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ABSTRACT

In these notes, we study the Runge Kutta Discontinuous Galerkin method for nu-
mericaly solving nonlinear hyperbolic systems and its extension for convection-
dominated problems, the so-called Local Discontinuous Galerkin method. Examples
of problems to which these methods can be applied are the Euler equations of gas dy-
namics, the shallow water equations, the equations of magneto-hydrodynamics, the
compressible Navier-Stokes equations with high Reynolds numbers, and the equa-
tions of the hydrodynamic model for semiconductor device simulation. The main
features that make the methods under consideration attractive are their formal high-
order accuracy, their nonlinear stability, their high parallelizability, their ability to
handle complicated geometries, and their ability to capture the discontinuities or
strong gradients of the exact solution without producing spurious oscillations. The
purpose of these notes is to provide a short introduction to the devising and analysis
of these discontinuous Galerkin methods.
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Preface

There are several numerical methods using a DG formulation to discretize the
equations in time, space, or both. In this monograph, we consider numerical meth-
ods that use DG discretizations in space and combine it with an ezplicit Runge-
Kutta time-marching algorithm. We thus consider the so-called Runge-Kutta dis-
continuous Galerkin (RKDG) introduced and developed by Cockburn and Shu
[17, 15, 14, 13, 19] for nonlinear hyperbolic systems and the so-called local dis-
continuous Galerkin (LDG) for nonlinear convection-diffusion systems. The LDG
methods are an extension of the RKDG methods to convection-diffusion problems
proposed first by Bassi and Rebay [3] in the context of the compressible Navier-
Stokes and recently extended to general convection-diffusion problems by Cockburn
and Shu [18].

Several properties are responsible for the increasing popularity of the above
mentioned methods. The use of a DG discretization in space gives the methods
the high-order accuracy, the flexibility in handling complicated geometries, and the
easy to treat boundary conditions typical of the finite element methods. Moreover,
the use of discontinuous elements produces a block-diagonal mass matrix whose
blocks can be easily inverted by hand. This why after discretizing in time with
a high-order accurate, ezplicit Runge-Kutta method, the resulting algorithm is
highly parallelizable. Finally, these methods incorporate in a very natural way the
techniques of ‘slope limiting’ developed by van Leer [62, 63] that effectively damp
out the spurious oscillations that tend to be produced around the discontinuities
or strong gradients of the approximate solution.

In these notes, we sudy these DG methods by following their historical devel-
opment. Thus, we first study the RKDG method and then the LDG method. To
study the RKDG method, we start by considering their definition for the scalar
equation in one-space dimension. Then, we consider the scalar equation in several
space dimensions and finally, we consider the case of multidimensional systems.
The last chapter is devoted to the LDG methods.

To study the RKDG method, we take the point of view that they are formally
high-order accurate ‘perturbations’ of the so-called ‘monotone’ schemes which are
very stable and formally first-order accurate. Indeed, the RKDG methods were
devised by trying to see if formally high-order accurate methods could be obtained
that retained the remarkable stability of the monotone schemes. Of course, this
approach is not new: It has been the basic idea in the devising of the so-called ‘high-
resolution’ schemes for finite-difference and finite-volume methods for nonlinear
conservation laws. Thus, the RKDG method incorporates this very successful idea
into the framework of DG methods which have all the advantages of finite element
methods.



CHAPTER 1

A historical overview

1.1. The original Discontinuous Galerkin method

The original discontinuous Galerkin (DG) finite element method was introduced
by Reed and Hill [54] for solving the neutron transport equation

ou+div(au) = f,

where o is a real number and @ a constant vector. Because of the linear nature of
the equation, the approximate solution given by the method of Reed and Hill can
be computed element by element when the elements are suitably ordered according
to the characteristic direction.

LeSaint and Raviart [41] made the first analysis of this method and proved a
rate of convergence of (Ax)* for general triangulations and of (Az)**! for Carte-
sian grids. Later, Johnson and Pitkardnta [37] proved a rate of convergence of
(Az)**+1/2 for general triangulations and Peterson [53] confirmed this rate to be
optimal. Richter [55] obtained the optimal rate of convergence of (Az)**! for some
structured two-dimensional non-Cartesian grids.

1.2. Nonlinear hyperbolic systems: The RKDG method

The success of this method for linear equations, prompted several authors to
try to extend the method to nonlinear hyperbolic conservation laws

d
ug + Z(fl(u))wz =0,

equipped with suitable initial or initial-boundary conditions. However, the intro-
duction of the nonlinearity prevents the element-by-element computation of the
solution. The scheme defines a nonlinear system of equations that must be solved
all at once and this renders it computationally very inefficient for hyperbolic prob-
lems.

e The one-dimensional scalar conservation law.

To avoid this difficulty, Chavent and Salzano [8] contructed an explicit version
of the DG method in the one-dimensional scalar conservation law. To do that, they
discretized in space by using the DG method with piecewise linear elements and
then discretized in time by using the simple Euler forward method. Although the
resulting scheme is explicit, the classical von Neumann analysis shows that it is
unconditionally unstable when the ratio % is held constant; it is stable if % is of
order vAz, which is a very restrictive condition for hyperbolic problems.

To improve the stability of the scheme, Chavent and Cockburn [7] modified
the scheme by introducing a suitably defined ‘slope limiter’ following the ideas
introduced by vanLeer in [62]. They thus obtained a scheme that was proven to
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2 1. A HISTORICAL OVERVIEW

be total variation diminishing in the means (TVDM) and total variation bounded
(TVB) under a fixed CFL number, f' %, that can be chosen to be less than or
equal to 1/2. Convergence of a subsequence is thus guaranteed, and the numerical
results given in [7] indicate convergence to the correct entropy solutions. On the
other hand, the scheme is only first order accurate in time and the ‘slope limiter’ has
to balance the spurious oscillations in smooth regions caused by linear instability,
hence adversely affecting the quality of the approximation in these regions.

These difficulties were overcome by Cockburn and Shu in [17], where the
first Runge Kutta Discontinuous Galerkin (RKDG) method was introduced. This
method was contructed by (i) retaining the piecewise linear DG method for the
space discretization, (ii) using a special explicit TVD second order Runge-Kutta
type discretization introduced by Shu and Osher in a finite difference framework
[57], [58], and (iii) modifying the ‘slope limiter’ to maintain the formal accuracy
of the scheme at extrema. The resulting explicit scheme was then proven linearly
stable for CFL numbers less than 1/3, formally uniformly second order accurate in
space and time including at extrema, and TVBM. Numerical results in [17] indicate
good convergence behavior: Second order in smooth regions including at extrema,
sharp shock transitions (usually in one or two elements) without oscillations, and
convergence to entropy solutions even for non convex fluxes.

In [15], Cockburn and Shu extended this approach to construct (formally)
high-order accurate RKDG methods for the scalar conservation law. To device
RKDG methods of order k + 1, they used (i) the DG method with polynomials of
degree k for the space discretization, (ii) a TVD (k + 1)-th order accurate explicit
time discretization, and (iii) a generalized ‘slope limiter.” The generalized ‘slope
limiter’ was carefully devised with the purpose of enforcing the TVDM property
without destroying the accuracy of the scheme. The numerical results in [15], for
k = 1,2, indicate (k+ 1)-th order order in smooth regions away from discontinuities
as well as sharp shock transitions with no oscillations; convergence to the entropy
solutions was observed in all the tests. These RKDG schemes were extended to
one-dimensional systems in [14].

e The multidimensional case.

The extension of the RKDG method to the multidimensional case was done in
[13] for the scalar conservation law. In the multidimensional case, the complicated
geometry the spatial domain might have in practical applications can be easily
handled by the DG space discretization. The TVD time discretizations remain the
same, of course. Only the construction of the generalized ‘slope limiter’ represents
a serious challenge. This is so, not only because of the more complicated form of
the elements but also because of inherent accuracy barries imposed by the stability
properties.

Indeed, since the main purpose of the ‘slope limiter’ is to enforce the nonlinear
stability of the scheme, it is essential to realize that in the multidimensional case, the
constraints imposed by the stability of a scheme on its accuracy are even greater
than in the one dimensional case. Although in the one dimensional case it is
possible to devise high-order accurate schemes with the TVD property, this is not
true in several space dimensions since Goodman and LeVeque [28] proved that any
TVD scheme is at most first order accurate. Thus, any generalized ‘slope limiter’
that enforces the TVD property, or the TVDM property for that matter, would
unavoidably reduce the accuracy of the scheme to first-order accuracy. This is why
in [13], Cockburn, Hou and Shu devised a generalized ‘slope limiter’ that enforced
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a local maximum principles only since they are not incompatible with high-order
accuracy. No other class of schemes has a proven maximum principle for genearal
nonlinearities f, and arbitrary triangulations.

The extension of the RKDG methods to general multidimensional systems was
started by Cockburn and Shu in [16] and has been recently completed in [19]. Bey
and Oden [5] and more recently Bassi and Rebay [2] have studied applications of
the method to the Euler equations of gas dynamics.

e The main advantages of the RKDG method.

The resulting RKDG schemes have several important advantages. First, like
finite element methods such as the SUPG-method of Hughes and Brook [29, 34,
30, 31, 32, 33] (which has been analyzed by Johnson et al in [38, 39, 40]),
the RKDG methods are better suited than finite difference methods to handle
complicated geometries. Moreover, the particular finite elements of the DG space
discretization allow an extremely simple treatment of the boundary conditions; no
special numerical treatment of them is required in order to achieve uniform high
order accuracy, as is the case for the finite difference schemes.

Second, the method can easily handle adaptivity strategies since the refining
or unrefining of the grid can be done without taking into account the continuity
restrictions typical of conforming finite element methods. Also, the degree of the
approximating polynomial can be easily changed from one element to the other.
Adaptivity is of particular importance in hyperbolic problems given the complexity
of the structure of the discontinuities. In the one dimensional case the Riemann
problem can be solved in closed form and discontinuity curves in the (z,t) plane
are simple straight lines passing through the origin. However, in two dimensions
their solutions display a very rich structure; see the works of Wagner [64], Lindquist
[43], [42], Zhang and Zheng [68], and Zhang and Cheng [67]. Thus, methods which
allow triangulations that can be easily adapted to resolve this structure, have an
important advantage.

Third, the method is highly parallelizable. Since the elements are discontinu-
ous, the mass matrix is block diagonal and since the order of the blocks is equal
to the number of degrees of freedom inside the corresponding elements, the blocks
can be inverted by hand once and for all. Thus, at each Runge-Kutta inner step, to
update the degrees of freedom inside a given element, only the degrees of freedom
of the elements sharing a face are involved; communication between processors is
thus kept to a minimum. Extensive studies of adaptivity and parallelizability issues
of the RKDG method were started by Biswas, Devine, and Flaherty [6] and then
continued by deCougny et al. [20], Devine et al. [22, 21] and by Ozturan et al.
[52].

1.3. Convection-diffusion systems: The LDG method

The first extensions of the RKDG method to nonlinear, convection-diffusion
systems of the form

Ou+ V- -F(u,Du) =0, in (0,T) x Q,

were proposed by Chen et al. [10], [9] in the framework of hydrodynamic models
for semiconductor device simulation. In these extensions, approximations of second
and third-order derivatives of the discontinuous approximate solution were obtained
by using simple projections into suitable finite elements spaces. This projection
requires the inversion of global mass matrices, which in [10] and [9] are ‘lumped’
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in order to maintain the high parallelizability of the method. Since in [10] and
[9] polynomials of degree one are used, the ‘mass lumping’ is justified; however, if
polynomials of higher degree were used, the ‘mass lumping’ needed to enforce the
full parallelizability of the method could cause a degradation of the formal order of
accuracy.

Fortunately, this is not an issue with the methods proposed by Bassi and Rebay
[3] (see also Bassi et al [2]) for the compressible Navier-Stokes equations. In these
methods, the original idea of the RKDG method is applied to both v and D u which
are now considered as independent unknowns. Like the RKDG methods, the re-
sulting methods are highly parallelizable methods of high-order accuracy which are
very efficient for time-dependent, convection-dominated flows. The LDG methods
considered by Cockburn and Shu [18] are a generalization of these methods.

The basic idea to construct the LDG methods is to suitably rewrite the original
system as a larger, degenerate, first-order system and then discretize it by the
RKDG method. By a careful choice of this rewriting, nonlinear stability can be
achieved even without slope limiters, just as the RKDG method in the purely
hyperbolic case; see Jiang and Shu [36].

The LDG methods [18] are very different from the so-called Discontinuous
Galerkin (DG) method for parabolic problems introduced by Jamet [35] and stud-
ied by Eriksson, Johnson, and Thomée [27], Eriksson and Johnson [23, 24, 25, 26],
and more recently by Makridakis and Babuska [50]. In the DG method, the ap-
proximate solution is discontinuous only in time, not in space; in fact, the space dis-
cretization is the standard Galerkin discretization with continuous finite elements.
This is in strong contrast with the space discretizations of the LDG methods which
use discontinuous finite elements. To emphasize this difference, those methods
are called Local Discontinuous Galerkin methods. The large amount of degrees
of freedom and the restrictive conditions of the size of the time step for explicit
time-discretizations, render the LDG methods inefficient for diffusion-dominated
problems; in this situation, the use of methods with continuous-in-space approxi-
mate solutions is recommended. However, as for the successful RKDG methods for
purely hyperbolic problems, the extremely local domain of dependency of the LDG
methods allows a very efficient parallelization that by far compensates for the extra
amount of degrees of freedom in the case of convection-dominated flows.

Karniadakis et al. have implemented and tested these methods for the com-
pressible Navier Stokes equations in two and three space dimensions with impressive
results; see [44], [45], [46], [47], and [65].

1.4. The content of these notes

In these notes, we study the RKDG and LDG methods. Our exposition will be
based on the papers by Cockburn and Shu [17], [15], [14], [13], and [19] in which
the RKDG method was developed and on the paper by Cockburn and Shu [18]
which is devoted to the LDG methods. Numerical results from the papers by Bassi
and Rebay [2], on the Euler equations of gas dynamics, and [3], on the compressible
Navier-Stokes equations, are also included.

The emphasis in these notes is on how the above mentioned schemes were de-
vised. As a consequence, the chapters that follow reflect that development. Thus,
Chapter 2, in which the RKDG schemes for the one-dimensional scalar conserva-
tion law are constructed, constitutes the core of the notes because it contains all
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the important ideas for the devicing of the RKDG methods; chapter 3 contains the
extension to multidimensional systems; and chapter 4, the extension to convection-
diffusion problems.

We would like to emphasize that the guiding principle in the devicing of the
RKDG methods for scalar conservation laws is to consider them as perturbations
of the so-called monotone schemes. As it is well-known, monotone schemes for
scalar conservation laws are stable and converge to the entropy solution but are
only first-order accurate. Following a widespread approach in the field of numerical
schemes for nonlinear conservation laws, the RKDG are constructed in such a way
that they are high-order accurate schemes that ‘become’ a monotone scheme when
a piecewise-constant approximation is used. Thus, to obtain high-order accurate
RKDG schemes, we ‘perturb’ the piecewise-constant approximation and allow it to
be piecewise a polynomial of arbitrary degree. Then, the conditions under which the
stability properties of the monotone schemes are still valid are sought and enforced
by means of the generalized ‘slope limiter.” The fact that it is possible to do so
without destroying the accuracy of the RKDG method is the crucial point that
makes this method both robust and accurate.

The issues of parallelization and adaptivity developed by Biswas, Devine, and
Flaherty [6], deCougny et al. [20], Devine et al. [22, 21] and by Ozturan et al.
[52] are certainly very important. Another issue of importance is how to render
the method computationaly more efficient, like the quadrature rule-free versions
of the RKDG method recently studied by Atkins and Shu [1]. However, these
topics fall beyond the scope of these notes whose main intention is to provide a
simple introduction to the topic of discontinuous Galerkin methods for convection-
dominated problems.
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CHAPTER 2

The scalar conservation law in one space
dimension

2.1. Introduction

In this section, we introduce and study the RKDG method for the following
simple model problem:

ur + fu), =0, in (0,1) x (0,7), (2.1.1)
u(z,0) = up(z), V€ (0,1),

and periodic boundary conditions. This section has material drawn from [17] and
[15].

2.2. The discontinuous Galerkin-space discretization

2.2.1. The weak formulation. To discretize in space, we proceed as follows.
For each partition of the interval (0,1), { z;41/2 };V:O, we set I; = (zj_1/2,Tj41/2),
Aj=wzjr19 —xj_1y for j=1,...,N, and denote the quantity max;<;j<n A; by
Az .

