow right half-plane poles. The control of unstable systémsoses minimum
bandwidth requirements for process actuators and sensors. a

We will now consider systems with a right half-plane zerand a right half-
plane polep. If p =z there will be an unstable subsystem that is neither reach-
able nor observable, and the system cannot be stabilizedSsetion 7.5). We
can therefore expect that the system is difficult to controhé right half-plane
pole and zero are close. A straightforward way to use thesoxas frequency in-
equality is to plot the phase of the nonminimum phase fal{grof the process
transfer function. Such a plot, which can be incorporatechiordinary Bode plot,
will immediately show the permissible gain crossover fregies. An illustration
is given in Figure 11.13, which shows the phasédgf for systems with a right
half-plane pole/zero pair and systems with a right halfiplpole and a time delay.

If we require that the phase lafy of the nonminimum phase factor be less than
90°, we must require that the raty p be larger than 6 or smaller than 1/6 for
systems with right half-plane poles and zeros and that théymt pt be less than
0.3 for systems with a time delay and a right half-plane peice the symmetry

in the problem forz > p andz < p: in either case the zeros and the poles must be
sufficiently far apart (Exercise 11.12). Also notice that jjassvalues of the gain
crossover frequencyyc are quite restricted.

Using the theory of functions of complex variables, it canshewn that for
systems with a right half-plane popeand a right half-plane ze(or a time delay
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Figure 11.13:Example limitations due to the gain crossover frequency inequality. The fig-
ures show the phase lag of the all-pass faBjgras a function of frequency. Since the phase
lag of P,y at the gain crossover frequency cannot be too large, it is necesselypose the
gain crossover frequency properly. All systems have a right Halfeppole as = 1. The
system in (a) has zerosst 2, 5, 20 and 100 (solid lines) andst 0.5, 0.2, 0.05 and 0.01
(dashed lines). The system in (b) has time delays0.02 0.1, 0.5 and 1.

T), any stabilizing controller gives sensitivity functiowgth the property

sup|S(iw)| > Ptz
w

, sup| T (iw)| > eP’. 11.18
> BT suplT(iw) (1118

This result is proven in Exercise 11.13.

As the examples above show, right half-plane poles and zggogicantly limit
the achievable performance of a system, hence one woultblékeoid these when-
ever possible. The poles of a system depend on the intrinsiandics of the sys-
tem and are given by the eigenvalues of the dynamics matoixa linear system.
Sensors and actuators have no effect on the poles; the onlyoaehange poles
is to redesign the system. Notice that this does not imply wihatable systems
should be avoided. Unstable system may actually have aalyasitone example is
high-performance supersonic aircraft.

The zeros of a system depend on how the sensors and actuacsugted to
the states. The zeros depend on all the matigd® C andD in a linear system.
The zeros can thus be influenced by moving the sensors andastaeby adding
sensors and actuators. Notice that a fully actuated syBtenh does not have any
zeros.

Example 11.9 Balance system
As an example of a system with both right half-plane poleszands, consider the
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balance system with zero damping, whose dynamics are given b

ml
(M — m212)s2 + mgiM’
oo —Js?+mgl
PF = (= (Mg — mPI2)? + mgIM) -

Hor = —

Assume that we want to stabilize the pendulum by using thiepzeition as the
measured signal. The transfer function from the input férde the cart position
p has poles(0,0,++/mgIM /(M — m?12)} and zeros{+,/mgl/J}. Using the
parameters in Example 6.7, the right half-plane pole ip &t2.68 and the zero
is atz= 2.09. Equation (11.18) then givéS(iw)| > 8, which shows that it is not
possible to control the system robustly.

The right half-plane zero of the system can be eliminated laygimg the out-
put of the system. For example, if we choose the output tespond to a position
at a distance along the pendulum, we haye- p—r sinf and the transfer function
for the linearized output becomes

(mlr — )% 4+ mgl
(=M —PI2)?+ mgiM) -

If we chooser sufficiently large, thermlr — J > 0 and we eliminate the right
half-plane zero, obtaining instead two pure imaginary gefidne gain crossover
frequency inequality is then based just on the right hadfaplpole (Example 11.8).
If our admissible phase lag for the nonminimum phase papt is 45°, then our
gain crossover must satisfy

Hyr = Hpr —rHgr =

p
> ——— =6.48rad/s
e~ tan(91/2)
If the actuators have sufficiently high bandwidth, e.g., adiaof 10 abovewy or
roughly 10 Hz, then we can provide robust tracking up to tfegdiency. O

Bode’s Integral Formula

In addition to providing adequate phase margin for robuiikty, a typical con-
trol design will have to satisfy performance conditions lo& $ensitivity functions
(Gang of Four). In particular, the sensitivity functi8e= 1/(1+ PC) represents the
disturbance attenuation and also relates the tracking etoathe reference signal:
we usually want the sensitivity to be small over the rangeexdiencies where we
want small tracking error and good disturbance attenuafidrasic problem is to
investigate ifS can be made small over a large frequency range. We will syart b
investigating an example.

Example 11.10 System that admits small sensitivities
Consider a closed loop system consisting of a first-orderga®and a proportional
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controller. Let the loop transfer function be

k
L(s)=PC= —
(s) 1
where parametelis the controller gain. The sensitivity function is
s+1
X8) = s+1+k
and we have
. 1+ w?
[Sliw)l = \/1+2k+ k24 w?’

This implies thatS(iw)| < 1 for all finite frequencies and that the sensitivity can be
made arbitrarily small for any finite frequency by makigufficiently large. [

The system in Example 11.10 is unfortunately an exception. Eyedature
of the system is that the Nyquist curve of the process is cetalyl contained in
the right half-plane. Such systems are calp@dsive and their transfer functions
are positive real For typical control systems there are severe constraimthe
sensitivity function. The following theorem, due to Bodegyides insights into
the limits of performance under feedback.

Theorem 11.1(Bode’s integral formula) Assume that the loop transfer function
L(s) of a feedback system goes to zero faster thgmas s— o, and let $s)
be the sensitivity function. If the loop transfer functiasipoles p in the right
half-plane, then the sensitivity function satisfies thiofeihg integral:

* . * 1
/o Iogys(lw)]dw_/o IOg|1+L(iw)]dw_nZ Pk- (11.19)

Equation (11.19) implies that there are fundamental linutest to what can
be achieved by control and that control design can be vieweal r@distribution
of disturbance attenuation over different frequenciedrticular, this equation
shows that if the sensitivity function is made smaller famgdfrequencies, it must
increase at other frequencies so that the integral ofS0@)| remains constant.
This means that if disturbance attenuation is improved infoggpuency range, it
will be worse in another, a property sometime referred thvasvaterbed effectit
also follows that systems with open loop poles in the right-piane have larger
overall sensitivity than stable systems.

Equation (11.19) can be regarded asoaservation lawif the loop transfer
function has no poles in the right half-plane, the equatiompkfies to

/Ooolog|S(iw)|do):O.

This formula can be given a nice geometric interpretationllastiated in Fig-
ure 11.14, which shows Id§(iw)| as a function otv. The area over the horizontal
axis must be equal to the area under the axis when the fregueptotted on a
linear scale. Thus if we wish to make the sensitivity smaller up toesémquency
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Figure 11.14:Interpretation of thevaterbed effecfThe function logS(iw)| is plotted versus
win linear scales in (a). According to Bode’s integral formula (11.1%) atea of logS(iw)|
above zero must be equal to the area below zero. Gunter Stein’s ettipn of design as a
trade-off of sensitivities at different frequencies is shown in (rf{Ste03]).

wsc, We must balance this by increased sensitivity abmye Control system de-
sign can be viewed as trading the disturbance attenuatisona¢ frequencies for
disturbance amplification at other frequencies. Notice thatsystem in Exam-
ple 11.10 violates the condition that lim., sL(s) = 0 and hence the integral for-
mula does not apply.

There is result analogous to equation (11.19) for the comgeany sensitivity

function: l0g|T (i) 1
*log|T (iw
—————dw=mn) — 11.20
|2 S5 (11.20)
where the summation is over all right half-plane zeros. &othat slow right half-
plane zeros are worse than fast ones and that fast righplaadé poles are worse
than slow ones.

Example 11.11 X-29 aircraft

As an example of the application of Bode’s integral formwa, present an anal-
ysis of the control system for the X-29 aircraft (see Figurel®a), which has an
unusual configuration of aerodynamic surfaces that are weditp enhance its
maneuverability. This analysis was originally carried oytGunter Stein in his
article “Respect the Unstable” [Ste03], which is also thesewf the quote at the
beginning of this chapter.

To analyze this system, we make use of a small set of parasrtbegrdescribe
the key properties of the system. The X-29 has longitudinabdyics that are very
similar to inverted pendulum dynamics (Exercise 8.3) andpdrticular, have a
pair of poles at approximatelg = +6 and a zero at = 26. The actuators that
stabilize the pitch have a bandwidth@f = 40 rad/s and the desired bandwidth of
the pitch control loop isu = 3 rad/s. Since the ratio of the zero to the pole is only
4.3, we may expect that it may be difficult to achieve the spetifios.

To evaluate the achievable performance, we search for aotdei such that
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(a) X-29 aircraft (b) Sensitivity analysis

Figure 11.15:X-29 flight control system. The aircraft makes use of forward swépgs and
a set of canards on the fuselage to achieve high maneuverability @}l€Rired sensitivity
for the closed loop system is shown in (b). We seek to use our contraritytto shape the
sensitivity curve so that we have low sensitivity (good performanced dequencyw, by
creating higher sensitivity up to our actuator bandwidgh

the sensitivity function is small up to the desired bandtviahd not greater than
Ms beyond that frequency. Because of the Bode integral fornwaaknow that
Ms must be greater than 1 at high frequencies to balance the semsitivity at
low frequency. We thus ask if we can find a controller that hasstiiape shown
in Figure 11.15b with the smallest valueM{. Note that the sensitivity above the
frequencyw, is not specified since we have no actuator authority at thqtiéecy.
However, assuming that the process dynamics fall off at frigdjuency, the sen-
sitivity at high frequency will approach 1. Thus, we desirelésign a closed loop
system that has low sensitivity at frequencies betowand sensitivity that is not
too large betweeny andw,.

From Bode’s integral formula, we know that whatever congmolve choose,
equation (11.19) must hold. We will assume that the seitgitiunction is given

by

wM
. S w<w
rsow)r:{Mwl
s W< W< Wy,

corresponding to Figure 11.15b. If we further assume fih@)| < &/w? for fre-
qguencies larger than the actuator bandwidth, Bode’s intdigrcomes

o @a
/ Iog\S(iw)\doo:/ log|S(iw)|dw
0 0

W
:/ log wMde+(&}a—&h)|09Ms= p.
0 WL

Evaluation of the integral givesw; + wylogMs = mtp or

MS — e(np"'wl)/wa.

This formula tells us what the achievable valuevafwill be for the given control
specifications. In particular, using= 6, w; = 3 andw, = 40 rad/s, we find that
Ms = 1.75, which means that in the range of frequencies betweeand w;,
disturbances at the input to the process dynamics (suchrad will be amplified
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Figure 11.16: Contour used to prove Bode’s theorem. For each right half-planewele
create a path from the imaginary axis that encircles the pole as showroitbciutter we
have shown only one of the paths that enclose one right half-plane.

by a factor of 175 in terms of their effect on the aircraft.

Another way to view these results is to compute the phaseimdrgt corre-
sponds to the given level of sensitivity. Since the peak sgitginormally occurs
at or near the crossover frequency, we can compute the phag@nsorrespond-
ing to Mg = 1.75. As shown in Exercise 11.14, the maximum achievable phase
margin for this system is approximately°3%vhich is below the usual design limit
of 45° in aerospace systems. The zereat26 limits the maximum gain crossover
that can be achieved. O

Derivation of Bode’s Formula @

We now derive Bode’s integral formula (Theorem 11.1). Thisteclnical section
that requires some knowledge of the theory of complex veeghn particular
contour integration. Assume that the loop transfer fumctias distinct poles at
s= pk in the right half-plane and that(s) goes to zero faster thary4dfor large
values ofs.

Consider the integral of the logarithm of the sensitivitpétionS(s) = 1/(1+
L(s)) over the contour shown in Figure 11.16. The contour enclogesght half-
plane except for the points= px where the loop transfer functidr(s) = P(s)C(s)
has poles and the sensitivity functi&s) has zeros. The direction of the contour
is counterclockwise.

The integral of the log of the sensitivity function aroundstbbntour is given
by

—iR
/r log(S(s)) ds= /iR log(S(s)) ds+ /R 0g(S(s)ds+ Y /y log(S(s)) ds
=l1+1l2+13=0,

whereR is a large semicircle on the right angd is the contour starting on the
imaginary axis as = Im px and a small circle enclosing the pgbe. The integral
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is zero because the function I8¢) is analytic inside the contour. We have

Iy = —i /zlog(S(iw))da): 2 /ORIog(|S(iw)|)dw

because the real part of I8 w) is an even function and the imaginary part is an
odd function. Furthermore we have

12— [ log(S(s)) ds= — [ log(L+L(s))ds~— [ L(s)ds

SinceL(s) goes to zero faster thary4dfor larges, the integral goes to zero when
the radius of the circle goes to infinity.

Next we consider the integrh. For this purpose we split the contour into three
partsX., yandX_, as indicated in Figure 11.16. We can then write the integral a

I3:/X+ IogS(s)ds+/ongS(s)ds+/X logS(s)ds

The contouty is a small circle with radius around the polgy. The magnitude of
the integrand is of the order logand the length of the path igi®2. The integral
thus goes to zero as the radiugoes to zero. Sinc§(s) ~ k/(s— pk) close to the
pole, the argument d¥(s) decreases byr2as the contour encircles the pole. On
the contours{, andX_ we therefore have

ISc.| =1 |,  argSk =argS, —2m
Hence

log(Sx, ) —log(Sx_) = 2,
and we get . .
/ IogS(s)ds+/ logS(s)ds=2mi Rep.
Xy X_

Repeating the argument for all poleg in the right half plane, letting the small
circles go to zero and the large circle go to infinity gives

R
|1+I2+I3:—2i/ oglSiico)|deo-+i 5 2 Rep. = 0.
0

Since complex poles appear as complex conjugate PaiRRepx = 3k Pk, Which
gives Bode’s formula (11.19).

