

Boltzmann equation (frequency-independent, isotropic scattering) for radiative intensity *u*(*x*, Ω, *t*). **1D slab geometry:** Intensity $u(x, \mu, t)$ depends only on x, the azimuthal flight angle $\theta = \arccos(\mu)$, and time. Key challenge: High dimensional phase space. where *Y^k* spherical Harmonics. The arising infinite "hyperbolic" moment system is equivalent to the original equation. Truncate system after *N*-th moment, i.e. consider resolved moments **Examples of moment closures:** \blacktriangleright *P_N* closure: $u_{N+1} = 0$ \blacktriangleright Diffusion correction to P_N : $u_{N+1} = -\frac{1}{\kappa + \sigma}$ ► Other linear closures: simplified P_N (parabolic system) [\[3\]](#page-0-1) **Classical approach:** \triangleright Foundations by asymptotic analysis and (formal) series expansions. **A new perspective:** ► Mori-Zwanzig formalism [\[5,](#page-0-3) [7\]](#page-0-4) yields its exact evolution by a memory term. A. Chorin, O. Hald, R. Kupferman, *Optimal prediction with memory*, Physica D 166, 3–4, pp. 239–257, 2002. M. Frank, B. Seibold, *Optimal prediction for radiative transfer: A new perspective on moment closure*, arXiv:0806.4707 [math-ph] **M.** Frank, A. Klar, E. W. Larsen, S. Yasuda, *Time-dependent simplified* P_N approximation to the equations of radiative transfer, J. Comput. Phys. 226, pp. 2289–2305, 2007. C. D. Levermore, *Transition regime models for radiative transport*, Presentation at IPAM: Grand challenge problems in computational astrophysics workshop on transfer phenomena, 2005. **H. Mori,** *Transport, collective motion and Brownian motion***, Prog. Theor. Phys. 33, pp. 423–455, 1965.** B. Seibold, M. Frank, *Optimal prediction for moment models: Crescendo diffusion and reordered equations*, arXiv:0902.0076 [math-ph] R. Zwanzig, Problems in nonlinear transport theory, Systems far from equilibrium (Berlin), Springer, pp. 198–221, 1980.

$$
u_k(x,t)=\int_{4\pi}u(x,\Omega,t)Y_k(\Omega)\,\mathrm{d}\Omega\;,
$$

$$
B = \begin{pmatrix} 0 & 1 & & & & \\ \frac{1}{3} & 0 & \frac{2}{3} & & & \\ & & \frac{2}{5} & 0 & \frac{3}{5} & \\ & & & & \frac{3}{5} & 0 \end{pmatrix}, C = \begin{pmatrix} \kappa & & & & \\ & \kappa + \sigma & & & \\ & & & \ddots & \end{pmatrix}, \vec{q} = \begin{pmatrix} 2\kappa q \\ 0 \\ \vdots \end{pmatrix}.
$$

-
-
-
- \triangleright Nonlinear closures: minimum entropy, flux-limited diffusion

- Assume unresolved moments close to zero or quasi-stationary.
- \triangleright Manipulate moment equations.
-

- ► Consider average solution w.r.t. a measure [\[1\]](#page-0-2).
-
- ► Approximations to memory term recover existing and yield new closures.

-
-
-
-
-
-

Optimal Prediction for Radiative Transfer: A New Perspective on Moment Closure Martin Frank & Benjamin Seibold

TU Kaiserslautern & MIT

$$
\frac{1}{c}\partial_t u + \Omega \cdot \nabla_x u = \sigma \left(\frac{1}{4\pi} \int_{4\pi} u \, d\Omega' - u\right) + \kappa (B(T) - u)
$$

