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Abstract

Optimal prediction is a method to approximate the average solution of a large system of
ordinary differential equations by a smaller system. In this thesis we show how optimal
prediction can be applied in the field of molecular dynamics in order to reduce the number
of particles. We apply optimal prediction to a model problem describing a surface coat-
ing process and show how asymptotic methods can be used to approximate the original
system by a smaller system. We consider the reduction of computational effort and an-
alyze – analytically and by numerical experiments – under which conditions the optimal
prediction system is a valid approximation to the original system.



1

Table of Contents

Table of Contents 1

Introduction 3

1 Optimal Prediction 5

1.1 Mathematical and Physical Assumptions . . . . . . . . . . . . . . . . . . 5
1.2 Splitting the Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Conditional Expectation and Mean Solution . . . . . . . . . . . . . . . . 7
1.4 First Order Optimal Prediction . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Mori-Zwanzig . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Description of the Problem 13

2.1 The Real Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 The Model Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Physical Properties of the Model Problem . . . . . . . . . . . . . . . . . 19
2.4 Numerical Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Optimal Prediction Applied to the Model Problem 25

3.1 Mathematical and Physical Setup . . . . . . . . . . . . . . . . . . . . . . 26
3.1.1 Appropriate Domains of Integration . . . . . . . . . . . . . . . . 26
3.1.2 The Optimal Prediction Hamiltonian . . . . . . . . . . . . . . . . 27

3.2 Low Temperature Asymptotics . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.1 Asymptotic Expansion of the Hamiltonian . . . . . . . . . . . . . 29
3.2.2 An Example of Three Atoms . . . . . . . . . . . . . . . . . . . . 31
3.2.3 Properties of the Asymptotic Expansion . . . . . . . . . . . . . . 33

3.3 Zero Temperature Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . 36



TABLE OF CONTENTS 2

3.3.1 Physical Interpretation . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.2 Equations of Motion . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.3 Equations of Motion in the Model Problem . . . . . . . . . . . . 40
3.3.4 A Boundary Layer Condition . . . . . . . . . . . . . . . . . . . . 41

3.4 Numerical Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4.2 Computational Speed-Up . . . . . . . . . . . . . . . . . . . . . . 49

4 A Comparison by Numerical Experiments 53

4.1 Comparing Two Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.1.1 Why Use Monte-Carlo Sampling? . . . . . . . . . . . . . . . . . 55
4.1.2 Monte-Carlo Sampling in the Model Problem . . . . . . . . . . . 57
4.1.3 Criteria of Comparison . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 A Model for the Copper Diffusion . . . . . . . . . . . . . . . . . . . . . 59
4.2.1 Modeling Hopping as a Random Walk . . . . . . . . . . . . . . . 59
4.2.2 Using the Model to Obtain Diffusion Parameters . . . . . . . . . 63

4.3 An Experiment Containing Sonic Waves . . . . . . . . . . . . . . . . . . 65
4.3.1 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3.2 Sonic Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.3.3 The Velocity of Sound . . . . . . . . . . . . . . . . . . . . . . . 68
4.3.4 Sonic Waves in the Optimal Prediction System . . . . . . . . . . 69

4.4 An Experiment Without Sonic Waves . . . . . . . . . . . . . . . . . . . 72
4.4.1 Estimating the Monte-Carlo Error . . . . . . . . . . . . . . . . . 74
4.4.2 The Error in Distribution . . . . . . . . . . . . . . . . . . . . . . 76
4.4.3 Diffusion Parameters . . . . . . . . . . . . . . . . . . . . . . . . 77
4.4.4 The Number of Hopping Events . . . . . . . . . . . . . . . . . . 81
4.4.5 Energy Fluctuations . . . . . . . . . . . . . . . . . . . . . . . . 81

5 Conclusions and Outlook 85

Acknowledgements 87

List of Figures 88

Bibliography 90



3

Introduction

Computations in the field of molecular dynamics typically require a large computational
effort due to two factors:

1. Small time steps are required in the numerical solver to resolve the fast atomic
oscillations. Methods to remedy this problem are e.g. smoothing algorithms as in
[38], which allow to take larger time steps by smoothing out the large oscillations
and following the large scale evolution only.

2. Large systems due to the large amount of atoms which have to be computed. Meth-
ods to reduce the number of degrees of freedom are e.g. shrinking the support of
pair potentials, or multipole methods [2, 20] in the context of long range particle
interactions.

The method of optimal prediction as presented and analyzed in [3, 6, 7, 8, 9, 10, 11, 12,
13, 21, 23, 27, 35, 37] applies to “underresolved computation”, in particular systems of
ordinary differential equations, where only part of the initial data is known while the rest
of the initial data is only known to be distributed according to some probability measure.
Sought is the mean solution of the original system with respect to the unknown initial data
being sampled from the underlying probability distribution. Optimal prediction yields a
new system of ordinary differential equations, which is an approximation to the mean
solution, but is smaller, and thus cheaper to compute, than the original system. In Chapter
1 we will derive the optimal prediction equations and their important properties.

In this thesis we show how the method of optimal prediction can be applied to problems
in the field of molecular dynamics in order to reduce the number of degrees of freedom.
So from the above two paths to reduce the computational effort, we walk the second one.
(An example how to take the first path is [14].) In principle, the idea is to divide the
particles into two groups: On the one hand the particles which are close to the region of
interest and whose initial data is known, and on the other hand the particles outside the
region of interest, which should be considered only in an averaged sense.

We present a one-dimensional model for a problem which arises in surface coating pro-
cesses of copper onto a silicon crystal. The problem appears in a DFG project in the
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Fraunhofer Institut für Techno- und Wirtschaftsmathematik (ITWM) in Kaiserslautern.
Goal of this project is to use a molecular dynamics simulation to investigate which effects
could cause bad material properties of the product. Of particular interest is the “hopping”
of single copper atoms inside the silicon crystal. The complete coating process takes such
a long time compared to the atomic time scales, that methods to reduce the computational
effort are of great importance. In Chapter 2 we will describe the physical problem in de-
tail and introduce the one-dimensional model problem. Information about the numerical
implementation and computational properties are provided.

In Chapter 3 we apply the method of optimal prediction to the one dimensional model
problem. This yields expressions involving high-dimensional integrals which in general
cannot be evaluated explicitly. We thus derive an asymptotic approximation to the op-
timal prediction system, where we employ the fact that the characteristic temperature is
low on a scale given by the bond energy between two atoms. This allows to evaluate the
high dimensional integrals approximately and to obtain a smaller system which is an ap-
proximation to the optimal prediction system. Example computations show which aspects
are important for the numerical implementation, and the aspect of numerical speed-up is
considered.

In order to investigate if the so obtained smaller system is a valid approximation to the
original system, criteria have to be defined how to compare the two systems. Since in
molecular dynamics precise trajectories have no importance (unless for very short times),
statistical quantities, such as diffusion constants and energy fluctuations, have to be con-
sidered. In Chapter 4 we compare the optimal prediction approximation to the original
system by performing various numerical experiments in order to investigate whether and
under which conditions important statistical quantities are preserved.
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Chapter 1

Optimal Prediction

Optimal prediction was introduced in 1998 by Chorin, Kast and Kupferman [9] as a
method for approximating the average solution of problems which are computationally
too expensive or where not enough data is at hand, but prior statistical information is
available. By the use of the Mori-Zwanzig formalism [33, 42] several ways have been
derived how to approximate the average solution by a new system which is smaller than
the original one.

In this thesis we are less interested in approximating the average solution, but rather in
using the method of optimal prediction as a way to replace a large Hamiltonian system
by a smaller one, which preserves the important properties of the original system. In par-
ticular the smaller system should be Hamiltonian again. In terms of molecular dynamics
this means considering only a smaller number of particles and “averaging” the other ones
away.

In the following we present the most important steps in deriving the optimal prediction
equations and their connection with the Mori-Zwanzig formalism.

1.1 Mathematical and Physical Assumptions

Consider an n-dimensional system of ordinary differential equations

d

dt
ϕ(x, t) = R(ϕ(x, t)),

ϕ(x, 0) = x.
(1.1)

Here ϕ(x, t) denotes the solution (for later analysis interpreted as a phase flow) to the
initial condition x ∈ R

n. The right hand side R is a mapping from R
n to R

n, where the
system’s size n is typically a large number. Of particular interest in molecular dynamics
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are Hamiltonian systems, i.e. 2n-dimensional systems of the form

q̇ =
∂H

∂p

ṗ = −
∂H

∂q
,

(1.2)

where q = (q1, . . . , qn) is the position vector, p = (p1, . . . , pn) is the momentum vec-
tor, and H(p, q) = 1

2
p2 + V (q) is the Hamiltonian function. Additionally, we consider

a measure on the phase space R
2n. In Hamiltonian molecular dynamics the canonical

equilibrium measure
f(x) = Z−1e−βH(x) (1.3)

is in many cases the appropriate choice. Here x = (q1, p1, . . . , qn, pn) is the position in
state space, and β = 1

kBT
is a constant, where kB is the Boltzmann constant and T is the

temperature of the process. Z =
∫

e−βH(x) dx is a normalization constant. The question,
how to guarantee that Z is finite, will be treated in Subsection 3.1.1. In this thesis we will
use only the above measure (1.3). Note that in the following the size of the systems may
be denoted inconsistently. Typically, the size of a general system is n. However, if for a
Hamiltonian system the vectors q and p are being considered, the system is assumed to be
of size 2n.

It has to be pointed out that the Hamiltonian system (1.2) is assumed to be in thermo-
dynamical equilibrium, i.e. in particular that the temperature T is constant with respect
to space and time. In Chapter 4 one important aspect for the applicability of optimal
prediction will turn out to be the relevance of non-equilibrium effects.

1.2 Splitting the Variables

Assume now a separation of all degrees of freedom into two groups ϕ = (ϕ̂, ϕ̃), where
ϕ̂ = (ϕ1, . . . , ϕm) represents the variables of interest, and ϕ̃ = (ϕm+1, . . . , ϕn) are the
variables which should be “averaged out”. Typically, m is significantly smaller than n.

Now only part of the initial conditions x̂ = (x1, . . . , xm), namely the ones corresponding
to the variables which are of interest ϕ̂, are known, while the other components x̃ =
(xm+1, . . . , xn) are not known exactly. Instead, for each choice of x̂ they are sampled
from the conditioned measure

fx̂(x̃) = Z−1
x̂ e−βH(x̂,x̃), (1.4)

where Zx̂ =
∫

e−βH(x̂,x̃) dx̃ is the appropriate normalization constant. Note that for
Hamiltonian systems each pair (qi, pi) must belong either to the group ϕ̂ or to ϕ̃.
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1.3 Conditional Expectation and Mean Solution

As in [7] we define the conditional expectation of a function f(x̂, x̃) as

E[f |x̂] =

∫
f(x̂, x̃)e−βH(x̂,x̃)dx̃
∫

e−βH(x̂,x̃)dx̃
. (1.5)

It is the orthogonal projection onto the space of functions g(x̂) with respect to the inner
product

(u, v) = E[uv] =

∫
u(x)v(x)e−βH(x)dx
∫

e−βH(x)dx
, (1.6)

so we denote
Pf = E[f |x̂]. (1.7)

Note that in molecular dynamics the integrals in formula (1.5) are typically not defined
over the whole space R

n−m. The integrals are infinite, if the existence of (almost) free
particles is possible, i.e. single particles far away from and not influenced by the other
ones. We will deal with this issue in Subsection 3.1.1.

We are now interested in the mean solution of (1.1), where the initial conditions x̂ are
fixed and x̃ are sampled from (1.4). This mean solution is given by

Pϕ(x, t) = E[ϕ(x, t)|x̂] =

∫
ϕ((x̂, x̃), t)e−βH(x̂,x̃)dx̃
∫

e−βH(x̂,x̃)dx̃
. (1.8)

More precisely, we are only interested in the first m components of the mean solution
Pϕ̂(x, t).