We seek an approximation w, to w such that for each time ¢ € [0,77], us(t)
belongs to the finite dimensional space

Vi, =VF={veL'0,1): 0], € P*(I;), j=1,...,N}, (2.2.3)

where P*(I) denotes the space of polynomials in I of degree at most k. In order to
determine the approximate solution uj, we use a weak formulation that we obtain
as follows. First, we multiply the equations (2.1.1) and (2.1.2) by arbitrary, smooth
functions v and integrate over I;, and get, after a simple formal integration by
parts,

/14 O u(z,t)v(z) de — B flu(z,t)) 0, v(z) dx (2.2.4)
+f(u(xj+1/2:t)) U(xj__H/z) - f(u(xjfl/Zat)) U(I;—_1/2) =0,

/u(r,O)v(x)dx:/ wo (&) v() da. (2.2.5)

I; I;
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Next, we replace the smooth functions v by test functions vy belonging to the finite
element space V},, and the exact solution u by the approximate solution wy. Since
the function wuy is discontinuous at the points x;i;/,, we must also replace the
nonlinear ‘flux’ f(u(z;41/2,t)) by a numerical ‘flux’ that depends on the two values
of up, at the point (2;41/2,t), that is, by the function

h(u)j+1/2 (t) = h(u(m]._+1/2, t): u(x;':_l/z: t)): (2'2'6)

that will be suitably chosen later. Note that we always use the same numerical fluz
regardless of the form of the finite element space. Thus, the approximate solution
given by the DG-space discretization is defined as the solution of the following weak
formulation:

Vj=1,...,N, Y vy, € PR(I;)

B O up(x,t) vy (x) do — B flup(z,t)) 0y v (x) do (2.2.7)

Hh(un) 172 (&) v (@7, j) = Bun)j—172(8) va(z)_, 1) =0,

/uh(w,O)vh(az)dazz/ uo(x) vy (x) de. (2.2.8)

I; I;

2.2.2. Incorporating the monotone numerical fluxes. To complete the
definition of the approximate solution uy, it only remains to choose the numerical
flux h. To do that, we invoke our main point of view, namely, that we want to
construct schemes that are perturbations of the so-called monotone schemes because
monotone schemes, although only first-order accurate, are very stable and converge
to the entropy solution. More precisely, we want that in the case k£ = 0, that is,
when the approximate solution uy is a piecewise-constant function, our DG-space
discretization gives rise to a monotone scheme.

Since in this case, for x € I; we can write

up(z,t) = U(])-,

we can rewrite our weak formulation (2.2.7), (2.2.8) as follows:



2.2. THE DISCONTINUOUS GALERKIN-SPACE DISCRETIZATION 9

and it is well-known that this defines a monotone scheme if h(a,b) is a Lipschitz,
consistent, monotone flux, that is, if it is,

(i) locally Lipschitz and consistent with the flux f(u), i-e., h(u,u) = f(u),
(ii) a nondecreasing function of its first argument, and
(iii) a nonincreasing function of its second argument.

The best-known examples of numerical fluxes satisfying the above properties are
the following:

(i) The Godunov flux:

hG(a b) = ming<u<p f(u) , ifa <o,
T maxe>yu>b f(u) , if a > b;

(ii) The Engquist-Osher flux:

b a
hEO (a,b) = / min(f'(s),0) ds + / max(£'(s),0) ds + £(0);
0 0
(iii) The Lax-Friedrichs flux:

WU (0, h) = 5 [F(@) + F0) ~ C (b~ a)],
¢= inf uo(z)rgnsagxsup ul(z) |fl(8)|,

(iv) The local Lax—Friedrichs flux:

W () = 5 [F(a) + 1) = Clb - a),
C = max If'(s)];

min(a,b)<s<max(a,b)

(v) The Roe flux with ‘entropy fix’:

f(a), if f'(u) >0 for wu € [min(a,d), max(a,bd)],
h%(a,b) = < f(b), if f'(u) <0 for wu € [min(a,bd), max(a,b)],
htLE (a,b), otherwise.

For the flux h, we can use the Godunov flux A% since it is well-known that this
is the numerical flux that produces the smallest amount of artificial viscosity. The
local Lax-Friedrichs flux produces more artificial viscosity than the Godunov flux,
but their performances are remarkably similar. Of course, if f is too complicated, we
can always use the Lax-Friedrichs flux. However, numerical experience suggests that
as the degree k of the approximate solution increases, the choice of the numerical
flux does not have a significant impact on the quality of the approximations.

2.2.3. Diagonalizing the mass matrix. If we choose the Legendre polyno-
mials P, as local basis functions, we can exploit their L2-orthogonality, namely,

! 2
P, Pp(s)ds = | ——— | b o
/_1 0 (s) Py (s) ds <2Z+1> e,

and obtain a diagonal mass matrix. Indeed, if for ¢ € I;, we express our approxi-
mate solution uy, as follows:
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where
pe(x) = Po(2(z —x5)/4;),

the weak formulation (2.2.7), (2.2.8) takes the following simple form:
Vji=1,...,Nand £=0,...,k:

<r1+1>3 ul(t) - Ai / Flun(e ) dupn(w) do
1

+A_j h(un(wj1/2))(t) — (1) h(uh(mj—lﬂ))(t)} =0,

20+1
=55 [ ol puto) d,
J

I;:

u(0)

where we have use the following properties of the Legendre polynomials:
P(1)=1,  P(-1)=(-1)".

This shows that after discretizing in space the problem (2.1.1), (2.1.2) by the
DG method, we obtain a system of ODEs for the degrees of freedom that we can
rewrite as follows:

%’U,h = Lh(uh), in (O,T), (229)
up(t = 0) = uop. (2.2.10)

The element Ly (up) of V4 is, of course, the approximation to — f(u), provided by
the DG-space discretization.

Note that if we choose a different local basis, the local mass matrix could be a
full matrix but it will always be a matrix of order (k+ 1). By inverting it by means
of a symbolic manipulator, we can always write the equations for the degrees of
freedom of uy as an ODE system of the form above.

2.2.4. Convergence analysis of the linear case. In the linear case f(u) =
cu, the L*(0,T; L?(0,1))-accuracy of the method (2.2.7), (2.2.8) can be established
by using the L>(0,T'; L*(0, 1))-stability of the method and the approximation prop-
erties of the finite element space V},.

Note that in this case, all the fluxes displayed in the examples above coincide
and are equal to

h(a, b) :c”;b - |—;|(b—a). (2.2.11)

The following results are thus for this numerical flux.
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We state the L2-stability result in terms of the jumps of uj across Tjy1/2 which
we denote by

[un]jpr/2 = Uh(f”}:l/z) - uh(x]'_+1/2)'

PROPOSITION 2.1. (L?-stability) We have,
L un(T) 20, + Or(un) < Hluo 220y,
where
T
Or(up) = % Jo Zicjenlun® 5y, ), dt.

Note how the jumps of u;, are controled by the L2-norm of the initial condition.
This control reflects the subtle built-in dissipation mechanism of the DG-methods
and is what allows the DG-methods to be more accurate than the standard Galerkin
methods. Indeed, the standard Galerkin method has an order of accuracy equal to
k whereas the DG-methods have an order of accuray equal to k + 1/2 for the same
smoothness of the initial condition.

THEOREM 2.1. Suppose that the initial condition ug belongs to H*T1(0,1). Let
e be the approximation error u — up. Then we have,

le(T) lL20,1) < C lug | grsao,1)(Az)F+1/2,
where C' depends solely on k, |c|, and T.

It is also possible to prove the following result if we assume that the initial
condition is more regular. Indeed, we have the following result.

THEOREM 2.2. Suppose that the initial condition uy belongs to H**2(0,1). Let
e be the approximation error u — up. Then we have,

1e(T) lz20,1) < C'luo lmr+z(o,0) (Az)*HE,
where C' depends solely on k, |c¢|, and T'.

The Theorem 2.1 is a simplified version of a more general result proven in 1986
by Johnson and Pitkdranta [37] and the Theorem 2.2 is a simplified version of
a more general result proven in 1974 by LeSaint and Raviart [41]. To provide a
simple introduction to the techniques used in these more general results, we give
new proofs of these theorems in an appendix to this chapter.

The above theorems show that the DG-space discretization results in a (k+1)th-
order accurate scheme, at least in the linear case. This gives a strong indication
that the same order of accuracy should hold in the nonlinear case when the exact
solution is smooth enough, of course.

Now that we know that the DG-space discretization produces a high-order
accurate scheme for smooth exact solutions, we consider the question of how does
it behave when the flux is a nonlinear function.

2.2.5. Convergence analysis in the nonlinear case. To study the conver-
gence properties of the DG-method, we first study the convergence properties of
the solution w of the following problem:

we + f(w), = (v(w) wg),, in (0,1) x (0,7, (2.2.12)
w(z,0) = up(x), vV e(0,1), (2.2.13)
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and periodic boundary conditions. We then mimic the procedure to study the
convergence of the DG-method for the piecewise-constant case. The general DG-
method will be considered later after having introduced the Runge-Kutta time-
discretization.

The continuous case as a model. In order to compare u and w, it is enough
to have (i) an entropy inequality and (ii) uniform boundedness of [|w. |[z1(0,1)-
Next, we show how to obtain these properties in a formal way.

We start with the entropy inequality. To obtain such an inequality, the basic
idea is to multiply the equation (2.2.12) by U'(w — ¢), where U(-) denotes the
absolute value function and ¢ denotes an arbitrary real number. Since

U'lw—c¢)wy = U(w — ¢)y,

U'lw =) f(w)e = (U'(w ¢) (f(w) = f(¢))) = F(w,c)e,
U'(w—c¢) (v(w </ U'p—rc)vip) p> —U"(w - ¢) v(w) (w,)*
= ®(w, ¢)ee — U"(w — ¢) v(w) (we)?,

we obtain
Ulw—c¢) + F(w,¢)y — ®(w,¢)zs <0, in (0,1) x (0,7,

which is nothing but the entropy inequality we wanted.
To obtain the uniform boundedness of || w, [|1(0,1), the idea is to multiply the
equation (2.2.12) by —(U'(w;)), and integrate on z from 0 to 1. Since

b - d

|~ = [ V) @ = Flws o,

/0 _(U’(ww))w f(w)a: = _/0 U”(wz) Wey fl(w) Wy = 07

/ (U (we))e (v(w) wy)g = — / U (wg) wag (7' (w) (12)? + v(1) wys)
0

/ U (10,) (w) (wee)? < 0,

we immediately get that

d
aﬂwz lr(0,1) <0,

and so,

lwe llron) <M1 (wo)e lzr0r),  VE€(0,T).

When the function uy has discontinuities, the same result holds with the total vari-
ation of ug ,| uo |7y (0,1), replacing the quantity || (wo)« [[21(0,1); these two quantities
coincide when ug € W11(0,1).

With the two above ingredients, the following error estimate, obtained in 1976
by Kuznetsov, can be proved:

THEOREM 2.3. We have
|w(T) —w(T) |0,y < |uolrvo) V8T v,

where v = SUD s c[inf uo ,sup uo] v(s).
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The piecewise-constant case. Let consider the simple case of the DG-
method that uses a piecewise-constant approximate solution:

Vj=1,...,N:

8,5 Uj + {h(uj,ujH) — h(uj,l,uj)}/Aj = 0,
1

u;(0 :—/ ug(z) dx,

0 =5 [ w)

j

where we have dropped the superindex ‘0.” We pick the numerical flux h to be the
Engquist-Osher flux.
According to the model provided by the continuous case, we must obtain (i) an
entropy inequality and (ii) the uniform boundedness of the total variation of wy,.
To obtain the entropy inequality, we multiply our equation by U'(u; — ¢):

O: U(uj — ¢) + U'(uj — ) {h(uj, ujr1) — h(uj_1,u;)}/A; = 0.

The second term in the above equation needs to be carefully treated. First, we
rewrite the Engquist-Osher flux in the following form:

W9 (a,b) = f*(a) + (D),
and, accordingly, rewrite the second term of the equality above as follows:
ST; = U'(uy —){fT () = F(uj)} + U (uj — ) {f (uje1) — f(uy)}-

Using the simple identity
b
U'(a —¢)(g(a) — g(b)) = G(a,c) = G(b,c) + / (9(b) = g(p)) U" (p — x) dp.

where G(a,¢) = [ U'(p — ¢) g(p) dp, we get

Uj—1

STy = F+(Ujac)_F+(uj—1aC)+/ (f " (uj—1) = fH () U" (p — x) dp

SE (ue,0) = F (0= [ () = () U~ ) dp

= F(uj,ujy15¢) — Fuj1,u5;¢) + Ouiss j

where
F(a,b;c) = F'(a,c)+ F~(b,c),
Ouis = + [ (e = )V (=) dp
T ) — () U (o — ) dp
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We thus get
O U(Uj - C) + {F(uj,uj+1;c) — F(Uj_l,Uj;C)}/Aj + @diss,j/Aj =0.

Since, ft and —f~ are nondecreasing functions, we easily see that
Oudiss,j = 0,
and we obtain our entropy inequality:
O U(uj —¢) + {F(uj,uji1;¢) — Fluj_1,uj;¢) }/A; <0.

Next, we obtain the uniform boundedness on the total variation. To do that,
we follow our model and multiply our equation by a discrete version of —(U'(wy)) s,

namely,
1 Uir] — Uj Ui — Uj_
W o= —— U’<7’+1 ’)—U’<7’ : 1)}
! A { Ajy1/2 Ajo1/2

where Aj 115 = (Aj + Ajy1)/2, multiply it by A; and sum over j from 1 to N.
We easily obtain

d
E| un |rv(o1) + Z ”? {h(Uj,Uj+1) - h(uj—la“j)} =0,
1<GSN

where

lun vy = Y. lujpn — sl
1<G<N

According to our continuous model, the second term in the above equality
should be positive. Let us see that this is indeed the case:

”? {h(uj;UjH) - h(Ujfl,Uj)} = U;') {f+(uj) - f+(uj,1)} + U;') {fi(ujﬂ) - fi(uj)}
> 0,
by the definition of v?, fT, and f~. This implies that

| un(t) |TV(0,1) < |un(0) |TV(071) < uo |TV(0,1)-

With the two above ingredients, the following error estimate, obtained in 1976
by Kuznetsov, can be proved:

THEOREM 2.4. We have
lw(T) —un(T) 1oy < [luo —un(0) 10,1y + C luo |rvio,1) VT A

2.3. The TVD-Runge-Kutta time discretization

To discretize our ODE system in time, we use the TVD Runge Kutta time
discretization introduced in [60]; see also [57] and [58].
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2.3.1. The discretization. Thus, if {¢t"}}_; is a partition of [0, 7] and At" =
tntl — ¢ =0,...,N — 1, our time-marching algorithm reads as follows:

e Set u?L = Ugp;
e Forn=0,..,N — 1 compute u; "' from u} as follows:
1. set uglo) = up;
2. fori =1,...,k 4+ 1 compute the intermediate functions:

=0

i—1
ugf) = {Zailus) + ﬂ@'ZAtnLh(qu))} ;

n+1 _ o (k+1)
3. set up " = uy .

Note that this method is very easy to code since only a single subroutine defining
Ly (up) is needed. Some Runge-Kutta time discretization parameters are displayed
on the table below.

Table 1
Parameters of some practical Runge-Kutta time discretizations
order il Bil max{ S/ }
2 1 1 1
11 1
33 03
1 1
3 31 041 1
12 2
503 003

2.3.2. The stability property. Note that all the values of the parameters
oy displayed in the table below are nonnegative; this is not an accident. Indeed,
this is a condition on the parameters «;; that ensures the stability property

Jup | < Jug ],
provided that the ‘local’ stability property
lw| < v, (2.3.14)
where w is obtained from v by the following ‘Euler forward’ step,
w=v+9 Ly(v), (2.3.15)

holds for values of |J | smaller than a given number dy.
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For example, the second-order Runke-Kutta method displayed in the table
above can be rewritten as follows:

ugll) =up + At Ly (up)
(1

5 (up + wn).
Now, assuming that the stability property (2.3.14), (2.3.15) is satisfied for
0g = |At max{ﬂil/ail} | = At,

we have
1 1
lu [ < Jupl, o] < Jug” ],
and so,
1
lup™ | < 5 SUuh |+ lwnl) < Jup |-

Note that we can obtain this result because the coefficients «;; are positive! Runge-
Kutta methods of this type of order up to order 5 can be found in [58].
The above example shows how to prove the following more general result.

THEOREM 2.5. Assume that the stability property for the single ‘Euler forward’
step (2.8.14), (2.3.15) is satisfied for

do = Oglax | At™ max{Bi/ail|.

Assume also that oll the coeficients ay are nonnegative and satisfy the following
condition:

au=1, i=1,..,k+1

Then
lup | <lupl,  Vn>0.

This stability property of the TVD-Runge-Kutta methods is crucial since it
allows us to obtain the stability of the method from the stability of a single ‘Euler
forward’ step.

Proof of Theorem 2.5. We start by rewriting our time discretization as
follows:

e Set u% = Ugh;

e Forn =0,...,N —1 compute u

1. set uglo) = up;
2. fori =1,...,k 4+ 1 compute the intermediate functions:

(it)
g Qi Wy

2 from ul as follows:

where
N
n _(k+1)
3. set uh+1 =, .
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We then have

i—1
|u§f) | < Z a; |w§fl) |, since ay >0,
=0
i—1
< Y aqluf’|, by the stability property (2.3.14), (2.3.15),
=0
<

i—1
! .
max |u2) |, since E a; =1
0<I<i—1 —

It is clear now that that Theorem 2.5 follows from the above inequality by a simple
induction argument. O

2.3.3. Remarks about the stability in the linear case. For the linear
case f(u) = cu, Chavent and Cockburn [7] proved that for the case k = 1, i.e., for
piecewise-linear approximate solutions, the single ‘Euler forward’ step is uncondi-
tionally L>°(0,T; L*(0,1))-unstable for any fixed ratio At/Az. On the other hand,
in [17] it was shown that if a Runge-Kutta method of second order is used, the
scheme is L>°(0,T'; L?(0, 1))-stable provided that

(o)
bl
IN
Ll =

This means that we cannot deduce the stability of the complete Runge-Kutta
method from the stability of the single ‘Euler forward’ step. As a consequence,
we cannot apply Theorem 2.5 and we must consider the complete method at once.

