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Interface Tracking

Many two-phase fluid flow simulations (e.g. immersed boundary method [6], ghost fluid
method [2]) use fractional steps, i.e. in each time step:

1. Update velocity field v(Xx) by a Navier-Stokes step;
2. Move interface by the velocity field v(X).

Fundamental problem: Represent and move the interface accurately.

Level Set Approach [5]

» Represent interface as the zero contour of a level set function ¢ : RP — R.
» Moving interface with velocity field v translates to evolving ¢ by the PDE

$t+V-Vop=0. (1)
» Solve (1) by high accuracy schemes (e.g. WENO [3]).
» Preserve |V¢(x)| = 1 by reinitialization [9] equation ¢ = sign(¢g)(1 — |V ¢|).
» Reconstruct interface by bi-/tri-linear interpolation on grid cells.

Advantages:

» Can define ¢ on regular grid; uniform resolution.
» Simple in 3D; automatic treatment of topology changes.
» More potential due to knowledge of all contours.

» Can obtain normals n = ;2' and curvature kK = V - n from ¢.

Problems and difficulties:

» Small structures vanish once below grid resolution.
» Wide WENO stencils are difficult to deal with near boundaries and with AMR.
» Inaccuracies with curvature approximation near boundaries and with reinitialization.

Goal: Address these problems in a simple, Eulerian fashion.
Idea: Augment the level set function by gradient information.

Gradient-Augmented Level Set Method and Advection Scheme

Philosophy: .
Store function values ¢ and gradients ¥» = V ¢ as independent quantities. Update both in
a coupled fashion, by a scheme that uses characteristics and Hermite interpolation [4].

Research in the past:

» Courant et al.: use characteristics and interpolation, but no gradients — CIR method [1]
» van Leer: use gradients for higher order, but reconstruct from ¢ [11]

» Takewaki et al.: idea to track gradients as independent quantity — CIP method [10]

» Raessi et al.: advect normal vectors, but in a decoupled fashion [7]

Motivation:
If function values ¢ and gradients V ¢ are known at grid points, ¢
then subgrid structures can be represented. subgrid
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Thm.: The p-cubic approximates smooth functions with 4th order accuracy. Gradients are
3" order accurate. Curvature can be obtained everywhere with 2" order accuracy.

http://www.math.temple.edu/ seibold/research/levelset

Semi-Lagrangian Advection Scheme

Characteristic form of (1
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1. For each grid point, solve X = o\?’()‘(’) backwards to find -~
starting point of characteristic X (e.g. by one RK3 step). .
s

2. Obtain ¢(X) and v(X) from Hermite interpolant.
3. Solve ¢ = 0 (trivial) and ) = —V ¥ - ¢ forward (e.g. RK2).

Numerical Analysis of Gradient-Augmented Schemes

Introduce concept of “superconsistency” to analyze scheme in function space setting:

» Rewrite (1) as ¢4 = Lo, where L= —v - V.
» Exact advection operator S(t) = e'L.

» Approximate operator A(t) ~ S(t), where A(k) is one Runge-Kutta step of X = V(X).

mation of ¢» = —VV - ¢ equals V(A(t)¢).

Def.: A gradient-augmented scheme is called superconsistent, if the numerical approxi-

Update rule for gradients is inherited from ODE solver for characteristic curves.

Projection operator P in function |Example: superconsistent Shu-Osher [8] scheme

space: (1) evaluate ¢ and V¢ on

grid points; (2) construct new func- V% = | — k VU, t+K)
tion by Hermite interpolation on each Xo = X — k(AV(X, t+K) + 10(%4, 1))
cell. Thus one step of scheme: VX = | = k(GVV(X, t+K) + V% - VV(%, 1))
- N X =X — k(V(X, t+K) + sV(X1, t) + 2V(X2, t+3K))
fﬂ(,l_(l ~ PS(k) = ﬂﬁ vﬁ?:/— KEV V(X tHK) + §V % - V(% 1) + 3V - VT (%, t5K))
num. scheme exact evolution S(X, t+K) = (%, 1)
O(X, t+k) = VX - 9(X, 1)

% = X — k V(% t+k)

Accuracy:

Projection P fourth order accurate. Use locally fourth order accurate ODE solver for
X = V(X). Then the scheme is locally fourth order accurate, globally third order.

Stability:

1D constant coefficients: Hermite cubic minimizes F(u) = [ uZ, dx;
hence F(PA(k)¢) < F(A(k)¢p) = F(S(k)®) = F(o).

Convergence:

Linear scheme, thus convergence due to the Lax equivalence theorem.

Numerical Benchmark Tests
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Loss of Volume

resolution 90 x 50 x 50 |1 100 x 100 x 100 /150 x 150 x 150 200 x 200 x 200
GA-CIR -5.4% -3.3% -1.6% -0.9%
WENOS5-TVD3 -54.5% -15.8% -9.6% -6.5%
WENO?S reinit. -39.4% -11.2% -71% -5.0%

Evolution of a cube in a 3D deformation field. Lowest volume loss with the new approach.

Fluid Flow Simulation (Using Ghost Fluid Method [2])

The gradient-augmented approach for interface evolution yields a more accurate
resolution of partial coalescence events. The ability to resolve small structures pays off.

Conclusions and Outlook

Advantages of gradient-augmented level set approaches:
» Representation of subgrid structures.
» Optimal locality: each point uses only information in a single cell. Great benefit for AMR.
» Accurate approximation to n and « everywhere (directly from interpolation).
» Characteristics yield a natural treatment of boundary conditions.
» Robust implementation: use interpolation for everything.

Current research:
» Analysis: extend concept of TVD to gradient-augmented setting.
» Extension: use other Hermite interpolations than p-cubics.
» Extension: track higher derivatives.
» Extension: nonlinear Hamilton-dacobi equations (such as the reinitialization equation).
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