For the special case of linear Hamiltonian systems the mean solution (1.8) can be calcu-
lated explicitly by interchanging the linear solution operator eAt with the integral:

Pϕ(x, t) = ϕ(Px, t) = eAt ·

(
x̂

P x̃

)

. (1.9)

This means in particular that for linear Hamiltonian systems the mean solution is Hamil-
tonian (with initial conditions which are the average over all possible initial conditions)
and does hence not decay.

In molecular dynamics, however, the potentials between two particles are typically van-
ishing at infinity, hence the Hamiltonian system is nonlinear. In this case the condi-
tional expectation P , involving the (n − m)-dimensional integral, can be approximated
by Monte-Carlo sampling. The mean solution can be computed as follows:
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• Fix x̂ = (x1, . . . , xm)

• Sample x̃ = (xm+1, . . . , xn) N times from the conditioned distribution given by
(1.4)

• Solve N times (1.1) with initial values (x̂, x̃)

• Average over all solutions (arithmetic mean)

Obviously this is extremely expensive, since the original n-dimensional system has to be
solved N times.

An important fact about nonlinear systems is that the mean solution decays. This is the
case, even if the system itself is Hamiltonian and thus energy preserving. In terms of
irreversible statistical mechanics this decay can be explained as a loss of information as
the first m variables tend to the thermodynamical equilibrium, which is represented by
the canonical measure (1.3). In [3] the authors give a deeper physical reasoning for the
decay. A formal explanation for the decay of the mean solution yields the application of
the Mori-Zwanzig formalism in Section 1.5.

1.4 First Order Optimal Prediction

The idea of first order optimal prediction is fairly simple: We want to approximate the
first m components of the mean solution Pϕ̂(x, t) by an m-dimensional system. The
right hand side R of the n-dimensional system is a function of n variables. Applying the
conditional expectation to R

R = PR = E[R|x̂] (1.10)

yields a function R of just m variables. Then R̂ = (R1, . . . ,Rm) is a function from R
m

to R
m. So we define the optimal prediction system to be

ẏ(t) = R̂(y(t)),

y(0) = x̂,
(1.11)

i.e. the m-dimensional optimal prediction system is obtained by applying the conditional
expectation projection P to the right hand side R. An important result is the following

Theorem 1.1 (O.Hald [12])
If a system is Hamiltonian, then its optimal prediction system is also Hamiltonian with
the Hamiltonian

H(q̂, p̂) = −
1

β
log

(
1

c

∫ ∫

e−βH(q̂,p̂,q̃,p̃) dq̃ dp̃

)

. (1.12)
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Here c is a constant with unit [c] = [q̃] · [p̃] =
(

kgm2

s

)n−m

(for a 2n-dimensional system).
The exact value of c is of no importance for the dynamics.

Proof:

q̇i = E

[
∂H

∂pi

|q̂, p̂

]

=

∫ ∫
∂H
∂pi

(q, p)e−βH(q,p) dq̃ dp̃
∫ ∫

e−βH(q,p) dq̃ dp̃

=
∂

∂pi

(

−
1

β
log

(
1

c

∫ ∫

e−βH(q,p) dq̃ dp̃

)) (1.13)

Analogously for pi.

�

From this Theorem it automatically follows that for nonlinear problems first order optimal
prediction will never be a good approximation for long times, since the mean solution
decays, i.e. loses energy, while the first order optimal prediction solution is Hamiltonian,
and thus energy preserving.

However, one can also look at the problem in another way:

We have an n-dimensional Hamiltonian system, but wish to compute only the first m
components. We forget any knowledge about the last n − m components and wish to
obtain an m-dimensional system for the first m components. This system should approx-
imate the behavior of the first m components accurately. However, this is not meant in
the sense of trajectories, but the relevant statistical quantities should be the recovered. In
particular this means that the m-dimensional system should be Hamiltonian again.

The mean solution may be the evolution which has the least error compared to the whole
collection of possible solutions, but in molecular dynamics the error is no relevant quan-
tity anyway – unless for very short times. Hence why not choose the first order optimal
prediction system as the m-dimensional system? Of course this choice can only be rea-
soned, if it turns out in the end that the relevant statistical quantities are indeed preserved.
This issue will be our task in Chapter 4.

1.5 Mori-Zwanzig

The application of the Mori-Zwanzig formalism to optimal prediction can be found in
[6, 7, 8]. It gives insight why first order optimal prediction produces an error as an ap-
proximation to the mean solution and explains why the mean solution decays even for
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Hamiltonian systems. However, we will not employ the final results of the Mori-Zwanzig
formulation in this thesis, so we will just state the most important ideas.

Let

L =
n∑

j=1

Rj(x)
∂

∂xj

(1.14)

be the so-called Liouville operator. Then the Liouville equation

ut(x, t) = Lu(x, t),

u(x, 0) = g(x)
(1.15)

is a linear partial differential equation with solution

u(x, t) = g(ϕ(x, t)), (1.16)

where ϕ is the solution of (1.1). This can be proven by the method of characteristics (see
e.g. [16]). Now define the semigroup operator etL via the relation

(
etLg

)
(x, t) = u(x, t) = g(ϕ(x, t)). (1.17)

Two important properties of this operator are

LetL = etLL (1.18)

and
d

dt
etLg = LetLg. (1.19)

For the special choice of g(x) = xi one obtains

etLxi = ϕi(x, t), (1.20)

i.e. the ordinary differential equation (1.1) and the partial differential equation (1.15) are
equivalent.

Recall that P is the conditional expectation operator (1.7), and define

Q = Id − P. (1.21)

Note that both P and Q are orthogonal projections with respect to the inner product (1.6).
In particular

PQ = 0. (1.22)
Then

∂

∂t
ϕi(x, t) =

∂

∂t
etLxi

(1.19)
= LetLxi

(1.18)
= etLLxi

(1.21)
= etL(P + Q)Lxi = etLPLxi + etLQLxi.

(1.23)
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The use of Dyson’s formula [17]

etL =

∫ t

0

e(t−s)LPLesQL ds + etQL (1.24)

yields the identity

∂

∂t
ϕi(x, t) = etLPLxi +

∫ t

0

e(t−s)LPLesQLQLxi ds + etQLQLxi. (1.25)

The evolution operator etQL represents the so called orthogonal dynamics. The formal
existence of this operator has been treated in [22]. In particular

QLetQL = etQLQL. (1.26)

From these relations the following identities can be derived

Lxi =
n∑

j=1

Rj(x)
∂xi

∂xj

=
n∑

j=1

Rj(x)δij = Ri(x), (1.27)

etLPLxi

(1.27)
= etLPRi(x)

(1.10)
= etLRi(x) = Ri(ϕ̂(x, t)), (1.28)

and
PetQLQLxi

(1.26)
= PQLetQLxi

(1.22)
= 0. (1.29)

Using these identities and applying P to (1.25) yields the relation

∂

∂t
Pϕi(x, t) = PRi(ϕ̂(x, t)) +

∫ t

0

Pe(t−s)LPLesQLQLxi ds. (1.30)

In [7, 8] the authors interpret the first term on the right hand side as the Markovian self-
interaction of the first m variables, and the integral term as a non-Markovian memory
term, which comes from the interaction of the first m variables with the averaged vari-
ables.

Interchanging P and R in the first term and dropping the memory term yields the approx-
imate equation

∂

∂t
Pϕi(x, t) = Ri(Pϕ̂(x, t)). (1.31)

A reasoning for these approximations is given in [8]. Recalling that Pϕi(x, t) is the mean
solution one can observe that this is exactly the first order optimal prediction equation
(1.11), which is again Hamiltonian and does not decay.

In [7] the authors show how the integral term in (1.30) can be approximated by a memory
kernel, yielding the approximate system

∂

∂t
Pϕi(x, t) = Ri(Pϕ̂(x, t)) +

∫ t

0

m∑

j=1

Kij(t − s)Pϕi(x, t) ds, (1.32)
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which is an integro-differential equation. Here the matrix K is a so-called memory kernel,
which can be obtained by Monte-Carlo sampling. Unlike first order optimal prediction,
the solution to this system does decay, so this approximation is referred to as higher
order optimal prediction. In several examples (as the one presented in [7]) it is a much
better approximation to the mean solution than first order optimal prediction, especially
for longer times. However, as reasoned previously, in this thesis we will use first order
optimal prediction only, since we want a smaller system which is again Hamiltonian.
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Chapter 2

Description of the Problem

Computations in the field of molecular dynamics are typically governed by a large com-
putational effort, and methods are required for reducing the degrees of freedom. Our goal
is to investigate if the method of optimal prediction can perform such a task in a practical
application.

It has to be pointed out that optimal prediction as presented in Chapter 1 has some impor-
tant assumptions, which the problem under consideration should satisfy:

1. The system must have a measure which makes physically sense. This should not be
a problem, since many problems in the field of molecular dynamics are Hamiltonian
and thus give rise to a canonical measure.

2. The system must be in thermodynamical equilibrium, i.e. the temperature is con-
stant with respect to space and time. This is a rather restrictive condition, since
most problems which require a numerical simulation are not in equilibrium.

3. The system must allow a clear separation of particles into ones of interest and ones
to be averaged away, and this separation has to be valid over time. This assumption
is reasonable for systems at low temperature, e.g. in crystalline structures. On the
other hand, in liquids or gases, this assumption will be violated, since particles
change their positions considerably over time.

A problem, which is treated in the Fraunhofer Institut für Techno- und Wirtschaftsmathe-
matik (ITWM) in Kaiserslautern, satisfies these assumptions. In a DFG project the process
of coating a thin surface of copper atoms onto a silicon crystal should be simulated by
molecular dynamics. In Section 2.1 we will explain the practical problem, and in which
sense it satisfies the above assumptions. Since the complete problem is too complex as a
test for the applicability of optimal prediction, we introduce a simplified one-dimensional
model problem in Section 2.2, which represents the important properties of the real prob-
lem well enough to allow to draw conclusions about the real problem from our results.
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2.1 The Real Problem

In the production of micro chips a thin layer of copper has to be coated onto a silicon
crystal. Technically this is carried out by sputtering copper onto the silicon crystal. Over
time, the copper builds up a thin surface (a few monolayers thick) on top of the silicon
crystal. The latter is constantly cooled, such that the hot copper does not heat up the
crystal significantly. More information about the technical process is provided in [26].

The surface coating process should be simulated and analyzed numerically. A classical
paper on this issue is [41], which uses Monte-Carlo methods for the simulation. In the
DFG project in the ITWM the simulation is done by molecular dynamics. Technically, the
simulation is similar to the one described in [18].

The silicon atoms inside the crystal oscillate on a time scale of 10−14 seconds. The copper
atoms hit the crystal with a much lower frequency. A typical growth rate of a copper film
in the real coating process is about 10 monolayers per second. For a typical size of the
simulation crystal this means that the time between two copper atoms hitting the crystal
surface is on a time scale of 10−4 seconds, i.e. 10 time scales slower than the atomic
oscillations. Of course this value can vary depending on the size of the simulated crystal.
In any case, the copper atoms hitting the crystal can be considered single events, compared
to the time scales of the processes of interest. Atom by atom the copper then builds up a
thin layer on top of the silicon crystal, such that in the end the copper atoms hit the copper
layer rather than the silicon crystal.

When a single copper atom hits the surface, it has a rather high kinetic energy, which has
three major effects. Firstly, the atom penetrates into the crystal, secondly, it produces a
shock wave traveling into the crystal, and thirdly, it heats up the atoms at the top of the
crystal. It is obvious that at this stage the process is far from thermodynamical equilib-
rium, i.e. optimal prediction as presented in Chapter 1 cannot be applied to this process.

However, the above effects of one copper event last only about 10−11 seconds, i.e. only
0.00001% of the time between two copper events the system is in non-equilibrium, while
99.99999% of the time, i.e. nearly all the time, it is in thermodynamical equilibrium.

