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Interface Tracking

Many two-phase fluid flow simulations (e.g. immersed boundary method [6], ghost fluid
method [2]) use fractional steps, i.e. in each time step:
1. Update velocity field ~v(~x) by a Navier-Stokes step;
2. Move interface by the velocity field ~v(~x).

Fundamental problem: Represent and move the interface accurately.

Level Set Approach [5]

I Represent interface as the zero contour of a level set function φ : Rp → R.
I Moving interface with velocity field ~v translates to evolving φ by the PDE

φt + ~v · ∇φ = 0 . (1)

I Solve (1) by high accuracy schemes (e.g. WENO [3]).
I Preserve |∇φ(x)| = 1 by reinitialization [9] equation φτ = sign(φ0)(1− |∇φ|).
I Reconstruct interface by bi-/tri-linear interpolation on grid cells.

Advantages:
I Can define φ on regular grid; uniform resolution.
I Simple in 3D; automatic treatment of topology changes.
I More potential due to knowledge of all contours.
I Can obtain normals ~n = ∇φ

|∇φ| and curvature κ = ∇ · ~n from φ.

Problems and difficulties:
I Small structures vanish once below grid resolution.
I Wide WENO stencils are difficult to deal with near boundaries and with AMR.
I Inaccuracies with curvature approximation near boundaries and with reinitialization.

Goal: Address these problems in a simple, Eulerian fashion.
Idea: Augment the level set function by gradient information.

Gradient-Augmented Level Set Method and Advection Scheme

Philosophy:
Store function values φ and gradients ~ψ = ∇φ as independent quantities. Update both in
a coupled fashion, by a scheme that uses characteristics and Hermite interpolation [4].

Research in the past:
I Courant et al.: use characteristics and interpolation, but no gradients→ CIR method [1]
I van Leer: use gradients for higher order, but reconstruct from φ [11]
I Takewaki et al.: idea to track gradients as independent quantity→ CIP method [10]
I Raessi et al.: advect normal vectors, but in a decoupled fashion [7]

Motivation:
If function values φ and gradients∇φ are known at grid points,
then subgrid structures can be represented.

Hermite interpolation:
Here: p-cubic; simple tensor-product on rectangular cell.
p given on 2p vertices → construct approx. to → interpolant
1 φ, φx → cubic
2 φ, φx , φy → φxy → bi-cubic
3 φ, φx , φy , φz → φxy , φxz , φyz , φxyz → tri-cubic

subgrid
bubble

subgrid
jet

subgrid
film

Thm.: The p-cubic approximates smooth functions with 4th order accuracy. Gradients are
3rd order accurate. Curvature can be obtained everywhere with 2nd order accuracy.

Semi-Lagrangian Advection Scheme

Characteristic form of (1)
~̇x = ~v(~x)

φ̇ = 0
~̇ψ = −∇~v · ~ψ

(2)

1. For each grid point, solve ~̇x = ~v(~x) backwards to find
starting point of characteristic ~̊x (e.g. by one RK3 step).

2. Obtain φ(~̊x) and ~ψ(~̊x) from Hermite interpolant.

3. Solve φ̇ = 0 (trivial) and ~̇ψ = −∇~v · ~ψ forward (e.g. RK2).

Numerical Analysis of Gradient-Augmented Schemes

Introduce concept of “superconsistency” to analyze scheme in function space setting:
I Rewrite (1) as φt = Lφ, where L = −~v · ∇.
I Exact advection operator S(t) = etL.
I Approximate operator A(t) ≈ S(t), where A(k) is one Runge-Kutta step of ~̇x = ~v(~x).

Def.: A gradient-augmented scheme is called superconsistent, if the numerical approxi-
mation of ~̇ψ = −∇~v · ~ψ equals∇(A(t)φ).

Update rule for gradients is inherited from ODE solver for characteristic curves.

Projection operator P in function
space: (1) evaluate φ and ∇φ on
grid points; (2) construct new func-
tion by Hermite interpolation on each
cell. Thus one step of scheme:

PA(k)︸ ︷︷ ︸
num. scheme

≈ PS(k) ≈ S(k)︸ ︷︷ ︸
exact evolution

Example: superconsistent Shu-Osher [8] scheme
~x1 = ~x − k ~v(~x , t +k)

∇~x1 = I − k ∇~v(~x , t +k)

~x2 = ~x − k(1
4
~v(~x , t +k) + 1

4
~v(~x1, t))

∇~x2 = I − k(1
4∇~v(~x , t +k) + 1

4∇~x1 · ∇~v(~x1, t))

~̊x = ~x − k(1
6
~v(~x , t +k) + 1

6
~v(~x1, t) + 2

3
~v(~x2, t + 1

2k))

∇~̊x = I − k(1
6∇~v(~x , t +k) + 1

6∇~x1 · ∇~v(~x1, t) + 2
3∇~x2 · ∇~v(~x2, t + 1

2k))

φ(~x , t +k) = φ(~̊x , t)

~ψ(~x , t +k) = ∇~̊x · ~ψ(~̊x , t)

Accuracy:
Projection P fourth order accurate. Use locally fourth order accurate ODE solver for
~̇x = ~v(~x). Then the scheme is locally fourth order accurate, globally third order.

Stability:
1D constant coefficients: Hermite cubic minimizes F (u) =

∫
u2

xx dx ;
hence F (PA(k)φ) ≤ F (A(k)φ) = F (S(k)φ) = F (φ).

Convergence:
Linear scheme, thus convergence due to the Lax equivalence theorem.

Numerical Benchmark Tests

2D deformation field
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2D Zalesak circle
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3D deformation

Loss of Volume

resolution 50× 50× 50 100× 100× 100 150× 150× 150 200× 200× 200

GA-CIR -5.4% -3.3% -1.6% -0.9%

WENO5-TVD3 -54.5% -15.8% -9.6% -6.5%

WENO5 reinit. -35.4% -11.2% -7.1% -5.0%

Evolution of a cube in a 3D deformation field. Lowest volume loss with the new approach.

Fluid Flow Simulation (Using Ghost Fluid Method [2])

→ →

The gradient-augmented approach for interface evolution yields a more accurate
resolution of partial coalescence events. The ability to resolve small structures pays off.

Conclusions and Outlook

Advantages of gradient-augmented level set approaches:
I Representation of subgrid structures.
I Optimal locality: each point uses only information in a single cell. Great benefit for AMR.
I Accurate approximation to ~n and κ everywhere (directly from interpolation).
I Characteristics yield a natural treatment of boundary conditions.
I Robust implementation: use interpolation for everything.

Current research:
I Analysis: extend concept of TVD to gradient-augmented setting.
I Extension: use other Hermite interpolations than p-cubics.
I Extension: track higher derivatives.
I Extension: nonlinear Hamilton-Jacobi equations (such as the reinitialization equation).
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