

Radiative tr

Boltzmann eo

for radiative ir

1D slab geom $\theta = \arccos(\mu)$

Linear optimal prediction
requency: independent, isotropic scattering:

$$2 \cdot \nabla x = \frac{1}{\sqrt{dx}} \left(\frac{d}{dx}^2 \cdot \frac{d}{dx}^2 \cdot \frac{1}{\sqrt{dx}} + \frac{1}{\sqrt{dx}} \left(\frac{d}{dx}^2 - \frac{1}{\sqrt{dx}} + \frac{1}{\sqrt{dx}} \left(\frac{d}{dx}^2 - \frac{1}{\sqrt{dx}} + \frac{1}{\sqrt{dx}} \left(\frac{d}{dx}^2 - \frac{1}{\sqrt{dx}} + \frac{1}{\sqrt{dx}} \right) \right)$$
decoupling is consider
 $(2, \Omega, \Omega, 1)$.
tensity $(x, y, \mu, 1)$ depends only on x , the azimuthal light angle
international phase space.
 $h^{12} + \mu^{2}x^{2} = (-\kappa + \sigma)u + \frac{\sigma}{2} \int_{-1}^{1} u d\mu' + q$.
international phase space.
 $h^{12} + \mu^{2}x^{2} = (-\kappa + \sigma)u + \frac{\sigma}{2} \int_{-1}^{1} u d\mu' + q$.
international phase space.
 $h^{12} + \mu^{2}x^{2} = (-\kappa + \sigma)u + \frac{\sigma}{2} \int_{-1}^{1} u d\mu' + q$.
international phase space.
 $h^{12} + h^{12}x^{2} = -c \cdot \ddot{u} + \vec{q}$
 $h^{12} + B - \nabla \ddot{u} = -c \cdot \ddot{u} + \vec{q}$
 $h^{12} + B - \nabla \ddot{u} = -c \cdot \ddot{u} + \vec{q}$
 $h^{12} + B - \nabla \ddot{u} = -c \cdot \ddot{u} + \vec{q}$
 $h^{12} + B - \nabla \ddot{u} = -c \cdot \ddot{u} + \vec{q}$
 $h^{12} + B - \nabla \ddot{u} = -c \cdot \ddot{u} + \vec{q}$
 $h^{12} + B - \nabla \ddot{u} = -c \cdot \ddot{u} + \vec{q}$
 $h^{12} + B - \nabla \ddot{u} = -c \cdot \ddot{u} + \vec{q}$
 $h^{12} + B - \nabla \ddot{u} = -c \cdot \ddot{u} + \vec{q}$
 $h^{12} + B - \nabla \ddot{u} = -c \cdot \ddot{u} + \vec{q}$
 $h^{12} + h^{12} + c \cdot \sigma + \vec{q}$
 $h^{12} + h^{12} + c \cdot \sigma + \vec{q}$
 $h^{12} + h^{12} + c \cdot \sigma + \vec{q}$
 $h^{12} + h^{12} + c \cdot \sigma + \vec{q}$
 $h^{12} + h^{12} + c \cdot \sigma + \vec{q}$
 $h^{12} + h^{12} + c \cdot \sigma + \vec{q}$
 $h^{12} + h^{12} + c \cdot \sigma + \vec{q}$
 $h^{12} + h^{12} + c \cdot \sigma + \vec{q}$
 $h^{12} + h^{12} + h$

Key challenge

Moment me

Fourier expar

$$u_k(x,t) = \int_{4\pi} u(x,\Omega,t) Y_k(\Omega) \,\mathrm{d}\Omega \;,$$

where Y_k sph

is equivalent t

1D slab geom

Example Calculation
ar optimized and implements: (astrophic scattering)

$$\pm 2 \cdot \nabla_{xxy} = \sigma \left(\frac{4\pi}{2} \int_{a}^{a} u'(x'' - u') + u'(B'(T) - u')}{x = x = \pi + x} + u'(B'(T) - u')}{x = x = \pi + x} + u'(B'(T) - u')}{x = x = \pi + x} + u'(B'(T) - u')}{x = x = \pi + x} + u'(B'(T) - u')}{x = x = \pi + x} + u'(B'(T) - u')}{x = x = \pi + x} + u'(B'(T) - u')}{x = x = \pi + x} + u'(B'(T) - u')}{x = x = \pi + x} + u'(B'(T) - u')}{x = \pi + x} + u'(B'(T) - u') + u'(B'(T) - u')}{x = \pi + x} + u'(B'(T) - u') + u'(B'(T) - u')}{x = \pi + x} + u'(B'(T) - u') + u'(B'(T) - u')}{x = \pi + x} + u'(B'(T) - u') + u'(B'(T) - u')}{x = \pi + x} + u'(B'(T) - u') + u') + u'(B'(T) - u') + u'(B'(T) -$$

Moment clos

Truncate syste $\hat{\vec{u}}=(u_0,u_1,.$ $\vec{u} = (u_{N+1}, u)$

Examples of

► **P_N** closure: **u**

- Diffusion corre
- Other linear cl
- Nonlinear clos

Classical app

- Assume unres
- Manipulate mo
- Foundations k

A new perspe

- Consider aver
- Mori-Zwanzig
- Approximation

References

- 🗈 A. Chorin, O. Hald,
- 🗈 M. Frank, B. Seibold M. Frank, A. Klar, E J. Comput. Phys. 22
- C. D. Levermore, Tr astrophysics worksh
- H. Mori, *Transport, collective motion and Brownian motion*, Prog. Theor. Phys. 33, pp. 423–455, 1965.
- B. Seibold, M. Frank, Optimal prediction for moment models: Crescendo diffusion and reordered equations, arXiv:0902.0076 [math-ph]
- R. Zwanzig, *Problems in nonlinear transport theory*, Systems far from equilibrium (Berlin), Springer, pp. 198–221, 1980.