The problem is, that also during the long time in equilibrium single copper atoms pene-
trate deeper into the silicon crystal. This is an unwanted effect, since single copper atoms
inside the crystal possibly produce inner tensions and may thus significantly reduce the
stability properties of the product. Unlike the event when a copper atom hits the sur-
face and penetrates into the crystal, the movement of the copper atoms during the time in
equilibrium is of diffusive nature. Most of the time the copper atoms are caught inside
a crystal cell of silicon atoms, where “caught” has to be understood dynamically. Both
the copper atom and the silicon atoms oscillate on a time scale of 10−14 seconds. (A
copper atom has only about twice the mass of a silicon atom, so there is no separation
of time scales here.) But once in a while the fast oscillations form a constellation which



CHAPTER 2 DESCRIPTION OF THE PROBLEM 15

provides the copper atom with enough energy to penetrate the potential barrier built up
by the silicon atoms on one side of the cell, and the copper atom jumps – or hops – to the
neighboring cell. Since these hopping events are due to the fast oscillations, they happen
– although deterministic – completely unsystematically. The time between two hopping
events of one copper atom inside the silicon crystal is on a time scale of 10−11 to 10−10

seconds, i.e. 3 to 4 time scales slower than the atomic oscillations, so about 106 to 107

hopping events happen between two copper atoms hitting the crystal, enough for single
atoms to diffuse into the crystal. The problem of molecular hopping is treated e.g. in [4].

The goal of the DFG project in the ITWM is to simulate the process of a growing copper
layer (approximately 5000 atoms) on top of a silicon crystal in three space dimensions.
A typical size of the silicon crystal, which can be computed on standard computers, is
40 × 40 × 10 atoms. Of course larger model crystals are desirable. The lower 40 × 40
surface is coupled to a bulk, which provides a constant outside temperature and pressure
coupling, such that energy and sonic waves can be transported away. The copper layer
grows on the upper 40 × 40 surface. On the other layers of the crystal periodic boundary
conditions are imposed. The dynamics are Hamiltonian, but the potentials may have a
rather complicated structure. Special focus should be on the hopping of copper atoms
during the time of thermodynamical equilibrium. In order to visualize the computational
effort, let us recall the time scales of the problem:

time scale process

10−15 seconds time step of the integrator
10−14 seconds one atomic oscillation
10−11 to 10−10 seconds time between two hopping events
10−4 seconds time between two copper atoms hitting the crystal
10−1 seconds time for a complete copper layer to grow

So a straightforward simulation of the complete coating process would require 1014 inte-
gration steps of a 105-dimensional system of equations. Obviously, methods are required
to reduce the computational effort.

The hope is that optimal prediction can be used to reduce the degrees of freedom during
the long time of thermodynamical equilibrium between two copper events. Silicon atoms
far away from copper atoms can be “averaged out”. Since silicon atoms normally do not
perform hopping events, a clear separation between particles of interest and ones to be av-
eraged away is possible. Finally, since the system is Hamiltonian, the canonical measure
Z−1e−βH should make sense in this application, although a complicated nonlinear struc-
ture in the potential energy might cause problems in applying the conditional expectations
as in (1.10) efficiently (see Chapter 3).

Hence, the assumptions for optimal prediction are satisfied, and one can hope that the
method can be applied successfully for the time in equilibrium. Since this is the case for
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about 99.99999% of the whole computational time, a reduction of the number of atoms
in each space dimension by just one half might result in a speed-up of factors of 10 and
more.

2.2 The Model Problem

In order to investigate the question if optimal prediction can in principle be applied to
the above problem, we set up a model problem which describes the hopping of a copper
atom in a silicon crystal. It should reflect the important properties of the real problem, but
it should be easier to handle with respect to computational effort and complexity of the
expressions obtained when applying the method of optimal prediction.

In constructing the model problem, we assume two major simplifications:

• Focus on a one-dimensional problem, i.e. we consider n atoms lined up like beads
on a cord, as shown in Figure 2.1.

• The potential V (q) depends only on the pairwise distances of the particles, i.e.

V (q1, . . . , qn) =
n∑

i,j=1
i<j

fα(qi − qj). (2.1)

Here α ∈ {1, 2, 3}, where f1 is the potential between two silicon atoms, f2 is the
potential between a silicon and a copper atom, and f3 is the potential between two
copper atoms. All three are even, analytic functions, which vanish at ±∞.

The pair potentials f1, f2 and f3 look similar to the corresponding potentials in three
space dimensions. They have a minimum at distance re. At a smaller distance, the two
atoms will repel, while at greater distances, the two atoms will attract each other. Towards
infinite distance, the force between the two atoms vanishes. As usual in this field we gauge
the potentials to go to 0 at infinity.

silicon atomscopper atomsilicon atoms

d0

Figure 2.1: The one-dimensional silicon crystal with a copper atom
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A property which can not be preserved from the three-dimensional problem is the behav-
ior of the potentials towards distance 0. Since two particles classically cannot be at the
same place, potentials – like the widely used Lennard-Jones potential (see e.g. [25]) –
go to infinity as the distance goes to 0. However, in our one-dimensional problem, this
would make hopping impossible. While in three space dimensions hopping of a copper
atom means moving though the plane given by three silicon atoms forming the crystal
structure, in one space dimension hopping can only mean a copper atom changing posi-
tion with a silicon atom. Since classical particle paths are continuous, this requires the
two atoms to have the same position at one time. Hence, in one space dimension, hopping
between two particles is only possible if the potential between them is finite at distance 0.

In our modeling, we decide to allow hopping between copper and silicon atoms as well
as hopping between two copper atoms, i.e. we make the potentials f2 and f3 finite at
distance 0. Hopping between two silicon atoms, however, we disallow, i.e. the potential
f1 is infinite at the origin. This decision is motivated by technical reasons. In three space
dimensions, silicon atoms can very well change positions, although such an event happens
– due to the crystal structure and higher potential barriers – significantly less frequently
than a hopping event of a copper atom. But since a hopping event of two silicon atoms
through the (virtual) border between particles of interest and those to be averaged out
would violate our third assumption for the applicability of optimal prediction, we disallow
such a behavior.

−8 −6 −4 −2 0 2 4 6 8
−5

0

5

10

d / A

V 
/ e

V

Figure 2.2: Potential f1 between two silicon atoms

Figures 2.2 to 2.4 show the potentials used for our numerical simulations. The distance is
given in Å (1Å = 10−10m) and the energy in eV (1eV = 1.6 · 10−19J). Note the different
scales of the y-axes.

The potentials are chosen to be close – at least qualitatively – to the correct three dimen-
sional potential, which are similar to the Lennard-Jones potential. In particular, for f1

the position of the minimum (re = 2.24Å) and the energy at the minimum (E = −D,
where D = 3.24eV) are correct values. Furthermore, for f3, re = 2.21Å is the correct
value. Apart from that the other characteristic quantities differ from their correct values,
for technical reasons, e.g. making hopping more likely (see below). All numerical values
are taken from [39].
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Figure 2.3: Potential f2 between a copper and a silicon atom
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Figure 2.4: Potential f3 between two copper atoms

Relevant for the frequency of hopping events is the value of the potential at the origin,
since this potential barrier has to be exceeded for a hopping event to happen. For compu-
tational reasons we choose to lower the potential barrier. Additionally, as we will see in
Section 2.3, we increase the temperature of the process by a relevant factor. Both modifi-
cations have the effect that hopping events happen much more frequently than in reality.
On the other hand, they are still on a time scale much slower than the atomic oscillations.
This helps us reducing the computational effort by a factor of 100, without changing the
basic properties of the system. The computational factor becomes important in Chapter 4,
when we have to perform extremely costly Monte-Carlo simulations in analyzing the dif-
fusion of a copper atom due to hopping events. Note that in the particular examples in
this thesis we will insert at most one copper atom into the crystal, hence the potential f3

is not being used. However, since the ideas presented in the following are not restricted
to just one copper atom, we include the potential f3 into the model problem.

At this point one could ask the question: “If this is a model problem anyhow, why care
about being close to correct values?” The answer to this question is: “Because it is
important, which numerical value the expression D

kBT
has.” In Chapter 3 we will use

asymptotic methods for approximating the conditional expectations (1.5), and for this
approximation to be valid, D

kBT
has to be a large number. In the following Section we will

reason and estimate this constant.
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2.3 Physical Properties of the Model Problem

Mathematically, the equations of motion, which completely describe our model problem,
are already defined by the Hamiltonian function, including the potentials f1, f2 and f3.
However, since our system models a real process, some quantities have a physical mean-
ing, which is important for later analysis in Chapter 3 and Chapter 4. In this section we
provide numerical values of the important physical quantities and discuss how they relate
to a numerical simulation of the model problem.

Temperature
As described in Section 2.1, the temperature of the real process is not very high. In-
deed, the process will run at temperatures between 400K and 500K. The question if
this temperature is a “low” temperature for this kind of process, can be quantified by the
expression D

kBT
, where −D is the minimum of a potential acting between two particles

(which is typically negative). This number corresponds to the situation, when two atoms
are at equilibrium distance, i.e. minimal potential energy. Recalling that this value for the
potential between two silicon atoms is D = 3.24eV, we obtain for a temperature of 500K:

D

kBT
= 103.68. (2.2)

Since Z−1e
−

H(q)
kBT is the probability density on the space of all states q, this means that two

atoms are about e103.68 ≈ 1045 times more likely at equilibrium distance than at a distance
corresponding to energy zero, which is the case e.g. far away from each other.

In the same manner one can reason why hopping events between copper and silicon are
not very likely at these temperatures. The energy difference between equilibrium and
zero distance for the potential between silicon and copper f2 has the value ∆E = 0.43eV,
which yields

∆E

kBT
= 13.76. (2.3)

Consequently, it is e13.76 ≈ 106 times more likely for the copper atom to be at equilibrium
distance than to perform a hopping event. Hence atomic hopping happens on a much
slower time scale than the fast atomic oscillations.

In order to increase the number of hopping events, we increase the temperature for our
simulations to T1 = 4000K (as in Section 4.3) respectively T2 = 7000K (as in Sec-
tion 4.4). This yields a values of D

kBT1
= 12.96 respectively D

kBT2
= 7.41, which are for

the above reasons still large enough numbers. Since later we will employ the fact that the
temperature be low, we can expect the method to work even better at correct temperatures
(400K to 500K) than it does for the temperatures of more than 4000K, which are used in
our computations.

Pressure
As we consider a problem in thermodynamical equilibrium, we do not need to consider
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pressure as an important quantity. The only point where pressure will come in implicitly,
is in Section 4.3, when we estimate the velocity of sound in our silicon crystal.

Ergodicity
It is not our task to argue if or why our problem is (quasi-)ergodic or not.1 We are content
with the fact that our experiments yield results which reflect the predictions of statistical
mechanics about ergodic system. Whenever in the following we employ a statement from
statistical mechanics, we always assume that our system behaves like an ergodic system.
In particular this means that we assume space averages over a number of atoms to be
equal to time averages over a given time span.

Initial conditions
As assumed by optimal prediction, our system has to be in thermodynamical equilibrium,
i.e. the average momentum of the atoms is constant (temperature is constant) in space
and time, and potential and kinetic energy fluctuate around fixed values. Since nonlinear
Hamiltonian systems always tend towards thermodynamical equilibrium, we are content
with starting in some reasonable state on the energy surface and let molecular dynamics
drive the system into equilibrium. We let our system start in the state of minimal potential
energy, since this state can be computed directly by Newton iteration. It is the equilib-
rium state corresponding to temperature zero, i.e. the static equilibrium, where all forces
cancel out. The momenta, however, are non-zero, hence they correspond to a positive
temperature. We sample them independently from Gaussian distributions, subtract the
mean momentum (to keep the center of mass constant in time), and normalize them to fit
the chosen temperature T = 4000K, respectively T = 7000K, employing the relation

T =
1

kBn

n∑

i=1

p2
i

mi

. (2.4)

Obviously this initial state is not in the thermodynamical equilibrium for T = 4000K,
respectively T = 7000K, but numerical experiments, as in Section 2.4, indicate that after
a short time of about 10−13 seconds the system is in equilibrium. This fact can be seen
(e.g. in Figure 2.5) by the kinetic energy not decaying anymore, but fluctuating around a
constant value.