11.6 Design Example

In this section we present a detailed example that illussrdte main design tech-
niques described in this chapter.

Example 11.12 Lateral control of a vectored thrust aircraft
The problem of controlling the motion of a vertical takeofiddanding (VTOL)
aircraft was introduced in Example 2.9 and in Example 11.6 revive designed a
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—1 |-

Figure 11.17: Inner/outer control design for a vectored thrust aircraft. The innep
controls the roll angle of the aircraft using the vectored thrust. The éuaercontrollerCo
commands the roll angle to regulate the lateral position. The procesmibymare decom-
posed into inner loopR) and outer loopR,) dynamics, which combine to form the full
dynamics for the aircraft.

controller for the roll dynamics. We now wish to control thesjiion of the aircraft,
a problem that requires stabilization of both the attitude @ne position.

To control the lateral dynamics of the vectored thrust aitciwve make use of
a “inner/outer” loop design methodology, as illustratedrigure 11.17. This dia-
gram shows the process dynamics and controller dividedwadaomponents: an
inner loopconsisting of the roll dynamics and control andaner loopconsist-
ing of the lateral position dynamics and controller. Thisataposition follows the
block diagram representation of the dynamics given in Exer8il10.

The approach that we take is to design a contr@dor the inner loop so that
the resulting closed loop systeirh provides fast and accurate control of the roll
angle for the aircraft. We then design a controller for thera position that uses
the approximation that we can directly control the roll ang$ an input to the dy-
namics controlling the position. Under the assumptiontifratynamics of the roll
controller are fast relative to the desired bandwidth oflétteral position control,
we can then combine the inner and outer loop controllersta gangle controller
for the entire system. As a performance specification for thtéeesystem, we
would like to have zero steady-state error in the lateraltipos a bandwidth of
approximately 1 rad/s and a phase margin of. 45

For the inner loop, we choose our design specification to geotrie outer loop
with accurate and fast control of the roll. The inner loop dyies are given by

r
Jg+cs
We choose the desired bandwidth to be 10 rad/s (10 times thiat @uter loop)

and the low-frequency error to be no more than 5%. This spetitite satisfied
using the lead compensator of Example 11.6 designed préyisosve choose

PI :HGU]_:

. Sta

(S) = k—— =2 = k=1.
Ci(s) stb’ a=2, b=50,



342 CHAPTER 11. FREQUENCY DOMAIN DESIGN

10°

Roll §_ 10° f
dynamics L ]
10"
() _
z Co mg R 180 : :
3
F 90p 1
-1 N
0 0 ‘ 1 ‘ 3
10 10 10° 10
Frequencyw [rad/s]
(a) Outer loop approximation (b) Actual roll dynamics

Figure 11.18: Outer loop control design for a vectored thrust aircraft. (a) The dotgy
approximates the roll dynamics as a state gaimg. (b) The Bode plot for the roll dynamics,
indicating that this approximation is accurate up to approximately 10 rad/s.

The closed loop dynamics for the system satisfy

_ G, GR _G(-mgR)
1+GR 1+GR 1+GR -

A plot of the magnitude of this transfer function is shown igutie 11.18, and we
see thatH; ~ —mg= —39.2 is a good approximation up to 10 rad/s.

To design the outer loop controller, we assume the inner foticontrol is
perfect, so that we can taléy as the input to our lateral dynamics. Following the
diagram shown in Exercise 8.10, the outer loop dynamics carritten as
_hHO
S mg’
where we replacel; (s) with H;(0) to reflect our approximation that the inner loop
will eventually track our commanded input. Of course, thip@ximation may not
be valid, and so we must verify this when we complete our aesig

Our control goal is now to design a controller that gives zteady-state error
in y and has a bandwidth of 1 rad/s. The outer loop process dynaarecgiven
by a second-order integrator, and we can again use a singuectanpensator to
satisfy the specifications. We also choose the design suttihihdoop transfer
function for the outer loop hgs,| < 0.1 for w > 10 rad/s, so that thid; dynamics
can be neglected. We choose the controller to be of the form

S+a
Cols) = k°s+ bo’
with the negative sign to cancel the negative sign in theggscdynamics. To find
the location of the poles, we note that the phase lead flatigrest @pproximately
bo/10. We desire phase lead at crossover, and we desire th@weoss wyc =
1 rad/s, so this givels, = 10. To ensure that we have adequate phase lead, we must
chooses, such thab,/10 < 10a, < by, Which implies thatg, should be between

Hi

P(s) = Hi(0)Ro(s)
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Figure 11.19: Inner/outer loop controller for a vectored thrust aircraft. The Bodé @lp
and Nyquist plot (b) for the transfer function for the combined innet @uter loop transfer
functions are shown. The system has a phase margin°cdr@@a gain margin of 6.2.

0.1 and 1. We choos® = 0.3. Finally, we need to set the gain of the system such
that at crossover the loop gain has magnitude 1. A simpleulzdion shows that
ko = 2 satisfies this objective. Thus, the final outer loop contrdiemomes

s+0.3
=2 )
Co(9) s+10

Finally, we can combine the inner and outer loop controllerd eerify that
the system has the desired closed loop performance. The Bodsyajuist plots
corresponding to Figure 11.17 with inner and outer loop abletrs are shown in
Figure 11.19, and we see that the specifications are satisfiaddltion, we show
the Gang of Four in Figure 11.20, and we see that the trandgfetifuns between
all inputs and outputs are reasonable. The sensitivity td thaturbance®Sis
large at low frequency because the controller does not maggral action.

The approach of splitting the dynamics into an inner and aardabp is com-
mon in many control applications and can lead to simplergihssior complex
systems. Indeed, for the aircraft dynamics studied in tkésveole, it is very chal-
lenging to directly design a controller from the lateral ifios x to the inputu;.
The use of the additional measuremenBajreatly simplifies the design because
it can be broken up into simpler pieces. O

11.7 Further Reading

Design by loop shaping was a key element in the early devedopof control, and
systematic design methods were developed; see James|NaciadPhillips [JNP47],
Chestnut and Mayer [CM51], Truxal [Tru55] and Thaler [Tha89%op shap-

ing is also treated in standard textbooks such as FranklinelP@and Emami-

Naeini [FPENO5], Dorf and Bishop [DB04], Kuo and Golnaraghi [6Z} and

Ogata [Oga01]. Systems with two degrees of freedom were aigedlby Horowitz [Hor63],
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Figure 11.20:Gang of Four for vectored thrust aircraft system.

who also discussed the limitations of poles and zeros inigfe half-plane. Fun-
damental results on limitations are given in Bode [Bod45)renrecent presenta-
tions are found in Goodwin, Graebe and Salgado [GGSO01]. Thetesd in Sec-
tion 11.5 is based orf\[stOO]. Much of the early work was based on the loop trans-
fer function; the importance of the sensitivity functiongpaared in connection
with the development in the 1980s that resultetlindesign methods. A compact
presentation is given in the texts by Doyle, Francis and Tabaem [DFT92] and
Zhou, Doyle and Glover [ZDG96]. Loop shaping was integratedhhe robust
control theory in McFarlane and Glover [MG90] and Vinnicaar¥in01]. Com-
prehensive treatments of control system design are givbtaiiejowski [Mac89]
and Goodwin, Graebe and Salgado [GGSO01].

Exercises

11.1 Consider the system in Figure 11.1. Give all signal pairs @natrelated by
the transfer functions/A1+ PC), P/(1+4 PC), C/(1+ PC) andPC/(1+ PC).

11.2 Consider the system in Example 11.1. Choose the parangtersl and
compute the time and frequency responses for all the trafusfetions in the Gang
of Four for controllers withk = 0.2 andk = 5.

11.3(Equivalence of Figures 11.1 and 11.2) Consider the systemgur&ill.1
and let the outputs of interest lze= (n,v) and the major disturbances be=
(n,d). Show that the system can be represented by Figure 11.2 anthgikatrix
transfer functions?” and¥’. Verify that the elements of the closed loop transfer
functionH,, are the Gang of Four.
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11.4 Consider the spring—mass system given by (2.14), which thedransfer
function 1
P(s)

" m@+cstk
Design a feedforward compensator that gives a responsecwiital damping

((=1).

11.5(Sensitivity of feedback and feedforward) Consider theesysn Figure 11.1
and letGy, be the transfer function relating the measured signalthe reference

r. Show that the sensitivities @y, with respect to the feedforward and feedback
transfer functiong andC are given bydG,;/dF = CP/(1+PC) anddG,; /dC =
FP/(1+PC)? = GyL/C.

11.6(Equivalence of controllers with two degrees of freedom) Shwat the sys-
tems in Figures 11.1 and 11.3 give the same responses to cahsigarals if
FmC+ R, =CF.

11.7(Disturbance attenuation) Consider the feedback systemrsim Figure 11.1.
Assume that the reference signal is constantyietbe the measured output when
there is no feedback ang, be the output with feedback. Show théj§(s) =
S(9)Yoi(S), WwhereSis the sensitivity function.

11.8 (Disturbance reduction through feedback) Consider a prokih which an
output variable has been measured to estimate the potmtéisturbance attenu-
ation by feedback. Suppose an analysis shows that it is pessidesign a closed
loop system with the sensitivity function

s
S =—5——.

Ss) P+s+1

Estimate the possible disturbance reduction when the megslisturbance is

y(t) = 5sin(0.1t) 4+ 3sin(0.17t) + 0.5c050.9t) + 0.1t.

11.9 Show that the effect of high frequency measurement noise @rcahtrol
signal for the system in Example 11.4 can be approximated by

kys
(STs)2/2+sTy+1’

and that the largest value @S(iw)| is kq/T; which occurs forw = /2/Ts.

11.10(Attenuation of low-frequency sinusoidal disturbancesgggral action elim-
inates constant disturbances and reduces low-frequestiyrioiances because the
controller gain is infinite at zero frequency. A similar ideande used to reduce the
effects of sinusoidal disturbances of known frequewgyoy using the controller

kot ksS
P 22w+ o

This controller has the gai@s(iap) = kp + ks/(2¢) for the frequencywy, which
can be large by choosing a small valueof Assume that the process has the

CS=C=

C(s)
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transfer functiorP(s) = 1/s. Determine the Bode plot of the loop transfer function
and simulate the system. Compare the results with PI control.

11.11 Consider a lead compensator with the transfer function
svVk+ayn
C”(S>_< s+a ) ’

which has zero frequency ga{0) = 1 and high-frequency gaid(«) = k. Show
that the gain required to give a given phase l¢ad

k= (1+2tar?(/n) +2tar(¢/n)w/1+tanz(¢/n)>n,

and that limk = €29,
Nn—-co

11.12 Consider a process with the loop transfer function
- ki’
S—p
with positivezandp. Show that the system is stablepifz< k< 1 or 1< k< p/z,

and that the largest stability marginss, = |p—z|/(p+ 2) is obtained fork =
2p/(p+z). Determine the pole/zero ratios that gives the stabilitygimes,, = 2/3.

L(s)

@ 11.13 Prove the inequalities given by equation (11.18). (Hint: theemaximum
modulus theorem.)

11.14(Phase margin formulas) Show that the relationship betweeptihse mar-
gin and the values of the sensitivity functions at gain avuesis given by

St = T (i) = 55575

11.15(Stabilization of an inverted pendulum with visual feedhaCknsider sta-
bilization of an inverted pendulum based on visual feedhestkg a video camera
with a 50-Hz frame rate. Let the effective pendulum length.bsssume that we
want the loop transfer function to have a slopengé = —1/2 at the crossover
frequency. Use the gain crossover frequency inequalitgterdhine the minimum
length of the pendulum that can be stabilized if we desiresspimargin of 45

11.16 (Rear-steered bicycle) Consider the simple model of a kéciyt Equa-
tion (3.5), which has one pole in the right half-plane. The eigsl also valid for
a bicycle with rear wheel steering, but the sign of the véyosithen reversed and
the system also has a zero in the right half-plane. Use thétsex Exercise 11.12
to give a condition on the physical parameters that admitsraraller with the
stability marginsm.

@ 11.17Prove the formula (11.20) for the complementary sensitivity



Chapter Twelve
Robust Performance

However, by building an amplifier whose gain is deliberately made, sayedibels higher
than necessary (10000 fold excess on energy basis), and then féeeliogtput back on the
input in such a way as to throw away that excess gain, it has been fougsibpoto effect
extraordinary improvement in constancy of amplification and freedom fron-linearity.

Harold S. Black, “Stabilized Feedback Amplifiers,” 1934 [Bla34].

This chapter focuses on the analysis of robustness of fekdlyatems, a vast
topic for which we provide only an introduction to some of #&y concepts. We
consider the stability and performance of systems whoseegsodynamics are
uncertain and derive fundamental limits for robust stap#ind performance. To
do this we develop ways to describe uncertainty, both in ¢l fof parameter
variations and in the form of neglected dynamics. We alseflgrmention some
methods for designing controllers to achieve robust peréorce.

12.1 Modeling Uncertainty

Harold Black's quote above illustrates that one of the kegsusf feedback is to
provide robustness to uncertainty (“constancy of amplifce]. It is one of the
most useful properties of feedback and is what makes it plesg design feed-
back systems based on strongly simplified models.

One form of uncertainty in dynamical systemspigrametric uncertaintyin
which the parameters describing the system are unknownpialyexample is
the variation of the mass of a car, which changes with the murabpassengers
and the weight of the baggage. When linearizing a nonlingstem, the parame-
ters of the linearized model also depend on the operatinditons. It is straight-
forward to investigate the effects of parametric uncetyagimply by evaluating
the performance criteria for a range of parameters. Suchcalatibn reveals the
consequences of parameter variations. We illustrate byplsiexample.

