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Abstract

We present a simple method to solve spherical harmonics
moment systems, such as the the time-dependent PN and
SPN equations, of radiative transfer. The method, which
works for arbitrary moment order N , makes use of the spe-
cific coupling between the moments in the PN equations. This
coupling naturally induces staggered grids in space and time,
which in turn give rise to a canonical, second-order accurate
finite difference scheme. While the scheme does not pos-
sess TVD or realizability limiters, its simplicity allows for a
very efficient implementation in MATLAB. We present several
test cases, some of which demonstrate that the code solves
problems with ten million degrees of freedom in space, angle,
and time within a few seconds. The code for the numerical
scheme, called StaRMAP (Staggered grid Radiation Moment
Approximation), along with files for all presented test cases,
can be downloaded so that all results can be reproduced by
the reader.

Radiative Transfer Equation for Photons in Medium

∂tψ(t, x,Ω) + Ω · ∇xψ(t, x,Ω) + Σt(t, x)ψ(t, x,Ω)

=

∫
S2

Σs(t, x,Ω · Ω′)ψ(t, x,Ω′) dΩ′ + q(t, x,Ω)
(1)

Photon density ψ; absorption cross section Σa; scattering
kernel Σs; total cross section Σt = Σs0 + Σa; source q.

Spherical Harmonic Moment Methods

The PN method (cf. [1]) conducts a Fourier expansion (spec-
tral discretization) in the angular variable Ω; reduces high di-
mensionality; yields system of macroscopic PDE.

Efficient numerics recent subject of interest [5, 2, 1].
I Advantages over more direct discretizations: rotational

invariance, no ray effect (cf. [3]).
I Drawback: Gibbs phenomena, i.e., spurious oscillations

Also considered: Simplified PN equations (SPN) [4].

Gap: No PN solver for general N available.

Moment system is hyperbolic balance law

∂t~u + Mx · ∂x~u + My · ∂y~u + C · ~u = ~q , (2)

where the matrices Mx , My , C possess very specific patterns
of their nonzero entries that admit the placement of the com-
ponents of the solution vector ~u(x, y , t) on staggered grids.
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Staggered grid of 5 × 3 cells; periodic b.c. in x ; extrapolation b.c. in y ;
solution grid points (black boundaries), periodic extension points (blue),
and extrapolation ghost points (red).

Features of This Project [6]

I Specific MATLAB files that encode PN and SPN matrices.
I Efficient solver file:

I Place (based on matrices Mx and My) solution components
automatically on appropriate staggered grids.

I Store solution components as 2d arrays (= matrices). Compute FD
stencils by shifting. Very fast in MATLAB.

I Solver file employs special structure of parameters (e.g., isotropy,
time-independence) to compute much faster.

I Examples files (few lines of MATLAB code) that call the
other files. User hardly ever modifies non-example files.

I Solver file has defaults for every problem parameter and
function, so an example file essentially is a prescription of
how one deviates from the defaults.

Numerical Method

Central differencing in space:
∂xw11 & ∂yw22 live on 21 grid; ∂xw22 & ∂yw11 live on 12 grid;
∂xw21 & ∂yw12 live on 11 grid; ∂xw12 & ∂yw21 live on 22 grid.
Even components: on grids 11 and 22;
odd components: on grids 21 and 12.

Bootstrapping in time: Update even (odd) components from
t to t + ∆t , assuming that odd (even) components are con-
stant. Thus system decouples into scalar ODEs

∂τuk(x, y , τ ) + c̄k(x, y)uk(x, y , τ ) = r̄k(x, y) (3)

for τ ∈ [t, t + ∆t]. Evaluate c̄k(x, y) = ck(x, y , t + 1
2∆t)

and r̄k(x, y) = rk(x, y , t + 1
2∆t). Exact solution of (3) is

uk(x, y ,t + ∆t) = uk(x, y , t) + ∆t
(

r̄k(x, y)

− c̄k(x, y)uk(x, y , t)
)

E(−c̄k(x, y)∆t) ,

where E(c) = exp(c)−1
c .