2.4 Numerical Simulation

The task of this thesis is to investigate if optimal prediction can in principle be applied to
problems in molecular dynamics. It is not our task to consider highly expensive examples
which require special methods or parallel computing. Instead we constructed our model
problem in order to be computationally inexpensive. Two important changes compared to
the real problem are

1After reading [19, pp. 24-27]
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• Lowering the potential barrier between copper and silicon,

• Increasing the temperature from 500K to temperatures of 4000K and 7000K.

As described in Section 2.2, both changes make hopping events of copper atoms in the
silicon crystal many times more frequent. Since in Chapter 4 we employ the hopping of a
copper atom as a way to compare the optimal prediction system to the original system, a
significant increase in the hopping frequency helps to reduce the computational effort.

The number of particles being computed should not be unnecessarily large, but at least
large enough, such that the system still behaves as statistical mechanics predict. In partic-
ular, one needs a minimum amount of particles, such that statistical (averaged) quantities
like temperature make sense and one can speak of a thermodynamical equilibrium. Ad-
ditionally, enough atoms are required such that there is a reasonable interior region of the
crystal, which is not affected by any boundary effects. In our numerical experiments we
use 35 to 70 atoms. With more than 30 particles the above assumptions were satisfied
satisfyingly well.

As reasoned in Section 2.3, we are reasonably close to thermodynamical equilibrium after
a very short time, when starting at minimum potential energy and sampling the momenta
from Gaussian distributions.

For simplicity, the integration is performed by the classical explicit fourth order Runge-
Kutta method. Although usually symplectic (i.e. energy preserving) methods are used for
Hamiltonian systems, we prefer the Runge-Kutta method for the following reasons:

• It is an explicit method and can thus be applied directly to any approximative right
hand side which arises in optimal prediction, as derived in Chapter 3.

• It is very accurate. Usually in computational molecular dynamics accuracy is less
important than energy conservation, since exact trajectories are not important any-
how. However, in our application, hopping of copper atoms is one major feature,
and if a copper atom hops or not depends very sensitively on the positions and mo-
menta of the atoms in the neighborhood of the copper atom. A brief numerical
test during our experiments indicated that the first order accurate symplectic Euler
method requires significantly smaller time steps than Runge-Kutta 4, to achieve that
the hopping behavior is (almost) independent of the chosen time step.

The time step in the Runge-Kutta 4 method is chosen in such a way, that the total energy
does not change too significantly. We choose equidistant time steps between 1.5 · 10−15s
and 2.5 · 10−15s. For the example computation shown in Figure 2.5, which had 1000 time
steps, the total energy increased by 0.04%. More physically motivated is to express the
change in energy in units of kBT . In the example here, we obtain

H(t = 2 · 10−12s) − H(t = 0s)
kBT

= −0.16, (2.5)
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Figure 2.5: A simulation of the model problem
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which is still reasonable for our task.

The structure of the potential energy (2.1) makes the effort for one evaluation of the
equation’s right hand side of order n2, where n is the number of particles, since each
atom is affected by any other atom. However, as potentials between two atoms typically
decay quite fast for increasing distances (e.g. like 1/r6 for the classical Lennard-Jones
potential), one can often assume that the potentials have a compact support, i.e. range over
a distance of only k equilibrium distances. Under this assumption, the effort for one right
hand side evaluation is only of order n. However, depending on the specific potentials
and the accuracy required, k might have to be quite large. Another important requirement
is that the approximation errors must not stack into one direction. For the original system
the errors in principle cancel out due to the spatial symmetry of the geometry. For the
optimal prediction approximation, as presented in Chapter 3, we will not have such a
symmetry anymore. As it can be seen in Section 3.4, a choice for k which works perfectly
fine for the original system can be too small for the optimal prediction approximation to
yield accurate results. Of course, the above approximation in cutting off the potentials is
technically a very simple one. With respect to the real, three-dimensional problem, one
can think of more accurate and efficient methods, as smoothing out the cut off potentials,
or – for long ranged potentials – using the fast multipole method [20]. The point, that care
has to be taken when using other approximations together with optimal prediction, stays
valid and will also be dealt with in Section 3.4.

Figure 2.5 shows the numerical results for an example computation of the model problem.
A crystal of 34 silicon and one copper atom (i.e. n = 35) is being computed over a time of
2.0 ·10−13s. The time step of the Runge-Kutta 4 integrator is 2.0 ·10−15s. The temperature
is T = 7000K.

In the right subplot the positions qi(t) of the 35 atoms are plotted over time. Here the
horizontal axis is space and the vertical axis is time. One can observe that the silicon
atoms oscillate non-periodically around their starting positions on a fast time scale. The
copper atom oscillates between two silicon atoms on a time scale irrelevantly slower due
to its larger mass. Important are the hopping events, i.e. the copper atom hops over a
silicon atoms and thus changes its position inside the crystal. Each hopping event is
emphasized by a blue asterisk in the plot. Observe further the surface effect on both ends
of the crystal. As for the outermost silicon atoms other atoms are missing on one side, the
equilibrium distance between two atoms is significantly larger than in the middle of the
crystal. Since the potential between two silicon atoms reaches over several equilibrium
distances (see Figure 2.2), this surface effect affects not only the outermost two atoms,
but a whole layer. In many contexts, the above effect is called surface tension. Obviously
one has to take care about the surface tension when dealing with quantities which depend
on the equilibrium distance between two silicon atoms, e.g. the velocity of sound, as used
in Chapter 4. Also, the diffusion of a copper atom by hopping events may change its
behavior when coming too close to the crystal’s surface.

In the left subplot three important quantities are plotted over time:
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1. The total energy over the initial energy
H(q(t), p(t))

H(q(0), p(0))
, (2.6)

where

H(q, p) =
1

2

n∑

i=1

p2
i

mi

+
n∑

i,j=1
i<j

fα(qi − qj). (2.7)

It is the dash-dotted blue curve. Observe that it is constant 1 in the plot. Numeri-
cally, its value is 1.0002 at time t = 2.0 · 10−12s.

2. The kinetic energy over the initial kinetic energy
T (p(t))

T (p(0))
, (2.8)

where

T (p) =
1

2

n∑

i=1

p2
i

mi

. (2.9)

It is denoted by the dashed red curve. This function starts at 1, and decays very fast
to a value of 0.5, around which it oscillates from then on. The reason for this behav-
ior is that we start our system in the static equilibrium, i.e. with minimal potential
energy, and hence with maximal kinetic energy. Since for ergodic Hamiltonian sys-
tems in equilibrium the total energy is – averaged over time – distributed equally in
kinetic and potential energy, the kinetic energy decays to half of its initial value as
the system goes into thermodynamical equilibrium. Hence the function T (p(t))

T (p(0))
is an

important indicator for the time the system takes to reach equilibrium. The fact that
this time is very small in this case (about 2.0 · 10−14s) shows that we can be content
with our strategy of choosing the initial values.

3. The total energy of the left m = 25 atoms over its initial value
Eleft(q(t), p(t))

Eleft(q(0), p(0))
, (2.10)

where

Eleft(q, p) =
1

2

m∑

i=1

p2
i

mi

+
m∑

i,j=1
i<j

fα(qi − qj). (2.11)

It is the magenta curve in the plot, which fluctuates around 1. Note that it is
stretched by a factor of 5 around the value 1, in order to make the fluctuations
visible. The value of (2.11) is close to 1, but not exactly 1, since energy is con-
stantly exchanged between the left m and the right n − m atoms. The amplitude
and frequency of this function are measures for the rate of exchange of energy be-
tween silicon atoms. Both are statistical quantities, which should be preserved by
the smaller optimal prediction system. In Chapter 4 we will make use of these
quantities in order to compare the optimal prediction to the original system.
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Chapter 3

Optimal Prediction Applied to the
Model Problem

In this chapter we apply the method of first order optimal prediction as defined in Sec-
tion 1.4 to the one-dimensional model problem described in Section 2.2. As reasoned in
Section 1.4, we choose the first order optimal prediction system as an approximation to
our n-dimensional Hamiltonian system, because it is Hamiltonian itself. The mean solu-
tion, which first order optimal prediction is constructed to approximate, is of no interest
for us, since it decays and is thus not energy preserving for the nonlinear problem here.

Since in one space dimension we have a clear ordering of atoms, the choice which atoms
to average away is fairly obvious. Hence the formal application of optimal prediction
is straightforward. The main problem are the high-dimensional integrals appearing in
the conditional expectation projection (1.5), respectively in the new Hamiltonian function
(1.12) given by Theorem 1.1. The first part of this problem is to define the correct subsets
of R

n−m, which to integrate the q-variables in (1.5) over. We will deal with this issue
in Subsection 3.1.1. The second part of this problem is how to evaluate the (n − m)-
dimensional integrals. Since a direct evaluation is in general not easily possible and a
Monte-Carlo approximation for a single right hand side evaluation is far too expensive, we
employ an asymptotic expansion for low temperatures in order to obtain an approximate
expression, which can be evaluated directly. This will be done in Subsection 3.2.1.

In Section 3.3 we will use the zero temperature limit of the asymptotic expansion, de-
rive the corresponding equations of motion (Subsection 3.3.2), and present approxima-
tive equations, which describe a boundary layer condition which simulates an infinitely
continued crystal (Subsection 3.3.4). In Section 3.4 we present numerical examples and
consider the question of computational speed-up.
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3.1 Mathematical and Physical Setup

In this section we show how to set up the problem, such that the physically motivated
measure Z−1e−βH(q,p) makes sense mathematically, as well as how to separate the optimal
prediction Hamiltonian (1.12) into kinetic and potential energy.

3.1.1 Appropriate Domains of Integration

We assume that for our Hamiltonian system the canonical measure

f(q, p) = Z−1e−βH(q,p) (3.1)

is the “correct” measure, where “correct” is meant in the sense of statistical mechanics.
In statistical mechanics this measure can be derived from the principle of maximum en-
tropy, as in [19]. Typically in such derivations special properties about the potentials are
assumed, or one restricts the possible positions of the particles. The reason is that, once
free particles are possible, the expression

∫

Rn

e−βH(x) dx (3.2)

is not finite, i.e. Z−1e−βH(q) does not make sense as a probability distribution. The easiest
example is one free particle, i.e. no potential acting. Since in our problem the potentials
are chosen to vanish at infinity, we are in the same problematic situation.

What is often done in text books on statistical mechanics, is to put the whole system,
i.e. the positions q1, . . . , qn, into a box of finite volume. This makes the integral in (3.2)
finite, but is often still unsatisfying, since the measure depends on the size of the box.
(The integral over the momenta p1, . . . , pn can of course always be taken over the whole
R

n.)

In the following , we will force the system into a domain of finite volume, such that
Z−1e−βH(q) can be interpreted as a measure. Unlike most text books on statistical me-
chanics, we do not choose simply a box [−L,L]n, but a simplex-shaped subset of this box
(for the silicon atoms). In Subsection 3.2.1 this domain can be extended to infinity again,
since the asymptotic expansion in this section will yield an expression which is integrable
over the whole space R

n−m.

The reason why we restrict the shape of the domain of integration to a small part of a box
is the fact that our silicon atoms are ordered. We know their initial order, and since their
potential is infinite at zero distance, this initial order is preserved for all times. This is an
information, which we do not want to average out. We will see in Subsections 3.2.1 and
3.3.1 why it is indeed the correct choice to preserve the information about the ordering of
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the silicon atoms. Assume for a moment that no copper atoms are present. Then we can
restrict the domain of integration from the whole R

n to

M∞ = {(q1, q2, . . . , qn)|q1 < q2 < · · · < qn} ⊂ R
n. (3.3)

Analogously, for the conditional expectations, R
n−m is replaced by

M∞
q̂ = {(qm+1, . . . , qn)|qm < qm+1 < · · · < qn} ⊂ R

n−m. (3.4)

Here only such q̂ are considered, which satisfy

q̂ ∈ {(q1, . . . , qm)|q1 < · · · < qm}. (3.5)

This choice is appropriate for a crystal consisting only of silicon atoms. Since copper
atoms can change positions inside the silicon crystal by hopping events, their position
cannot be restricted in the above manner. Instead, for any copper atom, we must allow for
the position that qi ∈ [−L,L]. However, as we will reason in Subsection 4.1.1, we can
choose the computation times so short, that we can restrict to situations where no copper
atom comes close to the virtual border between particles computed in optimal prediction
(q1, . . . , qm) and the ones averaged away (qm+1, . . . , qn). We can afford such short compu-
tation time by obtaining important statistical quantities by Monte-Carlo sampling instead.
Under this assumption, the presence of copper atoms would influence the set M∞, but the
set M∞

q1,...,qm
, which is the actual domain of integration, remains unchanged.