Example 12.1 Cruise control

The cruise control problem was described in Section 3.1, andcarRioller was
designed in Example 10.3. To investigate the effect of par@mariations, we
will choose a controller designed for a nominal operatingdititon correspond-
ing to masan = 1600 kg, fourth geard = 12) and speed, = 25 m/s; the con-
troller gains arek, = 0.72 andk; = 0.18. Figure 12.1a shows the velocityand
the throttleu when encountering a hill with a°3slope with masses in the range
1600< m< 2000 kg, gear ratios 3—%(= 10, 12 and 16) and velocity X0v <40
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Figure 12.1: Responses of the cruise control system to a slope increase(a) and the
eigenvalues of the closed loop system (b). Model parameters aré¢ sver@ wide range.

m/s. The simulations were done using models that were lineduaround the dif-
ferent operating conditions. The figure shows that there aiatians in the re-
sponse but that they are quite reasonable. The largest tyeéwoor is in the range
of 0.2-0.6 m/s, and the settling time is about 15 s. The cosigolal is marginally
larger than 1 in some cases, which implies that the thrattielly open. A full
nonlinear simulation using a controller with windup prdieo is required if we
want to explore these cases in more detail. Figure 12.1b stimwsigenvalues of
the closed loop system for the different operating condgid he figure shows that
the closed loop system is well damped in all cases. O

This example indicates that at least as far as parametriatiars are con-
cerned, the design based on a simple nominal model will gitisfactory control.
The example also indicates that a controller with fixed parareetan be used in
all cases. Notice that we have not considered operatingitoomslin low gear and
at low speed, but cruise controllers are not typically ugeithése cases.

Unmodeled Dynamics

It is generally easy to investigate the effects of paramefariations. However,
there are other uncertainties that also are importantsasisied at the end of Sec-
tion 2.3. The simple model of the cruise control system castonly the dynamics
of the forward motion of the vehicle and the torque charasties of the engine
and transmission. It does not, for example, include a detailodel of the engine
dynamics (whose combustion processes are extremely crjgl¢he slight de-
lays that can occur in modern electronically controlledieag (as a result of the
processing time of the embedded computers). These neglewedanisms are
calledunmodeled dynamics

Unmodeled dynamics can be accounted for by developing a cmrelex
model. Such models are commonly used for controller devedmpniout substan-
tial effort is required to develop them. An alternative isrteestigate if the closed
loop system is sensitive to generic forms of unmodeled dyc&rithe basic idea
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Figure 12.2: Unmodeled dynamics in linear systems. Uncertainty can be represesited u
additive perturbations (left), multiplicative perturbations (middle) or Bestdk perturbations
(right). The nominal system B, andA, 6 = A/P andAg, represent unmodeled dynamics.

is to describe the unmodeled dynamics by including a trarfisfection in the sys-

tem description whose frequency response is bounded beitvae unspecified.

For example, we might model the engine dynamics in the crzosg¢rol example

as a system that quickly provides the torque that is reqdekteugh the throt-

tle, giving a small deviation from the simplified model, whizésumed the torque
response was instantaneous. This technique can also berusaghy instances
to model parameter variations, allowing a quite general@ggh to uncertainty
management.

In particular, we wish to explore if additional linear dyniasmmay cause dif-
ficulties. A simple way is to assume that the transfer functbthe process is
P(s) + A, whereP(s) is the nominal simplified transfer function afdrepresents
the unmodeled dynamics in terms adiditive uncertainty Different representa-
tions of uncertainty are shown in Figure 12.2.

When Are Two Systems Similar? The Vinnicombe Metric @

A fundamental issue in describing robustness is to determiren two systems are
close. Given such a characterization, we can then attengbdoribe robustness
according to how close the actual system must be to the modwider to still
achieve the desired levels of performance. This seeminglgcent problem is
not as simple as it may appear. A naive approach is to saywlasystems are
close if their open loop responses are close. Even if thisapp®tural, there are
complications, as illustrated by the following examples.

Example 12.2 Similar in open loop but large differences in closed tp
The systems with the transfer functions

k k
“sir P et

have very similar open loop responses for small valuds as illustrated in the top
plot in Figure 12.3a, which is plotted fdr = 0.025 andk = 100. The differences
between the step responses are barely noticeable in the.fihwestep responses
with unit gain error feedback are shown in the bottom plot guFé 12.3a. Notice
that one closed loop system is stable and the other one ighlest O

Pi(s) (12.1)

Example 12.3 Different in open loop but similar in closed loop
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Figure 12.3: Determining when two systems are close. The plots in (a) show a situation
when the open loop responses are almost identical, but the closed kpmmses are very
different. The processes are given by equation (12.1) kvitil00 andT = 0.025. The plots

in (b) show the opposite situation: the systems are different in open Idgnbilar in closed
loop. The processes are given by equation (12.2) kith100.

Consider the systems

k k
Pi(s) = si1’ Pa(s) = s_1° (12.2)
The open loop responses are very different becRusestable and® is unstable,
as shown in the top plot in Figure 12.3b. Closing a feedbacg lebh unit gain
around the systems, we find that the closed loop transferiturscare

k k
T(S) = —— T(S) = ——
8= s 29 = grk—1
which are very close for large as shown in Figure 12.3b. O

These examples show that if our goal is to close a feedback lbapay be
very misleading to compare the open loop responses of thersys

Inspired by these examples we introduce Yhenicombe metricwhich is a
distance measure that is appropriate for closed loop sgsteansider two systems
with the transfer functionB; andP., and define

) Pu(ieo) - Po(io)
R = T Rwp e Rio

which is a metric with the property € d(Pi,P) < 1. The numbed(P;,P,) can

be interpreted as the difference between the complemeséasitivity functions
for the closed loop systems that are obtained with unit faekllaround®, andP;

see Exercise 12.3. The metric also has a nice geometric iatation, as shown in
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Figure 12.4: Geometric interpretation od(Pp,P,). At each frequency, the points on the
Nyquist curve forP; (solid) andP, (dashed) are projected onto a sphere of radius 1 sitting
at the origin of the complex plane. The projection of the pointilis shown. The distance
between the two systems is defined as the maximum distance between ttotigmsjef
Pi(iw) and P(iw) over all frequencieso. The figure is plotted for the transfer functions
Pi(s) =2/(s+1) andP,(s) = 2/(s—1). (Diagram courtesy G. Vinnicombe.)

Figure 12.4, where the Nyquist plotsief andP, are projected onto a sphere with
radius 1 at the origin of the complex plane (called Riemann sphejePoints in
the complex plane are projected onto the sphere by a lineighrthe point and
the north pole (Figure 12.4). The distart{@;, P,) is the longest chordal distance
between the projections & (iw) andP(iw). The distance is small whe®, and
P, are small or large, but it emphasizes the behavior aroundyaire crossover
frequency.

The distancel(Py, P,) has one drawback for the purpose of comparing the be-
havior of systems under feedback Bf is perturbed continuously fror to P,
there can be intermediate transfer functi®nshered(Py, P) is 1 even ifd(Py, P,)
is small (see Exercise 12.4). To explore when this could happe observe that

(14 P(iw)P(—iw))(1+ P(—iw)Pi(iw))
(14 [Puiw)[)(1+ [P(iw)[?)

The right-hand side is zero, and herd{®;,P) = 1 if 1+ P(icw)Pi(—iw) = 0 for
somew. To explore when this could occur, we investigate the beirani the
function 1+ P(s)P(—s) whenP is perturbed froni; to P». If the functionsfi(s) =
1+ Pi(s)Pi(—s) andfz(s) = 1+ P»(s)Pi(—s) do not have the same number of zeros
in the right half-plane, there is an intermedi&such that H P(iw)P;(—iw) =0
for somew. To exclude this case we introduce the geas all pairgPi,P>) such
that the functionsf; = 1+ Py(s)Pi(—s) and fo = 1+ Px(s)Pi(—s) have the same
number of zeros in the right half-plane.

The Vinnicombe metrior v-gap metricis defined as

d(Pi,R), if (P,P)e?
1, otherwise

1—d?(P,P) =

8(Py. o) = { (12.4)

Vinnicombe [Vin01] showed tha, (P;, ) is a metric, he gave strong robustness
results based on the metric and he developed the theory $terag with many
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inputs and many outputs. We illustrate its use by computivegrhetric for the
systems in the previous examples.

Example 12.4 Vinnicombe metric for Examples 12.2 and 12.3
For the systems in Example 12.2 we have
1+k2—&

1+ K2 +2sT+ (T2 - 1) — 28T — *T?2
fa(s) = 1+ Po(S)PL(—S) = (1_32)((1+ 23)T+32T2)

The function f; has one zero in the right half-plane. A numerical calcuratio
for k = 100 andT = 0.025 shows that the functiofy has the roots 46.3, -86.3,
—20.04+60.0i. Both functions have one zero in the right half-plane, allmwus to
compute the norm (12.4). Fdr = 0.025 this givesd, (P, ) = 0.98, which is a
quite large value. To have reasonable robustness Vinniesatmmmended values
less than 1/3.

For the system in Example 12.3 we have

2 _ — k2 —
1+a@apg_125§§, 1+3@a@9_1é+§j§

These functions have the same number of zeros in the righplaie ifk > 1.
In this particular case the Vinnicombe metricdgPy, P>) = 2k/(1+k?) (Exer-
cise 12.4) and withk = 100 we getd, (Pi,P») = 0.02. Figure 12.4 shows the
Nyquist curves and their projections foe= 2. Notice thad(Py,P,) is very small
for smallk even though the closed loop systems are very different.thideefore
essential to consider the conditigfy, P,) € ¢, as discussed in Exercise 12.4]

12.2 Stability in the Presence of Uncertainty

Having discussed how to describe uncertainty and the gityilaetween two sys-

tems, we now consider the problem of robust stability: Whan we show that

the stability of a system is robust with respect to procesmtians? This is an

important question since the potential for instability reea@f the main drawbacks
of feedback. Hence we want to ensure that even if we have smaalturacies in

our model, we can still guarantee stability and performance

Robust Stability Using Nyquist’s Criterion

The Nyquist criterion provides a powerful and elegant wayttag the effects
of uncertainty for linear systems. A simple criterion istthi@ Nyquist curve be
sufficiently far from the critical point-1. Recall that the shortest distance from
the Nyquist curve to the critical point &, = 1/Ms, whereMs is the maximum
of the sensitivity function and,, is the stability margin introduced in Section 9.3.
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Figure 12.5:Robust stability using the Nyquist criterion. (a) This plot shows that thetesto
distance to the critical poirg, is a robustness measure. (b) This plot shows the Nyquist curve
of a nominal loop transfer function and its uncertainty caused by adgitaeess variations

A.

The maximum sensitivitys or the stability margirsy, is thus a good robustness
measure, as illustrated in Figure 12.5a.

We will now derive explicit conditions for permissible pexs uncertainties.
Consider a stable feedback system with a prodessd a controllelC. If the
process is changed fromito P+ A, the loop transfer function changes frd?@
to PC+ CA, as illustrated in Figure 12.5b. If we have a bound on the siz& o
(represented by the dashed circle in the figure), then themsystmains stable
as long as the process variations never overlap-thgoint, since this leaves the
number of encirclements ef1l unchanged.

Some additional assumptions are required for the analysisltb Most impor-
tantly, we require that the process perturbatinse stable so that we do not in-
troduce any new right half-plane poles that would requirdittahal encirclements
in the Nyquist criterion.

We will now compute an analytical bound on the allowable psscdistur-
bances. The distance from the critical poirt to the loop transfer functioh is
|14 L|. This means that the perturbed Nyquist curve will not reaehdtitical
point —1 provided tha{CA| < |1+ L|, which implies

14+PC
c |

This condition must be valid for all points on the Nyquist cairize, pointwise
for all frequencies. The condition for robust stability chng be written as

1
T(iw)]
Notice that the condition is conservative because it foldsom Figure 12.5 that
the critical perturbation is in the direction toward thetical point —1. Larger

perturbations can be permitted in the other directions.
The condition in equation (12.6) allows us to reason abou¢riamty without

A1
A <‘ 16| = ]5‘ <y (12.5)

15(iw)] = )gg:g < for all @ > 0. (12.6)
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exact knowledge of the process perturbations. Namely, weverfy stability for

any uncertaintyA that satisfies the given bound. From an analysis perspective,
this gives us a measure of the robustness for a given desmmeGsely, if we
require robustness of a given level, we can attempt to chowseontrollerC such

that the desired level of robustness is available (by astiagT be small) in the
appropriate frequency bands.

Equation (12.6) is one of the reasons why feedback systemis seowell in
practice. The mathematical models used to design contr@rsgsare often simpli-
fied, and the properties of a process may change during oper&iuation (12.6)
implies that the closed loop system will at least be stablsdbstantial variations
in the process dynamics.

It follows from equation (12.6) that the variations can beyéafor those fre-
quencies wher& is small and that smaller variations are allowed for freques
whereT is large. A conservative estimate of permissible procesiati@ns that
will not cause instability is given by

. A(iw) 1

3(iw)| =[5 s| < =

[0(ia)] P(iw) M

whereM; is the largest value of the complementary sensitivity
PC H

1+PClle’

The value ofM is influenced by the design of the controller. For examples it i

shown in Exercise 12.5 that M; = 2 then pure gain variations of 50% or pure

phase variations of 30are permitted without making the closed loop system un-

stable.

My = SupT (ic0)| = H (12.7)

Example 12.5 Cruise control
Consider the cruise control system discussed in SectiorTBelmodel of the car
in fourth gear at speed 25 m/s is

(9= 1.38
- 5+0.0142

and the controller is a PI controller with gaikg = 0.72 andk; = 0.18. Fig-
ure 12.6 plots the allowable size of the process uncertaisiyg the bound in
equation (12.6). At low frequencie$,0) = 1 and so the perturbations can be as
large as the original proces®( = |A/P| < 1). The complementary sensitivity has
its maximumM; = 1.14 atwny; = 0.35, and hence this gives the minimum allow-
able process uncertainty, with| < 0.87 or|A| < 3.47. Finally, at high frequencies,
T — 0 and hence the relative error can get very large. For exaraple=5 we
have|T (iw)| = 0.195, which means that the stability requiremendis< 5.1. The
analysis clearly indicates that the system has good robsstand that the high-
frequency properties of the transmission system are nobitapt for the design
of the cruise controller.