Our numerical experiments show that when polynomial of degree k are used,
a Runge-Kutta of order (k + 1) must be used. In this case, the L>(0,T; L*(0,1))-
stability condition is the following;:

1
2k +1°

c£<
Azr —

There is no rigorous proof of this fact yet.

At a first glance, this stability condition, also called the Courant-Friedrichs-
Levy (CFL) condition, seems to compare unfavorably with that of the well-known
finite difference schemes. However, we must remember that in the DG-methods
there are (k + 1) degrees of freedom in each element of size Az whereas for finite
difference schemes there is a single degree of freedom of each cell of size Az. Also,
if a finite difference scheme is of order (k + 1) its so-called stencil must be of at
least (2k + 1) points, whereas the DG-scheme has a stencil of (k +1) elements only.

2.3.4. Convergence analysis in the nonlinear case. Now, we explore
what is the impact of the explicit Runge-Kutta time-discretization on the con-
vergence properties of the methods under consideration. We start by considering
the piecewise-constant case.
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The piecewise-constant case. Let us begin by considering the simplest case,
namely,

(uf*™ —uf ) /At + {h(uf, ufpr) = h(uf_y,uf) }/A; =0,

w@ziﬂwwm

where we pick the numerical flux h to be the Engquist-Osher flux.
According to the model provided by the continuous case, we must obtain (i) an
entropy inequality and (ii) the uniform boundedness of the total variation of wy,.
To obtain the entropy inequality, we proceed as in the semidiscrete case and
obtain the following result; see [12] for details.

THEOREM 2.6. We have

{U(u;”rl —c) — U(u;’ — c)}/At + {F(u?,u?Hm) — F(u?fl,u?;c)}/AJ—
+ ®giss,j/At = 0’

where
ons = [ ) =By U~ ) dp
5 (FH ) = £ () U"(p — 2 dp
5 £ W) = £ () U"(p— ) d,
and

piw) = w—§—j<f+<w>—f-<w>).

Moreover, if the following CFL condition is satisfied

At o,
— < 1
gy s L
then ©F;. + > 0, and the following entropy inequality holds:

{U(u;‘+1 —c) = U(uf —co)}/At+ {F(u?,uj+1;c) — F(uj_1,uj5¢)}/A; <0.

Note that ©7,,; ; > 0 because f*, —f, are nondecreasing and because p; is

also nondecreasing under the above CFL condition.
Next, we obtain the uniform boundedness on the total variation. Proceding as
before, we easily obtain the following result.

THEOREM 2.7. We have

lup ™ rvion) = lu lrvon + O%y = 0,
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where
o= Y (U’?+1/2 - U’?Ll/z) (Pjs1/2(ufy1) — Pjy1y2(uy)
1<GEN
Py & (Ve - vt ) e - £ )
-3 & (Vi - U3 ) ) - @)
where
v =0 (RE)
and
pisipw) = s— Aﬁl () +§—: £ (w).

Moreover, if the following CFL condition is satisfied

At

!
1
25 A, AR

)

then Oy, >0, and we have

lup lrviony < wlrvion)-

With the two above ingredients, the following error estimate, obtained in 1976
by Kuznetsov, can be proved:

THEOREM 2.8. We have

|w(T) —un(T) 10,y < [uo —un(0)[lz1(0,1) + C luo|7v(0,1) VT A

The general case. The study of the general case is much more difficult than
the study of the monotone schemes. In these notes, we restrict ourselves to the
study of the stability of the RKDG schemes. Hence, we restrict ourselves to the
task of studying under what conditions the total variation of the local means is
uniformly bounded.

If we denote by @; the mean of u;, on the interval I;, by setting v, = 1 in the
equation (2.2.7), we obtain,

Vj=1,...,N:
(ﬂj)t + {h(uj_+1/2au;r+1/2) - h(uj_fl/zau;'tl/z)}/Aj =0,

where Uiy denotes the limit from the left and uj++1/2 the limit from the right.

We pick the numerical flux h to be the Engquist-Osher flux.
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This shows that if we set wy, equal to the Euler forward step up + 6 Ly (uy), we
obtain

(w; —w;)/o+ {h(u;+1/2,uj++1/2) - h(u;_lm,uj_lm)}/Aj =0.

Proceeding exactly as in the piecewise-constant case, we obtain the following result
for the total variation of the avergages,

T lrviony = Y, 1T — 1)
1<G<N

THEOREM 2.9. We have

|@h |7v0,0) = |8 l7vio) + Orvme = 0,
where
Orvi = Z (U’Hl/? - U’j+1/2) (Pj+1/2(unli;pr) — Pjray2(unlry)
1<j<N
6 —_ a—
o] GO L R R e
<<
6 — —
25 (Ve =V ) 6 =0
<<
where
Uii1/2 = Ul<ui+1 —Uz'>,
+1/2 7Ai+1/2
and
_ 0 L, o ., 4
Pj+1/2(Unlr,) = TUm - A P, 1ys) + A_jf (1 /)-

From the above result, we see that the total variation of the means of the Euler
forward step is nonincreasing if the following three conditions are satisfied:

sgn(Tipr — ;) = sgn(pjy1/2(unlg,) = Pipaj2(unly)),  (2.3.16)
sgn(u; —uj_1) = Sgn(u;:’__l/2 - U;L—_1/2 ), (2.3.17)
sgn(Tjp1 —wj) = Sgn(u;:’_"i/2 - u?’_";m ). (2.3.18)

Note that if the properties (2.3.16) and (2.3.17) are satisfied, then the property
(2.3.18) can always be satisfied for a small enough values of | |.

Of course, the numerical method under consideration does not provide an ap-
proximate solution automatically satisfying the above conditions. It is thus nec-
essary to enforce them by means of a suitably defined generalized slope limiter,’
ATLy,.
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2.4. The generalized slope limiter

2.4.1. High-order accuracy versus the TVDM property: Heuristics.
The ideal generalized slope limiter AIIy,

e Maintains the conservation of mass element by element,
e Satifies the properties (2.3.16), (2.3.17), and (2.3.18),
e Does not degrade the accuracy of the method.

The first requirement simply states that the slope limiting must not change the
total mass contained in each interval, that is, if w, = Al (vp),

u,=v;, j=1,...,N.

This is, of course a very sensible requirement because after all we are dealing with
consevation laws. It is also a requirement very easy to satisfy.

The second requirement, states that if up = All,(vp) and wp, = up + 0 Ly (up)
then

| Wn | 7v(0,1) < Uk |7V (0,1

for small enough values of |J|.

The third requirement deserves a more delicate discussion. Note that if up is a
very good approximation of a smooth solution u in a neighborhood of the point g, it
behaves (asymptotically as Az goes to zero) as a straight line if u, (o) # 0. If 29 is
an isolated extrema of u, then it behaves like a parabola provided u,,(zo) # 0. Now,
if up, is a straightline, it trivially satisfies conditions (2.3.16) and (2.3.17). However,
if up, is a parabola, conditions (2.3.16) and (2.3.17) are not always satisfied. This
shows that it is impossible to construct the above ideal generalized ‘solpe limiter,’
or, in other words, that in order to enforce the TVDM property, we must loose
high-order accuracy at the local extrema. This is a very well-known phenomenon
for TVD finite difference schemes!

Fortunatelly, it is still possible to construct generalized slope limiters that do
preserve high-order accuracy even at local extrema. The resulting scheme will then
not be TVDM but total variation bounded in the means (TVBM) as we will show.

In what follows we first consider generalized slope limiters that render the
RKDG schemes TVDM. Then we suitably modify them in order to obtain TVBM
schemes.

2.4.2. Counstructing TVDM generalized slope limiters. Next, we look
for simple, sufficient conditions on the function u, that imply the conditions (2.3.16),
(2.3.17), and (2.3.18). These conditions will be stated in terms of the minmod func-
tion m defined as follows:

s min a if s = sian(a1) = - -- = sian(a
m(ay,...,a,) = { 1<n<y | @nl, gn(a1) gn(ay),

0, otherwise.

THEOREM 2.10. Suppose the the following CFL condition is satisfied:

+ . — .
|6|(|fA_|+L1”’+ |fA|_L”’)§1/2, j=1,...,N. (2.4.19)
J J
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Then, conditions (2.8.16), (2.3.17), and (2.3.18) are satisfied if, for allj =1,...,N,
we have that

uj-_+1/2 —uj = m (’U,j_+1/2 — ﬂj, ﬂj — Ej—l: ﬂj+1 — ﬂj) (2420)

u; — ’U,;-‘__l/2 = m (ﬂj - ’U,;-‘__l/2, Uj — UWj—1, Ujy1 — Ej). (2421)

Proof. Let us start by showing that the property (2.3.17) is satisfied. We
have:

Ujrrjs Ui 1pp = (u;+1/2 = Tj) + (@~ Tj-1) + (@1 — ujil/Z)

© (@; —uj-1),

where

Ujpryg — Ui Uy g9 = Uj—1 €l
Uj — Uj—1 Uj — Uj—1

O = 1+ 0,2],

by conditions (2.4.20) and (2.4.21). This implies that the property (2.3.17) is sat-
isfied. Properties (2.3.18) and (2.3.16) are proven in a similar way. This completes
the proof. 0

2.4.3. Examples of TVDM generalized slope limiters.
a. The MUSCL limiter. In the case of piecewise linear approximate solu-
tions, that is,
’Uh|[j=ﬁj+($—ﬂ§j)’l)z7j, j=1,...,N,
the following generalized slope limiter does satisfy the conditions (2.4.20) and
(2.4.21):

Uj+1 — U Ui — @'71)
A; T4
This is the well-known slope limiter of the MUSCL schemes of vanLeer [62, 63].
b. The less restrictive limiter AIl}. The following less restrictive slope
limiter also satisfies the conditions (2.4.20) and (2.4.21):

uplr; =0; + (x — xj) m (vg 5,

Yj+1 Ui U5 — Wj—l)

uplr; =05 + (x — ;) m (vej, A2 A2
i i

Moreover, it can be rewritten as follows:

’U,j_+1/2 = vj+m ( U]'_+1/2 —Vj, Vj —VUj_1, Uj4+1 — ﬁj) (2.4.22)

U,;il/2 = v;—m (ﬁj — ’U;il/z, Vj —Uj_1, Ujp1 — 5]'). (2.4.23)

We denote this limiter by AIL.
Note that we have that
_ 1 Az _
|0h — AL, (vn) [l L1 (0,1) < > |Oh | 7v(0,1)-

See Theorem 2.13 below.
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c. The limiter AII}. In the case in which the approximate solution is piece-
wise a polynomial of degree k, that is, when

k
vp(z,t) = vaw(az),
(=0
where

pe(x) = Po(2(z — z5)/4;),

and P, are the Legendre polynomials, we can define a generalized slope limiter in a
very simple way. To do that, we need the define what could be called the P!-part
of vy:

1
vt) = ) vfeu(a),
£=0

We define up, = All(vp,) as follows:

e For j =1,...,N compute uy|z; as follows:
1. Compute uj, , and u;'_im by usJirng (2.4.22) and (2.4.23),
2. If Uitre = Vsi1)n and Uiy = U5 g set un|r; = valr;,
3. If not, take up|;; equal to AII},(v}).

d. The limiter AH’,“LQ. When instead of (2.4.22) and (2.4.23), we use

uj._+1/2 = vj+m (Uj_+1/2 —Vj, Vj —Uj_1, Ujt1 — Uy, C (AI)Q) (2424)

’U,;ll/z = U;j—m (5]' — 1);_71/2, Uj — Vi1, Ujt1 — Uy, C (Az)?), (2.4.25)

for some fixed constant C' and « € (0,1), we obtain a generalized slope limiter we
denote by AL} .

This generalized slope limiter is never used in practice, but we consider it here
because it is used for theoretical purposes; see Theorem 2.13 below.

2.4.4. The complete RKDG method. Now that we have our generalized
slope limiters, we can display the complete RKDG method. It is contained in the
following algorith:

e Set u) = AIl, Py, (uo);

e Forn=0,...,N — 1 compute u}"" as follows:
1. set u;lo) = up;

2. fori =1,...,k + 1 compute the intermediate functions:

i1
ugf) = AIl, {Z Qi uﬁf) + ﬂilAtnLh(ug))} ;
=0

nt+l _  (k+1)
3. set uy " =wy, .

This algorithm describes the complete RKDG method. Note how the generalized
slope limiter has to be applied at each intermediate computation of the Runge-
Kutta method. This way of appying the generalized slope limiter in the time-
marching algorithm ensures that the scheme is TVDM, as we next show.
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2.4.5. The TVDM property of the RKDG method. To do that, we start
by noting that if we set

up = All, (vn), wp = up + 0 Ly (up),

then we have that

| h [7v(0,1)5 (2.4.26)
|Tn |7v(0,),  V]d| < do, (2.4.27)

|Tn |7v (0,1

IN A

|0 |7v(0,1)

where

e | 17 L
55! =2 max f Lip e j=1,...,N,
° J (Aj+1 A )

by Theorem 2.10. By using the above two properties of the generalized slope
limiter,” it is possible to show that the RKDG method is TVDM.

THEOREM 2.11. Assume that the generalized slope limiter Allj, satisfies the
properties (2.4.26) and (2.4.27). Assume also that all the coeficients ay are non-
negative and satisfy the following condition:

i—1
ap=1, i=1,...,k+1
=0

Then
| |l7v(0,1) < o |Tv(0,1), Yn > 0.

Proof of Theorem 2.11. The proof of this result is very similar to the proof
of Theorem 2.5. Thus, we start by rewriting our time discretization as follows:

e Set u) = uop;

e Forn=0,...,N — 1 compute u
1. set u;lo) = up;
2. fori =1,...,k + 1 compute the intermediate functions:

i1
ugf) = AIl, {Za” w,(ld)} ,
=0

7+ from u} as follows:

where
w® = u® + 2 A L D),
[27]
n _(k+1)
3. set uh+1 =, .
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Then have,
) i—1 '
7 vy < 1) ai wy" ITv0,1), by (2.4.26),
=0
1—1 )
< Zail |E§fl) |TV(071), since a; > 0,
=0
1—1
< | Zail @, l7v(o,1), by (2.4.27),

=0

1—1
(1) .
< max u( since a; = 1.
< ogzgiq' n 1TV (0,1) ;0 i

It is clear now that that the inequality

| lrvio1) < |8 l7v0,1), Vn >0.

follows from the above inequality by a simple induction argument. To obtain the
result of the theorem, it is enough to note that we have

1) |l 1v0,1) < w0 l7v(0,1),

by the definition of the initial condition . This completes the proof. O

2.4.6. TVBM generalized slope limiters. As was pointed out before, it is
possible to modify the generalized slope limiters displayed in the examples above
in such a way that the degradation of the accuracy at local extrema is avoided.
To achieve this, we follow Shu [59] and modify the definition of the generalized
slope limiters by simply replacing the minmod function m by the TVB corrected
minmod function m defined as follows:

; 2
m(al, ...,am) = {al, if |al| = M(Am) ’

2.4.28
m(ay,...,a,), otherwise, ( )

where M is a given constant. We call the generalized slope limiters thus constructed,
TVBM slope limiters.

The constant M is, of course, an upper bound of the absolute value of the
second-order derivative of the solution at local extrema. In the case of the nonlinear
conservation laws under consideration, it is easy to see that, if the initial data is
piecewise C?, we can take

M = sup{| (w0)zx(¥) |,y : (u0)z(y) = 0}.

See [15] for other choices of M.

Thus, if the constant M is is taken as above, there is no degeneracy of accu-
racy at the extrema and the resulting RKDG scheme retains its optimal accuracy.
Moreover, we have the following stability result.

THEOREM 2.12. Assume that the generalized slope limiter All, is a TVBM
slope limiter. Assume also that all the coeficients a; are monnegative and satisfy
the following condition:
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Then
[T [7vo,1) < W0 |rvio,) +C M, Vn >0,
where C depends on k only.

2.4.7. Convergence in the nonlinear case. By using the stability above
stability results, we can use the Ascoli-Arzeld theorem to prove the following con-
vergence result.

THEOREM 2.13. Assume that the generalized slope limiter Ally, is a TVDM or
a TVBM slope limiter. Assume also that all the coeficients oy are nonnegative and
satisfy the following condition:

i—1
au=1, i=1,..,k+1
=0

Then there is a subsequence {Up }n>0 of the sequence {Up}n>o generate by the
RKDG scheme that converges in L°°(0,T; L*(0,1)) to a weak solution of the problem
(2.1.1), (2.1.2).

Moreover, if the TVBM version of the slope limiter Aﬂfha is used, the weak
solution is the entropy solution and the whole sequence converges.