Note that expression ∫

Rn

∫

M∞

e−βH(q) dq dp (3.6)

is still infinite, so at this stage the appropriate sets of integration are

ML = {(q1, . . . , qn) ∈ [−L,L]n|q1 < · · · < qn} (3.7)

respectively

ML
q̂ = {(qm+1, . . . , qn) ∈ [−L,L]n−m|qm < qm+1 < · · · < qn}. (3.8)

In both cases L should be large enough for the whole crystal to fit into the box [−L,L]n.
As previously stated, we will be able to omit the restriction to finite domains in Subsec-
tion 3.2.1.

3.1.2 The Optimal Prediction Hamiltonian

In following derivation let l = n − m denote the number of particles to be averaged out.
As shown in Chapter 1, we can circumvent the application of the conditional expectation
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(1.5) to the system’s right hand side by computing the Hamiltonian function of the first
order optimal prediction system (1.12):

H(q̂, p̂) = −
1

β
log

(

1

c

∫

Rl

∫

ML
q̂

e−βH(q̂,p̂,q̃,p̃) dq̃ dp̃

)

. (3.9)

One can easily check that the positions q and momenta p separate

H(q̂, p̂) = −
1

β
log

(

1

c

∫

Rl

∫

ML
q̂

e−β(T (p̂,p̃)+V (q̂,q̃)) dq̃ dp̃

)

= −
1

β
log

(
1

cl
p

∫

Rl

e−βT (p̂,p̃) dp̃

)

︸ ︷︷ ︸

=T(p̂)

−
1

β
log

(

1

cl
q

∫

ML
q̂

e−βV (q̂,q̃) dq̃

)

︸ ︷︷ ︸

=V(q̂)

.
(3.10)

Here cp and cq are constants with units [cp] = kgm
s and [cq] = m. Since T = 1

2

∑n

i=1
p2

i

mi
,

the first term of (3.10) can be computed directly as

T(p̂) =
1

2

m∑

i=1

p2
i

mi

+ C, (3.11)

where the constant C = − 1
2β

∑n

i=m+1 log
(

2πmi

βc2p

)

is of no relevance for the dynamics.
Hence, with respect to the momenta applying first order optimal prediction is just omitting
the momenta pm+1, . . . , pn.

However, for the potential V , life is far from being as easy as for the kinetic energy T .
Typically, in molecular dynamics the q-variables do not separate and are no quadratic
functions, not even polynomials. Hence, an analytic calculation of the first order optimal
prediction potential

V(q̂) = −
1

β
log

(

1

cl
q

∫

ML
q̂

e−βV (q̂,q̃) dq̃

)

(3.12)

is in general impossible, or at least too complicated to be of any use. In the following sec-
tion, we will obtain an asymptotic approximation to (3.12), which we can then continue
to work with.

3.2 Low Temperature Asymptotics

In Section 2.3 we found the dimensionless quantity

ε = Dβ =
D

kBT
(3.13)
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to carry the information if the process is at low or high temperature. Here −D is the
minimum potential energy between two silicon atoms, which is typically negative. The
distance of the two atoms corresponding to the minimum energy is called equilibrium
distance. In a system in thermodynamical equilibrium it is eε times more likely to find
two atoms at equilibrium distance than at a distance corresponding to energy zero, e.g. far
away from each other. Consequently, if ε is large, the atoms will form an equidistant grid
at equilibrium distance, i.e. a solid body, while for low values of ε one will have a fluid
or even a gas. Here ε being large means ε > 7, since even for ε = 7 two atoms having
minimum energy is e7 ≈ 103 times more likely than having energy zero. As computed
previously, in our model problem we have temperatures of T = 4000K and T = 7000K,
i.e. ε = 13.0, respectively ε = 7.4. In the real problem, the value of ε is more than 100,
so one can expect the following approximations to yield much better results when applied
to the real problem.

3.2.1 Asymptotic Expansion of the Hamiltonian

We can now express (3.12) in terms of the dimensionless quantity ε:

V(q̂) = −
D

ε
log

(

1

cl
q

∫

ML
q̂

e−εṼ (q̂,q̃) dq̃

)

, (3.14)

where Ṽ (q̂, q̃) = 1
D

V (q̂, q̃) is the potential normalized in such a way, that the potential of
two atoms at equilibrium distance has the value -1.

Using Laplace’s method for integrals of real variables1 [34, 36], we can find an asymp-
totic approximation to (3.14) for ε large. The idea is, for any given q̂, to approximate
Ṽ (q̂, q̃) by a quadratic function located at the minimum.

Assume for the moment that for a fixed choice of q̂ the function Ṽ (q̂, q̃) has a unique
global minimizer r(q̂) ∈ R

l with respect to q̃, and that the Hessian at this point ∂2Ṽ
∂q̃2 (q̂, r(q̂))

is regular. Then Laplace’s method yields the following asymptotic approximation for
ε → ∞:

∫

ML
q̂

e−εṼ (q̂,q̃) dq̃ ≈

∫

ML
q̂

e
−ε

“

Ṽ (q̂,r(q̂))+ 1
2
(q̃−r(q̂))T · ∂2Ṽ

∂q̃2 (q̂,r(q̂))·(q̃−r(q̂))
”

dq̃

= e−εṼ (q̂,r(q̂)) ·

∫

ML
q̂

e
− ε

2

“

(q̃−r(q̂))T · ∂2Ṽ

∂q̃2 (q̂,r(q̂))·(q̃−r(q̂))
”

dq̃ (3.15)

≈ e−εṼ (q̂,r(q̂)) ·

∫

Rl

e
− ε

2

“

(q̃−r(q̂))T · ∂2Ṽ

∂q̃2 (q̂,r(q̂))·(q̃−r(q̂))
”

dq̃.

1In some textbooks this method is also referred to as Watson Lemma.
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Extending the set of integration to the whole R
l is valid, since the minimum is always in

the interior of ML
q̂ , provided L is large enough (see [36]). Since ∂2Ṽ

∂q̃2 (q̂, r(q̂)) is assumed
to be regular, one obtains by applying the transformation rule that

1

cl
q

∫

Rl

e
− ε

2
(q̃−r(q̂))T · ∂2Ṽ

∂q̃2 (q̂,r(q̂))·(q̃−r(q̂))
dq̃ =

√
√
√
√

(2π)l

εl

∣
∣
∣det c2

q
∂2Ṽ
∂q̃2 (q̂, r(q̂))

∣
∣
∣

. (3.16)

Given Ṽ is of class C2 (which is the case in our model problem), the complete asymptotic
expansion including the error term is

1

cl
q

∫

ML
q̂

e−εṼ (q̂,q̃) dq̃ =

√
√
√
√

(2π)l

εl

∣
∣
∣det c2

q
∂2Ṽ
∂q̃2 (q̂, r(q̂))

∣
∣
∣

· e−εṼ (q̂,r(q̂))

+e−εṼ (q̂,r(q̂)) · O
(

ε−
l
2
−1
)

,

(3.17)

which follows directly from the one-dimensional case as shown in [34, pp. 33-34]. Sub-
stituting (3.17) into (3.14) yields

V(q̂) = −
D

ε
log




e−ε 1

D
V (q̂,r(q̂)) ·




ε−

l
2

√
√
√
√

(2π)l

∣
∣
∣det c2

q
∂2Ṽ
∂q̃2 (q̂, r(q̂))

∣
∣
∣

+ O
(

ε−
l
2
−1
)











= V (q̂, r(q̂)) +
Dl

2ε
log
( ε

2π

)

−
D

ε
log







1
√∣
∣
∣det c2

q
∂2Ṽ
∂q̃2 (q̂, r(q̂))

∣
∣
∣

+ O

(
1

ε

)







(3.18)

= V (q̂, r(q̂)) +
Dl

2ε
log
( ε

2π

)

+
D

2ε
log

∣
∣
∣
∣
∣
det c2

q

∂2Ṽ

∂q̃2
(q̂, r(q̂))

∣
∣
∣
∣
∣
+ O

(
1

ε2

)

.

Here the last equality holds due to the fact that log(1 + x) ∼ x as x → 0. In (3.18), the
second term is just a constant with respect to q̂, and thus of no relevance for the dynamics.
Hence we found a zeroth order asymptotic expansion (up to constants) for V

V0(q̂) = V (q̂, r(q̂)), (3.19)

as well as a first order asymptotic expansion in ε

V1(q̂) = V (q̂, r(q̂)) + ε−1 ·
D

2
log

∣
∣
∣
∣
det

c2
q

D

∂2V

∂q̃2
(q̂, r(q̂))

∣
∣
∣
∣
, (3.20)

such that
∇q̂V(q̂) ∼ ∇q̂V0(q̂) (3.21)
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and
∇q̂V(q̂) ∼ ∇q̂V1(q̂). (3.22)

Note that in the above derivation we neglected constants, hence V0 respectively V1 ap-
proximate V only up to constants, which are irrelevant for the acting forces. If in the
following we speak of Vi approximating V, we always mean: “up to constants”.

The above results mean in particular that the conditional expectation V converges point-
wise to V0 as ε → ∞. The question, whether the convergence is also uniform in q̂, is
covered in Subsection 3.2.3.

3.2.2 An Example of Three Atoms

In order to get an impression about the accuracy of the above asymptotic expansions,
we consider the simple case of three silicon atoms, i.e. n = 3, where one is being aver-
aged out, i.e. m = 2. Since the problem is translation invariant, we can without loss of
generality set q1 = 0. For this example the potential energy takes the form

V (q2, q3) = f(q2) + f(q3) + f(q2 − q3). (3.23)

The optimal prediction potential (3.14) is (up to constants)

V(q2) = f(q2) −
D

ε
log

(∫ L

q3=q2

e−
ε
D

(f(q3)+f(q2−q3)) dq3

)

. (3.24)

The zeroth order approximation is

V0(q2) = f(q2) + min
q3>q2

(f(q3) + f(q2 − q3))

= f(q2) + (f(r3(q2)) + f(q2 − r3(q2)) ,
(3.25)

where r3(q2) is the minimizer of (f(q3) + f(q2 − q3)). Finally, the first order approxima-
tion is

V1(q2) = f(q2) + (f(r3(q2)) + f(q2 − r3(q2))

+
D

2ε
log (f ′′(r3(q2)) + f ′′(q2 − r3(q2)) .

(3.26)

All expressions V, V0 and V1 can be computed numerically for different values of ε.
Note that the conditional expectation V and the first order approximation V1 depend on
ε, while the zeroth order approximation V0 is temperature-independent.
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Figure 3.1: The asymptotic approximation for different ε
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Figure 3.2: The decay of the approximation error depending on ε
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Since the non-averaged term f(q2) is preserved in each expression, we consider the aver-
aged contribution only

g(q2) = V(q2) − f(q2) = −
D

ε
log

(∫ L

q3=q2

e−
ε
D

(f(q3)+f(q2−q3)) dq3

)

(3.27)

g0(q2) = V0(q2) − f(q2) = (f(r3(q2)) + f(q2 − r3(q2)) (3.28)

g1(q2) = V1(q2) − f(q2) = g0(q2) +
D

2ε
log (f ′′(r3(q2)) + f ′′(q2 − r3(q2)) (3.29)

respectively their derivatives g′(q2), g′
0(q2) and g′

1(q2).