Another illustration of the robustness of the system is mjiirethe right dia-
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Figure 12.6:Robustness for a cruise controller. On the left the maximum relative BffD|
(solid) and the absolute errd®|/|T| (dashed) for the process uncertaidtyThe Nyquist
curve is shown on the right as a solid line. The dashed circles show péshaiperturbations
in the process dynamicl| = |P|/|T|, at the frequencies = 0, 0.0142 and 0.05.

gram in Figure 12.6, which shows the Nyquist curve of the fienfsinction of the
process and the uncertainty bourltls- |P|/|T| for a few frequencies. Note that
the controller can tolerate large amounts of uncertaintysditl maintain stability
of the closed loop. O

The situation illustrated in the previous example is typafamnany processes:
moderately small uncertainties are required only arouedgiin crossover fre-
guencies, but large uncertainties can be permitted at hagitelower frequencies.
A consequence of this is that a simple model that descrilepritcess dynamics
well around the crossover frequency is often sufficient faigle Systems with
many resonant peaks are an exception to this rule becauggdbess transfer
function for such systems may have large gains for higheuieacies also, as
shown for instance in Example 9.9.

The robustness condition given by equation (12.6) can bengivether inter-
pretation by using the small gain theorem (Theorem 9.4). Toyaihe theorem
we start with block diagrams of a closed loop system with #uypleed process and
make a sequence of transformations of the block diagramigbktte the block
representing the uncertainty, as shown in Figure 12.7. Thatieghe two-block
interconnection shown in Figure 12.7c, which has the loapsfier function

PC A
~1+PCP

Equation (12.6) implies that the largest loop gain is less thaand hence the
system is stable via the small gain theorem.

The small gain theorem can be used to check robust stabitityrfcertainty in
a variety of other situations. Table 12.1 summarizes a feth@tcommon cases;
the proofs (all via the small gain theorem) are left as eseti

The following example illustrates that it is possible to dessystems that are
robust to parameter variations.
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Figure 12.7: lllustration of robustness to process perturbations. A system with additive
certainty (left) can be manipulated via block diagram algebra to one with mudtijiéc
uncertaintyd = A/P (center). Additional manipulations isolate the uncertainty in a manner
that allows application of the small gain theorem (right)

o>

Example 12.6 Bode's ideal loop transfer function

A major problem in the design of electronic amplifiers is toaita closed loop
system that is insensitive to changes in the gain of the releict components.
Bode found that the loop transfer functitugs) = ks™", with 1 < n <5/3, was
an ideal loop transfer function. The gain curve of the Bode gl@ straight line
with slope—n and the phase is constant &(gw) = —n/2. The phase margin
is thus ¢ = 90(2—n)° for all values of the gairk and the stability margin is
sm = sinm(1—n/2). This exact transfer function cannot be realized with phlsic
components, but it can be approximated over a given frequamge with a ratio-
nal function (Exercise 12.7). An operational amplifier citadhat has the approx-
imate transfer functioi(s) = k/(s+ a) is a realization of Bode’s ideal transfer
function withn =1, as described in Example 8.3. Designers of operational am-
plifiers go to great efforts to make the approximation valiéroa wide frequency
range. U

Youla Parameterization

Since stability is such an essential property, it is usefuthiaracterize all con-
trollers that stabilize a given process. Such a representatihich is called &oula
parameterizationis very useful when solving design problems because it sitike
possible to search over all stabilizing controllers withthe need to test stability
explicitly.

We will first derive Youla’s parameterization for a stablegees with a rational
transfer functiorP. A system with the complementary sensitivity functibrean

Table 12.1:Conditions for robust stability for different types of uncertainty

Process Uncertainty Type  Robust Stability
P+A Additive [CRAw < 1
P(1+9) Multiplicative ITOllo <1

P/(1+Mg-P)  Feedback [PSp[leo < 1
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Figure 12.8: Youla parameterization. Block diagrams of Youla parameterizationsdiatde
system (@) and an unstable system (b). Notice that the sigaakro in steady state.

be obtained by feedforward control with the stable tranffectionQ if T = PQ.

Notice thatT must have the same right half-plane zero$PasinceQ is stable.
Now assume that we want to implement the complementaryfaafsction T

by using unit feedback with the controllé:. SinceT = PC/(1+ PC) = PQ, it

follows that the controller transfer function is

C= (12.8)

1-PQ
A straightforward calculation gives
S=1-PQ, PS=P(1-PQ), CS=0Q, T=PQ.

These transfer functions are all stabl®&ndQ are stable and the controller given
by equation (12.8) is thus stabilizing. Indeed, it can beashthat all stabilizing
controllers are in the form given by equation (12.8) for sacheice ofQ. The
parameterization is illustrated by the block diagrams irukFégl2.8a.

A similar characterization can be obtained for unstabldesys. Consider a
process with a rational transfer functiBxs) = a(s)/b(s), wherea(s) andb(s) are
polynomials. By introducing a stable polynoméik), we can write

b(s) _ B(s)
P =35 ~ A9
whereA(s) = a(s)/c(s) andB(s) = (s)/ (s) are stable rational functions. Simi-
larly we introduce the controlleZy(s) = Go(s)/Fo(S), whereFy(s) andGo(s) are
stable rational functions. We have

_ AR __ BR
DT ARIBG T AR+ BG

 AGy _ BGo
OV TARTBG’  °T AR+BG

The controllelCy is stabilizing if and only if the rational functioARy + BGy does
not have any zeros in the right half plane. gbe a stable rational function and
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Figure 12.9:Block diagram of a basic feedback loop. The external signals areférenee
signalr, the load disturbanceé and the measurement noiseThe process output ig and

the control signal is1. The proces® may include unmodeled dynamics, such as additive
perturbations.

consider the controller
~ Go+QA

C= F, OB (12.9)
The Gang of Four foP andC is
c_AR-QB . B(R-QB
AR+BGy’ AR +BGy’
cs_ AlGo+QA) _B(Go+QA
AR +BGy ’ AR+ BGp

All these transfer functions are stable if the rational timt AR + BGy does not
have any zeros in the right half plane and the contr@lgiven by (12.9) is there-
fore stabilizing for any stabl®. A block diagram of the closed loop system with
the controllerC is shown in Figure 12.8b. Notice that the transfer functap-
pears affinely in the expressions for the Gang of Four, whickeig useful if we
want to determine the transfer functi@ito obtain specific properties.

12.3 Performance in the Presence of Uncertainty

So far we have investigated the risk for instability and rabess to process un-
certainty. We will now explore how responses to load distndes, measurement
noise and reference signals are influenced by process vasaiio do this we will
analyze the system in Figure 12.9, which is identical to th&dbeedback loop
analyzed in Chapter 11.

Disturbance Attenuation

The sensitivity functiorS gives a rough characterization of the effect of feedback
on disturbances, as was discussed in Section 11.3. A moiikedatharacterization
is given by the transfer function from load disturbancesrtxpss output:

P
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Load disturbances typically have low frequencies, and iherdfore important
that the transfer function be small for low frequencies. frocesses with constant
low-frequency gain and a controller with integral action haveGyq ~ s/k;. The
integral gairk; is thus a simple measure of the attenuation of load distedsan

To find out how the transfer functioByq is influenced by small variations in
the process transfer function we differentiate (12.10hwétspect td° yielding

dGyq 1 SP Gy
pr— p— p—
P~ (1+PC?  PALPC) P
and it follows that
d
dGq _ gdP (12.11)

The response to load disturbances is thus insensitive t@gso@riations for fre-
quencies wheréS(iw)| is small, i.e., for frequencies where load disturbances are
important.

A drawback with feedback is that the controller feeds messent noise into
the system. In addition to the load disturbance rejectibis, thus also important
that the control actions generated by measurement noiseoateo large. It fol-
lows from Figure 12.9 that the transfer functi@y, from measurement noise to
controller output is given by

C T

iipc- P (12.12)
Since measurement noise typically has high frequenciesrahsfer functiorGyn
should not be too large for high frequencies. The loop tranfsfiection PC is
typically small for high frequencies, which implies th@ag, ~ C for large s. To
avoid injecting too much measurement noise it is thereforngortant thatC(s)
be small for larges. This property is calledhigh-frequency roll-off An example
is filtering of the measured signal in a PID controller to redtiee injection of
measurement noise; see Section 10.5.

To determine how the transfer functi@, is influenced by small variations in

the process transfer, we differentiate equation (12.12):

Gun =

dGn _d [/ C B C C——T%
dP  dP\ 1+PC/) (1+PC)Z2~ P’
Rearranging the terms gives
dGyn dpP
=-T—. 12.13
Gur 5 ( )

Since the complementary sensitivity function is also sn@llHigh frequencies,
we find that process uncertainty has little influence on thesteariunctionG, for
frequencies where measurements are important.
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Figure 12.10:Operational amplifier with uncertain dynamics. The circuit on the left is-mod
eled using the transfer functid(s) to capture its dynamic properties and it has a load at
the output. The block diagram on the right shows the input/output relationshe load is
represented as a disturbarttapplied at the output db(s).

Reference Signal Tracking

The transfer function from reference to output is given by
PCF

" 14PC

which contains the complementary sensitivity functions@e how variations iR

affect the performance of the system, we differentiate egu#l2.14) with respect

to the process transfer function:
dG, CF  PCFC = CF Gy
dP  1+PC (1+PC)2 (1+PC32 ~ P’

and it follows that

Gyr =TF, (12.14)

dG, _dP
—S—. 12.1
Gyr % (12.15)

The relative error in the closed loop transfer function thgsats the product of
the sensitivity function and the relative error in the pisgen particular, it follows
from equation (12.15) that the relative error in the closmapltransfer function is
small when the sensitivity is small. This is one of the usefaperties of feedback.

As in the last section, there are some mathematical assomsptinat are re-
quired for the analysis presented here to hold. As alreaatgdtwe require that
the perturbationa be small (as indicated by writingP). Second, we require that
the perturbations be stable, so that we do not introduce awyright half-plane
poles that would require additional encirclements in theNgt criterion. Also, as
before, this condition is conservative: it allows for anytpgbation that satisfies
the given bounds, while in practice the perturbations mambee restricted.

Example 12.7 Operational amplifier circuit
To illustrate the use of these tools, consider the perfooaarf an op amp-based
amplifier, as shown in Figure 12.10. We wish to analyze the paidace of the
amplifier in the presence of uncertainty in the dynamic respasf the op amp
and changes in the loading on the output. We model the syssamg the block
diagram in Figure 12.10b, which is based on the derivation @niple 9.1.
Consider first the effect of unknown dynamics for the operati@mplifier. If
we model the dynamics of the op ampwas= —G(s)v, then the transfer function
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for the overall circuit is given by
R Gl
Ry G(S) + Rz/Rl +1
We see that if5(s) is large over the desired frequency range, then the closgd lo
system is very close to the ideal response Ry/R;. AssumingG(s) = b/(s+a),
whereb is the gain-bandwidth product of the amplifier, as discusseBxam-
ple 8.3, the sensitivity function and the complementangiiity function become
_ s+a B ab
- sta+tab’ - sta+tab’
The sensitivity function around the nominal values tells aw hhe tracking re-
sponse response varies as a function of process perturbatio

GV2V1 =

dG, _dP
=S
Gyr P

We see that for low frequencies, whe&es small, variations in the bandwidéhor
the gain-bandwidth produttwill have relatively little effect on the performance
of the amplifier (under the assumption thas sufficiently large).

To model the effects of an unknown load, we consider the mddf a dis-
turbance at the output of the system, as shown in Figure 12THib disturbance
represents changes in the output voltage due to loadingteffehe transfer func-
tion Gyg = Sgives the response of the output to the load disturbancewanske
that if Sis small, then we are able to reject such disturbances. Tisitiséy of Gyq
to perturbations in the process dynamics can be computeakingtthe derivative
of Gyg with respect tdP:

dGyq —C T dGyq dP

dP (1+PC)2_—PGyd — Gyq =T
Thus we see that the relative changes in the disturbancdiogjere roughly the
same as the process perturbations at low frequency (Whisrapproximately 1)
and drop off at higher frequencies. However, it is importanemember thab,q
itself is small at low frequency, and so these variationglative performance may
not be an issue in many applications. O

12.4 Robust Pole Placement

In Chapters 6 and 7 we saw how to design controllers by settiagocations
of the eigenvalues of the closed loop system. If we analyeedbulting system
in the frequency domain, the closed loop eigenvalues quoresto the poles of
the closed loop transfer function and hence these methedsften referred to as
design bypole placement

State space design methods, like many methods developedrfopksystem
design, do not explicitly take robustness into account.uchscases it is essen-
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Figure 12.11: Observer-based control of steering. The Nyquist plot (left) andeBualdt

(right) of the loop transfer function for vehicle steering with a controllesdabon state
feedback and an observer. The controller provides stable operatibwith very low gain

and phase margin.

tial to always investigate the robustness because thersearaingly reasonable
designs that give controllers with poor robustness. Watilate this by analyzing
controllers designed by state feedback and observers. ©eecd:loop poles can
be assigned to arbitrary locations if the system is obsésvaid reachable. How-
ever, if we want to have a robust closed loop system, the @oidszeros of the
process impose severe restrictions on the location of tieedlloop poles. Some
examples are first given; based on the analysis of these ezamgl then present
design rules for robust pole (eigenvalue) placement.

Slow Stable Process Zeros

We will first explore the effects of slow stable zeros, and weilhevith a simple
example.

