Problem Set 6

(Out Wed 11/16/2016, Due Wed 11/30/2016)

Problem 12

Consider the advection-reaction equation

 $u_t + u_x = r(u) + s(x, u)$

on $x \in [0, 2\pi[$ with periodic boundary conditions, and zero initial conditions u(x, 0) = 0. The solution u(x, t) represents a chemical concentration $(0 \le u \le 1)$, which is advected with constant velocity, and modified by a bistable reaction term $r(u) = u(1-u)(u-\frac{1}{2})$ and a localized source term $s(x, u) = a \exp(-10(x-\pi)^2)(1-u)$, where a > 0 is a parameter.

- (1) Write a program that approximates the true solution with sufficient accuracy, and run the simulation on the two cases a = 0.5 and a = 1. Plot both solutions at times $t \in \{2, 8, 40\}$. Explain your observations.
- (2) There is a critical threshold value a_c , such that for $a < a_c$, the solution behaves like the case a = 0.5, and for $a > a_c$, the solution behaves like the case a = 1. Find a_c numerically, up to at least 0.1% accuracy. Remember that your scheme's global truncation error must be sufficiently small.

Note: This problem set is only half of the prior problem sets.