Figure 3.1 shows the functions g′(q2), g′
0(q2) and g′

1(q2) for ε ∈ {2, 4, 10, 40}. Observe
that already for ε = 4 the error in the first order approximation is fairly small, and for ε =
40 also the zeroth order approximation is almost identical to the conditional expectation.
When considering that in the real problem one is confronted with values of ε > 100, these
results give rise to the assumption that also for larger systems the error in the asymptotic
approximations is negligibly small.

Figure 3.2 shows the order of convergence of the asymptotic approximations with respect
to ε. Plotted is the error in the maximum norm on a log-log scale. The numerical results
coincide perfectly with the analytical results: The error in the zeroth order approximation
is of order O(ε−1), and the error in the first order approximation is of order O(ε−2).

In this thesis, we consider only the zeroth order approximation (3.19), since the Hessian
∂2Ṽ
∂q̃2 (q̂, r(q̂)) could not be included without problems into the equations which we will
derive in the following sections. However, as the results in Figure 3.2 indicate, the first
order approximation is by a significant factor more accurate. Hence, a next step in a
further investigation should be to include the O(ε−1)-term into the formalism.

3.2.3 Properties of the Asymptotic Expansion

Some important remarks have to be given about the results of the derivation in Subsec-
tion 3.2.1:

1. The derivation in Subsection 3.2.1 was performed under the assumptions, that Ṽ (q̂, q̃)
has a unique global minimizer r(q̂) with respect to q̃, and that the Hessian at this
point ∂2Ṽ

∂q̃2 (q̂, r(q̂)) is regular. Both assumptions can be relaxed for the zeroth order
expansion:

• In the case of several minimizers r1(q̂), . . . , rk(q̂), the first order asymptotic
expansion changes to

V(q̂) ∼ V (q̂, ri(q̂)) + ε−1 · D · log
k∑

i=1

∣
∣
∣
∣
det

c2
q

D

∂2V

∂q̃2
(q̂, ri(q̂))

∣
∣
∣
∣

− 1
2

. (3.30)
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Note that is is not important which minimizer ri(q̂) is inserted into V (q̂, ri(q̂)).
• In the case of a singular Hessian, higher order derivatives have to be con-

sidered. For analytic potentials (as in our model problem) nonzero higher
derivatives always exist. As in the above derivation, they also affect only the
first order term in the asymptotic expansion (3.20).

2. In Subsection 3.2.1 we assumed the global minimizer inside the domain M L
q̂ to be

unique. In the whole R
n−m the global minimizer is not unique, due to the possi-

bility to exchange particles. As an example consider the case n = 3 and m = 1.
The first atom is fixed at position q1 = 0. Altogether, there are 6 global mini-
mizers for (q2, q3), corresponding to the 6 possibilities to order 3 distinct numbers.
Figure 3.3 shows the contour plot of the corresponding potential energy landscape.
The 6 distinct minimizers are marked by red stars. The domain ML

q1
is the interior

of the black triangle in the upper right corner. Note that inside this domain the min-
imizer is unique. This fact holds in a similar manner for higher dimensions for most
“physical” potentials. We will explain in the following, what “physical” means in
this context.
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Figure 3.3: Six global minimizers for (q2, q3)
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3. Note that one can construct potential functions which yield non-unique minimizers
even inside the sets ML

q̂ , but these will be “unphysical”, i.e. they have features
untypical for potentials which arise in molecular dynamics. Figure 3.4 shows an
example of a potential which does not yield unique minimizers. Similarly, one can
construct potentials, for which the Hessian of the minimizer inside the domain M L

q̂

is singular. However, for our model problem the Hessian turned out to be always
regular.

−8 −6 −4 −2 0 2 4 6 8
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d / A

V 
/ e

V

Figure 3.4: An “unphysical” potential which does not yield unique minimizers
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Figure 3.5: The minimizer inside Mq̂ need not be the global minimizer

Note further that even if there is always a unique global minimizer inside the domain
ML

q̂ , this point will in general not be a global minimizer inside the whole R
n−m.

Consider the example from Subsection 3.2.2, i.e. the case n = 3 and m = 2. The
first two atoms are at positions q1 = 0Å and q2 = 5Å. The effective potential of
these two atoms if shown in Figure 3.5. The third atom q3 has to be placed in the
minimum. By definition, the domain ML

q̂ is the interval (q2, L], i.e. q3 > 5Å. Note
that inside the domain ML

q̂ the minimizer is indeed unique. However, it is not the
global minimizer, which is located at position 2.5Å, i.e. outside of the domain M L

q̂ .
In Subsection 3.3.1 we will explain why it makes physically sense to choose the
minimizer inside the domain ML

q̂ , even if it is not a global minimizer.

4. Expressions (3.19) and (3.20) are correct asymptotic expansions to V(q̂). But they
were derived only as pointwise approximations with respect to q̂. In particular
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(3.19) was shown to be the pointwise limit of V(q̂) as ε → ∞

∀q̂ ∈ {(q1, . . . , qm)|q1 < · · · < qm} : lim
ε→∞

V(q̂) = min
q̃∈ML

q̂

V (q̂, q̃). (3.31)

Note that in general the convergence is not uniform in q̂. Although it is not nec-
essary to have a uniform convergence for the analysis presented in the following,
it may very well be of interest for further work to know under which conditions V

converges uniformly to (3.19). In Subsection 3.2.1 we derived that up to constants
the following relation holds as ε → ∞:

V(q̂) = V (q̂, r(q̂)) + O
(
ε−1
)
. (3.32)

Hence, for each q̂ ∈ M̂L, where

M̂L = {(q1, . . . , qm) ∈ [−L,L]m|q1 < · · · < qm}, (3.33)

one can find a CL(q̂), such that

|V(q̂) − V (q̂, r(q̂))| ≤ CL(q̂) · ε−1. (3.34)

Given V is smooth enough and assuming the Hessian ∂2Ṽ
∂q̃2 (q̂, r(q̂)) is regular for any

q̂, one can find constants CL(q̂), which depend continuously on q̂ (as in [36]). For
each L the domain M̂L is compact, hence the maximum

CL = max
q̂∈M̂L

CL(q̂) (3.35)

exists. If the potential energy between two atoms f(d) vanishes as d → ∞, then
the maxima CL stay bounded as L → ∞. Hence, under the given assumptions, the
convergence of V to (3.19) can be expected to be even uniform.

In other words, the zeroth order asymptotic expansion (3.19) is the zero temperature limit
to the optimal prediction Hamiltonian (3.14). In the following section we will provide a
physical interpretation for this limit and derive a new system of equations from it.

3.3 Zero Temperature Limit

We found that the zeroth order asymptotic expansion to V(q̂)

V0(q̂) = min
q̃∈ML

q̂

V (q̂, q̃), (3.36)

is the uniform limit for ε → ∞, i.e. T → 0. Hence we call V0 the zero temperature limit
potential. Of course we are not interested in molecular dynamics at temperature zero,
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since this would mean all atoms standing still in their potential minimum. However, as
reasoned before, our dynamics is taking place at at low temperatures, so one can expect
the correct optimal prediction potential function

V(q̂) = −
1

β
log

(

1

cn−m
q

∫

ML
q̂

e−βV (q̂,q̃) dq̃

)

(3.37)

to be close to the zero temperature limit potential V0(q̂) for small but positive tempera-
tures (the results in Subsection 3.2.2 support this expectation). Hence the idea is to run
the low temperature optimal prediction dynamics, which would be correctly described by
V, with the zero temperature limit dynamics given by V0.

3.3.1 Physical Interpretation

By going over from V to V0 we have formally replaced an (n − m)-dimensional inte-
gration by an (n − m)-dimensional minimization problem. At first glance this is no real
improvement, since high-dimensional minimization is also computationally expensive,
especially since we are searching for a global minimum of a function, which may even-
tually have many local minima. A method for solving such problems is e.g. simulated
annealing [28], but it is in general still too expensive to yield a speed-up compared to
solving the original system.

To remedy this problem one can use a physical interpretation of (3.37):

Given m atoms arbitrarily. Now place n − m further atoms in such a way,
such that the total potential energy is minimized.

Since V0 is formally just m-dimensional, we call the n−m atoms from the above physical
interpretation virtual particles.

Now, one can see why it was important to restrict the domains of integration to the sets
ML

q̂ , as we did in Subsection 3.1.1. Having the whole R
n−m as domain for q̃ would mean

that the n − m virtual particles can be left, right and in between the m real particles
(the real particles would “swim” in a sea of virtual particles). But this would violate the
third assumption about the applicability of optimal prediction given in the introduction to
Chapter 2, namely that the system must allow a clear separation of particles into ones of
interest and ones to be averaged away, and this separation must stay valid over time. On
the other hand, having q̃ restricted to the set ML

q̂ , forces the virtual particles to be only
right of the m real particles (without loss of generality we always assume the real particles
to be on the left and the virtual particles to be on the right), which exactly satisfies the
above assumption. Additionally, by giving the silicon particles – both real and virtual
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– an order, we made the global minimizer unique for most “physical” potentials, so the
high-dimensional minimization problem becomes less threatening.

In the following section we will derive a differential equation for the minimizer, which
allows to follow its position over time, instead of computing the minimum over and over
again. Furthermore we will see, that in general one does not have to compute n − m
virtual particles. Instead one has to follow just the first 5 to 10 of them. This will yield a
boundary layer condition for the optimal prediction dynamics.

3.3.2 Equations of Motion

The zero temperature limit potential for the optimal prediction potential is

V0(q̂) = min
q̃∈ML

q̂

V (q̂, q̃) = V (q̂, r(q̂)), (3.38)

where r(q̂) is the minimizer, which we assume to be unique. In terms of the physical
interpretation from the previous section, r(q̂) is the position vector of the n − m virtual
particles, which sit in the potential minimum. In the following we assume V (q̂, r) and
r(q̂) to be of class C1. This allows to compute the equations of motion corresponding to
the zero temperature limit Hamiltonian

H0(q̂, p̂) = T0(p̂) + V0(q̂) =
1

2

m∑

i=1

p2
i

mi

+ V (q̂, r(q̂)). (3.39)

The change of position is simply

∂H0

∂pi

(q̂, p̂) =
∂T0

∂pi

(p̂) =
pi

mi

∀i = 1, . . . ,m. (3.40)

The change of momentum, i.e. the acting force, is given by

∂H0

∂q̂
(q̂, p̂) =

∂V0

∂q̂
(q̂) =

∂V

∂q̂
(q̂, r(q̂)) +

∂V

∂r
(q̂, r(q̂))

︸ ︷︷ ︸

=0

·
dr

dq̂
(q̂) =

∂V

∂q̂
(q̂, r(q̂)), (3.41)

i.e. the force acting on one of real particles is just the sum of the forces from the other
m− 1 real and the n−m virtual particles. Note that ∂V

∂r
(q̂, r(q̂)) is zero, since r(q̂) is the

minimizer of V (q̂, r(q̂)).

Formally, the equations of motion (3.40) and (3.41) describe a 2m-dimensional system,
instead of a 2n-dimensional system. This was our goal right from the start, but with
the aim to speed up our computation. Solving an (n − m)-dimensional minimization
problem (in order to place the virtual particles) is too expensive and thus not going to
help in achieving this aim. So in the following we derive equations of motion for the
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virtual particles, too. Note that since the virtual particles always sit in the minimum of the
potential energy, they do not have inertia as the m real particles have. Hence, no momenta
are required to describe the virtual particles’ movement.