Example 12.8 Vehicle steering
Consider the linearized model for vehicle steering in Exan@6, which has the
transfer function

~ 05s+1

P(S) =~

A controller based on state feedback was designed in Examplaiid state feed-
back was combined with an observer in Example 7.4. The systemlated in
Figure 7.8 has closed loop poles specifieddpy= 0.3, {; = 0.707, wp, = 7 and
(o = 9. Assume that we want a faster closed loop system and chooselO,
(. =0.707,w, = 20 and{, = 0.707. Using the state representation in Example 7.3,
a pole placement design gives state feedback dains100 andk, = —35.86 and
observer gaink, = 28.28 andl, = 400. The controller transfer function is

(s) = —11516+ 40000
- 244245466579
Figure 12.11 shows Nyquist and Bode plots of the loop tran@fection. The
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Nyquist plot indicates that the robustness is poor sincéoiyetransfer function is
very close to the critical point 1. The phase margin is and the stability margin
is sy = 0.077. The poor robustness shows up in the Bode plot, where the ga
curve hovers around the value 1 and the phase curve is closk&@ for a wide
frequency range. More insight is obtained by analyzing #resiivity functions,
shown by solid lines in Figure 12.12. The maximum sensitigiiesMs = 13 and
M; = 12, indicating that the system has poor robustness.

At first sight it is surprising that a controller where the noaliclosed system
has well damped poles and zeros is so sensitive to procdativas. \We have an
indication that something is unusual because the contriolle a zero a$ = 3.5
in the right half-plane. To understand what happens, weimi#stigate the reason
for the peaks of the sensitivity functions.

Let the transfer functions of the process and the controbler b

P(S) np(s) ) o nC(S)

~dy(s)’ T (9

wherenp(s), n¢(s), dp(s) andd(s) are the numerator and denominator polynomi-
als. The complementary sensitivity function is

~ pPC Np(s)ne(s)
~ 1+PC  dp(s)dc(s) +np(s)ne(s)”

The poles ofT (s) are the poles of the closed loop system and the zeros are given
by the zeros of the process and controller. Sketching the gaie of the com-
plementary sensitivity function we find th@ts) = 1 for low frequencies and that
|T(iw)| starts to increase at its first zero, which is the process Zese-a-2. It
increases further at the controller zercsat 3.5, and it does not start to decrease
until the closed loop poles appearat= 10 andw, = 20. We can thus conclude
that there will be a peak in the complementary sensitivitbction. The magnitude
of the peak depends on the ratio of the zeros and the poles tfahsfer function.

The peak of the complementary sensitivity function can bed@ebby assign-
ing a closed loop pole close to the slow process zero. We daenacthis by choos-
ing wx = 10 and{. = 2.6, which gives closed loop poles st —2 ands= —50.
The controller transfer function then becomes

(g 36285+40000 _ $+1102
~ £+80285+15656 . (s+2)(s+7828)

The sensitivity functions are shown by dashed lines in Fig@r@2. The controller
gives the maximum sensitivitieéds = 1.34 andM; = 1.41, which give much better
robustness. Notice that the controller has a polg-at—2 that cancels the slow
process zero. The design can also be done simply by cancékngldw stable
process zero and designing the controller for the simplifjestiesn. O

T(s)

One lesson from the example is that it is necessary to chdosed:loop poles
that are equal to or close to slow stable process zeros. Ant@sson is that slow
unstable process zeros impose limitations on the achieeidwidth, as already
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Figure 12.12:Sensitivity functions for observer-based control of vehicle steeflihg.com-
plementary sensitivity function (left) and the sensitivity function (right)tfer original con-
troller with ax. = 10, {c = 0.707, wp = 20, {, = 0.707 (solid) and the improved controller
with «w = 10, {c = 2.6 (dashed).

noted in Section 11.5.

Fast Stable Process Poles

The next example shows the effect of fast stable poles.

Example 12.9 Fast system poles
Consider a PI controller for a first-order system, where thegss and the con-
troller have the transfer functiof¥s) = b/(s+a) andC(s) = kp + ki /s. The loop
transfer function is
b(kps+ ki)
L(s)= ——=
S(s+a)
and the closed loop characteristic polynomial is.
s(s+a) +b(kps+ki) = $*+ (a+bky)s+ kib

If we specify the desired closed loop poles should@® and —p», we find that
the controller parameters are given by

)

_ pitp2—a - P1p2
The sensitivity functions are then
s(s+a) (P1+ P2 —a)s+ p1p2
S =—"" """ T(s) =
B erperr) YT srpiste)

Assume that the process pel@ is much more negative than the closed loop poles
—p1 and—py, say,p1 < p2 < a. Notice that the proportional gain is negative and
that the controller has a zero in the right half-plana i p; + pp, an indication
that the system has bad properties.

Next consider the sensitivity function, which is 1 for higeduencies. Moving
from high to low frequencies, we find that the sensitivity geses at the pro-
cess poles= —a. The sensitivity does not decrease until the closed loopspanie
reached, resulting in a large sensitivity peak that is agpratelya/p,. The mag-
nitude of the sensitivity function is shown in Figure 12.1Bde=b =1, p1 = 0.05
andp, = 0.2. Notice the high-sensitivity peak. For comparison we alsow the
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Figure 12.13: Gain curves for Bode plots of the sensitivity functi@for designs with
p1 < p2 < a(left) anda < p1 < p2 (right). The solid lines are the true sensitivities, and the
dashed lines are the asymptotes.

gain curve for the case when the closed loop pofas= 5, p, = 20) are faster
than the process pola & 1).

The problem with poor robustness can be avoided by choosiaglosed loop
pole equal to the process pole, i.p2,= a. The controller gains then become

P1 apy
K, — o
p b Y k| I 9

which means that the fast process pole is canceled by a tlentzero. The loop
transfer function and the sensitivity functions are

L= gg=_° Tigy= 2o

s ~ s+bky’ " s+bky’
The maximum sensitivities are now less than 1 for all freqgieendNotice that this
is possible because the process transfer function goesd@gs . O

Design Rules for Pole Placement

Based on the insight gained from the examples, it is now plesg) obtain design
rules that give designs with good robustness. Considerxpeession (12.7) for
maximum complementary sensitivity, repeated here:

PC H
1+PClleo’

Let wyc be the desired gain crossover frequency. Assume that thegsdas ze-
ros that are slower thamyc. The complementary sensitivity function is 1 for low
frequencies, and it increases for frequencies close tortieeps zeros unless there
is a closed loop pole in the neighborhood. To avoid largeeslf the comple-
mentary sensitivity function we find that the closed loop sgsshould therefore
have poles close to or equal to the slow stable zeros. Thissibahslow stable
zeros should be canceled by controller poles. Since unstabbs cannot be can-
celed, the presence of slow unstable zeros means that ablgayain crossover
frequency must be smaller than the slowest unstable praeess

Now consider process poles that are faster than the desareatigpssover fre-

M; = sup|T(iw)| = H
w
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guency. Consider the expression for the maximum of the sétsfunction:

. 1

Ms = suplS(ic)| = | 1+ Pch'
The sensitivity function is 1 for high frequencies. Movingrn high to low fre-
guencies, the sensitivity function increases at the fastgss poles. Large peaks
canresult unless there are closed loop poles close to tharéaess poles. To avoid
large peaks in the sensitivity the closed loop system shitngdcefore have poles
that match the fast process poles. This means that the denshbuld cancel the
fast process poles by controller zeros. Since unstable nuade®t be canceled,
the presence of a fast unstable pole implies that the gagsover frequency must
be sufficiently large.

To summarize, we obtain the following simple rule for chogsclosed loop
poles: slow stable process zeros should be matched by s@sedlloop poles,
and fast stable process poles should be matched by fastidlose poles. Slow
unstable process zeros and fast unstable process polesdrsgeere limitations.

Example 12.10 Nanopositioning system for an atomic force microspe

A simple nanopositioner was explored in Example 9.9, wheveag shown that
the system could be controlled using an integral controllee performance of
the closed loop was poor because the gain crossover fregueas limited to
Wyc = 2{ wp(1— sm). It can be shown that little improvement is obtained by using
a PI controller. To achieve improved performance, we willréiere apply PID
control. For a modest performance increase, we will use éis@d rule derived in
Example 12.9 that fast stable process poles should be cdrinetontroller zeros.
The controller transfer function should thus be chosen as

kas®+Kps+ki ki s?+2as+a?
C(s) = =— >
S S a
wherea = wy, which givesk, = 2{ki/a andkq = ki /a2.
Figure 12.14 shows the gain curves for the Gang of Four fort@sydesigned
with ki = 0.5. A comparison with Figure 9.12 shows that the bandwidth is in
creased significantly fromyc = 0.01 to wyc = ki = 0.5. Since the process pole is
canceled, the system will, however, still be very sensitivead disturbances with
frequencies close to the resonant frequency. The gain clir@Sbas a dip or a
notch at the resonant frequency, which implies that theroblet gain is very low
for frequencies around the resonance. The gain curve alsgsshat the system is
very sensitive to high-frequency noise. The system willljikee unusable because
the gain goes to infinity for high frequencies.
The sensitivity to high frequency noise can be remedied byifyiad the con-
troller to be

(12.16)

C(s)—ﬁ &£+ 27as+ a?

-~ sa(1+sTi+(sTr)?/2)’
which has high-frequency roll-off. Selection of the consténfor the filter is a
compromise between attenuation of high-frequency measamrenoise and ro-

(12.17)
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Figure 12.14:Nanopositioning system control via cancellation of the fast process@ale.
plots for the Gang of Four for PID control with second-order filtering.1) are shown
by solid lines, and the dashed lines show results for an ideal PID contvatleout filter-

ing (12.16).

bustness. A large value @% reduces the effects of sensor noise significantly, but
it also reduces the stability margin. Since the gain crogsfreguency without
filtering isk;, a reasonable choice Tg = 0.2/Ts, as shown by the solid curves in
Figure 12.14. The plots d€Siw)| and|S(iw)| show that the sensitivity to high-
frequency measurement noise is reduced dramatically atdseof a marginal
increase of sensitivity. Notice that the poor attenuatibdisturbances with fre-
guencies close to the resonance is not visible in the seibsitinction because of
the exact cancellation of poles and zeros.

The designs thus far have the drawback that load disturbavittefequencies
close to the resonance are not attenuated. We will now cenaidesign that ac-
tively attenuates the poorly damped modes. We start witldeal iPID controller
where the design can be done analytically, and we add hegjuéncy roll-off. The
loop transfer function obtained with this controller is

(5) = a2(kgS® + kps—+ki)
- s(?+2lasta?)
The closed loop system is of third order, and its characiepsiynomial is

(12.18)

$* 4 (kga® +2¢a)s* + (kp + 1)a’s+ kia?. (12.19)
A general third-order polynomial can be parameterized as
S+ (a4 20) wns® + (14 200 ) Wi S+ Aoy (12.20)

The parameterag and{ give the relative configuration of the poles, and the pa-
rameteruy gives their magnitudes, and therefore also the bandwidtiecsystem.
The identification of coefficients of equal powerssoWith equation (12.19)
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Figure 12.15: Nanopositioner control using active damping. Gain curves for the &éng
Four for PID control of the nanopositioner designed dgr= a (dash-dotted), 2 (dashed),
and 4 (solid). The controller has high-frequency roll-off and has beerigdes to give
active damping of the oscillatory mode. The different curves coardpo different choices
of magnitudes of the poles, parameterizedugyin equation (12.19).

gives a linear equation for the controller parameters, whis the solution
~ (1+2000) 0 o} ~(ap+20)wn 2
kp_T_la kl_?a kd_T—z

To obtain a design with active damping, it is necessary timattosed loop band-
width be at least as fast as the oscillatory modes. Adding-frigquency roll-off,
the controller becomes

(12.21)

kg Kps+k
&= STrsht (5722

The valueT; = Ty/10= 0.1ky/k is a good value for the filtering time constant.
Figure 12.15 shows the gain curves of the Gang of Four for desigth
{ =0.707,a90 = 1 andwy = @, 2a and 4. The figure shows that the largest values
of the sensitivity function and the complementary sengyjtiftunction are small.
The gain curve folPSshows that the load disturbances are now well attenuated
over the whole frequency range, and attenuation increaisegnereasinguwy. The
gain curve forCSshows that large control signals are required to provideect
damping. The high gain @& Sfor high frequencies also shows that low-noise sen-
sors and actuators with a wide range are required. The lagges forCSare 19,
103 and 434 forwn = a, 2a and 4, respectively. There is clearly a trade-off be-
tween disturbance attenuation and controller gain. A coispa of Figures 12.14
and 12.15 illustrates the trade-offs between control acied disturbance attenu-

ation for the designs with cancellation of the fast proceds pnd active damping.
O

(12.22)
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12.5 Design for Robust Performance @

Control design is a rich problem where many factors have taken into account.
Typical requirements are that load disturbances shoulttéewmated, the controller
should inject only a moderate amount of measurement ndisegputput should
follow variations in the command signal well and the clossapl system should be
insensitive to process variations. For the system in Figare these requirements
can be captured by specifications on the sensitivity funst®and T and the
transfer function€,y, Gun, Gyr and Gy;. Notice that it is necessary to consider
at least six transfer functions, as discussed Section 114 .r&tuirements are
mutually conflicting, and it is necessary to make trade-Offse attenuation of
load disturbances will be improved if the bandwidth is irased, but so will the
noise injection.

It is highly desirable to have design methods that can gteeaiobust perfor-
mance. Such design methods did not appear until the late 1880/ of these
design methods result in controllers having the same streicis the controller
based on state feedback and an observer. In this sectionowiel@ia brief review
of some of the techniques as a preview for those interestedoie specialized
study.

Quantitative Feedback Theory

Quantitative feedback theo(FT) is a graphical design method for robust loop
shaping that was developed by I. M. Horowitz [Hor91]. The igeto first deter-
mine a controller that gives a complementary sensitivigt th robust to process
variations and then to shape the response to referencdssigneedforward. The
idea is illustrated in Figure 12.16a, which shows the leveves of the comple-
mentary sensitivity functio on a Nyquist plot. The complementary sensitivity
function has unit gain on the line Réw) = —0.5. In the neighborhood of this
line, significant variations in process dynamics only givederate changes in the
complementary transfer function. The shaded part of the figomesponds to the
region 09 < |T(iw)| < 1.1. To use the design method, we represent the uncertainty
for each frequency by a region and attempt to shape the laogfer function so
that the variation ifT is as small as possible. The design is often performed using
the Nichols chart shown in Figure 12.16b.

