93rd Annual Meeting Washington, D.C.

January 12–16, 2014

Abstract

For a class of data-fitted macroscopic traffic models, the influence of the choice of the jam density on the model accuracy is investigated. This work builds on an established framework of data-fitted first-order Lighthill-Whitham-Richards (LWR) models and their second-order Aw-Rascle-Zhang (ARZ) generalizations [4]. These models are systematically fitted to historic fundamental diagram data, and then their predictive accuracy is quantified via a version of the three-detector problem test, considering vehicle trajectory data and single-loop sensor data. The key outcome of this study is that with commonly suggested jam densities of 120 vehicles/km/lane and above, information travels backwards too slowly. It is then demonstrated that the reduction of the jam density to 90–100 vehicles/km/lane addresses this problem and results in a significant improvement of the predictive accuracy of the considered models.

First-Order Models vs. Second-Order Models

Macroscopic traffic modeling: describe the collective vehicle dynamics in terms of aggregate traffic density $\rho(x, t)$, traffic flow rate Q(x, t), and average velocity $u(x, t) = Q(x, t) / \rho(x, t)$. This approach results in (systems of) hyperbolic conservation laws.

First-order LWR model [1]: a scalar mass conservation equation

$$ho_t + (Q(\rho))_x = 0$$
, where $Q(\rho) = \rho U(\rho)$

The flow-density function $Q(\rho)$ is a fundamental diagram (FD).

Second-order model: a system of conservation laws, e.g., the ARZ model [2, 3]

$$\begin{cases} \rho_t + (\rho u)_x = \mathbf{0} \\ w_t + u w_x = \mathbf{0} , \end{cases}$$

where *w* represents a property of drivers that is advected with the vehicles. In the ARZ model, $w = u + (U(0) - U(\rho))$ is the empty road velocity of drivers.

The ARZ model is a generalization of the LWR model in the sense that ARZ allows different drivers to have different properties.

Data-Fitted First- and Second-Order Models

The LWR model employs a single flow rate curve $Q(\rho)$ [red curve]. This induces a family of flow rate curves [black curves] in the ARZ model

$$Q_w(\rho) = Q(\rho) + \rho \left(w - U(0) \right).$$

Data-Fitting Methodology [4]:

- Use historic FD data (ρ_i, Q_i) to construct data-fitted macroscopic models.
- Prescribe a flow rate function with free parameters, e.g., a 3-parameter model $Q_{\alpha,\lambda,\rho}(\rho)$.
- Let the jam density ρ_{max} be a fixed model parameter.
- Identify free parameters by a LSQ fit with data

$$\min_{\alpha,\lambda,p} \left\{ \sum_{j=1}^{n} \left(\boldsymbol{Q}_{\alpha,\lambda,p}(\rho_j) - \boldsymbol{Q}_j \right)^2 \right\}$$

Wave Propagation Speeds in Traffic Models

- LWR: characteristic speed: $\lambda = Q'(\rho)$; shock wave speed: $s = [Q(\rho)]/[\rho]$.
- **ARZ:** slower characteristic field: $\lambda_1 = Q'_w(\rho)$ and $\mathbf{s} = [Q_w(\rho)]/[\rho]$;
- faster characteristic field: $\lambda_2 = u$ and no shocks (only contact discontinuities).
- Shown below: ρ_{max} has substantial effect on the travel speed of information.

Transportation Research Board

Effect of the Choice of Jam Density in Data-Fitted **First- and Second-Order Traffic Models**

5:28

Shimao Fan & Benjamin Seibold

University of Illinois Urbana-Champaign & Temple University

Ш