To obtain an evolution equation for r we first have to find a way to compute ∂r
∂q̂

(q̂), i.e. how
the virtual particles have to be moved to stay in the minimum, once the first m particles
are being moved. We define

v(q̂) :=
∂V

∂q̃
(q̂, r(q̂)). (3.42)

Since r(q̂) is always chosen to minimize V , we have that v(q̂) = 0 ∀q̂. Thus

0 =
∂v

∂q̂
(q̂) =

∂2V

∂q̂∂q̃
(q̂, r(q̂)) +

∂2V

∂q̃2
(q̂, r(q̂)) ·

∂r

∂q̂
(q̂). (3.43)

Here the Hessian ∂2V
∂q̃2 (q̂, r(q̂)) is an (n−m)×(n−m) matrix, and ∂r

∂q̂
(q̂) and ∂2V

∂q̂∂q̃
(q̂, r(q̂))

are both (n − m) × m matrices. Solving for ∂r
∂q̂

(q̂) yields

∂r

∂q̂
(q̂) = −

(
∂2V

∂q̃2
(q̂, r(q̂))

)−1

·
∂2V

∂q̂∂q̃
(q̂, r(q̂)). (3.44)

Now we can set up a relation for the time derivative of the minimizer r(q̂)

d

dt
r(q̂) =

∂r

∂q̂
(q̂) ·

dq̂

dt
= −

(
∂2V

∂q̃2
(q̂, r(q̂))

)−1

·
∂2V

∂q̂∂q̃
(q̂, r(q̂)) · M−1 · p̂ (3.45)

The matrix M in (3.45) is a diagonal matrix containing the masses mi of the atoms

(M)ii = mi. (3.46)

Altogether the zero temperature limit optimal prediction system of differential equations
is given by

d

dt
q̂ = M−1 · p̂

d

dt
p̂ = −

∂V

∂q̂
(q̂, r(q̂)) (3.47)

d

dt
r = −

(
∂2V

∂q̃2
(q̂, r(q̂))

)−1

·
∂2V

∂q̂∂q̃
(q̂, r(q̂)) · M−1 · p̂,

with initial conditions

q̂i(0) = qi(0) ∀i = 1, . . . ,m

p̂i(0) = pi(0) ∀i = 1, . . . ,m (3.48)
r(0) s.t. V (q̂(0), r(0)) is minimal.
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The minimization problem to find the initial value r(0) can be solved by a few Newton
steps

r(k+1)(q̂) = r(k)(q̂) −

(
∂2V

∂q̃2
(q̂, r(k)(q̂))

)−1

·
∂V

∂q̃
(q̂, r(k)(q̂)). (3.49)

As initial value for the integration one can choose an equidistant alignment of particles at
equilibrium distance d0. Numerically, it may pay off to solve the minimization problem
once in a while during the computation, too, to eliminate integration and round-off errors.

Since the virtual particles have no momentum, system (3.47) is just (n+m)-dimensional,
instead of 2n-dimensional. It is a closed system of ordinary differential equations, and the
right hand side requires no integration or minimization problem to be solved. Still, there is
an (n−m)-dimensional linear system of equations to be solved, which is also expensive,
unless the matrix ∂2V

∂q̃2 (q̂, r(q̂)) has a special structure or the number of virtual particles
can be reduced. Note that so far we have not made any use of the special structure of
the potential energy (2.1) in our problem. We will employ this special structure in the
following section and show that it allows further reduction of the size of the system and
the computational effort.

3.3.3 Equations of Motion in the Model Problem

For the potential energy in the model problem (2.1), the matrices in (3.47) have a special
structure

∀i :

(
∂2V

∂q̃2
(q̂, r(q̂))

)

(i,i)

=
m∑

j=1

f ′′
α(ri − qj) +

n∑

j=m+1
j 6=i

f ′′
1 (ri − rj) (3.50)

∀i 6= j :

(
∂2V

∂q̃2
(q̂, r(q̂))

)

(i,j)

= −f ′′
1 (ri − rj) (3.51)

and

∂2V

∂q̂∂q̃
(q̂, r(q̂)) =






f ′′
α(rm+1 − q1) . . . f ′′

α(rm+1 − qm)
... . . . ...

f ′′
α(rn − q1) . . . f ′′

α(rn − qm)




 . (3.52)

Here α = 1, if the particle qj is a silicon atom, and α = 2, if it is a copper atom. As in
Subsection 3.1.1 we assume to have the copper atom(s) far away from the border between
real and virtual particles, and we further assume to compute only for so long, as this
assumption is still satisfied. In this context, “far away” means that the potential f(qi − qj)
between the two atoms is negligibly small. Typically this is the case at a distance greater
than 5 to 10 times the equilibrium distance. So the virtual particles will “see” only silicon
atoms.

Since at low temperatures the silicon atoms more or less just oscillate around their equi-
librium positions in the crystal structure, one can assume the silicon atoms in the inside
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of the crystal to be aligned almost equidistantly. Employing the fact that k equilibrium
distances away from each other the potential is nearly zero, the matrices in (3.47) have a
special structure:

• The Hessian ∂2V
∂q̃2 (q̂, r(q̂)) is almost a diagonal band matrix with band width k.

• The matrix ∂2V
∂q̂∂q̃

(q̂, r(q̂)) is almost an upper triangular matrix with width k.

Substituting the special structure of these matrices into the equation of motion for the po-
sitions of the virtual particles r yields that only the first k virtual particles rm+1, . . . , rm+k

have to be considered. The others will align equidistantly right to the first k ones. This
assumption is valid if effects at the right boundary of the crystal can be neglected. This
is the case if n − m is large (n − m > 10), which is exactly the case which we are in-
terested in, since then shrinking the system from 2n to 2m dimensions promises a great
computational speed-up.

3.3.4 A Boundary Layer Condition

Assume that the potential between two silicon atoms f1 is negligibly small at a distance
k · d0, where d0 is the equilibrium distance of silicon atoms inside the crystal. In this
context “equilibrium” means that all forces from either side cancel out, thus d0 is given
by the relation

∞∑

i=1

f ′
1(i · d0) = 0. (3.53)

Typically one is interested in cases, where the number of virtual particles n − m is much
larger than k, even larger than 2k. As reasoned in the previous section, in such a case only
the first k virtual particles have to be computed, while the others will align equidistantly
right to the first k ones. Since the potential reaches only over k atoms, it is sufficient to
consider only 2k virtual particles, where the last k ones are aligned equidistantly. Hence,
the position vector for the 2k virtual particles is

r =












rm+1
...

rm+k

rm+k + d0
...

rm+k + kd0












, (3.54)
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and its time derivative

d

dt
r =












ṙm+1
...

ṙm+k

ṙm+k

...
ṙm+k












. (3.55)

Also the matrices ∂2V
∂q̃2 (q̂, r(q̂)) and ∂2V

∂q̂∂q̃
(q̂, r(q̂)) can be approximated by matrices with a

special structure, as described in the previous section. We obtain

∂2V

∂q̃2
(q̂, r(q̂)) ≈












a1,1 . . . a1,k a1,k+1 0 0
... . . . ... ... . . . 0

ak,1 . . . ak,k ak,k+1 . . . ak,2k

ak+1,1 . . . ak+1,k ak+1,k+1 . . . ak+1,2k

0
. . . ... ... . . . ...

0 0 a2k,k a2k,k+1 . . . a2k,2k












, (3.56)

where each of the four blocks is of size k × k. Similarly

m−k
︷ ︸︸ ︷

k
︷ ︸︸ ︷

∂2V

∂q̂∂q̃
(q̂, r(q̂)) ≈












0 . . . 0 b1,m−k+1 . . . b1,m

... . . . ... 0
. . . ...

0 . . . 0 0 0 bk,m

0 . . . 0 0 . . . 0
... . . . ... ... . . . ...
0 . . . 0 0 . . . 0

















k






n−m−k

(3.57)

The sizes of the blocks can be seen in (3.57). The zero entries in both approximate matri-
ces (3.56) and (3.57) are not exactly zero in ∂2V

∂q̃2 (q̂, r(q̂)) and ∂2V
∂q̂∂q̃

(q̂, r(q̂)), but negligibly
small. Hence, we can expect to have a good approximation.

Substituting these special vectors and matrices into equation (3.45) yields the relation
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a1,1 . . . a1,k a1,k+1 0 0
... . . . ... ... . . . 0

ak,1 . . . ak,k ak,k+1 . . . ak,2k

ak+1,1 . . . ak+1,k ak+1,k+1 . . . ak+1,2k

0
. . . ... ... . . . ...

0 0 a2k,k a2k,k+1 . . . a2k,2k












·












ṙm+1
...

ṙm+k

ṙm+k

...
ṙm+k












=












0 . . . 0 b1,m−k+1 . . . b1,m

... . . . ... 0
. . . ...

0 . . . 0 0 0 bk,m

0 . . . 0 0 . . . 0
... . . . ... ... . . . ...
0 . . . 0 0 . . . 0












·












p1
...

pm−k

pm−k+1
...

pm












,

(3.58)

which implies the following k-dimensional system for the first k virtual particles









a1,1 . . . a1,k−1

k+1∑

j=k

a1,j

... . . . ... ...

ak,1 . . . ak,k−1

2k∑

j=k

ak,j










·






ṙm+1
...

ṙm+k






=






b1,m−k+1 . . . b1,m

0
. . . ...

0 0 bk,m




 ·






pm−k+1
...

pm




 .

(3.59)

This relation can be interpreted as a boundary layer condition which acts as if the crystal
of silicon atoms was continued to infinity, although it is actually cut off after the m-th
particle.

With the above modifications the zero temperature limit optimal prediction system (3.47)
becomes a (2m + k)-dimensional system of equations. Since for typical potentials k is
about 5 to 10, solving the linear system (3.59) should be of minor effort. Hence it is
reasonable to expect that system (3.47) with the modified relation for the virtual particles
is significantly cheaper to compute than the original, where the speed-up factor of course
depends on the values n, m and k. In Subsection 3.4.2 we will compare the two systems
with respect to computational effort.

The main question, however, is if the system we derived above yields the same dynamics
as the original system. This is not clear at all, since several approximations have been
done in achieving the smaller system, and each approximation had specific assumptions
about the system, which also have to be checked:
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system dimension assumptions

original system 2n
system in equilibrium

 optimal prediction at T > 0 2m
[
+ (n−m)

]

low temperature
 zero temperature limit n + m

potentials short ranged
 approximative system 2m + k

Since trajectories have no meaning in statistical mechanics (as the initial positions and
momenta are not known anyhow), the new system has to be compared to the original
system by other means. These are statistical quantities, e.g. the diffusion constant of
one copper atom inside the silicon crystal, or fluctuations of the energy of the first m
atoms. In Chapter 4 we will compare the new system to the original system and investigate
under which conditions the new system reflects the “correct” dynamics, and under which
conditions it does not.

It has to be pointed out that the ideas, which led from the conditional expectations to
reasonable (approximate) equations of motions, apply in principle to much more general
cases than the specific model problem here. In particular, the given asymptotic approxi-
mation for low temperatures may find an application in various problems which are in low
temperature equilibrium. Also we have only used the zeroth order asymptotic expansion
in the derivation of equations of motion. Using the first order expansion may yield even
better results, and should be one important aspect in future investigation on this subject.

3.4 Numerical Simulation

In this section we provide example computations of the optimal prediction system and
show a warning example, in which optimal prediction cannot be used successfully to-
gether with another approximation, which works satisfyingly well for the original system
(cutting off the potentials). In Subsection 3.4.2 we investigate to which extent optimal
prediction yields a computational speed-up.

3.4.1 Examples

The optimal prediction system (3.47), with or without the approximate equation for the
virtual particles (3.59), is solved under the same parameters and using the same method
as the original system, as it was described in Section 2.4, i.e. the integration is done over
a time of 1.0 ·10−11s using Runge-Kutta 4 with time step 2.0 ·10−15s, and the temperature
is T = 7000K.
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Figure 3.6: A simulation of the optimal prediction system
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Figure 3.7: A simulation of the optimal prediction approximation for an infinite crystal
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Figure 3.8: The original problem with cut-off potentials
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Figure 3.9: The optimal prediction approximation with cut-off potentials
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Figure 3.6 shows the numerical results for an example computation of the zero tempera-
ture limit optimal prediction system (3.47) for 24 silicon and one copper atom (i.e. m =
25). Since the original system contained n = 35 atoms, 10 virtual silicon atoms appear in
the computation.

In the right subplot the positions qi(t) of the 25 atoms and the 10 virtual atoms are plotted
over time. One can observe that the real atoms oscillate freely, while the virtual atoms
more or less follow the motion of the rightermost real atoms. An important aspect is that
the surface tension effect on the right side of the crystal affects now the virtual atoms,
while the rightermost real atoms are aligned equidistantly.