advection
scattering
absorption & emits

1D slab geometry: Various *P***⁰ moment closures** $u_0(x)$ at t = 0. - true solution \vert 0.5 $\vert u_{0}(x) \vert$ at t = 0.2 \blacksquare true solution $|\;|$ 0.3 $u_{0}(x)$ at t = 0.3 $-$ true solution \vert 0.2 $u_0(x)$ at t = 0.4 $\begin{array}{|c|c|}\n\hline\n\hline\n\end{array}$ true solution _{™™} P_N closure _" P_N closure P_N closure ----- diffusion
----- cresc. diff. <mark>-----</mark>diffusion
-----cresc.diff. diffusion <mark>·•</mark> cresc. diff. cresc. diff. 0.4 $\left\langle \right\rangle$ $\vec{u}^T A^{-1} \vec{u}$ [\[2\]](#page-0-5). **2 1D slab geometry: Various** *P***³ moment closures** $(\tilde{\vec{u}}) = \tilde{Z}^{-1} f(\hat{\vec{u}}, \tilde{\vec{u}})$ is the $u_0(x)$ at t = 0. true solution _{''''} Closure _" P_⊾ closure ~ˆ*u* -•diffusion corr. -- diffusion corr. diffusion corr. diffusion corr. <u>■ cresc.</u> diff. corr. cresc. diff. corr. cresc. diff. corr " *I* **0** $\overline{}$. $\tilde{\hat{A}} \hat{\hat{A}}^{-1}$ 0 **2D slab geometry: Improvement by crescendo diffusion Geometry P₇** "solution" Diffusion closure Crescendo diffusion 1cm 1cm 1cm 1cm 1cm 1cm 1cm $\begin{array}{cccccccccccc}\n 0 & 1 & 2 & 3 & 4 & 5 & 6\n \end{array}$ 1cm 1cm 1cm 1cm 1cm 1cm 1cm **Reordered** *P^N* **equations** $e^{(t-s)RF}$ RFRE e^{sR} ds + e^{tRF} RF. Even-odd ordering of moments: $\hat{\vec{u}} = (u_0, u_2, \dots, u_{2N})^T$ and $\tilde{\vec{u}} = (u_1, u_3, \dots, u_{2N+1}, u_{2N+2}, \dots)^T$. Reordered advection matrix (here 1D with $N = 2$): $K(t-s)e^{sR}E ds$, $\sqrt{ }$ 1 **1 2**/**5 3**/**5 4**/**9 5**/**9** \perp \cdot \vert $\int_{a} \hat{\hat{B}} \hat{\hat{B}}$ $\overline{}$ **1**/**3 2**/**3** \perp Ι = $\tilde{\hat{B}}$ $\tilde{\hat{B}}$ \perp **3**/**7 4**/**7** Ι \perp \mathbf{I} **5**/**11 6**/**11** \perp $\mathbf{1}$ **6**/**13** $K(t-s)\vec{u}(s)$ d*s*, Mori-Zwanzig formalism yields parabolic system $\partial_t \hat{d}(t) = -\hat{c}\hat{d}(t) + \frac{1}{\kappa + 1}$ $\frac{1}{\kappa+\sigma}$ D $\partial_{\bm{XX}} \hat{\vec{u}}(t)$, which we call reordered P_N equations (RP_N) [\[6\]](#page-0-6). Diffusion matrix $\mathbf{D} = \hat{\mathbf{B}} \hat{\mathbf{B}}$ is positive definite. (*RP***¹** system is equivalent to *SSP***³** system [\[3\]](#page-0-1).) $\widehat{}$ **RERE** $= \hat{\tilde{\mathsf{R}}} \tilde{\hat{\mathsf{R}}} = \hat{\tilde{\mathsf{B}}} \tilde{\hat{\mathsf{B}}} \partial_{\mathsf{XX}}$ **1D slab geometry: Various parabolic moment closures** 0.3 $u_0(x)$ at t = 0.3 $u_0(x)$ at t = 0. 0.5 $\mid u_{0}(x)$ at t = 0.2 true solution $u_{0}(x)$ at t = 0.4 true solution ■ true solutior $diffusion = RP$ diffusion = RI diffusion = RI **Messages** , yields classical diffusion correction closure [\[4\]](#page-0-0) \triangleright The Mori-Zwanzig formalism yields an integro-differential equations that is equivalent to the original radiative transfer equation. \triangleright Various approximations to the memory term recover existing and yield new closures. \triangleright Crescendo diffusion is a simple modification to existing diffusion closures that comes at no extra cost, and improves results. If The reordered P_N equations are a new family of parabolic approximations.

E TECHNISCHE UNIVERSITÄT KAISERSLAUTERN 11 F.F

Radiative transfer equation 1 *c* advection advection scattering scattering $+ \kappa (B(T) - u)$ sorption & emissi absorption & emission $\partial_t u + \mu \partial_x u = -(\kappa + \sigma)u + \frac{\sigma}{2}$ **2** \int_0^1 −**1** $u \, d\mu$ $' + q$. **Moment methods** Fourier expansion in Ω yields infinite sequence of moments $\vec{u} = (u_0, u_1, \dots)$ by *uk* $(x, t) = 0$ **4**π *u*(*x*, Ω, *t*)*Y^k* (Ω) d Ω , $\partial_t \vec{u} + \mathbf{B} \cdot \nabla \vec{u} = -\mathbf{C} \cdot \vec{u} + \vec{q}$ **1D slab geometry:** Use Legendre polynomials for *Y^k* . Three term recursion yields $B =$ $\sqrt{ }$ $\overline{ }$ **0 1 1 3 0 2 3 2 5 0 3 5 3 7 0** \setminus $\Big\}$, $C=$ \int_{0}^{k} $\kappa+\sigma$ \setminus , $\overline{\overline{\bm{Q}}}$ $\vec{q} =$ **²**κ*^q* **0** \setminus . **Moment closure problem** $\hat{\vec{u}} = (u_0, u_1, \dots, u_N)$, and model influence of unresolved moments $\tilde{\vec{u}} = (\vec{u}_{N+1}, \vec{u}_{N+2}, \dots)$ on resolved moments. *N*+**1** $\frac{N+1}{2N+3}\partial_X u_N$ [\[4\]](#page-0-0) **References Linear optimal prediction** \blacktriangleright Moment system: $\partial_t \vec{u} = R \vec{u}$, $\vec{u}(0) = \dot{\vec{u}}$. Differential operator $R\vec{u} = -B \cdot \partial_x \vec{u} - C \cdot \vec{u}$ (omit source). Solution $\vec{u}(t) = e^{tR}\hat{\vec{u}}$. \blacktriangleright Consider Gaussian measure $f(\vec{u}) = \frac{1}{\sqrt{2\pi}}$ **det**(**2**π*A*) **exp** $\left(-\frac{1}{2}\right)$ **Decomposition** \vec{u} **=** $\int \hat{\vec{u}}$ ~˜*u* \cdot and $A =$ $\sqrt{ }$ $\hat{\tilde{A}}$ $\hat{\tilde{A}}$ $\tilde{\tilde{A}}$ $\tilde{\tilde{A}}$ $\overline{}$ $=$ A^T (covariance matrix) \blacktriangleright Given $\hat{\vec{u}}$, an average with respect to the conditioned measure *f* conditional expectation projection (orthogonal w.r.t. $(u, v) = \mathbb{E}[uv]$ [\[1\]](#page-0-2)) $P\vec{u} = \mathbb{E}[\vec{u}|\hat{\vec{u}}] = E \cdot \vec{u}$, where $E =$ Meaning: Given $\hat{\vec{u}}$, then $\tilde{\vec{u}}$ is centered around $\tilde{\hat{A}} \hat{\hat{A}}^{-1} \hat{\vec{u}}$. Measure allows to prescribe correlation between resolved and unresolved moments. ► Ensemble average solution $P\vec{u}(t) = e^{tR}E\hat{\vec{u}}$ is a particular solution with averaged initial conditions (linearity). **Mori-Zwanzig formalism** ^I Conditional expectation *E* and orthogonal projection *F* = *I* − *E*. ► Solution operator e^{tR} and orthogonal dynamics solution operator e^{tRF} satisfy Duhamel's principle (Dyson's formula) *e tR* = \int_0^t **0** *e*^{(*t*−*s*)*RF REe*^{*sR*} d*s* + *e^{tRF}* .} **Differentiating Dyson's formula:** $\partial_t e^{tR} = R E e^{tR} +$ \int_0^t **0** ► Adding *E* from right yields evolution for average solution operator $\partial_t e^{tR}E = \mathcal{R}e^{tR}E +$ \int_0^t **0** where $\mathcal{R} = \mathsf{RE}$ and $\mathcal{K}(t) = e^{t\mathsf{RF}}\mathsf{RFRE}$ memory kernel. Evolution for average solution: $\partial_t \vec{u}(t) = \mathcal{R}\vec{u}(t) +$ \int_0^t **0** where $\mathcal{R} = \mathcal{R}E$ and $\mathcal{K}(t) = e^{t\mathcal{R}F} \mathcal{R}F\mathcal{R}E$. **Approximations for radiative transfer** Here consider uncorrelated measure, i.e. covariance matrix *A* diagonal. $\hat{\mathcal{R}} = \widehat{\mathsf{RE}}$ $=\hat{\hat{R}}=-\hat{\hat{B}}\partial_{\bm{\mathsf{X}}}-\hat{\hat{\bm{\mathsf{C}}}}$, $\hat{\hat{K}}(\bm{0})=\widehat{\widehat{\mathsf{RFRE}}}$ $\hat{\tilde{B}}\tilde{\tilde{B}} = \begin{pmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \end{pmatrix}$ **0** ... $\frac{(N+1)^2}{(2N+1)(2N+1)}$ (**2***N*+**1**)(**2***N*+**3**) \setminus Approximations: ► Omitting the memory term: $\partial_t \hat{\vec{u}}(t) = \hat{\vec{R}} \hat{\vec{u}}(t)$ yields classical P_N closure. **Piecewise constant quadrature for memory:** \int_0^t **0** $K(t-s)\vec{u}(s)E\,ds \approx \tau K(0)\vec{u}(t)$ with characteristic time scale $\tau = \frac{1}{\kappa + 1}$ $\overline{\kappa+\sigma}$ $\partial_t \hat{\vec{u}}(t) = \hat{\hat{R}} \hat{\vec{u}}(t) + \tau \hat{\tilde{B}} \tilde{\tilde{B}} \partial_{xx} \hat{\vec{u}}(t)$. **Better approximation for short times:** $\partial_t \hat{\vec{u}}(t) = \hat{\hat{R}} \hat{\vec{u}}(t) + \min\{\tau, t\} \hat{\tilde{B}} \hat{\tilde{B}} \partial_{xx} \hat{\vec{u}}(t) \;.$ Yields new crescendo diffusion correction closure (no extra cost!). (Explicit time dependence models loss of information.)

$$
\partial_t u + \mu \partial_x u = -(\kappa + \sigma) u + \frac{\sigma}{2} \int_{-1}^1 u \, d\mu' + q.
$$