Linear Quadratic Control

One way to make the trade-off between the attenuation of diistdrbances and
the injection of measurement noise is to design a contrthlrminimizes the loss

function
T/ t) +pu(t)) dt,

wherep is a weighting parameter as discussed in Section 6.3. Thifuastion
gives a compromise between load disturbance attenuatmligturbance injec-
tion because it balances control actions against devitiothe output. If all state
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Figure 12.16: Hall and Nichols charts. The Hall chart is a Nyquist plot with curves for
constant gain and phase of the complementary sensitivity funttidhe Nichols chart is the
conformal map of the Hall chart under the transformatiba logL (with the scale flipped).
The dashed curve is the line wheie(iw)| = 1, and the shaded region corresponding to
loop transfer functions whose complementary sensitivity changes byone thant10% is
shaded.

variables are measured, the controller is a state feedlback Kx and it has the
same form as the controller obtained by eigenvalue assign(pele placement)

in Section 6.2. However, the controller gain is obtained byiseg an optimiza-
tion problem. It has been shown that this controller is vetyust. It has a phase
margin of at least 60and an infinite gain margin. The controller is calletira

ear quadratic controlor LQ control because the process model is linear and the
criterion is quadratic.

When all state variables are not measured, the state cacdesteucted using
an observer, as discussed in Section 7.3. It is also possilifgroduce process
disturbances and measurement noise explicitly in the madélto reconstruct
the states using a Kalman filter, as discussed briefly in SecténThe Kalman
filter has the same structure as the observer designed byaigerassignment in
Section 7.3, but the observer gaingre now obtained by solving an optimization
problem. The control law obtained by combining linear quddreontrol with a
Kalman filter is calledinear quadratic Gaussian contradr LQG control The
Kalman filter is optimal when the models for load disturbaremed measurement
noise are Gaussian.

It is interesting that the solution to the optimization desh leads to a con-
troller having the structure of a state feedback and an wbséerhe state feedback
gains depend on the parametperand the filter gains depend on the parameters in
the model that characterize process noise and measureoisa{see Section 7.4).
There are efficient programs to compute these feedback andvebgains.

The nice robustness properties of state feedback are un&bely lost when
the observer is added. It is possible to choose parametargitle closed loop
systems with poor robustness, similar to Example 12.8. Wetnanconclude that
thereis a
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e -z d v n

z P
u > y

C |- —C

Figure 12.17:H., robust control formulation. The left figure shows a general regmigion

of a control problem used in robust control. The inputepresents the control signal, the
input w represents the external influences on the system, the omfputhe generalized
error and the output is the measured signal. The right figure shows the special case of the
basic feedback loop in Figure 12.9 where the reference signal islpetfus case we have
w= (n,d) andz= (y,—u).

fundamental difference between using sensors for allstatd reconstructing the
states using an observer.

H. Control @

Robust control design is often callét}, control for reasons that will be explained
shortly. The basic ideas are simple, but the details are doatptl and we will
therefore just give the flavor of the results. A key idea isstitated in Figure 12.17,
where the closed loop system is represented by two blookgrtitess” and the
controller ¢ as discussed in Section 11.1. The procédshas two inputs, the
control signalu, which can be manipulated by the controller, and the geizexhl
disturbancev, which represents all external influences, e.g., commamadgnd
disturbances. The process has two outputs, the generatized,avhich is a vec-
tor of error signals representing the deviation of signadsiftheir desired values,
and the measured signglwhich can be used by the controller to computé&or

a linear system and a linear controller the closed loop systen be represented
by the linear system

z=H(P(s),C(s))w, (12.23)

which tells how the generalized errodepends on the generalized disturbanvees
The control design problem is to find a control@such that the gain of the trans-
fer functionH is small even when the process has uncertainties. There ang ma
different ways to specify uncertainty and gain, giving tiselifferent designs. The
namesH, andH., control correspond to the nornjsl ||, and||H || .

To illustrate the ideas we will consider a regulation probfer a system where
the reference signal is assumed to be zero and the extegmalsiare the load
disturbancal and the measurement noiseas shown in Figure 12.17 (right). The
generalized input isv = (—n,d). (The negative sign of is not essential but is
chosen to obtain somewhat nicer equations.) The generadized is chosen as
z=(n,v), wheren is the process output andis the part of the load disturbance
that is not compensated by the controller. The closed looesys thus modeled



372 CHAPTER 12. ROBUST PERFORMANCE

by
1 P
~(y)_|1+PC 1+PC| (n) _ n
7= [_u]_ c e [d]_H(P,C) [d] (12.24)
1+PC 1+PC

which is the same as equation (12.23). A straightforwardutation shows that

V(1 +[P(w)[?)(1+]Ciw)?)
|14+ P(iw)C(iw)| '

[H(P,C))lle = sup (12.25)

There are numerical methods for finding a controller such|tH&P,C) || < Y,
if such a controller exists. The best controller can then hmdoby iterating on
y. The calculations can be made by solvisgebraic Riccatiequations, e.g., by
using the commanti nf syn in MATLAB. The controller has the same order as
the process and the same structure as the controller bastatefeedback and an
observer; see Figure 7.7 and Theorem 7.3.

Notice that if we minimizel|H(P,C)||», we make sure that the transfer func-
tionsGyq = P/(1+4 PC), representing the transmission of load disturbances to the
output, andGy, = —C/(1+ PC), representing how measurement noise is trans-
mitted to the control signal, are small. Since the sensjtaitd the complementary
sensitivity functions are also elementstéfP,C), we have also guaranteed that
the sensitivities are less thgnThe design methods thus balance performance and
robustness.

There are strong robustness results associated with.tloentroller. It follows
from equations (12.4) and (12.25) that

1
& (P —-1/C)

The inverse of|H (P,C) || is thus equal to the Vinnicombe distance betwBemd
—1/C and can therefore be interpreted ageaeralized stability margirCompare
this with sy, which we defined as the shortest distance between the Nyayurist
of the loop transfer function and the critical poinl. It also follows that if we find

a controllerC with ||H(P,C)||» < Y, then this controller will stabilize any process
P. such tha®, (P,P.) < 1/y.

[H(RP.C)|[e = (12.26)

Disturbance Weighting

Minimizing the gain||H (P,C)||. means that the gains of all individual signal trans-
missions from disturbances to outputs are less thimm all frequencies of the in-
put signals. The assumption that the disturbances are gqomdbrtant and that
all frequencies are also equally important is not very stiali recall that load
disturbances typically have low frequencies and measurenwse is typically
dominated by high frequencies. It is straightforward to ifothe problem so that
disturbances of different frequencies are given diffeeamphasis, by introducing
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Figure 12.18:Block diagrams of a system with disturbance weighting. The left figure pro
vides a frequency weight on processes disturbances. Through diligram manipulation,
this can be converted to the standard problem on the right.

a weighting filter on the load disturbance as shown in Figuré8 Zor example,
low-frequency load disturbances will be enhanced by cmgpai as a low-pass
filter because the actual load disturbancé/i.

By using block diagram manipulation as shown in Figure 12wléfind that
the system with frequency weighting is equivalent to theesyiswith no frequency
weighting in Figure 12.18 and the signals are related through

1 P
7 [31] 1+PC 1+PC [”—]:H(p_,c_)vv, (12.27)
u C PC d
1+PC 1+PC

whereP = PW andC = W~1C. The problem of finding a controlle® that min-
imizes the gain oH(P,C) is thus equivalent to the problem without disturbance
weighting; having obtaine@, the controller for the original system is thén=
WC. Notice that if we introduce the frequency weightMg= k/s, we will auto-

matically get a controller with integral action.

Limits of Robust Design

There is a limit to what can be achieved by robust design. lie fithe nice prop-
erties of feedback, there are situations where the processtions are so large
that it is not possible to find a linear controller that givesohust system with
good performance. It is then necessary to use other typesndfotlers. In some
cases it is possible to measure a variable that is well ae@lwith the process
variations. Controllers for different parameter values teen be designed and the
corresponding controller can be chosen based on the meeasgral. This type of
control design is calledain schedulingThe cruise controller is a typical example
where the measured signal could be gear position and wel@dtin scheduling
is the common solution for high-performance aircraft whetbheduling is done
based on Mach number and dynamic pressure. When using dadwding, it is
important to make sure that switches between the contsallemot create unde-
sirable transients (often referred tolasnpless transfgr

If it is not possible to measure variables related to the rpatars,automatic
tuningandadaptive controtan be used. In automatic tuning the process dynamics
are measured by perturbing the system, and a controlleeisdbsigned automat-
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ically. Automatic tuning requires that parameters remainstant, and it has been
widely applied for PID control. It is a reasonable guess thahe future many
controllers will have features for automatic tuning. If @areters are changing, it
is possible to use adaptive methods where process dynareioseasured online.

12.6 Further Reading

The topic of robust control is a large one, with many articled extbooks devoted
to the subject. Robustness was a central issue in classicabtas described in
Bode's classical book [Bod45]. Robustness was deemplthsizbe euphoria of
the development of design methods based on optimizationsffbeg robustness
of controllers based on state feedback, shown by Andersdrivienore [AM9Q],
contributed to the optimism. The poor robustness of outpedifack was pointed
out by Rosenbrock [RM71], Horowitz [Hor75] and Doyle [Doy7éhd resulted
in a renewed interest in robustness. A major step forward theaglevelopment
of design methods where robustness was explicitly takem actount, such as
the seminal work of Zames [Zam81]. Robust control was ori¢jndéveloped
using powerful results from the theory of complex variablbich gave con-
trollers of high order. A major breakthrough was made by Bp@lover, Khar-
gonekar and Francis [DGKF89], who showed that the solutiorhéoproblem
could be obtained using Riccati equations and that a coatral low order could
be found. This paper led to an extensive treatmeti.otontrol, including books
by Francis [Fra87], McFarlane and Glover [MG90], Doyle, Fraramd Tannen-
baum [DFT92], Green and Limebeer [GL95], Zhou, Doyle and GloverG28],
Skogestand and Postlethwaite [SP05] and Vinnicombe [Vin01].afomadvan-
tage of the theory is that it combines much of the intuitiaanrservomechanism
theory with sound numerical algorithms based on numericaél algebra and op-
timization. The results have been extended to nonlineaesysby treating the
design problem as a game where the disturbances are gehbyad® adversary,
as described in the book by Basar and Bernhard [BB91]. Gdiedsding and
adaptation are discussed in the book&s}r&jm and Wittenmarkf[‘WOS].

Exercises

12.1 Consider systems with the transfer functiéhs= 1/(s+ 1) andP, = 1/(s+
a). Show thatP, can be changed continuously B with bounded additive and
multiplicative uncertainty ifa > 0 but not ifa < 0. Also show that no restriction
onais required for feedback uncertainty.

12.2 Consider systems with the transfer functidhs= (s+1)/(s+1)? andP, =

(s+a)/(s+ 1)%. Show thatP, can be changed continuously B with bounded
feedback uncertainty &> 0 but not ifa < 0. Also show that no restriction axis

required for additive and multiplicative uncertainties.
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12.3(Difference in sensitivity functions) L&t (P,C) be the complementary sensi-
tivity function for a system with proces$3and controllelC. Show that

(PL—P,)C
(1+PC)(1+PC)’
and derive a similar formula for the sensitivity function.

12.4(The Riemann sphere) Consider systems with the transfetifunsd®, = @
k/(s+1) andP, = k/(s— 1). Show that

T(P,C)—T(P,C) =

2k 1, if k<l
d P B = 9> P s = .
(P1,F2) 1+Kk2 O (P1.F2) & otherwise
1+k2
Use the Riemann sphere to show geometrically &é®;, ) = 1 if k < 1. (Hint:
It is sufficient to evaluate the transfer function tor=0.)

12.5(Stability margins) Consider a feedback loop with a processaacontroller
having transfer functionB andC. Assume that the maximum sensitivityNk = 2.
Show that the phase margin is at least @0d that the closed loop system will be
stable if the gain is changed by 50%.

12.6(Bode’s ideal loop transfer function) Make Bode and Nyqplsts of Bode’s
ideal loop transfer function. Show that the phase margif.js=180°-90°n and
that the stability margin isy, = arcsinm(1—n/2).

12.7 Consider a process with the transfer functi®(s) = k/(s(s+ 1)), where the
gain can vary between 0.1 and 10. A controller that is rolmu$tese gain variations
can be obtained by finding a controller that gives the loopsferfunctionL(s) =
1/(sy/s). Suggest how the transfer function can be implemented byappating
it by a rational function.

12.8 (Smith predictor) TheSmith predictoy a controller for systems with time
delays, is a special version of Figure 12.8a whfs) = e S'Ry(s) andC(s) =
Co(s)/(1+Co(s)P(s)). The controllelCy(s) is designed to give good performance
for the proces$y(s). Show that the sensitivity functions are

14 (1 e S)R(SICH(S) _ PGS
=T REGE VT T RE0E°

12.9 (Ideal delay compensator) Consider a process whose dysaréca pure
time delay with transfer functiofP(s) = e °. The ideal delay compensator is a
controller with the transfer functioB(s) = 1/(1— e %). Show that the sensitivity
functions arel (s) = e S andS(s) = 1— e ° and that the closed loop system will
be unstable for arbitrarily small changes in the delay.

12.10(Vehicle steering) Consider the Nyquist curve in Figure 12Bxplain why
part of the curve is approximately a circle. Derive a formiolathe center and the
radius and compare with the actual Nyquist curve.
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12.11 Consider a process with the transfer function
P(s) (s+3)(s+200)
~ (s+1)($2+ 10s+40)(s+40)°

Discuss suitable choices of closed loop poles for a desagrgities dominant poles
with undamped natural frequency 1 and 10.

12.12(AFM nanopositioning system) Consider the design in Exampléd and
explore the effects of changing parametegsand{p.

12.13(H.. control) Consider the matrik (P,C) in equation (12.24). Show that it
has the singular values

_ = V(A [P(iw)]?)(1+][Cliw)?)
01=0,  02=0=SUp T B i Cliw)]

Also show thato = 1/d, (P, —1/C), which implies that 1o is a generalization of
the closest distance of the Nyquist plot to the critical poin

12.14 Show that

= [H(P.C)) |-

o IP(iw) +1/C(iw)] _ 1
MP YO = Rl i yiciop) RO

12.15 Consider the system

dx -1 0 a—1
a:AXJrBu: [ 1 O] x+[ 1 ]u, y=Cx= (0 1] y.