Finally, if the generalized slope limiter All, is such that

| T — ALy (vn) ll10,0) < C Az | Tk |7y (0,1

then the above results hold not only to the sequence of the means {up}p>o0 but to
the sequence of the functions { up}p>o0-

2.5. Computational results

In this section, we display the performance of the RKDG schemes in a simple
but typical test problem. We use piecewise linear (k = 1) and piecewise quadratic
(k = 2) elements; the AII¥ generalized slope limter is used. Our purpose is to show
that (i) when the constant M is properly chosen, the RKDG method using polyno-
mials of degree k is is order k+1 in the uniform norm away from the discontinuities,
that (ii) it is computationally more efficient to use high-degree polynomial approx-
imations, and that (iii) shocks are captured in a few elements without production
of spurious oscillations

We solve the Burger’s equation with a periodic boundary condition:

2

u
Ut + (? )x = 07
1 1 .
u(z,0) = up(z) = 1 + 3 sin(w(2z — 1)).
The exact solution is smooth at T' = .05 and has a well developed shock at

T = 0.4. Notice that there is a sonic point. In Tables 1,2, and 3, the history
of convergence of the RKDG method using piecewise linear elements is dsplayed
and in Tables 4,5, and 6, the history of convergence of the RKDG method using
piecewise quadratic elements. It can be seen that when the TVDM generalized
slope limiter is used, i.e., when we take M = 0, there is degradation of the accuracy
of the scheme, whereas when the TVBM generalized slope limiter is used with a
properly chosen constant M, i.e., when M = 20 > 272, the scheme is uniformly
high order in regions of smoothness that include critical and sonic points.
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Next, we compare the efficiency of the RKDG schemes for £k = 1 and k = 2
for the case M = 20 and T = 0.05. We define the inverse of the efficiency of
the method as the product of the error times the number of operations. Since the
RKDG method that uses quadratic elements has 0.3/0.2 times more time steps, 3/2
times more inner iterations per time step, and 3/2 time more unknowns in space,
its number of operations is 27/8 times bigger than the one of the RKDH method
using linear elements. Hence, the ratio of the efficiency of the RKDG method with
quadratic elements to that of the RKDG method with linear elements is

_ 8 error(RKDG(k = 1)
"T o7 error(RKDG(k = 2)°

The results are displayed in Table 7. We can see that the efficiency of the RKDG
scheme with quadratic polynomials is several times that of the RKDG scheme with
linear polynomials even for very small values of Az. We can also see that the ratio
r of efficiencies is proportional to (Az)~!, which is expected for smooth solutions.
This indicates that it is indeed more efficient to work with RKDG methods using
polynomials of higher degree.

That this is also true when the solution displays discontinuities can be seen
figures 1, and 2. In the figure 1, it can be seen that the shock is captured in
essentially two elements. A zoom of these figures is shown in figure 2, where the
approximation right in front of the shock is shown. It is clear that the approximation
using quadratic elements is superior to the approximation using linear elements.

2.6. Concluding remarks

In this section, which is the core of these notes, we have devised the general
RKDG method for nonlinear scalar conservation laws with periodic boundary con-
ditions.

We have seen that the RKDG are constructed in three steps. First, the Discon-
tinuous Galerkin method is used to discretize in space the conservation law. Then,
an explicit TVB-Runge-Kutta time discretizationis used to discretize the result-
ing ODE system. Finally, a generalized slope limiter is introduced that enforces
nonlinear stability without degrading the accuracy of the scheme.

We have seen that the numerical results show that the RKDG methods using
polynomials of degree k,k = 1,2 are uniformly (k + 1)-th order accurate away
from discontinuities and that the use of high degree polynomials render the RKDG
method more efficient, even close to discontinuities.

All these results can be extended to the initial boundary value problem, see
[15]. In what follows, we extend the RKDG methods to multidimensional systems.
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Table 1

P', M =0, CFL=0.3, T =0.05.

L'(0,1) — error

L*°(0,1) — error

Az 10° - error order 10° - error order
1/10 1286.23 - 3491.79 -
1/20 334.93 1.85 1129.21 1.63
1/40 85.32 1.97 449.29 1.33
1/80 21.64 1.98 137.30 1.71
1/160 5.49 1.98 45.10 1.61
1/320 1.37 2.00 14.79 1.61
1/640 0.34 2.01 4.85 1.60

1/1280 0.08 2.02 1.60 1.61
Table 2
P!, M =20, CFL=0.3, T =0.05.
L'(0,1) — error L*(0,1) — error

Az 105 - error order 105 - error order
1/10 1073.58 - 2406.38 -
1/20 277.38 1.95 628.12 1.94
1/40 71.92 1.95 161.65 1.96
1/80 18.77 1.94 42.30 1.93

1/160 4.79 1.97 10.71 1.98
1/320 1.21 1.99 2.82 1.93
1/640 0.30 2.00 0.78 1.86
1/1280 0.08 2.00 0.21 1.90
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Table 3
Errors in smooth region Q = {z : |z — shock| > 0.1}.
P', M =20, CFL=0.3, T = 0.4.

LY(Q) —error L>(Q) — error

Aw 10° - error order 10° - error order
1/10 1477.16 - 17027.32 -
1/20 155.67 3.25 1088.55 3.97
1/40 38.35 2.02 247.35 2.14
1/80 9.70 1.98 65.30 1.92
1/160 2.44 1.99 17.35 1.91
1/320 0.61 1.99 4.48 1.95
1/640 0.15 2.00 1.14 1.98
1/1280 0.04 2.00 0.29 1.99

Table 4

P?, M =0, CFL=0.2, T =0.05.

LY(0,1) — error L>(0,1) — error
Ax 10° - error order 10° - error order
1/10 2066.13 - 16910.05 -
1/20 251.79 3.03 3014.64 2.49
1/40 42.52 2.57 1032.53 1.55
1/80 7.56 2.49 336.62 1.61

29
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Table 5
P? M =20, CFL=0.2, T =0.05.

LY(0,1) —error L*>(0,1) — error
Az 10° - error order 10° - error order
1/10 37.31 - 101.44 -
1/20 4.58 3.02 13.50 2.91
1/40 0.55 3.05 1.52 3.15
1/80 0.07 3.08 0.19 3.01
Table 6

Errors in smooth region Q = {z : |z — shock| > 0.1}.
P2, M =20, CFL=0.2, T =0.4.

LY(Q) —error L>(Q) — error
Aw 10° - error order 10° - error order
1/10 786.36 - 16413.79 -
1/20 5.52 7.16 86.01 7.58
1/40 0.36 3.94 15.49 2.47
1/80 0.06 2.48 0.54 4.84
Table 7

Comparison of the efficiencies of RKDG schemes for k =2 and £ =1
M =20,T = 0.05.

L!'-norm L°-norm
Az ef f.ratio order ef f.oratio order
1/10 8.52 - 7.03 -
1/20 17.94 -1.07 46.53 -2.73
1/40 38.74 -1.11 106.35 -1.19
1/80 79.45 -1.04 222.63 -1.07
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elements (top) and piecewise quadratic elements (bottom)
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FIGURE 2. Detail of previous figure. Behavior of the approximate
solutions four elements in front of the shock: Exact solution (solid
line), piecewise linear solution (dotted line), and piecewise qua-
dratic solution (dashed line).

2.7. Appendix: Proof of the L2-error estimates in the linear case

2.7.1. Proof of the L2-stability. In this section, we prove the the stability
result of Proposition 2.1. To do that, we first show how to obtain the correspond-
ing stability result for the exact solution and then mimic the argument to obtain
Proposition 2.1.

The continuous case as a model. We start by rewriting the equations
(2.2.4) in compact form. If in the equations (2.2.4) we replace v(z) by v(x,t), sum
on j from 1 to N, and integrate in time from 0 to 7', we obtain

B(u,v) = 0, YV v:wu(t)issmooth Vite(0,T), (2.7.29)

where

T 1
B(u,v) = /0/0 {Oulz,t) v(z,t) — cu(w,t) 0y v(w,t) } dadt. (2.7.30)

Taking v = u, we easily see that we see that

1 . 1 .
B(u,u) = §|| w(T) 72001y — §|| o |[2(0,1)»

and since

B(u,u) =0,
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by (2.7.29), we immediately obtain the following L2?-stability result:

1 1
5“ u(T) ||?;2(0,1) = 5” o ||2L2(071)'
This is the argument we have to mimic in order to prove Proposition 2.1.
The discrete case. Thus, we start by finding the discrete version of the form
B(-,-). If we replace v(x) by vi(x,t) in the equation (2.2.7), sum on j from 1 to N,
and integrate in time from 0 to 7', we obtain

By, (Uh,’l)h) =0, YV vy : ’Uh(t) S th Vte (O,T) (2731)
where
T r1
By (un,vn) = / / Byun (, t) vn (. ) daz dt (2.7.32)
0 Jo
T
—/ Z / cup(z,t) Oy vp(z,t) de dt
0 1<in /i
T
— [ > hwn)jeaya() [on(t) |12 dt.
0 1gi<n

Following the model provided by the continuous case, we next obtain an ex-
pression for By (wy,wp). It is contained in the following result which will proved
later.

LEMMA 2.14. We have
B (wn, wn) = 311 en(7) [Bxo) + Orwn) = 51un(0) o
where
Or(wn) =5 f)' Sigen [on(®) o dt
Taking wp, = uy, in the above result and noting that by (2.7.31),
By, (un, un) =0,
we get the equality

U an(T) 2oy + O7(un) = Sl un(0) (2244,

from which Proposition 2.1 easily follows, since

1 . 1 .
slhun@lz200) < 5lluollze,,

by (2.2.8). It only remains to prove Lemma 2.14.
Proof of Lemma 2.14. After setting up = vy, = wy, in the definition of By,
(2.7.32), we get

1 ‘ r 1 .
Bn (wn,wn) = 5llwn(T) 1Z2(0,1) +/0 Ouiss(t) dt — 5 || wn(0) 1Z2(0,1)>
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where

Ouiss(t) = — Z {h(wh)Hl/g(t)[wh(t)]j+1/2-I-/ cwh(x,t)azwh(x,t)dx}.

1<j<N I

We only have to show that fOT Ouiss(t) dt = Op(wy). To do that, we proceed as
follows. Dropping the dependence on the variable ¢ and setting

_ 1 _
wh(mj-‘rl/?) = §(wh($]’+1/2) + wh($;+1/2) )7

we have, by the definition of the flux A, (2.2.11),

_ c
- Y [ dwaplolae = - X femln] - Eu Py
1<<N 1<<N
and
c
_ Z /cwh(x)azwh(x)dx = 3 Z [wh ]j41/2
1<j<N Vi 1<GEN
= ¢ > {wn[wnl}jsiy
1<j<N
Hence
Oun®) = LIS )
diss - 2 Up, J+1/20
1<j<N
and the result follows. This completes the proof of Lemma 2.14. O

This completes the proof of Proposition 2.1.

2.7.2. Proof of the Theorem 2.1. In this section, we prove the error esti-
mate of Theorem 2.1 which holds for the linear case f(u) = cu. To do that, we
first show how to estimate the error between the solutions w, = (u,,q,)t, v = 1,2,
of

Oruy + 0y f(uy) =0 in (0,T) x (0,1),
Uy (t =0) =up,, on (0,1).

Then, we mimic the argument in order to prove Theorem 2.1.
The continuous case as a model. By the definition of the form B(:,-),
(2.7.30), we have, for v = 1,2,

B(w,,v) = 0, YV v: v(t)is smooth Vi¢e(0,7T).

Since the form B(-,-) is bilinear, from the above equation we obtain the so-called
error equation:

B(e,v) = 0, Y v o(t)is smooth Vi¢e(0,T). (2.7.33)
where e = w; — w». Now, since
1 . 1 .
Ble,e) = ;lle(T) 1Z2(0,1) = 5 1le0) 1Z72(0,1)>

and

B(e,e) =0,
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by the error equation (2.7.33), we immediately obtain the error estimate we sought:

1 . 1 .
§|| e(T) 1201y = §|| wo,1 — o2 [|72(0,1)-

To prove Theorem 2.1, we only need to obtain a discrete version of this argument.
The discrete case. Since,

By, (up,vp) =0, Vouop: v(t)eVy, Yte(0,T),

By, (u,v,) =0, Youop: vp(t) eV YiEe(0,T),
by (2.2.7) and by equations (2.2.4), respectively, we easily obtain our error equation:
By, (e,v,) =0, Vop: vp(t)y eV, Vi€ (0,T), (2.7.34)

where e = w — wy,.

Now, according to the continuous case argument, we should consider next the
quantity By, (e, €); however, since e(t) is not in the finite element space V}, it is more
convenient to consider By (Pr(e), P (e)), where Pp(e(t)) is the L2-projection of the
error e(t) into the finite element space V¥

The L2-projection of the function p € L?(0,1) into Vj,, Py (p), is defined as the
only element of the finite element space V} such that

Jy (Ba(p) (@) — p(z) ) vn(x)dz =0, Y vy € Vi (2.7.35)

Note that in fact up(t = 0) = Pp(up), by (2.2.8).
Thus, by Lemma 2.14, we have

1 1
B (P(e),Pa(e) = SIPa(e(T) I120,1) + Or(®ale) = 51 Pale(0) 20,1,
and since
Pr(e(0)) = Paluo — un(0)) = Pp(uo) — un(0) =0,
and
By, (Pr(e),Prle)) = Bp(Pr(e) —e,Prle)) = Byp(Pr(u) —u,Pr(e)),

by the error equation (2.7.34), we get

1

IPaED) [[72(0,1) + O1(Bi(e)) = Ba(Pa(u) —u,Pa(e)). (2.7.36)
It only remains to estimate the right-hand side

]B(]Ph (U’) - u, Ph(e))a

which, according to our continuous model, should be small.
Estimating the right-hand side. To show that this is so, we must suitably
treat the term B(Pp, (w) — w, Py (e)). We start with the following remarkable result.

LEMMA 2.15. We have

T
By, (Pp(u) —u,Pre)) = —/0 Z h(Pr(uw) —u)jq1/2(t) [Pr(e)(t) ]j11/2 dt.
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Proof Setting p = Py(u) — v and v, = Py(e) and recalling the definition of
By (-,-), (2.7.32), we have

By (p,vn) = // ol t) vn (2, 1) da dt

/0 / cp(e,t) Oy vn(x, t) da di

1<j<N

/ > hp)jr1y2(t) [va(t) ]j1y2 dt

0 1<j<nN

/ Z h(p)j-l‘l/?(t) [vh(t) ]j+1/2 dt,

0 1<j<nN

by the definition of the L2-projection (2.7.35). This completes the proof. |

Now, we can see that a simple application of Young’s inequality and a stan-
dard approximation result should give us the estimate we were looking for. The
approximation result we need is the following.

LEMMA 2.16. If w € H*1(I; UIj1,), then
C
| (Br(w) = w)(@j4175) | < cx (Az)*H/? |_2| | | i (1;0154).

where the constant ¢y, depends solely on k.

Proof. Dropping the argument z;, /o we have, by the definition (2.2.11) of
the flux h,

[A(Ew) )| = @) + ) ) L@ B ) —ew
= e -w + @ w)y - w

< el max{|Pp(w)™ —w],|Ph(w)” —w]}

and the result follows from the properties of P, after a simple application of the
Bramble-Hilbert lemma; see [11]. This completes the proof. [l
An immediate consequence of this result is the estimate we wanted.

LEMMA 2.17. We have

By, (Ph(u) — u, Pp(e)) < ¢ (Az)?h+1 e |T|uo|Hk+1(01 + 5 O1(Pr(e)),

where the constant ¢y, depends solely on k.

Proof. After using Young’s inequality in the right-hand side of Lemma 2.15,
we get

BEu) —uBie) < [ 3 e - w0

+/0 Z %[Ph( €)(t) 1341 dt.
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By Lemma 2.16 and the definition of the form @, we get

T

c 1
By, (Pn(u) —u,Pr(e)) < cf (Ax)** ! |T| Z | u [ Fess (gy0r4) + B Or(Pr(e))

0 1<i<N
‘ ‘ ¢ . 1
< (Ax)PH |—2| T |uo [Fpusr(o,1) + 5 O1(Pale)).

This completes the proof. [l
Conclusion. Finally, inserting in the equation (2.7.36) the estimate of its right
hand side obtained in Lemma 2.17, we get

1P (e(T)) I22(0,1) + OT(Pr(e)) < ek (Ax)* ! || T Juo [fpusa (o)
Theorem 2.1 now follows from the above estimate and from the following inequality:
le™) l20) < w(T) = Pa(u(T)) llz2(0,1) + 1 Pa(e(T)) ll22(0,1)
S C;c (Aﬂf)kJrl |’LL0 |Hk+1(071) + || ]P’h(e(T)) ||L2(0,1)-

2.7.3. Proof of the Theorem 2.2. To prove Theorem 2.2, we only have to
suitably modify the proof of Theorem 2.1. The modification consists in replacing
the L2-projection of the error, Pj(e), by another projection that we denote by
]Rh (6)

Given a function p € L*°(0, 1) that is continuous on each element [;, we define
Ry, (p) as the only element of the finite element space V}, such that

Vi=1,...,N: Ry (p)(zj,¢) — p(zje) =0, ¢=0,...,k,(2.7.37)

where the points x; ¢ are the Gauss-Radau quadrature points of the interval I;. We
take

Tjk =Tjy172, ife>0, and xjo=x;_1/, ifc<0.(2.7.38)

The special nature of the Gauss-Radau quadrature points is captured in the follow-
ing property:

Voe PYI), €<k, VpeP* ).
/ (Ra (9) (@) — p(2)) () dc = 0. (2.7.39)

'

Compare this equality with (2.7.35).
The quantity By, (R, (e),Ry(e)). To prove our error estimate, we start by
considering the quantity By, (Ry (e), Ry (e)). By Lemma 2.14, we have

B (R (), Bi (6)) = 2| B (e(T) 20,1y + OB (€)) — 3 1R (€(0)) 30,0
and since

By, (Ry, (), R (e)) = Bp(Rp(e) —e,Rp(€)) = By (Ry (u) — u, Ry (e)),
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by the error equation (2.7.34), we get

1 1

I Rn (e(T) 1Z20,1) + OT(Rr(e)) = 71 Rn ((0)) 172(0,1) + Br (Re (w) — u, Ry, (e)).

