TRANSPORTATION
RESEARCH BOARD

OF THE NATIONAL ACADEMIES

Transportation Research Board
93rd Annual Meeting
Washington, D.C.

January 12—-16, 2014

Effect of the Choice of Jam Density in Data-Fitted

First- and Second-Order Traffic Models

University of lllinois Urbana-Champaign &

Velocity and FD Curves for Various Traffic Models

emple University

TZ TEMPLE

UNIVERSITY
EILLINOIS

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Model Accuracy as a Function of the Jam Density

For a class of data-fitted macroscopic traffic models, the influence of the choice
of the jam density on the model accuracy is investigated. This work builds on an
established framework of data-fitted first-order Lighthill-Whitham-Richards (LWR)
models and their second-order Aw-Rascle-Zhang (ARZ) generalizations [4]. These
models are systematically fitted to historic fundamental diagram data, and then their
predictive accuracy is quantified via a version of the three-detector problem test,
considering vehicle trajectory data and single-loop sensor data. The key outcome
of this study is that with commonly suggested jam densities of 120 vehicles/km/lane
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and results in a significant improvement of the predictive accuracy of the considered
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Error Definition:

‘pdata(x’ t) _ pmodel(x, t)’

e(x,t) = Ao

’udata(x, t) . umodel(x, t){
Au '

+

Here, Ap and Au are the maximum variation in density and velocity that the historic
FD data exhibits, both modulo outliers. The figures show the space-time-averaged
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Model errors as functions of stagnation density (NGSIM 4:00-4:15)

ftfz f):z e(x, t) dx dt as a function of the jam density pmax.
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