Design a state feedback that gives(det- BK) = & + 2{caxs+ «Z, and an ob-
server with defsl — LC) = & + 2{owps+ wZ and combine them using the sepa-
ration principle to get an output feedback. Choose the nigaleraluesa = 1.5,

w. =5, (.= 0.6 andw, = 10, {, = 0.6. Compute the eigenvalues of the perturbed
system when the process gain is increased by 2%. Also corttpateop transfer
function and the sensitivity functions. Is there a way towrmeforehand that the
system will be highly sensitive?

12.16 (Robustness using the Nyquist criterion) Another view diust perfor-
mance can be obtained through appeal to the Nyquist critelriet Syax(iw) rep-
resent a desired upper bound on our sensitivity functionwSthat the system
provides this level of performance subject to additive utaiety A if the follow-
ing inequality is satisfied:

- 1
1+L=|1+L+CA| > ———— for all o> 0. 12.28
| | = | S0 ( )

Describe how to check this condition using a Nyquist plot.
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crossover frequency inequality,

seegain crossover
frequency inequality

222
transforming to, 106, 129,
138

cruise control, 6, 17-18, 65—-69 Dickmanns, E., 20

Chrysler autopilot, 6
control design, 196, 300,
309
feedback linearization, 161
integrator windup, 306, 307
linearization, 158
pole/zero cancellation, 248
robustness, 18, 347, 348,
354
Curtiss seaplane, 19, 20
cybernetics, 11see also
robotics

D/A converterssee
digital-to-analog
converters

damped frequency, 184

damping, 28, 36, 41, 96, 265,
266

damping ratio, 184, 185, 188,
300

DARPA Grand Challenge, 20,
21

DC gain, 155see alsa@ero
frequency gain

dead zone, 23

decision making, higher levels
of, 8,12, 19

delay,seetime delay

difference equations, 34,
38-41, 61, 156, 224, 312
differential algebraic
equations, 33see also
algebraic loops
differential equations, 28,
34-37,95-98
controlled, 29, 133, 235
equilibrium points, 100-101
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250
discrete control, 56
discrete-time systems, 38, 61,
128, 156, 165, 311
Kalman filter for, 215
linear quadratic regulator
for, 192
disk drives, 64
disturbance attenuation, 4,
176, 323-324, 358-359
design of controllers for,
319, 320, 327, 336, 345,
369
fundamental limits, 336
in biological systems, 257,
297
integral gain as a measure
of, 296, 324, 359
relationship to sensitivity
function, 323, 335, 344,
358
disturbance weighting, 372
disturbances, 4, 29, 32, 244,
248, 315, 318, 319
generalized, 371
random, 215
Dodson, B., 1
dominant eigenvalues (poles),
187, 300, 301
double integrator, 137, 168,
236

existence and uniqueness of Doyle, J. C., xii, 343, 374

solutions, 96-98
first-order, 32, 298
isolated solution, 101
periodic solutions, 101-102,
109
qualitative analysis, 98—102
second-order, 99, 183, 298
solutions, 95, 96, 133, 137,
145, 263
stability, seestability
transfer functions for, 236
differential flatness, 221
digital control systemssee
computer implementation,
controllers
digital-to-analog converters, 4,
82,224, 225, 311
dimension-free variables, 48,
61

delay compensation, 292, 375 direct term, 34, 38, 147, 211,

drug administration, 85-89,
94, 151, 186see also
compartment models

duality, 207, 211

Dubins car, 53

dynamic compensator, 196,
213

dynamic inversion, 163

dynamical systems, 1, 27, 95,
98, 125

linear, 104, 131

observer as a, 201

state of, 175

stochastic, 215

uncertainty in, 347-349

see alsdlifferential
equations

dynamics matrix, 34, 38, 105,
142

Dyson, F., 27
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e-commerce, 13
e-mail server, control of, 39,
157
economic systems, 14-15, 22,
62
ecosystems, 16-17, 89, 181,
see als@redator-prey
system
eigenvalue assignment, 176,
178, 180-182, 188, 212,
300, 313
by output feedback, 212
for observer design, 208
eigenvalues, 105, 114, 123,
142, 232
and Jordan form, 139-141,
164
distinct, 128, 129, 138, 144,
222
dominant, 187
effect on dynamic behavior,
183, 185-187, 233
for discrete-time systems,
165
invariance under coordinate
transformation, 106
relationship to modes,
142-145
relationship to poles, 239
relationship to stability, 117,
140, 141
eigenvectors, 106, 129, 142,
143
relationship to mode shape,
143
electric powerseepower
systems (electric)
electrical circuits, 33, 45, 74,
131, 236 see also
operational amplifier
electrical engineering, 6-7,
29-31, 155, 275
elephant, modeling of an, 27
Elowitz, M. B., 59
encirclement, 271see also
Nyquist criterion
entertainment robots, 11, 12

for closed loop system, 176,
195
for planar systems, 104
region of attraction,
119-121, 128
stability, 102
error feedback, 5, 293, 294,
309, 317
estimatorsseeoservers387
Euler integration, 41, 42
exponential signals, 230-235,
239, 250
extended Kalman filter, 220

F/A-18 aircraft, 8
Falb, P. L., 167
feedback, 1-3
as technology enabler, 3, 19
drawbacks of, 3, 21, 308,
352, 359
in biological systems, 1-3,
16, 25, 297see also
biological circuits
in engineered systemsee
control
in financial systems, 3
in nature, 3, 15-17, 89
positive,seepositive
feedback
properties, 3, 5, 17-23, 315,
320, 347
robustness through, 17
versus feedforward, 22, 296,
320
feedback connection, 243,
287, 288
feedback controller, 244, 315
feedback linearization,
161-163
feedback loop, 4, 267, 315,
358

feedback uncertainty, 349, 356

feedforward, 22, 219-222,
244,315, 319, 321

Fermi, E., 27

filters

environmental science, 3,9, 17 active, 153

equilibrium points, 90, 100,
105, 132, 158, 168
bifurcations of, 121
discrete time, 62

for disturbance weighting,
373

for measurement signals, 21,

225, 359

INDEX

see alsdand-pass filters;
high-filters; low-pass
filters
financial systemssee
economic systems
finite escape time, 97
finite state machine, 69, 76
first-order systems, 134, 165,
236, 252, 253
fisheries management, 94
flatnessseedifferential
flatness
flight control, 8, 18, 19, 53,
163
airspace management, 9
F/A-18 aircraft, 8
X-29 aircraft, 336
X-45 aircraft, 8
see alsovectored thrust
aircraft
flow, of a vector field, 29, 99
flow in a tank, 126
flow model (queuing systems),
54,292,313
flyball governorsee
centrifugal governor
force feedback, 10, 11
forced response, 133, 231
Forrester, J. W., 15
Fourier, J. B. J., 61, 262
frequency domain, 229-231,
267, 285, 315
frequency response, 30, 43, 44,
151, 153-156, 230, 290,
303, 322
relationship to Bode plot,
250
relationship to Nyquist plot,
270, 272
second-order systems, 185,
256
system identification using,
257
fully actuated systems, 240
fundamental limitssee
control: fundamental
limitations
Furuta pendulum, 130

gain, 24, 43, 73, 153, 154, 186,
230, 234, 239, 250, 278,
285-288, 347
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He, 286, 287, 371
observerseeobserver gain
of a system, 285
reference, 195
state feedback, 176, 177,
180, 195, 197
zero frequencyseezero
frequency gain
see alsantegral gain
gain crossover frequency, 279,
280, 322, 326, 332, 351,
365
gain crossover frequency
inequality, 332, 334
gain curve (Bode plot),
250-254, 282, 326
gain margin, 278-281
from Bode plot, 279
reasonable values, 281
gain scheduling, 220, 373
gain-bandwidth product, 74,
237,361
Gang of Four, 317, 344, 358
Gang of Six, 317, 322
gene regulation, 16, 58, 59,
166, 256
genetic switch, 64, 114, 115
global behavior, 103, 120-124
Glover, K., 343, 374
glucose regulatiorsee
insulin-glucose dynamics
Golomb, S., 65
governorseecentrifugal
governor

Ho control, 371-374, 376

Harrier AV-8B aircraft, 53

heat propagation, 238

Heaviside, O., 163

Heaviside step function, 150,
163

Hellerstein, J. L., 13, 25, 80

high-frequency roll-off, 327,
359, 366

high-pass filter, 255, 256

Hill function, 58

Hoagland, M. B., 1

Hodgkin-Huxley equations, 60

homeostasis, 3, 58

homogeneous solution, 133,
136, 137, 239

Honeywell thermostat, 6

Horowitz, I. M., 226, 343, 369,
374

human-machine interface, 65,
69

hysteresis, 23, 289

identification,seesystem
identification
impedance, 236, 309
implementation, controllers,
seeanalog
implementation; computer
implementation
impulse function, 146, 164,
169
impulse response, 135, 146,
147, 261
inductor, transfer function for,
236
inertia matrix, 36, 162
infinity norm, 286, 372
information systems, 12,
54-58,see also
congestion control; web
server control
initial condition, 96, 99, 102,
132, 137, 144, 215
initial condition response, 133,
136-139, 142, 144, 147,
231
initial value problem, 96
inner loop control, 340, 342
input sensitivity functionsee
load sensitivity function
input/output models, 5, 29, 31,
132, 145-157, 229, 286,
see alsdrequency
response; steady-state
response; step response
and transfer functions, 261
and uncertainty, 51, 349
from experiments, 257
relationship to state space
models, 32, 95, 146
steady-state response, 149
transfer function for, 235
inputs, 29, 32
insect flight control, 46-47
instrumentation, 10-11, 71
insulin-glucose dynamics, 2,
88-89
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integral action, 2426,
195-198, 293, 295296,
298, 324

for bias compensation, 226
setpoint weighting, 309, 312
time constant, 294

integral gain, 24, 294, 296, 299

integrator windup, 225,
306-307, 314

conditional integration, 314
intelligent machinessee
robotics

internal model principle, 214,
221

Internet, 12, 13, 75, 77, 80, 93,
see alsaongestion
control

Internet Protocol (IP), 77

invariant set, 118, 121

inverse model, 162, 219, 320

inverse response, 284, 292

inverted pendulum, 37, 69,
100, 108, 118, 121, 128,
130, 276, 337see also
balance systems

Jacobian linearization,
158-161

Jordan form, 139-142, 164,
188

Kalman, R. E., 167, 197, 201,
223,226

Kalman decomposition,
222-224, 235, 262, 264

Kalman filter, 215-218, 226,
370

extended, 220

Kalman-Bucy filter, 217

Kelly, F. P., 80

Kepler, J., 28

Keynes, J. M., 14

Keynesian economic model,
62, 165

Krasovski-Lasalle principle,
118

LabVIEW, 123, 163

lag, seephase lag

lag compensation, 327, 328

Laplace transforms, xi,
259-262
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Laplacian matrix, 58
Lasalle’s invariance principle,
seeKrasovski-Lasalle

principle
lead,seephase lead
lead compensation, 327-330,
341, 345
limit cycle, 91, 101, 109, 111,
122, 288, 289
linear quadratic control,
190-194, 216, 226,
369-371
linear systems, 30, 34, 74, 104,
131-163, 222, 231, 235,
262, 286
linear time-invariant systems,
30, 34, 134, 261
linearity, 133, 250
linearization, 109, 117, 132,
157-163, 220, 347
Lipschitz continuity, 98
load disturbances, 315, 359,
see alsalisturbances
load sensitivity function, 317
local behavior, 103, 109, 118,
120, 158
locally asymptotically stable,
103
logistic growth model, 89, 90,
94
loop analysis, 267, 315
loop shaping, 270, 326—330,
343, 369
design rules, 327
fundamental limitations,
331-340
see alsdode’s loop transfer
function
loop transfer function,
267-270, 278, 279, 287,
315, 318, 326, 327, 329,
336, 343see alsBode’s
loop transfer function
Lotus Notes serveseee-mail
server
low-order models, 298
low-pass filter, 255, 256, 308
LQ control,seelinear
quadratic control
LTI systemsseelinear
time-invariant systems
Lyapunov equation, 114, 128

Lyapunov functions, 111-114,
120, 127, 164
design of controllers using,
118,124
existence of, 113
Lyapunov stability analysis,
43,110-120, 126
discrete time, 128

manifold, 120
margins seestability margins
Mars Exploratory Rovers, 11,
12
mass spectrometer, 10
materials science, 9
Mathematica, 41, 123, 163
MATLAB, 26, 41, 123, 163,
200
acker, 181, 211
dige, 216
digr, 194
hinfsyn, 372
jordan, 139
linmod, 160
Igr, 191
place, 181, 189, 211
trim, 160
matrix exponential, 136—139,
143, 145, 163
coordinate transformations,
148
Jordan form, 140
second-order systems, 138,
164
maximum complementary
sensitivity, 354, 365
maximum sensitivity, 323,
352, 366
measured signals, 31, 32, 34,
95, 201, 213, 225, 316,
318, 371

INDEX

see alsansulin-glucose
dynamics
minimum phase, 283, 290, 331
modal form, 130, 145, 149
Modelica, 33
modeling, 5, 27-33, 61, 65
control perspective, 31
discrete control, 56
discrete-time, 38, 156-157
frequency domain, 229-231
from experiments, 47-48
model reduction, 5
normalization and scaling,
48
of uncertainty, 50-51
simplified models, use of,
32, 298, 348, 354, 355
software for, 33, 160, 163
state space, 34—43
uncertaintyseeuncertainty
modes, 142-144, 239
relationship to poles, 240
motion control systems,
51-54, 226
motors, electric, 64, 199, 228
multi-input, multi-output
systems, 286, 318, 327,
see alsanput/output
models
multiplicative uncertainty, 349,
356

nanopositioner (AFM), 281,
366

natural frequency, 184, 300

negative definite function, 111

negative feedback, 18, 22, 73,
176, 267, 297

Nernst’s law, 60

networking, 12, 45, 8Gsee
alsocongestion control

neural systems, 10, 47, 60, 297

measurement noise, 4, 21, 201 neutral stability, 102—-104

203, 215, 217, 244, 308,
315-317, 327, 359
response to, 324-326, 359
mechanical systems, 31, 36,
42,51, 61, 162
mechanics, 28-29, 31, 126,
131
minimal model
(insulin-glucose), 88, 89,