Next, we estimate the term B(Ry, (u) — u, Ry (€)).
Estimating B(R, (u) — u, Ry (e)). The following result corresponds to Lemma
2.15.

LEMMA 2.18. We have

T r1
By (Ry (1) — w,vn) = /0/0 (Ry (Byu) (2, 1) — Byula, £)) von (x, t) dar it

T
_/0 3 /c(]Rh(u)(a:,t)—u(az,t))@wvh(az,t)dwdt.

1<j<N i

Proof Setting p = Ry, (u) — v and vy, = Ry, (e) and recalling the definition of
By (-, ), (2.7.32), we have

T 1
By, (p,vn) = // Op(x,t) v (z,t) do dt
0 0
T

- Z /cp(:n,t)axvh(az,t)dwdt
0 1<j<n i

T
- Z h(p)j-‘rl/? (t) ['Uh(t) ]j+1/2 dt.

0 1<i<N

But, from the definition (2.2.11) of the flux h, we have

ME@) —u) =SB+ Ry()) — (R w)* B ()) —cu
= @@ -+ R w0 -
= 0,
by (2.7.38) and the result follows. O

Next, we need some approximation results.

LEMMA 2.19. If w € H*2(1;), and vy, € P*(I;), then

< ok (Ax)* Jw | a1y [l on N2y

‘ /Ij (R (w) — w)(x) vn(x) dw

< e (ACU)]Hl | w |Hk+2(1j) lvn L2195

‘ /Ij (Rn (w) —w)(x) Oy vn(z) d

where the constant ¢y, depends solely on k.

Proof. The first inequality follows from the property (2.7.39) with ¢ = k and
from standard approximation results. The second follows in a similar way from the
property 2.7.39 with £ = k — 1 and a standard scaling argument. This completes
the proof. O

An immediate consequence of this result is the estimate we wanted.
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LEMMA 2.20. We have
T
By, (R (u) — u, Ry (€)) < cx (Ax) ™ |ug | ez (o) / | Re (e(t)) l|L2(0,1) dt,
0

where the constant ¢, depends solely on k and | c|.

Conclusion. Finally, inserting in the equation (2.7.36) the estimate of its right
hand side obtained in Lemma 2.20, we get

IR (D) IZ20,0) + ©O1(Rale)) < IR (e(0)) lIZ2(0,1

e (Az)* T g | ez o) /OT | Re. (e(8)) [l L2(0,1) dt-
After applying a simple variation of the Gronwall lemma, we obtain
IRn (e(T) 20,1y < 1 Ra(e(0))(@) lz2(0,1) + i (D) T | ug | etz o 1)
< G (An) ug | w42 (0,1

Theorem 2.2 now follows from the above estimate and from the following in-
equality:
[1e(T) [Iz2(0,1) 1 w(T) = Re (w(T)) ll22(0,1) + [ R (e(T)) ll220,1)

<
< ¢ (Ax) ! ug law+10,1) + I Re (e(T)) [l 2(0,1)-
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CHAPTER 3

The RKDG method for multidimensional systems

3.1. Introduction

In this section, we extend the RKDG methods to multidimensional systems:

w+ Vi) =0,  inQx(0,T), (3.1.1)
u(z,0) = uo(x), Ve,

and periodic boundary conditions. For simplicity, we assume that ) is the unit
cube.

This section is essentially devoted to the description of the algorithms and
their implementation details. The practitioner should be able to find here all the
necessary information to completely code the RKDG methods.

This section also contains two sets of numerical results for the Euler equations
of gas dynamics in two space dimensions. The first set is devoted to transient com-
putations and domains that have corners; the effect of using triangles or rectangles
and the effect of using polynomials of degree one or two are explored. The main
conclusions from these computations are that (i) the RKDG method works as well
with triangles as it does with rectangles and that (ii) the use of high-order polyno-
mials does not deteriorate the approximation of strong shocks and is advantageous
in the approximation of contact discontinuities.

The second set concerns steady state computations with smooth solutions. For
these computations, no generalized slope limiter is needed. The effect of (i) the
quality of the approximation of curved boundaries and of (ii) the degree of the
polynomials on the quality of the approximate solution is explored. The main
conclusions from these computations are that (i) a high-order approximation of the
curve boundaries introduces a dramatic improvement on the quality of the solution
and that (ii) the use of high-degree polynomials is advantageous when smooth
solutions are shought.

This section contains material from the papers [14], [13], and [19]. It also
contains numerical results from the paper by Bassi and Rebay [2] in two dimensions
and from the paper by Warburton, Lomtev, Kirby and Karniadakis [65] in three
dimensions.

3.2. The general RKDG method

The RKDG method for multidimensional systems has the same structure it has
for one-dimensional scalar conservation laws, that is,
e Set u) = AIl, Py, (uo);

e Forn=0,..,N — 1 compute u; "'

as follows:

41
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0
1. set “51) = up;
2. fori =1,...,k + 1 compute the intermediate functions:

i—1
U&Z) = AHh {Zailug) + ﬁZZAt”Lh(ug))} ;

=0

n+1 _ , (k+1)
3. set up " = uy .

In what follows, we describe the operator Lj that results form the DG-space
discretization, and the generalized slope limiter AIIj,.

3.2.1. The Discontinuous Galerkin space discretization. To show how
to discretize in space by the DG method, it is enough to consider the case in which
u is a scalar quantity since to deal with the general case in which w, we apply the
same procedure component by component.

Once a triangulation T, of  has been obtained, we determine Ly (-) as follows.
First, we multiply (3.1.1) by v, in the finite elemen space V},, integrate over the
element K of the triangulation T} and replace the exact solution u by its approxi-
mation up € V:

4 up(t, x) vy (x) do +/ div f(up(t,z)) vp(z) de =0, Yoy, € Vj,.

Integrating by parts formally we obtain

4 [ up(t x)vh( )dx+ze€3Kf flun(t,x)) - ne k vp(z)dl
— [ I( - grad vp(x)de =0, Vo, € Vp,

where n g is the outward unit normal to the edge e. Notice that f(up(t,z)) -
ne,x does not have a precise meaning, for u, is discontinuous at z € e € 0K.
Thus, as in the one dimensional case, we replace f(uy(t,x)) - ne x by the function
he 1 (up (t, )Y g (¢, 2°7HK))). The function he x(-,-) is any consistent two—
point monotone Lipschitz flux, consistent with f(u) - ne k-

In this way we obtain

i S un(t w)vh( )dz + 3ok [, hex (8, ) vn(2)dT
— [y flun(t, @) - grad vp(z) de =0, Y up, € Vp.

Finally, we replace the integrals by quadrature rules that we shall choose as follows:

fe he,K(t ZL”) Uh( ) dl' ~ Zlel wi he,K(t7 mel) U(mel)|e|a (323)
S flun(t, ) - grad vp(z) de ~

Sty wj f(uha, wic;)) - grad vy (zi;) K. (3.2.4)
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Thus, we finally obtain the weak formulation:

& Jeun(t,)on(@)de + X o Sorty @ he s (t0er) v(@a)e]
— 30 wj Flun(t, 7)) - gradoy (k)| K| =0, Vv, € Vi, VK €Ty,

These equations can be rewritten in ODE form as %uh = Lp(up,yr). This
defines the operator Ly (up), which is a discrete approximation of —div f(u). The
following result gives an indication of the quality of this approximation.

PROPOSITION 3.1. Let f(u) € Wk+22°(Q), and set v = trace(u). Let the
quadrature rule over the edges be exact for polynomials of degree (2k + 1), and let
the one over the element be exact for polynomials of degree (2k). Assume that the
family of triangulations F = {T},} >0 is regular, i.e., that there is a constant o such
that:

f;—;; >0, VKeT, VT,e€eF, (3.2.5)

where hg is the diameter of K, and pg is the diameter of the biggest ball included
in K. Then, if V(K) D P¥(K), VK € Ty:

1L (u,7) + div f ()] (0) < C B f(u) lwerz.co(o)-
For a proof, see [13].

3.2.2. The form of the generalized slope limiter All;,. The construction
of generalized slope limiters Allj, for several space dimensions is not a trivial matter
and will not be discussed in these notes; we refer the interested reader to the paper
by Cockburn, Hou, and Shu [13].

In these notes, we restrict ourselves to displaying very simple, practical, and
effective generalized slope limiters AIl, which are closely related to the generalized
slope limiters AIIF of the previous section.

To compute All,up, we rely on the assumption that spurious oscillations are
present in wy only if they are present in its P! part uy, which is its L*-projection
into the space of piecewise linear functions V;!. Thus, if they are not present in u},
ie., if

’U,}L = AHh ’U,}L,
then we assume that they are not present in u;, and hence do not do any limiting:
Aﬂh Up = Up -

On the other hand, if spurious oscillations are present in the P' part of the solution
uy, ie., if
’U,}L 7é AHh ’U,}L,

then we chop off the higher order part of the numerical solution, and limit the
remaining P! part:

AHh Up = AHh ’U,}L
In this way, in order to define AIl,, for arbitrary space V}, we only need to actually
define it for piecewise linear functions V;'. The exact way to do that, both for the
triangular elements and for the rectangular elements, will be discussed in the next
section.
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3.3. Algorithm and implementation details

In this section we give the algorithm and implementation details, including
numerical fluxes, quadrature rules, degrees of freedom, fluxes, and limiters of the
RKDG method for both piecewise-linear and piecewise-quadratic approximations
in both triangular and rectangular elements.

3.3.1. Fluxes. The numerical flux we use is the simple Lax-Friedrichs flux:

he i (a,b) = %[f(a) “Ne kg +1(b) -ne g —aerx (b—a)].

The numerical viscosity constant a. g should be an estimate of the biggest eigen-

value of the Jacobian %f(uh(x,t)) ‘e i for (z,t) in a neighborhood of the edge
e.

For the triangular elements, we use the local Lax-Friedrichs recipe:

e Take ae i to be the larger one of the largest eigenvalue (in absolute value)
of %f(aK) -nek and that of %f(m(z) - Me i, Where g and Gg+ are the
means of the numerical solution in the elements K and K’ sharing the edge
e.

For the rectangular elements, we use the local Lax-Friedrichs recipe :

e Take ae i to be the largest of the largest eigenvalue (in absolute value) of
%f(aKu) - e i, where Gg is the mean of the numerical solution in the
element K", which runs over all elements on the same line (horizontally or
vertically, depending on the direction of n. k) with K and K’ sharing the
edge e.

3.3.2. Quadrature rules. According to the analysis done in [13], the quad-
rature rules for the edges of the elements, (3.2.3), must be exact for polynomials of
degree 2k+ 1, and the quadrature rules for the interior of the elements, (3.2.4), must
be exact for polynomials of degree 2k, if P¥ methods are used. Here we discuss the
quadrature points used for P! and P? in the triangular and rectangular element
cases.

3.3.3. The rectangular elements. For the edge integral, we use the follow-
ing two point Gaussian rule

/11 g(2)ds ~ g <—%) +y <%) , (3.3.1)

for the P! case, and the following three point Gaussian rule

/_119(x)dx ~ g [9 (‘%) +9 <§>] + 29(0), (33.2)

for the P? case, suitably scaled to the relevant intervals.

For the interior of the elements, we could use a tensor product of (3.3.1), with
four quadrature points, for the P! case. But to save cost, we “recycle” the values
of the fluxes at the element boundaries, and only add one new quadrature point in
the middle of the element. Thus, to approximate the integral f_ll f_ll g(x,y)dxdy,
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we use the following quadrature rule:

1

- () es () (1) a5
o) 1) () o ()] v

For the P? case, we use a tensor product of (3.3.2), with 9 quadrature points.

3.3.4. The triangular elements. For the edge integral, we use the same two
point or three point Gaussian quadratures as in the rectangular case, (3.3.1) and
(3.3.2), for the P and P? cases, respectively.

For the interior integrals (3.2.4), we use the three mid-point rule

K|
/K oo, y)dedy ~ 513" glma),
=1

where m; are the mid-points of the edges, for the P! case. For the P? case, we
use a seven-point quadrature rule which is exact for polynomials of degree 5 over
triangles.

3.3.5. Basis and degrees of freedom. We emphasize that the choice of
basis and degrees of freedom does not affect the algorithm, as it is completely de-
termined by the choice of function space V' (h) , the numerical fluxes, the quadrature
rules, the slope limiting, and the time discretization. However, a suitable choice of
basis and degrees of freedom may simplify the implementation and calculation.

3.3.6. The rectangular elements. For the P! case, we use the following
expression for the approximate solution up(x,y,t) inside the rectangular element

[xi—%axi—i-%] x [yj—%ayj-t-%]:

wn (@) = A(t) + e (i () + 1, (D (9) (3.3.3)
where
and
Avi =iy =Ty DAY =Yt Yo

The degrees of freedoms, to be evolved in time, are then

u(t), ue(t), uy(h).
Here we have omitted the subscripts ij these degrees of freedom should have, to
indicate that they belong to the element ij which is [azi_% , azH_%] X [yj_%,yj+%].
Notice that the basis functions

]-; (bz(m)a ’l/}](y)7

are orthogonal, hence the local mass matrix is diagonal:

. 11
M = Az;Ay; diag (1, 3’ §> .
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For the P? case, the expression for the approximate solution uy(z,y,t) inside
the rectangular element [; 1,2 1] X [y; 1,9;,1] Is:

) = 0+ ua001(0) + 0y (00 0) + v (D250
Fuuet) (620 - 3) a0 (B0 - 3) . 639

where ¢;(x) and ;(y) are defined by (3.3.4). The degrees of freedoms, to be evolved
in time, are

a(t), ue(t), uy(t), uey(t), uea(t), uyy(t).
Again the basis functions

L die), Bil), ), B -5, ) -3,

are orthogonal, hence the local mass matrix is diagonal:

111 4 4
M = Az;Ay; diag <1 ==, =y )

3.3.7. The triangular elements. For the P! case, we use the following ex-
pression for the approximate solution up(z,y,t) inside the triangle K:

uh(xay7t) = Zuz(t)@l(xay)

where the degrees of freedom w;(t) are values of the numerical solution at the
midpoints of edges, and the basis function ¢;(z,y) is the linear function which
takes the value 1 at the mid-point m; of the i-th edge, and the value 0 at the
mid-points of the two other edges. The mass matrix is diagonal

111
M = |K|di - =,= .
g (5.5
For the P? case, we use the following expression for the approximate solution
up(x,y,t) inside the triangle K:

6
Uh(xayat) = Zui(t)ft(xay)

where the degrees of freedom, u;(t), are values of the numerical solution at the
three midpoints of edges and the three vertices. The basis function &;(z,y), is the
quadratic function which takes the value 1 at the point i of the six points mentioned
above (the three midpoints of edges and the three vertices), and the value 0 at the
remaining five points. The mass matrix this time is not diagonal.

3.3.8. Limiting. We construct slope limiting operators AIl, on piecewise lin-
ear functions wy, in such a way that the following properties are satisfied:

1. Accuracy: if uy, is linear then AIl, up = up.

2. Conservation of mass: for every element K of the triangulation T}, we have:

/AHhuhz/uh.
K K

3. Slope limiting: on each element K of Ty, the gradient of AIljwy is not
bigger than that of wp,.
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The actual form of the slope limiting operators is closely related to that of the
slope limiting operators studied in [15] and [13].

3.3.9. The rectangular elements. The limiting is performed on u, and u,
in (3.3.3), using the differences of the means. For a scalar equation, u, would be
limited (replaced) by

M (Ue, Uig1,j — Uij, Bij — Ui—1,j) (3.3.6)

where the function m is the TVB corrected minmod function defined in the previous
section.

The TVB correction is needed to avoid unnecessary limiting near smooth ex-
trema, where the quantity u, or u, is on the order of O(Az?) or O(Ay?). For an
estimate of the TVB constant M in terms of the second derivatives of the function,
see [15]. Usually, the numerical results are not sensitive to the choice of M in a
large range. In all the calculations in this paper we take M to be 50.

Similarly, u, is limited (replaced) by

m(uy, Wi j+1 — Wij, Uiy — 17,@]',1).
with a change of Az to Ay in (3.3.6).

For systems, we perform the limiting in the local characteristic variables. To
limit the vector u, in the element ij, we proceed as follows:

e Find the matrix R and its inverse R~', which diagonalize the Jacobian
evaluated at the mean in the element ij in the z-direction:
pr20@6)
Ou
where A is a diagonal matrix containing the eigenvalues of the Jacobian.
Notice that the columns of R are the right eigenvectors of %ﬁ"") and the
rows of R™! are the left eigenvectors.

e Transform all quantities needed for limiting, i.e., the three vectors u,;,
Uiy1,5 — Ui; and U;; — U;—1 5, to the characteristic fields. This is achieved by
left multiplying these three vectors by R~!.

e Apply the scalar limiter (3.3.6) to each of the components of the transformed
vectors.

e The result is transformed back to the original space by left multiplying R
on the left.

3.3.10. The triangular elements. To construct the slope limiting opera-
tors for triangular elements, we proceed as follows. We start by making a simple
observation. Consider the triangles in Figure 1, where m; is the mid-point of the
edge on the boundary of Ky and b; denotes the barycenter of the triangle K; for
1=0,1,2,3.