Accuracy: 2nd order due to local symmetries.
Stability: Proof in [6].

Verification via Method of Manufactured Solutions (MMS)
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MMS: Choose
a solution
~u(x, y , t).
Then compute
the source
~q(x, y , t) that
generates this
solution under
(2).

Project Files Used by MMS Verification

Example file starmap create mms.m
creates new file starmap ex mms auto.m
which calls PN matrices constr. starmap closure pn.m
and then solver file starmap solver.m

MMS source is computed via MATLAB’s symbolic toolbox.

Checkerboard Geometry Test Case [1]
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Checkerboard Test with P15 at t = 3.20

 

 

1 2 3 4 5 6 7

1

2

3

4

5

6

7

−7

−6

−5

−4

−3

−2

−1

0

Checkerboard Test with P39 at t = 3.20
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Project Files Used by Checkerboard Test Case

Example file starmap ex checkerboard.m
calls PN matrices construction starmap closure pn.m
and then solver file starmap solver.m

StaRMAP Example File for Checkerboard Test Case

function starmap ex checkerboard
%========================================================================
% Problem Parameters
%========================================================================
par = struct(...
’name’,’Checkerboard Test’,... % name of example
’closure’,’P’,... % type of closure (can be ’P’ or ’SP’)
’n mom’,5,... % order of moment approximation
’sigma a’,@sigma a,... % absorption coefficient (defined below)
’sigma s0’,@sigma s0,... % isotropic scattering coefficient (def. below)
’source’,@source,... % source term (defined below)
’ax’,[0 7 0 7],... % coordinates of computational domain
’n’,[250 250],... % numbers of grid cells in each coordinate direction
’bc’,[1 1],... % type of boundary cond. (0 = periodic, 1 = extrapolation)
’t plot’,linspace(0,3.2,51),... % output times
’output’,@output... % problem-specific output routine (defined below)
);
%========================================================================
% Moment System Setup and Solver Execution
%========================================================================
switch par.closure % define closure matrix function
case ’P’, closurefun = ’starmap closure pn’;
case ’SP’, closurefun = ’starmap closure spn’;
end
[par.Mx,par.My] = feval(closurefun,par.n mom); % compute moment matrices
starmap solver(par)
%========================================================================
% Problem Specific Functions
%========================================================================
function f = sigma a(x,y)
% Absorption coefficient.
cx = ceil(x); cy = ceil(y);
g = (ceil((cx+cy)/2)*2==(cx+cy)).*(1<cx&cx<7&1<cy&cy-2*abs(cx-4)<4);
f = (1-g)*0+g*10;

function f = sigma s0(x,y)
% Isotropic scattering coefficient.
cx = ceil(x); cy = ceil(y);
g = (ceil((cx+cy)/2)*2==(cx+cy)).*(1<cx&cx<7&1<cy&cy-2*abs(cx-4)<4);
f = (1-g)*1+g*0;

function f = source(x,y)
% Radiation source (only for zeroth moment).
f = 3<x&x<4&3<y&y<4;

function output(par,x,y,U,step)
% Plotting routine that uses logarithmic color scale.
V = log10(max(U,1e-20));
clf, imagesc(x,y,V’), axis xy equal tight, caxis([-7 0])
title(sprintf(’%s with %s%d at t = %0.2f’,par.name,par.closure,...
par.n mom,par.t plot(step)))
colormap jet(255); colorbar, drawnow

Line Source Test Case

Line Source Test with P19 at t = 0.50
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Line Source Test with P39 at t = 0.50
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Beam in Void and Medium

Beam Test with P9 at t = 0.30
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Beam Test with P9 at t = 0.60
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Beam Test with P39 at t = 0.30
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Beam Test with P39 at t = 0.60
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