Official Information | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Course Number: | Mathematics 9200.001 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Course Title: | Topics in Numerical Analysis I: Computational Methods for Flow Problems | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Time: | TR 2:00-3:20 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Place: | 617 Wachman Hall | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Instructor: | Benjamin Seibold | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Instructor Office: | 518 Wachman Hall | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Instructor Email: | seibold(at)temple.edu | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Office Hours: | TR 3:30-4:30pm | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Official: | Course Syllabus | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Course Textbooks: |
There is no single textbook for this course. The materials come from a variety of books and other sources. Recommended resources:
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Grading Policy | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The final grade consists of two parts, each counting 50%: homework problem sets and final examination. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Outline | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
This course provides an overview of numerical methods for many important types of flow problems, ranging from passive convection, over incompressible fluids (Navier-Stokes equations), shock problems (such as the compressible Euler equations), kinetic equations (Boltzmann equation, radiative transfer), to network flows (such as traffic on roads).
One third of the course will be devoted to the modeling, derivation, and mathematical/physical properties of the equations and their solutions; and two thirds to the design of efficient and robust numerical methods for their solution. The computational approaches include: finite volume methods, finite difference methods, meshfree and particle methods, moment methods. The goal of this course is provide a broad perspective on these important types of flow problems, their connections, and how to tackle them computationally. This course provides the needed familiarity with each topic to enable the participants to engage into further studies via literature. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Course Schedule | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
08/23/2022 Lec 1 | I. Fundamentals of Flows: Different types of flow problems
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
08/25/2022 Lec 2 | reference frames, transport equations, incompressibility, vorticity
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
08/30/2022 Lec 3 | stream function, field lines
Read:
stream function,
streamlines etc.
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
09/01/2022 Lec 4 | potential flow
Read:
potential flow,
conformal map
09/06/2022 Lec 5 |
II. Passive Convection: Particle methods
09/08/2022 Lec 6 |
Semi-Lagrangian methods: fundamentals
Read:
semi-Lagrangian scheme
09/13/2022 Lec 7 |
Semi-Lagrangian methods: high order
Read:
jet schemes
09/15/2022 Lec 8 |
Eulerian finite difference methods: convergence, truncation errors, stability
09/20/2022 Lec 9 |
Method of lines, upwind, Lax-Wendroff, Lax-Friedrichs
09/22/2022 Lec 10 |
Advection-diffusion-reaction problems
09/27/2022 Lec 11 |
III. Hyperbolic conservation laws: Examples, characteristics, weak solution, Riemann problem, entropy
09/29/2022 Lec 12 |
Finite volume methods: Godunov's method
10/04/2022 Lec 13 |
Cell-transmission model
Read:
cell-transmission model
10/06/2022 Lec 14 |
Network flows, theory and numerics
Read:
Braess's paradox
10/11/2022 Lec 15 |
Particle methods for conservation laws
Read:
particleclaw
10/13/2022 Lec 16 |
Linear hyperbolic systems
10/18/2022 Lec 17 |
Nonlinear hyperbolic systems
10/25/2022 Lec 18 |
Approximate Riemann solvers, higher dimensions
Read:
Riemann solver,
Roe solver
10/26/2022 Lec 19 |
IV. Incompressible viscous flows: Calculus of variations, Stokes problem
10/27/2022 Lec 20 |
Saddle-point problems, inf-sup condition, staggered grids
11/01/2022 Lec 21 |
Finite element methods for the Stokes problem (guest lecture by Kiera Kean)
Read:
finite element method
11/03/2022 Lec 22 |
Navier-Stokes equations, derivation, Reynolds number
11/07/2022 Lec 23 |
Finite differences for the Navier-Stokes equations
Read:
staggered grids
11/08/2022 Lec 24 |
Pseudospectral methods for Navier-Stokes
11/10/2022 Lec 25 |
Turbulence and turbulence models (guest lecture by Kiera Kean)
Read:
turbulence,
turbulence model
11/28/2022 Lec 26 |
V. Kinetic equations: Vlasov and Boltzmann equation
11/29/2022 Lec 27 |
Moment methods for radiative transfer, StaRMAP (guest lecture by Rujeko Chinomona)
Read:
radiative transfer,
StaRMAP
12/01/2022 Lec 28 |
Moment methods, asymptotic preserving methods
12/12/2022 |
Final Examination | Matlab Programs |
|
Software Used in the Course |
|
Homework Problem Sets |
|
|