Since we have that

my — bo = 1 (b1 - bo) + Qo (bg — bo),

for some nonnegative coefficients a;, a; which depend only on m, and the geometry,
we can write, for any linear function wuy,,

up(my) —un(bo) = o (up(br) — un(bo)) + a2 (un(bz) — un(bo)),
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K3
K1
e
I K2

Ficure 1. Illustration of limiting.

and since
1

UK, = — up, = up(b;), 1=0,1,2,3,
K; |KZ| K h h( z)
we have that
’LNLh(ml,Ko) = uh(ml) —Ug, = Q1 (’l_LKl — ’l_LKO) + o (ﬂK2 — ’U,KO) = Aﬂ(ml,Ko)

Now, we are ready to describe the slope limiting. Let us consider a piecewise linear
function wp, and let m;,i = 1,2,3 be the three mid-points of the edges of the
triangle Ko. We then can write, for (z,y) € Ko,

un(z,y) = Y un(mi)ei(z,y) = i, + Y an(mi, Ko)pi(z,y).

i=1 =1
To compute Alljup, we first compute the quantities
A = m(ﬂh(mi, Ko), v Aﬂ(mi, Ko)),

where m is the TVB modified minmod function and v > 1. We take v = 1.5 in our
numerical runs. Then, if 2?21 A; =0, we simply set

3
Allpun(z,y) = U, + Z Aipi(z,y).
i=1
It Z?Zl A; #0, we compute

3 3
pos = Z max (0, A;), neg = Z max (0, —4;),

i=1 i=1

0+:min<1,@>, 0_:min<,g>.
pos neg

and set
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Then, we define
3
AHhUh(x, y) = aKO + Z Al (pl(xa y):
i=1

where

A; = 0" max(0,4;) — 6§~ max(0, —A;).
It is very easy to see that this slope limiting operator satisfies the three properties
listed above.

For systems, we perform the limiting in the local characteristic variables. To

limit A;, we proceed as in the rectangular case, the only difference being that we
work with the following Jacobian

8 mi—bo

% (U'Ko) ’ |mi—b0| :

3.4. Computational results: Transient, nonsmooth solutions

In this section we present several numerical results obtained with the P! and
P? (second and third order accurate) RKDG methods with either rectangles or
triangles in the triangulation. These are standard test problems for Euler equations
of compressible gas dynamics.

3.4.1. The double-Mach reflection problem. Double Mach reflection of
a strong shock. This problem was studied extensively in Woodward and Colella
[66] and later by many others. We use exactly the same setup as in [66], namely a
Mach 10 shock initially makes a 60° angle with a reflecting wall. The undisturbed
air ahead of the shock has a density of 1.4 and a pressure of 1.

For the rectangle based triangulation, we use a rectangular computational do-
main [0,4] x [0,1], as in [66]. The reflecting wall lies at the bottom of the computa-
tional domain for ¢ < z < 4. Initially a right-moving Mach 10 shock is positioned
at ¢ = %, y = 0 and makes a 60° angle with the z-axis. For the bottom boundary,
the exact post-shock condition is imposed for the part from z = 0 to x = %, to
mimic an angled wedge. Reflective boundary condition is used for the rest. At the
top boundary of our computational domain, the flow values are set to describe the
exact motion of the Mach 10 shock. Inflow/outflow boundary conditions are used
for the left and right boundaries. As in [66], only the results in [0,3] x [0,1] are
displayed.

For the triangle based triangulation, we have the freedom to treat irregular
domains and thus use a true wedged computational domain. Reflective boundary
conditions are then used for all the bottom boundary, including the sloped portion.
Other boundary conditions are the same as in the rectangle case.

Uniform rectangles are used in the rectangle based triangulations. Four differ-
ent meshes are used: 240 x 60 rectangles (Az = Ay = o); 480 x 120 rectangles
(Az = Ay = 35); 960 x 240 rectangles (Az = Ay = 555); and 1920 x 480 rectangles
(Az = Ay = ﬁ). The density is plotted in Figure 2 for the P! case and in 3 for
the P? case.

To better appreciate the difference between the P! and P? results in these
pictures, we show a “blowed up” portion around the double Mach region in Figure
4 and show one-dimensional cuts along the line y = 0.4 in Figures 5 and 6. In Figure
4, w can see that P? with Az = Ay = ﬁ has qualitatively the same resolution as
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P! with Az = Ay = ﬁ, for the fine details of the complicated structure in this
region. P2 with Az = Ay = ﬁ gives a much better resolution for these structures
than P! with the same number of rectangles.

Moreover, from Figure 5, we clearly see that the difference between the results
obtained by using P! and P?, on the same mesh, increases dramatically as the mesh
size decreases. This indicates that the use of polynomials of high degree might be
beneficial for capturing the above mentioned structures. From Figure 6, we see that
the results obtained with P! are qualitatively similar to those obtained with P? in
a coarser mesh; the similarity increases as the meshsize decreases. The conclusion
here is that, if one is interested in the above mentioned fine structures, then one can
use the third order scheme P? with only half of the mesh points in each direction
as in P!. This translates into a reduction of a factor of 8 in space-time grid points
for 2D time dependent problems, and will more than off-set the increase of cost
per mesh point and the smaller CFL number by using the higher order P? method.
This saving will be even more significant for 3D.

The optimal strategy, of course, is to use adaptivity and concentrate triangles
around the interesting region, and/or change the order of the scheme in different
regions.

3.4.2. The forward-facing step problem. Flow past a forward facing step.
This problem was again studied extensively in Woodward and Colella [66] and later
by many others. The set up of the problem is the following: A right going Mach
3 uniform flow enters a wind tunnel of 1 unit wide and 3 units long. The step is
0.2 units high and is located 0.6 units from the left-hand end of the tunnel. The
problem is initialized by a uniform, right-going Mach 3 flow. Reflective boundary
conditions are applied along the walls of the tunnel and in-flow and out-flow bound-
ary conditions are applied at the entrance (left-hand end) and the exit (right-hand
end), respectively.

The corner of the step is a singularity, which we study carefully in our numerical
experiments. Unlike in [66] and many other papers, we do not modify our scheme
near the corner in any way. It is well known that this leads to an errorneous
entropy layer at the downstream bottom wall, as well as a spurious Mach stem at
the bottom wall. However, these artifacts decrease when the mesh is refined. In
Figure 7, second order P! results using rectangle triangulations are shown, for a
grid refinement study using Az = Ay = %, Axr = Ay = %, Axr = Ay = ﬁ,
and Az = Ay = 515 as mesh sizes. We can clearly see the improved resolution
(especially at the upper slip line from the triple point) and decreased artifacts
caused by the corner, with increased mesh points. In Figure 8, third order P2
results using the same meshes are shown.

In order to verify that the erroneous entropy layer at the downstream bottom
wall and the spurious Mach stem at the bottom wall are both artifacts caused by
the corner singularity, we use our triangle code to locally refine near the corner
progressively; we use the meshes displayed in Figure 9. In Figure 10, we plot the
density obtained by the P! triangle code, with triangles (roughly the resolution of
Axr = Ay = %, except around the corner). In Figure 11, we plot the entropy around
the corner for the same runs. We can see that, with more triangles concentrated
near the corner, the artifacts gradually decrease. Results with P? codes in Figures
12 and 13 show a similar trend.
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3.5. Computational results: Steady state, smooth solutions

In this section, we present some of the numerical results of Bassi and Rebay [2]
in two dimensions and Warburton, Lomtev, Kirby and Karniadakis [65] in three
dimensions.

The purpose of the numerical results of Bassi and Rebay [2] we are presenting is
to assess (i) the effect of the quality of the approximation of curved boundaries and
of (ii) the effect of the degree of the polynomials on the quality of the approximate
solution. The test problem we consider here is the two-dimensional steady-state,
subsonic flow around a disk at Mach number M., = 0.38. Since the solution is
smooth and can be computed analytically, the quality of the approximation can be
easily assessed.

In the figures 14, 15, 16, and 17, details of the meshes around the disk are
shown together with the approximate solution given by the RKDG method using
piecewise linear elements. These meshes approximate the circle with a polygonal. It
can be seen that the approximate solution are of very low quality even for the most
refined grid. This is an effect caused by the kinks of the polygonal approximating
the circle.

This statement can be easily verified by taking a look to the figures 18, 19, 20,
and 21. In these pictures the approximate solutions with piecewise linear, quadratic,
and cubic elements are shown; the meshes have been modified to render ezactly the
circle. It is clear that the improvement in the quality of the approximation is
enormous. Thus, a high-quality approximation of the boundaries has a dramatic
improvement on the quality of the approximations.

Also, it can be seen that the higher the degree of the polynomials, the better
the quality of the approximations, in particular from figures 18 and 19. In [2],
Bassi and Rebay show that the RKDG method using polynomilas of degree k are
(k 4+ 1)-th order accurate for k& = 1,2,3. As a consequence, a RKDG method
using polynomials of a higher degree is more efficient than a RKDG method using
polynomials of lower degree.

In [65], Warburton, Lomtev, Kirby and Karniadakis present the same test prob-
lem in a three dimensional setting. In Figure 22, we can see the three-dimensional
mesh and the density isosurfaces. We can also see how, while the mesh is being kept
fixed and the degree of the polynomials k is increased from 1 to 9, the maximum
error on the entropy goes exponentialy to zero. (In the picture, a so-called ‘mode’
is equal to k + 1).

3.6. Concluding remarks

In this section, we have extended the RKDG methods to multidimensional
systems. We have described in full detail the algorithms and displayed numerical
results showing the performance of the methods for the Euler equations of gas
dynamics.

The flexibility of the RKDG method to handle nontrivial geometries and to
work with different elements has been displayed. Moreover, it has been shown that
the use of polynomials of high degree not only does not degrade the resolution of
strong shocks, but enhances the resolution of the contact discontinuities and renders
the scheme more efficient on smooth regions.

Next, we extend the RKDG methods to convection-dominated problems.
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Rectangles P1,Ax=Ay =1/60

FIGURE 2. Double Mach reflection problem. Second order P! re-
sults. Density p. 30 equally spaced contour lines from p = 1.3965
to p = 22.682. Mesh refinement study. From top to bottom:

_ -1 1 1 1
Az = AY = 555 1250 220> A0 755
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Rectangles P2, Ax=Ay =1/60

FiGURE 3. Double Mach reflection problem. Third order P? re-
sults. Density p. 30 equally spaced contour lines from p = 1.3965
to p = 22.682. Mesh refinement study. From top to bottom:

_ -1 1 1 1
Az = Ay = 555 1250 220> A0 755




Rectangles P2, Ax = Ay =1/240

20 2.2 2.4 2.6 2.8

FIGURE 4. Double Mach reflection problem. Blowed-up region
around the double Mach stems. Density p. Third order P? with
Az = Ay = 55 (top); second order P! with Az = Ay = 4

480
(middle); and third order P? with Az = Ay = ;&5 (bottom).
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FIGURE 5. Double Mach reflection problem. Cut y = 0.4 of the
blowed-up region. Density p. Comparison of second order P! with
third order P? on the same mesh
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FIGURE 6. Double Mach reflection problem. Cut y = 0.4 of the
blowed-up region. Density p. Comparison of second order P! with
third order P? on a coarser mesh
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Rectangles P1, Ax=Ay=1/40

Rectangles P1,Ax=Ay =1/80

Rectangles P1,Ax=Ay =1/160
N
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fo>r

S

Rectangles P1,Ax=Ay =1/320
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FIGURE 7. Forward facing step problem. Second order P! results.
Density p. 30 equally spaced contour lines from p = 0.090338
to p = 6. 2365 Mesh refinement study. From top to bottom:

1 1 1 1
Az = Ay = 15, 55, 65> and 555-




Rectangles P2, Ax=Ay =1/160
J PN

FIGURE 8. Forward facing step problem. Third order P? results.
Density p. 30 equally spaced contour lines from p = 0.090338
to p = 6.2365. Mesh refinement study. From top to bottom:

_ _ 1 1 1 1
Az = Ay = 35, 35> o5 a0d 355
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FIGURE 9. Forward facing step problem. Detail of the triangula-
tions associated with the different values of 0. The parameter o is
the ratio between the typical size of the triangles near the corner
and that elsewhere.




Triangles P1, 0 =1/1
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Triangles P1, 0 =1/2
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Triangles P1, 0 =1/4

FIGURE 10. Forward facing step problem. Second order P! re-
sults. Density p. 30 equally spaced contour lines from p = 0.090338
to p = 6.2365. Triangle code. Progressive refinement near the
corner
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Triangles P1,0=1/1

0.6 0.7 0.8 0.9 10 11 12 13 14

Triangles P1, 0 =1/2

0.6 0.7 08 0.9 10 11 12 13 14

Triangles P1, 0 =1/4

0.6 0.7 0.8 0.9 10 11 12 13 14

Triangles P1, 0 = 1/8

0.6 0.7 0.8 0.9 10 11 12 13 14

FIGURE 11. Forward facing step problem. Second order P! re-
sults. Entropy level curves around the corner. Triangle code. Pro-
gressive refinement near the corner
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FIGURE 12. Forward facing step problem. Third order P? results.
Density p. 30 equally spaced contour lines from p = 0.090338 to
p = 6.2365. Triangle code. Progressive refinement near the corner
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Triangles P2, 0 =1/1
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Triangles P2, 0 = 1/8

0.6 0.7 0.8 0.9 10 11 12 13 14

FIGURE 13. Forward facing step problem. Third order P! results.
Entropy level curves around the corner. Triangle code. Progressive
refinement near the corner




FIGURE 14. Grid “16 x 8” with a piecewise linear approximation
of the circle (top) and the corresponding solution (Mach isolines)
using P! elements (bottom).
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FI1cURE 15. Grid “32 x 8” with a piecewise linear approximation
of the circle (top) and the corresponding solution (Mach isolines)
using P! elements (bottom).
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FIGURE 16. Grid “64 x 16” with a piecewise linear approximation
of the circle (top) and the corresponding solution (Mach isolines)

using P! elements (bottom).
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FIGURE 17. Grid “128 x 32” a piecewise linear approximation of
the circle (top) and the corresponding solution (Mach isolines) us-
ing P! elements (bottom).



FiGure 18. Grid “16 x 4” with exact rendering of the circle and
the corresponding P! (top), P?(middle), and P? (bottom) approx-
imations (Mach isolines).
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FiGure 19. Grid “32 x 8 with exact rendering of the circle and
the corresponding P! (top), P?(middle), and P? (bottom) approx-
imations (Mach isolines).
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FiGure 20. Grid “64 x 16” with exact rendering of the circle and
the corresponding P! (top), P?(middle), and P? (bottom) approx-
imations (Mach isolines).
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FIGURE 21. Grid “128 x 32” with exact rendering of the circle and
the corresponding P! (top), P?(middle), and P? (bottom) approx-
imations (Mach isolines).
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FIGURE 22. Three-dimensional flow over a semicircular bump.
Mesh and density isosurfaces (top) and history of convergence with
p-refinement of the maximum entropy generated (bottom). The
degree of the polynomial plus one is plotted on the ‘modes’ axis.
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CHAPTER 4

Convection-diffusion problems: The LDG method

4.1. Introduction

In this chapter, which follows the work by Cockburn and Shu [18], we restrict
ourselves to the semidiscrete LDG methods for convection-diffusion problems with
periodic boundary conditions. Our aim is to clearly display the most distinctive
features of the LDG methods in a setting as simple as possible; the extension of the
method to the fully discrete case is straightforward. In §2, we introduce the LDG
methods for the simple one-dimensional case d = 1 in which

F(u, Du) = f(u) — a(u) Opu,

w is a scalar and a(u) > 0 and show some preliminary numerical results displaying
the performance of the method. In this simple setting, the main ideas of how to
device the method and how to analyze it can be clearly displayed in a simple way.
Thus, the L2-stability of the method is proven in the general nonlinear case and
the rate of convergence of (Az)* in the L°°(0, T';L.2)-norm for polynomials of degree
k > 0 in the linear case is obtained; this estimate is sharp. In §3, we extend these
results to the case in which w is a scalar and

F;(u, Du) = f;(u) — Z aij(u) Og;u,

1<j<d

where a;; defines a positive semidefinite matrix. Again, the L*-stability of the
method is proven for the general nonlinear case and the rate of convergence of
(Az)* in the L>°(0, T;L?)-norm for polynomials of degree k > 0 and arbitrary tri-
angulations is proven in the linear case. In this case, the multidimensionality of the
problem and the arbitrariness of the grids increase the technicality of the analysis
of the method which, nevertheless, uses the same ideas of the one-dimensional case.
In §4, the extension of the LDG method to multidimensional systems is briefly de-
scribed some numerical results for the compressible Navier-Stokes equations from
the paper by Bassi and Rebay [3] and from the paper by Lomtev and Karniadakis
[46] are presented.