Optimal Prediction for Radiative Transfer: A New Perspective on Moment Closure Martin Frank & Benjamin Seibold

$$\partial_t \vec{u}(t) = \hat{R}\vec{u}(t) + \min\{\tau, t\}\tilde{B}$$

1D slab geometry: Various *P*₀ moment closures true solution $u_0(x) \text{ at t} = 0.1$ true solution $0.5 \mid u_0(x) \text{ at } t = 0.2$ $0.3 - u_0(x)$ at t = 0.3 true solution $0.2 - u_0(x)$ at t = 0.4 ••• P_N closure ••• diffusion ••• cresc. diff. P_N closureP_N closureP_N closure -----diffusion -----cresc. diff. diffusion --- diffusion $(0)=\ddot{\vec{u}}.$ cresc. diff. cresc. diff. nit source). $\exp\left(-\frac{1}{2}\vec{u}^{T}A^{-1}\vec{u}\right) \quad [2].$ 0.2 0.4 0.6 0.2 0.4 0.6 0.8 0.4 0.6 0.2 0.4 0.6 0.8 1D slab geometry: Various P₃ moment closures (covariance matrix) ned measure $f_{\hat{\vec{u}}}(\tilde{\vec{u}}) = \tilde{Z}^{-1}f(\hat{\vec{u}},\tilde{\vec{u}})$ is the 0.3 u₀(x) at t = 0.3 $u_0(x)$ at t = 0. true solution $u_{0}(x)$ at t = 0.2 true solution true solution true solution P_N closure P_N closureP_N closure P_N closure -- diffusion corr. --diffusion corr. diffusion corr. -diffusion corr. .t. $(\boldsymbol{u}, \boldsymbol{v}) = \mathbb{E}[\boldsymbol{u}\boldsymbol{v}]$ [1]) - cresc. diff. corr -cresc. diff. corr. cresc. diff. corr cresc. diff. cori here $E = \left| \tilde{\hat{A}} \hat{\hat{A}}^{-1} 0 \right|$. 0.05 0.4 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.4 0.6 0.8 0.2 0.2 $^{-1}\hat{\vec{u}}$. Measure allows to prescribe nents. 2D slab geometry: Improvement by crescendo diffusion particular solution with averaged initial **P₇** "solution" Diffusion closure Geometry Crescendo diffusion tion $\boldsymbol{F} = \boldsymbol{I} - \boldsymbol{E}$. olution operator *e^{tRF}* satisfy Duhamel's 0 1 2 3 4 5 6 0 1 2 3 4 5 6 $Ee^{sR} ds + e^{tRF}$. Reordered *P_N* equations **RFREe**^{sR} ds + e^{tRF} RF . Even-odd ordering of moments: $\hat{\vec{u}} = (u_0, u_2, \dots, u_{2N})^T$ and $\tilde{\vec{u}} = (u_1, u_3, \dots, u_{2N+1}, u_{2N+2}, \dots)^T$. olution operator Reordered advection matrix (here 1D with N = 2): $K(t-s)e^{sR}E\,\mathrm{d}s$, 2/5 3/5 4/9 5/9 1/3 2/3 3/7 4/7 5/11 $\begin{bmatrix} \hat{\hat{B}} & \hat{\hat{B}} \\ \tilde{\hat{B}} & \tilde{\hat{B}} \end{bmatrix} =$ kernel. 6/11 6/13 $(t-s)\vec{u}(s)\,\mathrm{d}s\;,$ Mori-Zwanzig formalism yields parabolic system $\partial_t \hat{\vec{u}}(t) = -\hat{\hat{C}}\hat{\vec{u}}(t) + \frac{1}{\kappa+\sigma}D\partial_{XX}\hat{\vec{u}}(t) ,$ which we call reordered P_N equations (RP_N) [6]. Diffusion matrix $D = \tilde{B}\hat{B}$ is positive definite. (*RP*₁ system is equivalent to *SSP*₃ system [3].) nce matrix **A** diagonal. $= \widehat{\hat{RFRE}} = \hat{\tilde{R}}\hat{\tilde{R}} = \hat{\tilde{B}}\hat{\tilde{B}}\partial_{XX}$ 1D slab geometry: Various parabolic moment closures 0.3 u₀(x) at t = 0.3 $u_0(x)$ at t = 0.1 0.5 u₀(x) at t = 0.2 true solution true solution $0.2 - u_0(x)$ at t = 0.4 true solution true solution diffusion = RP diffusion = RP diffusion = RP diffusion = RP $\frac{N+1)^2}{-1)(2N+3)}$ __SP elds classical P_N closure. 0.6 $\mathbf{s} \approx \tau \mathbf{K}(\mathbf{0}) \vec{u}(t)$ Messages ssical diffusion correction closure [4] $-\hat{ ilde{B}}\hat{ ilde{B}}\partial_{XX}\hat{ec{u}}(t)$. The Mori-Zwanzig formalism yields an integro-differential equations that is equivalent to the original radiative transfer equation. Various approximations to the memory term recover existing and yield new closures. $\hat{\hat{B}}\partial_{xx}\hat{\vec{u}}(t)$. <u>^</u> Crescendo diffusion is a simple modification to existing diffusion closures that comes at no extra cost, and improves results. Yields new crescendo diffusion correction closure (no extra cost!). • The reordered P_N equations are a new family of parabolic approximations. (Explicit time dependence models loss of information.)

TU Kaiserslautern & MIT

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN

