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Radiative transfer equation

Boltzmann equation (frequency-independent, isotropic scattering)

1
c∂tu + Ω · ∇xu︸ ︷︷ ︸

advection

= σ

(
1

4π

∫
4π

u dΩ′ − u
)

︸ ︷︷ ︸
scattering

+ κ (B(T )− u)︸ ︷︷ ︸
absorption & emission

for radiative intensity u(x,Ω, t).

1D slab geometry: Intensity u(x, µ, t) depends only on x , the azimuthal flight angle
θ = arccos(µ), and time.

∂tu + µ∂xu = −(κ+σ)u + σ
2

∫ 1

−1
u dµ′ + q .

Key challenge: High dimensional phase space.

Moment methods

Fourier expansion in Ω yields infinite sequence of moments ~u = (u0, u1, . . . ) by

uk(x, t) =

∫
4π

u(x,Ω, t)Yk(Ω) dΩ ,

where Yk spherical Harmonics. The arising infinite “hyperbolic” moment system

∂t~u + B · ∇~u = −C · ~u + ~q

is equivalent to the original equation.

1D slab geometry: Use Legendre polynomials for Yk . Three term recursion yields
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Moment closure problem

Truncate system after N-th moment, i.e. consider resolved moments
~̂u = (u0, u1, . . . , uN), and model influence of unresolved moments
~̃u =

(
uN+1, uN+2, . . .

)
on resolved moments.

Examples of moment closures:
I PN closure: uN+1 = 0
I Diffusion correction to PN : uN+1 = − 1

κ+σ
N+1
2N+3∂xuN [4]

I Other linear closures: simplified PN (parabolic system) [3]
I Nonlinear closures: minimum entropy, flux-limited diffusion

Classical approach:
I Assume unresolved moments close to zero or quasi-stationary.
I Manipulate moment equations.
I Foundations by asymptotic analysis and (formal) series expansions.

A new perspective:
I Consider average solution w.r.t. a measure [1].
I Mori-Zwanzig formalism [5, 7] yields its exact evolution by a memory term.
I Approximations to memory term recover existing and yield new closures.
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Linear optimal prediction

I Moment system:
∂t~u = R~u , ~u(0) = ~̊u .

Differential operator R~u = −B · ∂x~u − C · ~u (omit source).
Solution ~u(t) = etR~̊u.

I Consider Gaussian measure f (~u) = 1√
det(2πA)

exp
(
−1

2~u
T A−1~u

)
[2].

I Decomposition ~u =

[
~̂u
~̃u

]
and A =

[
ˆ̂A ˆ̃A
˜̂A ˜̃A

]
= AT (covariance matrix)

I Given ~̂u, an average with respect to the conditioned measure f
~̂u(~̃u) = Z̃−1f (~̂u, ~̃u) is the

conditional expectation projection (orthogonal w.r.t. (u, v) = E[uv] [1])

P~u = E[~u|~̂u] = E · ~u , where E =

[
I 0

˜̂A ˆ̂A−1 0

]
.

Meaning: Given ~̂u, then ~̃u is centered around ˜̂A ˆ̂A−1~̂u. Measure allows to prescribe
correlation between resolved and unresolved moments.

I Ensemble average solution P~u(t) = etRE~̊u is a particular solution with averaged initial
conditions (linearity).

Mori-Zwanzig formalism

I Conditional expectation E and orthogonal projection F = I − E .
I Solution operator etR and orthogonal dynamics solution operator etRF satisfy Duhamel’s

principle (Dyson’s formula)

etR =

∫ t

0
e(t−s)RF REesR ds + etRF .

I Differentiating Dyson’s formula:

∂tetR = REetR +

∫ t

0
e(t−s)RF RFREesR ds + etRF RF .

I Adding E from right yields evolution for average solution operator

∂tetRE = RetRE +

∫ t

0
K (t − s)esRE ds ,

whereR = RE and K (t) = etRF RFRE memory kernel.
Evolution for average solution:

∂t~u(t) = R~u(t) +

∫ t

0
K (t − s)~u(s) ds ,

whereR = RE and K (t) = etRF RFRE .

Approximations for radiative transfer

Here consider uncorrelated measure, i.e. covariance matrix A diagonal.

ˆ̂R =
̂̂RE = ˆ̂R = − ˆ̂B∂x − ˆ̂C , ˆ̂K (0) =

̂̂RFRE = ˆ̃R ˜̂R = ˆ̃B ˜̂B∂xx

ˆ̃B ˜̂B =

(
0 . . . 0
... . . . ...
0 . . . (N+1)2

(2N+1)(2N+3)

)
Approximations:

I Omitting the memory term: ∂t~̂u(t) = ˆ̂R~̂u(t) yields classical PN closure.
I Piecewise constant quadrature for memory:∫ t

0
K (t − s)~u(s)E ds ≈ τK (0)~u(t)

with characteristic time scale τ = 1
κ+σ, yields classical diffusion correction closure [4]

∂t~̂u(t) = ˆ̂R~̂u(t) + τ ˆ̃B ˜̂B∂xx~̂u(t) .

I Better approximation for short times:

∂t~̂u(t) = ˆ̂R~̂u(t) + min{τ, t} ˆ̃B ˜̂B∂xx~̂u(t) .

Yields new crescendo diffusion correction closure (no extra cost!).
(Explicit time dependence models loss of information.)

1D slab geometry: Various P0 moment closures

1D slab geometry: Various P3 moment closures

2D slab geometry: Improvement by crescendo diffusion

Geometry
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Reordered PN equations

Even-odd ordering of moments:
~̂u = (u0, u2, . . . , u2N)T and ~̃u =

(
u1, u3, . . . , u2N+1, u2N+2, . . .

)T .

Reordered advection matrix (here 1D with N = 2):

[
ˆ̂B ˆ̃B
˜̂B ˜̃B

]
=


1

2/5 3/5
4/9 5/9

1/3 2/3
3/7 4/7

5/11 6/11
6/13 . . .

. . .


Mori-Zwanzig formalism yields parabolic system

∂t~̂u(t) = − ˆ̂C~̂u(t) + 1
κ+σD∂xx~̂u(t) ,

which we call reordered PN equations (RPN) [6].
Diffusion matrix D = ˆ̃B ˜̂B is positive definite.
(RP1 system is equivalent to SSP3 system [3].)

1D slab geometry: Various parabolic moment closures

Messages

I The Mori-Zwanzig formalism yields an integro-differential equations that is equivalent to the
original radiative transfer equation.

I Various approximations to the memory term recover existing and yield new closures.
I Crescendo diffusion is a simple modification to existing diffusion closures that comes at no

extra cost, and improves results.
I The reordered PN equations are a new family of parabolic approximations.
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