4.2. The LDG methods for the one-dimensional case

In this section, we present and analyze the LDG methods for the following
simple model problem:

Oru+ 0; (f(u) —a(u)0,u) =0 1in (0,7) x (0,1), (4.2.1)
u(t =0) =ug, on (0,1), (4.2.2)

with periodic boundary conditions.
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4.2.1. General formulation and main properties. To define the LDG
method, we introduce the new variable ¢ = +/ a(u) 0, v and rewrite the problem
(4.2.1), (4.2.2) as follows:

Oru+ 0 (f(u) —a(u)g) =0 in (0,T) x (0,1), (4.2.3)
— 0, g(u)=0 1in (0,T) x (0,1), (4.2.4)
u(t =0) = ug, on (0,1), (4.2.5)

where g(u) = [“+/a(s) ds. The LDG method for (4.2.1), (4.2.2) is now obtained
by simply dlscretlzlng the above system with the Discontinuous Galerkin method.
To do that, we follow [15] and [14]. We define the flux h = (hy, hy )? as follows:

h(u,q) —va(u)q, — . (4.2.6)

For each partition of the interval (0,1), { ;41,2 };-V:O, we set Ij = (zj_1/2,Tj41/2),
and Awj =y /2—xj_1/ for j =1,..., N; we denote the quantity max;<j<n Aw;
by Az . We seek an approximation wy, = (up,qs)? to w = (u, ¢)t such that for
each time t € [0, T], both up(t) and ¢x(t) belong to the finite dimensional space

Vi =VF={velL0,1):v];, € P*I;), j=1,...,N}, (4.2.7)

where P*(I) denotes the space of polynomials in I of degree at most k. In order
to determine the approximate solution (up,qp), we first note that by multiplying
(4.2.3), (4.2.4), and (4.2.5) by arbitrary, smooth functions v,, vy, and v;, respec-
tively, and integrating over I, we get, after a simple formal integration by parts in
(4.2.3) and (4.2.4),

fI]_ Oru(z,t) v, (z) dz —fI]_ hy(w(z,t)) Oy vy () dz
+hu<w<xj+1/2,t>>vu(x;+1/2> ~ha (w(xjfl/z,t» W) =0, (425)
fI z,t) v dx—fI g(W(w,t)) 0y vy(z) da
Fhy(w ($J+1/2, D) 0051 ) — oWy D) v T 1) =0, (429)
J;. u(z,0)vi(x) dx:flj uo () v; () du. (4.2.10)

J

Next, we replace the smooth functions vy, v, and v; by test functions vy, 4, vp,¢, and
vp,i, respectively, in the finite element space Vj, and the exact solution w = (u, q)*
by the approximate solution wp, = (up,qs)t. Since this function is discontinuous
in each of its components, we must also replace the nonlinear flux h(w(z;1/2,1))
by a numerical flux h(w);1/2(t) = (hu(Wr)j41/2(t), hg(Wn)j1/2(t)) that will be
suitably chosen later. Thus, the approximate solution given by the LDG method
is defined as the solution of the following weak formulation:



4.2. THE LDG METHODS FOR THE ONE-DIMENSIONAL CASE 7
Y un. € PH(I;) -
O up(x,t) vy u(x) dr — / hy(Wh(z,1)) Oy vp,(z) da

1; I;
+hou(Wh) 172 (8) Onu (@7 1) = Bu(Wa)jo12(t) vnu(@_y ) = 04.2.11)
Yon,, € PH(I;) -
/ qn(z,t) v ¢(z) doe — / hg(wp(x,t)) Oy vpq(x) dz

I; I;
+hy(Wh)jg1/2(t) On,g (T ) = hy(Wh)j—1/2(1) V(2] ) = 0,(4.2.12)
Yo € PR(I;) :
/ up(z,0) vp i(z) de = / uo(z) vp () de. (4.2.13)

I; I;
It only remains to choose the numerical flux fl(wh)j+1/2(t). We use the notation:
. __ 1 - + +
[p]=p" —p, and Pp=g@"+p )and p, ), =p(r7,,)-

To be consistent with the type of numerical fluxes used in the RKDG methods, we
consider numerical fluxes of the form

1Al(v‘/"l)]'~$-1/2 (t) = ﬁ(wh ($;+1/27 t)a Wh, (CU].++1/2, t));

that (i) are locally Lipschitz and consistent with the flux h, (ii) allow for a local
resolution of gp in terms of wy, (iii) reduce to an E-flux (see Osher [51]) when
a(-) = 0, and that (iv) enforce the L2-stability of the method.

To reflect the convection-diffusion nature of the problem under consideration,
we write our numerical flux as the sum of a convective flux and a diffusive flux:

h(w™, W) = heony (W, wh) + hyipp(w™, wh). (4.2.14)

The convective flux is given by

heone(w™,wh) = (f(u—7u+)70)t7 (4.2.15)

where f(u~,u") is any locally Lipschitz E-flux consistent with the nonlinearity f,
and the diffusive flux is given by

[9(w)]

[a] ¢ —g(w) )" = Caigs [w], (4.2.16)

haipr (W, wt) = (-

where
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0 c
Cairy = (_612 62> : (4.2.17)
c12 = c1o(w™,wT) s locally Lipschitz, (4.2.18)
c12 =0 when a(-) =0. (4.2.19)

We claim that this flux satisfies the properties (i) to (iv).

Let us prove our claim. That the flux h is consistent with the flux h easily
follows from their definitions. That h is locally Lipschitz follows from the fact that
f(,-) is locally Lipschitz and from (4.2.17); we assume that f(-) and a(-) are locally
Lipschitz functions, of course. Property (i) is hence satisfied.

That the approximate solution g can be resolved element by element in terms
of uy, by using (4.2.12) follows from the fact that, by (4.2.16), the flux h, = —g(u) —
¢12 [u] is independent of gp,. Property (ii) is hence satisfied.

Property (iii) is also satisfied by (4.2.19) and by the construction of the con-
vective flux.

To see that the property (iv) is satisfied, let us first rewrite the flux h in the
following way:

h(W_,W+) — ([¢(u)] _ [g(u)] 7, _m)t —(C[W],

where

C = < “11 Cgf) o= [71]<[¢ES‘])] - f(u—,u+)>. (4.2.20)

—C12
with ¢(u) defined by ¢(u) = [* f(s)ds. Since f(,-) is an E-flux,

1 ut

ci1 :[u]2 fu, (f(s)—f(u—,u‘i‘))dsZO,

and so, by (4.2.17), the matrix C is semipositive definite. The property (iv) follows
from this fact and from the following result.

THEOREM 4.1. We have,
L (@, T de + [ [ gk (e, t) dedt + Orc([wa]) < & [ wd(x) da,

where

Orc(wa) = [T zlgg{[whu)rc [whu)]} dt.

j+1/2

For a proof, see [18]. Thus, this shows that the flux h under consideration does
satisfy the properties (i) to (iv)- as claimed.
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Now, we turn to the question of the quality of the approximate solution defined
by the LDG method. In the linear case f' = ¢ and a(-) = a, from the above stability
result and from the the approximation properties of the finite element space Vj,
we can prove the following error estimate. We denote the L?(0, 1)-norm of the ¢-th
derivative of u by | u|,.

THEOREM 4.2. Let e be the approximation error w — wy,. Then we have,

1/2
{ S ea(e,T) o+ [112 Ley(o,t) P dodt + eT,cue])} < ¢(any,

where C = C(k,|u|g+1,|uw|k+2). In the purely hyperbolic case a = 0, the constant
C is of order (Ax)'/2. In the purely parabolic case ¢ = 0, the constant C is of order
Ax for even values of k for uniform grids and for C identically zero.

For a proof, see [18]. The above error estimate gives a suboptimal order of
convergence, but it is sharp for the LDG methods. Indeed, Bassi et al [4] report
an order of convergence of order k£ + 1 for even values of £ and of order k for odd
values of k for a steady state, purely elliptic problem for uniform grids and for C
identically zero. The numerical results for a purely parabolic problem that will be
displayed later lead to the same conclusions; see Table 5 in the section §2.b.

The error estimate is also sharp in that the optimal order of convergence of
k + 1/2 is recovered in the purely hyperbolic case, as expected. This improvement
of the order of convergence is a reflection of the semipositive definiteness of the
matrix C, which enhances the stability properties of the LDG method. Indeed,
since in the purely hyperbolic case

Orc(wa) = [T zlgg{[uha)rcn [uhu)]} dt,

j+1/2

the method enforces a control of the jumps of the variable uy, as shown in Proposi-
tion lemenergy. This additional control is reflected in the improvement of the order
of accuracy from k in the general case to k + 1/2 in the purely hyperbolic case.

However, this can only happen in the purely hyperbolic case for the LDG
methods. Indeed, since ¢;; = 0 for ¢ = 0, the control of the jumps of wj is not
enforced in the purely parabolic case. As indicated by the numerical experiments
of Bassi et al. [4] and those of section §2.b below, this can result in the effective
degradation of the order of convergence. To remedy this situation, the control of
the jumps of uy, in the purely parabolic case can be easily enforced by letting c;; be
strictly positive if |¢|+|a| > 0. Unfortunately, this is not enough to guarantee an
improvement of the accuracy: an additional control on the jumps of g, is required!
This can be easily achieved by allowing the matrix C to be symmetric and positive
definite when a > 0. In this case, the order of convergence of k + 1/2 can be
easily obtained for the general convection-diffusion case. However, this would force
the matrix entry css to be nonzero and the property (ii) of local resolvability of
gn in terms of w, would not be satisfied anymore. As a consequence, the high
parallelizability of the LDG would be lost.

The above result shows how strongly the order of convergence of the LDG
methods depend on the choice of the matrix C. In fact, the numerical results of
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section §2.b in uniform grids indicate that with yet another choice of the matrix
C, see (4.3.21), the LDG method converges with the optimal order of £ + 1 in the
general case. The analysis of this phenomenon constitutes the subject of ongoing
work.

4.3. Numerical results in the one-dimensional case

In this section we present some numerical results for the schemes discussed in
this paper. We will only provide results for the following one dimensional, linear
convection diffusion equation

Ou+cyu—ad?u=0 1in (0,T) x (0,27),
u(t =0,z) = sin(xz), on (0,27),

where ¢ and a > 0 are both constants; periodic boundary conditions are used. The
exact solution is u(t,z) = e~ sin(x — ct). We compute the solution up to 7' = 2,
and use the LDG method with C defined by

C g 4
= : 7. 3.21
Vi ( )

We notice that, for this choice of fluxes, the approximation to the convective term
cu, is the standard upwinding, and that the approximation to the diffusion term
a 82 u is the standard three point central difference, for the P° case. On the other
hand, if one uses a central flux corresponding to ¢;2 = —cg1 = 0, one gets a spread-
out five point central difference approximation to the diffusion term a 92 u.

The LDG methods based on P*, with k = 1,2,3,4 are tested. Elements with
equal size are used. Time discretization is by the third-order accurate TVD Runge-
Kutta method [58], with a sufficiently small time step so that error in time is
negligible comparing with spatial errors. We list the L., errors and numerical
orders of accuracy, for uy, as well as for its derivatives suitably scaled Axz"™07" uy,
for 1 < m <k, at the center of of each element. This gives the complete description
of the error for up over the whole domain, as up, in each element is a polynomial
of degree k. We also list the L, errors and numerical orders of accuracy for g, at
the element center.

In all the convection-diffusion runs with a > 0, accuracy of at least (k + 1)-th
order is obtained, for both u; and g, when P* elements are used. See Tables 1 to
3. The P* case for the purely convection equation @ = 0 seems to be not in the as-
ymptotic regime yet with N = 40 elements (further refinement with N = 80 suffers
from round-off effects due to our choice of non-orthogonal basis functions), Table
4. However, the absolute values of the errors are comparable with the convection
dominated case in Table 3.
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Table 1. The heat equation a = 1, ¢ = 0. L errors and numerical order of
accuracy, measured at the center of each element, for Az uy for 0 < m < k,
and for gy,.

k variable N =10 N =20 N =40

error error order error order

u 4.55E-4 5.79E-5 2.97 7.27TE-6 2.99

1 Az d,u 9.01E-3 2.22E-3 2.02 5.56E-4 2.00
q 4.17E-5 2.48E-6 4.07 1.53E-7 4.02

U 1.43E-4 1.76E-5 3.02 2.19E-6 3.01

2 Az O,u 7.87E-4 1.03E-4 2.93 1.31E-5 2.98
(Ax)? a’;’u 1.64E-3 2.09E-4 2.98 2.62E-5 2.99

q 1.42E-4 1.76E-5 3.01 2.19E-6 3.01

U 1.54E-5 9.66E-7 4.00 6.11E-8 3.98

Az d,u 3.77E-5 2.36E-6 3.99 1.47E-7 4.00

3 (Az)? H%u 1.90E-4 1.17E-5 4.02 7.34E-7 3.99
(Ax)3 agu 2.51E-4 1.56E-5 4.00 9.80E-7 4.00

q 1.48E-5 9.66E-7 3.93 6.11E-8 3.98

U 2.02E-7 5.51E-9 5.20 1.63E-10 5.07

Az O,u 1.65E-6 5.14E-8 5.00 1.61E-9 5.00

4 (Ax)? agu 6.34E-6 2.04E-7 4.96 6.40E-9 4.99
(Ax)3 8§u 2.92E-5 947E-7 4.95 2.99E-8 4.99

(Aa:)4 8§u 3.03E-5 9.55E-7 4.98 2.99E-8 5.00

q 2.10E-7 5.51E-9 5.25 1.63E-10 5.07
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Table 2. The convection diffusion equation @ = 1, ¢ = 1. L, errors and numerical
order of accuracy, measured at the center of each element, for Az™9" uy, for 0 <
m < k, and for q.

k variable N =10 N =20 N =40
error error order error order
u 6.47E-4 1.25E-4 2.37 1.59E-5 2.97
1 Az d,u 9.61E-3 2.24E-3 2.10 5.56E-4 2.01
q 2.96E-3 1.20E-4 4.63 1.47E-5 3.02
U 1.42E-4 1.76E-5 3.02 2.18E-6 3.01
2 Az O,u 7.93E-4 1.04E-4 2.93 1.31E-5 2.99
(Ax)? a’;’u 1.61E-3 2.09E-4 2.94 2.62E-5 3.00
q 1.26E-4 1.63E-5 2.94 2.12E-6 2.95
u 1.53E-5 9.75E-7 3.98 6.12E-8 3.99
Az d,u 3.84E-5 2.34E-6 4.04 1.47E-7 3.99
3 (Az)? H%u 1.89E-4 1.18E-5 4.00 7.36E-7 4.00
(Ax)3 agu 2.52E-4 1.56E-5 4.01 9.81E-7 3.99
q 1.57E-5 9.93E-7 3.98 6.17E-8 4.01
U 2.04E-7 5.50E-9 5.22 1.64E-10 5.07
Az O,u 1.68E-6 5.19E-8 5.01 1.61E-9 5.01
4 (Ax)? agu 6.36E-6 2.05E-7 4.96 6.42E-8 5.00
(Ax)3 8§u 2.99E-5 9.57TE-7 4.97 2.99E-8 5.00
(Aa:)4 8§u 2.94E-5 9.55E-7 4.95 3.00E-8 4.99
q 1.96E-7 5.35E-9 5.19 1.61E-10 5.06
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Table 3. The convection dominated convection diffusion equation a = 0.01, ¢ = 1.
L, errors and numerical order of accuracy, measured at the center of each element,
for Axz™0M uy, for 0 < m < k, and for gj.

k variable N =10 N =20 N =40
error error order error order
u 7.14E-3 9.30E-4 2.94 1.17E-4 2.98
1 Az d,u 6.04E-2 1.58E-2 1.93 4.02E-3 1.98
q 8.68E-4 1.09E-4 3.00 1.31E-5 3.05
u 9.59E-4 1.25E-4 2.94 1.58E-5 2.99
2 Az O,u 5.88E-3 7.55E-4 2.96 9.47E-5 3.00
(Az)? d2u 1.20E-2 1.50E-3 3.00 1.90E-4 2.98
q 8.99E-5 1.11E-5 3.01 1.10E-6 3.34
U 1.11E-4 7.07E-6 3.97 4 43E-7 4.00
Az O,u 2.52E-4 1.71E-5 3.88 1.07E-6 4.00
3 (Az)? O%u 1.37E-3 8.54E-5 4.00 5.33E-6 4.00
(Az)3 Bu 1.75E-3 1.13E-4 3.95 7.11E-6 3.99
q 1.18E-5 7.28E-7 4.02 4.75E-8 3.94
u 1.85E-6 4.02E-8 5.53 1.19E-9 5.08
Az O,u 1.29E-5 3.76E-7 5.10 1.16E-8 5.01
4 (Az)? d2u 5.19E-5 1.48E-6 5.13 4.65E-8 4.99
(Az)? d3u 2.21E-4 6.93E-6 4.99 2.17E-7 5.00
(Az)? 8§u 2.25E-4 6.89E-6 5.03 2.17E-7 4.99
q 3.58E-7 3.06E-9 6.87 5.05E-11 5.92
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Table 4. The convection equation a = 0, ¢ = 1. L, errors and numerical order of
accuracy, measured at the center of each element, for Az™9" uy, for 0 < m < k.

k variable N =10 N =20 N =40
error error order error order
1 U 7.24E-3 9.46E-4 2.94 1.20E-4 2.98
Az d,u 6.09E-2 1.60E-2 1.92 4.09E-3 1.97
U 9.96E-4 1.28E-4 2.96 1.61E-5 2.99
2 Az d,u 6.00E-3 7.71E-4 2.96 9.67E-5 3.00
(Az)? H%u 1.23E-2 1.54E-3 3.00 1.94E-4 2.99
u 1.26E-4 7.50E-6 4.07 4.54E-7 4.05
3 Az d,u 1.63E-4 2.00E-5 3.03 1.07E-6 4.21
(Az)? d2u 1.52E-3 9.03E-5 4.07 5.45E-6 4.05
(Az)? d3u 1.35E-3 1.24E-4 3.45 7.19E-6 4.10
u 3.55E-6 8.59E-8 5.37 3.28E-10 8.03
Az O,u 1.89E-5 1.27E-7 7.22 1.54E-8 3.05
4 (Az)? O%u 8.49E-5 2.28E-6 5.22 2.33E-8 6.61
(Az)? d3u 2.36E-4 5.77E-6 5.36 2.34E-7 4.62
(Az)* 9tu 2.80E-4 8.93E-6 4.97 1.70E-7 5.72
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Finally, to show that the order of accuracy could really degenerate to k for P¥,
as was already observed in [4], we rerun the heat equation case a = 1,¢ = 0 with

the central flux
0 0
C = (0 0> )

This time we can see that the global order of accuracy in Lo, is only k& when
P* is used with an odd value of k.