Newton, I., 28

Nichols, N. B., 163, 302, 343

Nichols chart, 369, 370

Nobel Prize, 10, 11, 14, 61, 81

noise,seedisturbances;
measurement noise

noise attenuation, 257,
324-326

noise cancellation, 124
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noise sensitivity function, 317
nonlinear systems, 31, 95, 98,
101, 108, 110, 114,
120-125, 202, 220,
286-288
linear approximation, 109,
117,159, 165, 347
system identification, 62
nonminimum phase, 283, 284,
292, 331-333see also
inverse response
nonunique solutions (ODES),
97
normalized coordinates,
48-50, 63, 161
norms, 285-286
Nyquist, H., 267, 290
Nyquist criterion, 271, 273,
275, 278, 287, 288, 303
for robust stability, 352, 376
Nyquist D contour, 270, 276
Nyquist plot, 270-271, 278,
279, 303, 324, 370

observability, 32, 201-202,
222,226
rank condition, 203
tests for, 202—203
unobservable systems, 204,
222-223, 265
observability matrix, 203, 205
observable canonical form,
204, 205, 226
observer gain, 207, 209-211,
213, 215-217
observers, 201, 206-209, 217,
220
block diagram, 202, 210
see alsdKalman filter
ODEs,seedifferential
equations
Ohm’s law, 60, 73, 236
on-off control, 23, 24
open loop, 1, 2, 73, 168, 245,
267, 306, 315, 323, 349
open loop gain, 237, 278, 322
operational amplifiers, 71-75,
237, 309, 356
circuits, 92, 153, 268, 360
dynamic model, 74, 237
input/output characteristics,
72

oscillator using, 92, 128
static model, 72, 237

optimal control, 190, 215, 217,

370
order, of a system, 34, 235

ordinary differential equations,

seedifferential equations
oscillator dynamics, 92, 96,
97, 138, 184, 233, 236
normal form, 63
see alsmanopositioner
(AFM); spring-mass
system
outer loop control, 340-342
output feedback, 211, 212,
226,see alsaontrol:
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resonant peak; rise time;
settling time

periodic solutionssee
differential equations;
limit cycles

persistence, of a web
connection, 76, 77

Petri net, 45

pharmacokinetics, 85, 88ge
alsodrug administration

phase, 43, 153, 154, 186, 230,
234, 250, 288see also
minimum phase;
nonminimum phase

minimum vs. nonminimum,

283

using estimated state; loop phase crossover frequency,

shaping; PID control
output sensitivity functionsee

noise sensitivity function
outputs,seemeasured signals
overdamped oscillator, 184
overshoot, 151, 176, 185, 322

Pace approximation, 292, 332

279, 280

phase curve (Bode plot),
250-252, 254

relationship to gain curve,

282, 327

phase lag, 153, 154, 256, 283,
332,333

phase lead, 153, 256, 330, 345

paging control (computing), 56 phase margin, 279, 280, 327,

parallel connection, 243
parametric stability diagram,
122,123

329, 332, 346, 375
from Bode plot, 279
reasonable values, 281

parametric uncertainty, 50, 347 phase portrait, 28, 29, 98-100,

particle accelerator, 11

particular solution, 133, 151,
see alsdorced response

passive systems, 287, 336

passivity theorem, 288

patch clamp, 10

PD control, 296, 328

peak frequency, 155, 322

pendulum dynamics, 113¢ee
alsoinverted pendulum

perfect adaptation, 297

performance, 76

performance limitations, 331,
336, 365, 373

due to right half-plane poles
and zeros, 283
see alsaontrol:

fundamental limitations

performance specifications,
151, 175, 315, 322-327,
358, see alsamvershoot;
maximum sensitivity;

120
Philbrick, G. A., 75
photoreceptors, 297
physics, relationship to
control, 5
Pl control, 17, 25, 65, 68, 296,
301, 327, 328
first-order system, 300, 364
PID control, 24-25, 235,
293-313, 330
block diagram, 294, 296,
308
computer implementation,
311
ideal form, 293, 313
implementation, 296,
308-312
in biological systems, 297
op amp implementation,
309-311
tuning, 302-306
see alsalerivative action;
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integral action
pitchfork bifurcation, 130
planar dynamical systems, 99,
104,see alssecond-order
systems
pole placement, 176, 361,
365—-366see also
eigenvalue assignment
robust, 361
pole zero diagram, 240
pole/zero cancellations,
247-249, 265, 365, 366
poles, 239, 240
dominant, 301see also
dominant eigenvalues
(poles)
fast stable, 364, 366
pure imaginary, 270, 276
relationship to eigenvalues,
239
right half-plane, 240, 276,
283, 331, 333-334, 336,
345, 366
population dynamics, 89-91,
94, see alsqredator-prey
system
positive definite function, 111,
112,114,118
positive definite matrix, 114,
191
positive feedback, 16, 21-23,
129, 296
positive real (transfer
function), 336
power of a matrix, 136
power systems (electric), 67,
63, 101, 127
predator-prey system, 38,
90-91, 121, 181
prediction, in controllers, 24,
25, 220, 296, 375ee also
derivative action
prediction time, 297
principle of the argumensee
variation of the argument,
principle of
process control, 9, 10, 13, 45
proportional control, 24, 293,
see alsd?ID control
proportional, integral,
derivative controlseePID
control

protocol,seecongestion
control; consensus

pulse signal, 146, 147, 187,
see alsampulse function

pupil response, 258, 297

pure exponential response, 232

Q-value, 63, 186, 254

quantitative feedback theory
(QFT), 369

quarter car model, 265

queuing systems, 54-56, 63

random process, 54, 215, 228
reachability, 32, 167-175, 197,
222
rank condition, 170
tests for, 169
unreachable systems, 171,
199, 222-223, 265
reachability matrix, 169, 173
reachable canonical form, 35,
172-175, 178, 180, 198
reachable set, 167
real-time systems, 5
reference signal, 23, 175, 176,
229, 244, 293, 309, 317,
319,see alscommand
signals; setpoint

effect on observer error, 212,

219, 224
response to, 322, 344
tracking, 175, 219, 220, 327,
360
reference weightingsee
setpoint weighting
region of attractionsee
equilibrium points:
regions of attraction
regulatorseecontrol law
relay feedback, 289, 305
Reno (protocol)seelnternet;
congestion control
repressilator, 59-60

repressor, 16, 59, 64, 114, 166,

257
reset, in PID control, 295, 296
resonant frequency, 186, 286
resonant peak, 155, 186, 322,
355
resource usage, in computing

INDEX

responseseeinput/output
models
retina, 297 see alsupll
response
Riccati equation, 191, 217,
372,374
Riemann sphere, 351
right half-plane poles and
zeros seepoles: right
half-plane; zeros: right
half-plane
rise time, 151, 176, 185, 322
robotics, 8, 11-12, 163
robustness, 17-18, 322, 349,
374
performance, 358-361,
369-374
stability, 352—358
using gain and phase
margin, 281, 326
using maximum sensitivity,
323, 326, 353, 375, 376
using pole placement,
361-368
via gain and phase margin,
280
see alsauncertainty
roll-off, seehigh-frequency
roll-off
root locus diagram, 123
Routh-Hurwitz criterion, 130
rush-hour effect, 55, 64

saddle (equilibrium point), 104

sampling, 156-157, 224, 225,
311

saturation function, 45, 72,
311,see als@ctuators:
saturation

scaling,seenormalized
coordinates

scanning tunneling
microscope, 11, 81

schematic diagrams, 44, 45, 71

Schitter, G., 84

second-order systems, 28, 164,
183-187, 200, 253, 301

Segway Personal Transporter,
35, 170

self-activation, 129

self-repression, 166, 256

systems, 13, 55, 57, 75, 76 semidefinite function, 111
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sensitivity crossover
frequency, 324
sensitivity function, 317,
324-326, 336, 352, 360,
366
and disturbance attenuation,
323, 336, 344
sensor matrix, 34, 38
sensor networks, 57
sensors, 3, 4, 9, 202, 224, 283,
311, 315, 318, 333, 334,
371
effect on zeros, 284, 334
in computing systems, 75
see alsaneasured signals
separation principle, 201, 213
series connection, 243
service rate (Queuing systems),
55
setpoint, 293
setpoint weighting, 309, 312
settling time, 151, 165, 176,
185, 322
similarity of two systems,
349-352
simulation, 40-42, 51
SIMULINK, 160
single-input, single-output
(SISO) systems, 95, 132,
133, 158, 204, 286
singular values, 286, 287, 376
sink (equilibrium point), 104
small gain theorem, 287-288,
355
Smith predictor, 375
software tools for control, x
solution (ODE) see
differential equations:
solutions
Sony AIBO, 11, 12
source (equilibrium point), 104
spectrum analyzer, 257
Sperry autopilot, 19
spring-mass system, 28, 40,
42,43, 82, 127
coupled, 144, 148
generalized, 36, 71
identification, 47
normalization, 49, 63
see alsascillator dynamics
stability, 3, 5, 18, 19, 42, 98,
102-120

asymptotic stability, 102,
106
conditional, 275
in the sense of Lyapunov,
102
local versus global, 103,
110, 120, 121
Lyapunov analysissee
Lyapunov stability
analysis
neutrally stable, 102, 104
of a system, 105
of equilibrium points, 42,
102,104, 111, 117
of feedback loopsee
Nyquist criterion
of limit cycles, 109
of linear systems, 104-107,
113,140
of solutions, 102, 110
of transfer functions, 240
robust,seerobust stability
unstable solutions, 103
using eigenvalues, 117, 140,
141
using linear approximation,
107,117, 159
using Routh-Hurwitz
criterion, 130
using state feedback,
175-194
see alsdifurcations;
equilibrium points
stability diagramsee
parametric stability
diagram
stability margin (quantity),
279, 281, 323, 345, 353,
372
reasonable values, 281
stability margins (concept),
278-282, 291, 326
stable pole, 240
stable zero, 240
Stark, L., 258
state, of a dynamical system,
28,31, 34
state estimatorseeobservers
state feedback, 167-197, 207,
212,219-221, 224-226,
362, 370see also
eigenvalue assignment;
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linear quadratic control

state space, 28, 34-43, 175

state vector, 34

steady-state gailseezero
frequency gain

steady-state response, 26, 42,
149-156, 165, 176, 185,
230, 231, 233, 257, 262

steam engines, 2, 17

steeringseevehicle steering

Stein, G., xii, 1, 315, 337

step input, 30, 135, 150, 239,
302

step response, 30, 31, 47, 48,
135, 147, 150, 151, 176,
184, 185, 302

stochastic cooling, 11

stochastic systems, 215, 217

summing junction, 45

superposition, 30, 133, 147,
164, 230

supervisory controlsee
decision making: higher
levels of

supply chains, 14, 15

supremum (sup), 286

switching behavior, 22, 64,
117, 373

system identification, 47, 62,
257

tapping modeseeatomic
force microscope

TCP/IP,seelnternet;
congestion control

Teorell, T., 85, 89

thermostat, 5, 6

three-term controllers, 293ee
alsoPID control

thrust vectored aircrafgee
vectored thrust aircraft

time constant, first-order
system, 165

time delay, 5, 13, 235, 236,
281, 283, 302, 311,
332-334

compensation for, 375
Pack approximation, 292,

332

time plot, 28

time-invariant systems, 30, 34,
126, 134-135
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tracking,seereference signal:
tracking
trail (bicycle dynamics), 70
transcriptional regulatiorsee
gene regulation
transfer functions, 229-262
by inspection, 235
derivation using exponential
signals, 231
derivation using Laplace
transforms, 261
for control systems, 244,
264
for electrical circuits, 236
for time delay, 235
frequency response, 230,
250
from experiments, 257
irrational, 236, 239
linear input/output systems,
231, 235, 264
transient response, 42, 149,
150, 153, 168, 188, 231,
232
Transmission Control Protocol
(TCP), 77
transportation systems, 8
Tsien, H. S., 11
tuning rules, 314see
Ziegler-Nichols tuning
two degree-of-freedom
control, 219, 294, 319,
321, 343, 344

uncertainty, 4, 17-18, 32,

50-51, 195, 347-352

component or parameter
variation, 4, 50, 347

disturbances and noise, 4,
32, 175, 244, 315

unmodeled dynamics, 4, 50,
348, 353

see alsadditive
uncertainty; feedback
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voltage clamp, 10, 11, 61

uncertainty; multiplicative waterbed effect, 336, 337

uncertainty
uncertainty band, 50

Watt governorseecentrifugal

governor

uncertainty lemon, 50, 51, 68, \Watt steam engine, 3, 17

74,83

underdamped oscillator, 97,
184,185

unit step, 150

unmodeled dynamicsee
uncertainty: unmodeled
dynamics

unstable poleseepoles: right
half-plane

unstable pole/zero
cancellation, 248

unstable solution, for a
dynamical system, 103,
104, 106, 141, 240

unstable zercseezeros: right
half-plane

variation of the argument,
principle of, 277, 290
vector field, 29, 99

web server control, 75-77, 192
web site, companion, x
Whipple, F. J. W., 71

Wiener, N., 11, 12

winding number, 277

window size (TCP), 78, 80,

104

windup, seeintegrator windup
Wright, W., 18
Wright Flyer, 8, 19

X-29 aircraft, 336
X-45 aircraft, 8

Youla parameterization,

356-358

zero frequency gain, 154, 177,

180, 186, 239

vectored thrust aircraft, 53-54, zeros, 239

141, 191, 217, 264, 329,
340

vehicle steering, 51-53, 160,
177, 209, 214, 221, 245,
284,291, 321, 362

ship dynamics, 51

vehicle suspension, 265¢e
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