(4.3.22)

Table 5. The heat equation a = 1, ¢ = 0. L errors and numerical order of
accuracy, measured at the center of each element, for Az"0M uy for 0 < m < K,
and for g, using the central flux.

k variable N =10 N =20 N =40
error error order error order
u 3.59E-3 8.92E-4 2.01 2.25E-4 1.98
1 Az O,u 2.10E-2 1.06E-2 0.98 5.31E-3 1.00
q 2.39E-3 6.19E-4 1.95 1.56E-4 1.99
U 6.91E-5 4.12E-6 4.07 2.57TE-7 4.00
2 Az d,u 7.66E-4 1.03E-4 2.90 1.30E-5 2.98
(Az)? H%u 2.98E-4 1.68E-5 4.15 1.03E-6 4.02
q 6.52E-5 4.11E-6 3.99 2.5TE-7 4.00
u 1.62E-5 1.01E-6 4.00 6.41E-8 3.98
Az O,u 1.06E-4 1.32E-5 3.01 1.64E-6 3.00
3 (Ax)? 8£u 1.99E-4 1.22E-5 4.03 7.70E-7 3.99
(Ax)3 8§u 6.81E-4 8.68E-5 2.97 1.09E-5 2.99
q 1.54E-5 1.01E-6 3.93 6.41E-8 3.98
u 8.25E-8 1.31E-9 5.97 2.11E-11 5.96
Az d,u 1.62E-6 5.12E-8 4.98 1.60E-9 5.00
4 (Az)? H%u 1.61E-6 2.41E-8 6.06 3.78E-10 6.00
(Ax)3 8gu 2.90E-5 9.46E-7 4.94 2.99E-8 4.99
(Ax)t 8;*u 5.23E-6 7.59E-8 6.11 1.18E-9 6.01
q 7.85E-8 1.31E-9 5.90 2.11E-11 5.96
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4.4. The LDG methods for the multi-dimensional case

In this section, we consider the LDG methods for the following convection-
diffusion model problem

Oru+t D Ou, (filw) = D aij(u)de;u) =0 in (0,T) x (0,1)%.4.23)

1<i<d 1<j<d
u(t =0) = ug, on (0,1)4, (4.4.24)

with periodic boundary conditions. Essentially, the one-dimensional case and the
multidimensional case can be studied in exactly the same way. However, there are
two important differences that deserve explicit discussion. The first is the treatment
of the matrix of entries a;;(u), which is assumed to be symmetric, semipositive
definite and the introduction of the variables gy, and the second is the treatment of
arbitrary meshes.

To define the LDG method, we first notice that, since the matrix a;;(u) is
assumed to be symmetric and semipositive definite, there exists a symmetric matrix
bi;j(u) such that

Qij (u) = Zlglgd bw(’u,) b(fj(u)- (4.4.25)

Then we define the new scalar variables g, = Zl<j<d bej(u) O,; u and rewrite the
problem (4.4.23), (4.4.24) as follows: o

Oru+ D O, (filw) = D bi(u)ge) =0 in (0,T)x (0,1)%(4.4.26)

1<i<d 1<e<d

g — Y 0u;90(w) =0, £=1,...d, in(0,T)x(0,1)%, (4.4.27)
1<j<d

u(t =0) = ug, on (0,1)4, (4.4.28)

where g¢j(u) = [* by j(s) ds. The LDG method is now obtained by discretizing the
above equations by the Discontinuous Galerkin method.

We follow what was done in §2. So, we set w = (u,q)* = (u,q1, ++ ,qq)" and,
foreach ¢ = 1,--- ,d, introduce the flux
hi(w) = (fi(u) = 21 cpcq bie(w) ae, —g1i(u), -+, —gai(u))'.  (4.4.29)

We consider triangulations of (0,1)%, Ta, = { K }, made of non-overlapping poly-
hedra. We require that for any two elements K and K', K N K is either a face
e of both K and K’ with nonzero (d — 1)-Lebesgue measure | e|, or has Hausdorff
dimension less than d — 1. We denote by Ea, the set of all faces e of the border
of K for all K € Ta,. The diameter of K is denoted by Axg and the maximum
Axg, for K € Ta, is denoted by Az. We require, for the sake of simplicity, that
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the triangulations Ta, be regular, that is, there is a constant independent of Az
such that

AZL”K
PK

<o VK €Ta,,

where pg denotes the diameter of the maximum ball included in K.

We seek an approximation wp, = (un,qn)t = (un, qn1, - ,qra)? to w such that
for each time t € [0, T, each of the components of wj, belong to the finite element
space

Vi =VFE={veL'((0,1)%): v|x € PK(K)V K € Ta,}, (4.4.30)

where P*¥(K) denotes the space of polynomials of total degree at most k. In or-
der to determine the approximate solution wy, we proceed exactly as in the one-
dimensional case. This time, however, the integrals are made on each element K of
the triangulation Ta,. We obtain the following weak formulation on each element
K of the triangulation Ta,:

Sy Ocun(w,t) vy u(w) do — Yi<i<d Jic Piu(Wi(,t)) Or; vp,u(w) da
+ fox hu(Whynox) (@,t) vpu(2) dT(2) =0,  Vop, € PH(K), (4.4.31)

For/=1,---,d:
Jic ane(@,t) vn g, (z) do — Yi<j<d Jic Piae (Wi(2,t)) On; U g, () dx
+ fox Pge (Wh, noK ) (@,8) U g, (2) dT(2) = 0, V¥ vp,g, € PH(K), (4.4.32)
S un(@,0) v i(x) de = [ uo(x) vpi(x) de, Vo € PH(K), (4.4.33)

where nyg denotes the outward unit AnorAmal to the element K at x € 0K. It

remains to choose the numerical flux (A, hy,,-- -, hy,)' = h = h(ws, nax) (2, 1).
As in the one-dimensional case, we require that the fluxes h be of the form

fl(wha naK)(m) = ﬁ(wh (wintK ) t): Wh (mewtK ’ t); naK);

where wy, (2% ) is the limit at 2 taken from the interior of K and wy, (2%t ) the
limit at = from the exterior of K, and consider fluxes that (i) are locally Lipschitz,
conservative, that is,

h(wh(wi"“{ ), Wh(:n‘””t" );nak) + h(wy (a:”tK ), W (azi"t" );—npK) =0,
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and consistent with the flux

E h; nok i,

1<i<d

(ii) allow for a local resolution of each component of q; in terms of uy only, (iii)
reduce to an E-flux when a(-) = 0, and that (iv) enforce the L2-stability of the
method.

Again, we write our numerical flux as the sum of a convective flux and a diffusive
flux:

h= hconv + hdiff:
where the convective flux is given by

lAlconv(vv_a W+; Il) = (f(u_, U+; Il), O)ta

where f(u~,u";n) is any locally Lipschitz E-flux which is conservative and consis-
tent with the nonlinearity

and the diffusive flux ﬁdiff(w*, wT;n) is given by

(- > WWW, - galwn,- = Y gia(w)n; )" — Caiss [W],

1<i,e<d [u] 1<i<d 1<i<d

where

0 c12 Ci3 Cid
—C12 0 0 0
(Cdiff — | ~Ci13 0 0 v 0 ,
g 0 0 -+ 0
c1j = c1j(w,w') islocally Lipschitz for j =1,--- ,d,

c1; =0 whena()=0 forj=1,---,d.

We claim that this flux satisfies the properties (i) to (iv).

To prove that properties (i) to (iii) are satisfied is now a simple exercise. To
see that the property (iv) is satisfied, we first rewrite the flux h in the following
way:
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(- [gié(u)]Wni, =S m@ny e, = S gawn)' —Clw],

1<i£<d [u] 1<i<d 1<i<d
where

C11 Ci2 (€13 C1d
—C12 0 0 0

C = —C13 0 0 0 ,
—¢1g O o - 0

_ 1 [¢i(w)] YA

C11 = [U] <Zl§z§d [u] n; f(u’ U ,Il) )

where ¢;(u) = [* fi(s)ds. Since f(-,+m) is an E-flux,

1 ut

=T Jom (Sicica fils)ni = fu,utsn) ) ds >0,

and so the matrix C is semipositive definite. The property (iv) follows from this
fact and from the following result.

THEOREM 4.3. We have,

1 T
3] w@Ddes [ [ Pdedi+ Orc(wl) <
(0,1)d 0 J(0,1)d

N | =

/ ug(az) dz,
(0,1)¢

where

Orc(wn) =, Yo, J. wale, )]C [wy(z, )] dD(z) dt.

We can also prove the following error estimate. We denote the integral over
(0,1)% of the sum of the squares of all the derivatives of order (k+1) of u by |u |z, ;-

THEOREM 4.4. Let e be the approzimation error w — wy,. Then we have, for
arbitrary, regular grids,

1/2
{ Siowys lea@,T) Pdo+ [ [ 1a leg(@,t) P dodt + @mqen} < C(an),

where C = C(k, | w|g+1, | ¢ |k+2). In the purely hyperbolic case a;; = 0, the constant
C is of order (Ax)'/2. In the purely parabolic case ¢ = 0, the constant C is of order
Az for even values of k and of order 1 otherwise for Cartesian products of uniform
grids and for C identically zero provided that the local spaces QF are used instead
of the spaces P*, where Q¥ is the space of tensor products of one dimensional
polynomials of degree k.
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4.5. Extension to multidimensional systems

In this chapter, we have considered the so-called LDG methods for convection-
diffusion problems. For scalar problems in multidimensions, we have shown that
they are L2-stable and that in the linear case, they are of order k if polynomials
of order k are used. We have also shown that this estimate is sharp and have
displayed the strong dependence of the order of convergence of the LDG methods
on the choice of the numerical fluxes.

The main advantage of these methods is their extremely high parallelizabil-
ity and their high-order accuracy which render them suitable for computations
of convection-dominated flows. Indeed, although the LDG method have a large
amount of degrees of freedom per element, and hence more computations per ele-
ment are necessary, its extremely local domain of dependency allows a very efficient
parallelization that by far compensates for the extra amount of local computations.

The LDG methods for multidimensional systems, like for example the com-
pressible Navier-Stokes equations and the equations of the hydrodynamic model
for semiconductor device simulation, can be easily defined by simply applying the
procedure described for the multidimensional scalar case to each component of u.
In practice, especially for viscous terms which are not symmetric but still semi-
positive definite, such as for the compressible Navier-Stokes equations, we can use
q = (0, u, ..., 0, u) as the auxilary variables. Although with this choice, the L2-
stability result will not be available theoretically, this would not cause any problem
in practical implementations.

4.6. Some numerical results

Next, we present some numerical results from the papers by Bassi and Rebay
[3] and Lomtev and Karniadakis [46].

¢ Smooth, steady state solutions. We start by displaying the convergence
of the method for a p-refinement done by Lomtev and Karniadakis [46]. In Figure
1, we can see how the maximum errors in density, momentum, and energy decrease
exponentially to zero as the degree k of the approximating polynomials increases
while the grid is kept fixed; details about the exact solution can be found in [46].

Now, let us consider the laminar, transonic flow around the NACA0012 airfoil at
an angle of attack of ten degrees, freestream Mach number M = 0.8, and Reynolds
number (based on the freestream velocity and the airfoil chord) equal to 73; the
wall temperature is set equal to the freestream total temperature. Bassy and Rebay
[3] have computed the solution of this problem with polynomials of degree 1,2,
and 3 and Lomtev and Karniadakis [46] have tried the same test problem with
polynomials of degree 2,4, and 6 in a mesh of 592 elements which is about four times
less elements than the mesh used by Bassi and Rebay [3]. In Figure 3, taken from
[46], we display the pressure and drag coefficient distributions computed by Bassi
and Rebay [3] with polynomials on degree 3 and the ones computed by Lomtev
and Karniadakis [46] computed with polynomials of degree 6. We can see good
agreement of both computations. In Figure 2, taken from [46], we see the mesh
and the Mach isolines obtained with polynomials of degree two and four; note the
improvement of the solution.

Next, we show a result from the paper by Bassi and Rebay [3]. We consider
the laminar, subsonic flow around the NACAO0012 airfoil at an angle of attack of
zero degrees, freestream Mach number M = 0.5, and Reynolds number equal to
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FIGURE 1. Maximum errors of the density (triangles), momemtum
(circles) and energy (squares) as a function of the degree of the
approximating polynomial plus one (called “number of modes” in
the picture).

5000. In figure 4, we can see the Mach isolines corresponding to linear, quadratic,
and cubic elements. In the figures 5, 6, and 7 details of the results with cubic
elements are shown. Note how the boundary layer is captured withing a few layers
of elements and how its separation at the trailing edge of the airfoil has been clearly
resolved. Bassi and Rebay [3] report that these results are comparable to common
structured and unstructures finite volume methods on much finer grids- a result
consistent with the computational results we have displayed in these notes.
Finally, we present a not-yet-published result kindly provided by Lomtev and
Karniadakis about the simulation of an expansion pipe flow. The smaller cylinder
has a diameter of 1 and the larger cylinder has a diameter of 2. In Figure 8, we
display the velocity profile and some streamlines for a Reynolds number equal to 50
and Mach number 0.2. The computation was made with polynomials of degree 5 and
a mesh of 600 tetrahedra; of course the tetrahedra have curved faces to accomodate
the exact boundaries. In Figure 9, we display a comparison between computational
and experimental results. As a function of the Reynolds number, two quantities are
plotted. The first is the distance between the step and the center of the vertex (lower
brach) and the second is the distance from the step to the separation point (upper
branch). The computational results are obtained by the method under considera-
tion with polynomials of degree 5 for the compressible Navier Stokes equations, and
by a standard Galerkin formulation in terms of velocity-pressure (NEKTAR), by
Sherwin and Karniadakis [56], or in terms of velocity-vorticity (IVVA), by Trujillo
[61], for the incompressible Navier Stokes equations; results produced by the code
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called PRISM are also included, see Newmann [48]. The experimental data was
taken from Macagno and Tung [49]. The agreement between computations and
experiments is remarkable.

e Unsteady solutions. To end this chapter, we present the computation
of an unsteady solution by Lomtev and Karniadakis [46]. The test problem is the
classical problem of a flow around a cylinder in two space dimensions. The Reynolds
number is 10,000 and the Mach number 0.2.

In Figure 10, the streamlines are shown for a computation made on a grid of
680 triangles (with curved sides fitting the cylinder) and polynomials whose degree
could vary from element to element; the maximum degree was 5. In Figure 11,
details of the mesh and the density around the cylinder are shown. Note how the
method is able to capture the shear layer instability observed experimentally. For
more details, see [46].
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FIGURE 2. Mesh (top) and Mach isolines around the NACA0012
airfoil, (Re = 73, M = 0.8, angle of attack of ten degrees) for
quadratic (middle) and quartic (bottom) elements.
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FIGURE 3. Pressure (top) and drag(bottom) coefficient distribu-
tions. The squares were obtained by Bassi and Rebay [3] with
cubics and the crosses by Lomtev and Karniadakis [46] with poly-
nomials of degree 6.
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FIGURE 4. Mach isolines around the NACAQ0012 airfoil, (Re =
5000, M = 0.5, zero angle of attack) for the linear (top), quadratic
(middle), and cubic (bottom) elements.
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FIGURE 5. Pressure isolines around the NACA0012 airfoil, (Re =
5000, M = 0.5, zero angle of attack) for the for cubic elements
without (top) and with (bottom) the corresponding grid.
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FIGURE 6. Mach isolines around the leading edge of the
NACAO0012 airfoil, (Re = 5000, M = 0.5, zero angle of attack)
for the for cubic elements without (top) and with (bottom) the
corresponding grid.
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FiGure 7. Mach isolines around the trailing edge of the
NACAO0012 airfoil, (Re = 5000, M = 0.5, zero angle of attack)
for the for cubic elements without (top) and with (bottom) the
corresponding grid.
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FiGURE 8. Expansion pipe flow at Reynolds number 50 and Mach
number 0.2. Velocity profile and streamlines computed with a mesh
of 600 elements and polynomials of degree 5.
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FiGure 9. Expansion pipe flow: Comparison between computa-
tional and experimental results.
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FIiGURE 10. Flow around a cylinder with Reynolds number 10, 000
and Mach number 0.2. Streamlines. A mesh of 680 elements was
used with polynomials that could change degree from element to
element; the maximum degree was 5.
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FIGURE 11. Flow around a cylinder with Reynolds number 10, 000
and Mach number 0.2. Detail of the mesh (top) and density (bot-
tom) around the cylinder.
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