Obviously in computations with the optimal prediction system care has to be taken that
no copper atom reaches into the virtual atoms, as this would destroy the third assump-
tion about the applicability of optimal prediction, which is given in the Introduction to
Chapter 2.

As in Section 2.4 for the original system, the three quantities

1. total energy over initial total energy (dash-dotted blue curve)

2. kinetic energy of the first m = 25 atoms Tleft(p) = 1
2

∑m

i=1
p2

i

mi
over its initial value

(dashed red curve)

3. total energy of the m = 25 real atoms (given by Formula (2.11)) over its initial
value, stretched by a factor of 5 (solid magenta curve)

for the optimal prediction approximation are shown in the left subplot. All three functions
show the same features as observed in Section 2.4 for the original system. As the total
energy of the m = 25 real atoms neglects the contribution of the virtual atoms to the
potential energy, it is not constant over time also for the optimal prediction system.

Figure 3.7 shows the numerical results for an example computation of the zero tempera-
ture limit optimal prediction system, but with the boundary layer condition corresponding
to an infinitely extended silicon crystal, as described in Subsection 3.3.4. In other words,
the effect of surface tension in the virtual atoms is neglected. We solve system (3.59)
for 8 virtual atoms. Also this simulation reflects the behavior of the original system with
respect to the three quantities shown in the left subplot.

Since computational effort is not a problem for a single computation with 35 particles,
we do not cut-off the potentials between two atoms (as described in Section 2.4) in the
numerical simulations in this section. For larger systems, however, such an approximation
may be necessary. It has to be pointed out that care has to be taken, when using other
approximations together with optimal prediction.
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Figure 3.8 and Figure 3.9 show the numerical solution to the problem described in Sec-
tion 2.4 up to time 1.0 · 10−12s. Unlike the computations shown in Figure 2.5 and Fig-
ure 3.6, the potentials between two atoms were cut off, such that they reach only over
10 atoms in each direction. Figure 3.8 shows a solution to the original problem, while
Figure 3.9 shows a solution to the optimal prediction system with 10 virtual atoms. One
can observe that the simplification in the potentials works fine for the original problem,
as errors cancel out due to the spatial symmetry of the crystal. For the optimal predic-
tion approximation, however, the simplification is inappropriate, as the whole crystal is
apparently being accelerated in the direction away from the virtual particles. The reason
for this effect lies in the asymmetry of the optimal prediction system. Cutting off the po-
tentials yields a small additional force acting on each of the real particles. In the original
system, these small forces cancel out, but in the optimal prediction system, the virtual
atoms “push” the whole crystal, as they always align in the potential minimum.

This observation may serve as a warning example when using other approximative meth-
ods together with the optimal prediction approximation. In particular, optimal prediction
could in principle be used together with averaging methods or multipole methods, as
mentioned in the Introduction. This example indicates that a careful investigation of any
approximation errors involved may be necessary.

Of course the example computations in this section only give a hint that the optimal pre-
diction approximation may reflect the dynamics of the original system well. A rigorous
investigation of this issue will be done in Chapter 4, when we compare statistical quanti-
ties as diffusion constants and energy fluctuations numerically by Monte-Carlo sampling.

3.4.2 Computational Speed-Up

Although the result that optimal prediction yields a boundary layer condition, which sim-
ulates a crystal continued to infinity, is also of theoretical interest, the actual intention was
to use optimal prediction as a method to reduce the computational effort. In Section 3.3,
we derived two versions of optimal prediction for a system of n atoms, which shall be
reduced to m atoms:

• The original version, as described in Subsection 3.3.2, which considers n−m virtual
atoms.

• The boundary layer condition version, as described in Subsection 3.3.4, which con-
siders only k virtual atoms.

In principle, one can achieve arbitrarily high speed-up factors with the boundary layer
condition system by keeping m and k fixed and increasing n. But in most cases such a
consideration does not make much sense, since the particular values for n and m typically
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depend on the context in which the problem arises. Usually the original size of crystal n is
given a priori, and the first step in applying optimal prediction is to choose an appropriate
value for m. The decision, which value for m works best for a particular problem, is
influenced by two factors:

• The required accuracy, i.e. the question, how well the important properties of the
system are preserved. In general one has: The larger m, the better.

• The reduction of computational effort. Here one has in general: The smaller m, the
better.

The question of accuracy will be considered in Chapter 4, in particular will criteria be
provided to investigate how well important properties are preserved. The question of
computational effort will be dealt with in the following.

We investigate the computational speed-up by comparing the CPU time for computations
of the optimal prediction system with the CPU time for the corresponding computations
of the two versions of the original system. The comparison is carried out in dependence
of the sizes of the systems, given by the numbers n and m. Since the original version
of optimal prediction does only replace real particles by virtual ones, while on the other
hand the boundary layer condition version allows to really omit atoms, a real speed-up
can only be expected from the boundary layer condition version.

The computations were done on a network of AMD Athlon-6 1.4 GHz computers. The
CPU times are given in seconds, but the absolute values are not important, since we are
only interested in speed-up factors. The computations with the boundary layer condition
version of optimal prediction were done with k = 10 virtual atoms.

Figure 3.10 shows the CPU times for the original system and the optimal prediction sys-
tem, first in the original version, then in the boundary layer condition version, all in de-
pendence of n and m, where of course only m < n makes sense. Note that for a fixed
n the CPU times for the original system are of course independent of m, while in the
boundary layer condition version the computational effort is independent of n. The re-
sults show that optimal prediction in its original version is never cheaper to solve than
the original system. Apparently, for our model problem setting up and solving the linear
system (3.45) is more expensive than computing the full system of equations, especially
for n − m large. On the other hand, for the boundary layer condition version the effort
decays significantly with m.

Figure 3.11 shows the actual speed-up factor with respect to the original system for the
two versions of optimal prediction. While the original version of optimal prediction does
not yield any acceleration (the speed-up factors are less than 1), the boundary layer con-
dition version yields high speed-up factors for small m. While this looks promising, one
must not forget that it depends on the particular context, how small m can be chosen.
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Replacing a system of n = 60 atoms by a system of m = 5 atoms is unlikely to preserve
the important properties, e.g. the hopping behavior of a copper atom.

A choice of m which is reasonable in many cases, is cutting the whole crystal of n atoms
into two halves, i.e. m = bn

2
c. The speed-up factors for the two versions of optimal pre-

diction are shown in Figure 3.12. While the original version does not reduce the computa-
tional effort, the speed-up for the boundary layer condition version increases significantly
for n increasing.

While these results are interesting for our model problem, one should not assume that
they are the case for optimal prediction in general. In our model problem the potential
functions are fairly easy and cheap to evaluate. In more complicated systems it could very
well pay off to solve the linear system (3.45) instead, or even to solve the minimization
problem directly. On the other hand the boundary layer condition version of optimal
prediction could possibly fail to work in other applications, e.g. in three space dimensions.
Such questions will have to be investigated when applying optimal prediction to a new
problem.

In any case, the results for the boundary layer condition version look promising with re-
spect to computational speed-up. Of course they are only of any use, if optimal prediction
turns out to preserve the important properties of the original system. This issue will be
our task in the following chapter.
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Chapter 4

A Comparison by Numerical
Experiments

In Chapter 3 we showed that for a 2n-dimensional Hamiltonian system, which describes
n atoms, the evolution of m < n atoms can be approximated by an (n + m)-dimensional
system of ordinary differential equations. Under the assumption that the influence of one
atom ranges over just k other atoms, the system’s dimension could be further reduces to
just 2m + k dimensions. Since k is typically much smaller than n − m, the approximate
system is significantly smaller than the original 2n-dimensional system.

The smaller system was derived by first applying the optimal prediction procedure as
presented in Chapter 1, then calculating an asymptotic limit of the optimal prediction
Hamiltonian for temperature zero, and finally deriving a system of equations which ap-
proximates this asymptotic limit. It is unclear, how well the various assumptions, under
which the above approximations are valid, are satisfied in our particular problem.

• Optimal prediction assumes the validity of the canonical measure Z−1e−βH(q,p) and
the system being in thermodynamical equilibrium. It is unclear how small distur-
bances to the equilibrium, caused e.g. by hopping events of copper atoms, affect the
result.

• The asymptotic limiting process assumes a low temperature. Here it depends on the
point of view which temperatures can still be called “low”.

• Finally, the (2m + k)-dimensional approximate system of equations employs the
fact that the potential between two atoms is negligibly small at some distance.
Again, it is unclear, whether these small errors are uncorrelated enough to stay
negligible in the final result. The numerical results shown in Figure 3.9 may stand
as a warning example.
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In this chapter we try to find answers to these unclear points by comparing the approx-
imate optimal prediction system with the original system. Since we are dealing with
high-dimensional nonlinear differential equations, an analytic analysis would be far too
complicated. Instead we compare the two systems by numerical experiments, as presented
in Section 2.4 and Section 3.4.

In Section 4.1 we show by which criteria and using which methods we can compare the
two systems. The diffusive behavior of the hopping of a copper atom will be the most
important criterion. Hence, we set up an analytical model for the nature of hopping in
Section 4.2 and show how it can be used in order to obtain diffusion parameters. In
Section 4.3 we will numerically investigate a first example. It will turn out that sonic
waves, which travel through the silicon crystal, cause disturbances, which would make
a comparison by statistical quantities untrustworthy. On the other hand, the sonic waves
will enlighten an interesting aspect about the nature of optimal prediction. In Section 4.4
we will present a second numerical experiment, in which sonic waves have a very small
influence on the relevant quantities. The numerical results are used for a comparison of
the original system with the optimal prediction approximation by statistical quantities.

4.1 Comparing Two Systems

In molecular dynamics “comparing” two systems does not mean to analyze two trajecto-
ries in phase space and plot their difference over time. Since initial positions and momenta
can never be known exactly, and molecular dynamics is typically chaotic, trajectories in
high-dimensional phase space are no appropriate means to compare two systems. In-
stead, “comparing” means to test whether both systems have similar dynamics, i.e. show
the same statistical behavior. This is represented by statistical quantities, such as pres-
sure, time correlation functions, diffusion constants, fluctuations of energy, etc. In the
following, we will consider two statistical processes in order to compare the two systems:

• The diffusion of a single copper atom in the silicon crystal due to hopping
events.
Here we consider two quantities in order to compare the two systems:

– The distribution of the position the copper atom
– The distribution of the number of hopping events up to a fixed time

• The fluctuation of energy of the first m atoms.
Here we use the variance of the energy over a fixed time interval as a criterion to
compare the two systems.

We will obtain these quantities numerically by Monte-Carlo sampling. In the following
we explain why this is a reasonable thing to do in this context.
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4.1.1 Why Use Monte-Carlo Sampling?

Whenever, in molecular dynamics, statistical quantities are sought, statistical mechanics
gives two canonical ways to obtain them:

• Running molecular dynamics

• Monte-Carlo sampling

In this case “molecular dynamics” often means running a single computation for a long
time and using limiting processes (e.g. the Einstein relation (4.3)) to approximate statis-
tical quantities (e.g. diffusion constants). Monte-Carlo methods, on the other hand, in
principle perform the same computation over and over again, but the initial conditions
are sampled from some given measure, in our case Z−1e−βH(q,p). In other words: Sta-
tistical quantities can only be obtained by some kind of averaging. Molecular dynamics
achieves the averaging by observing one experiment over a long time. Monte-Carlo meth-
ods achieve the averaging by observing many samples.

One important statistical quantity, which we are interested in here, is the diffusion “con-
stant” of a diffusion process. Since so far we cannot be sure, whether the diffusion is
time-independent, we rather speak of a “diffusion parameter” in the following. In many
applications, diffusion parameters are statistical quantities of theoretical and practical im-
portance. In most examples, the considered diffusion process is self-diffusion, as e.g. in
[4]. In this thesis, however, we are not interested in self-diffusion (which does not happen
at all in our model problem, since two silicon atoms cannot swap their positions), but
rather in the diffusion of a single copper atom inside a crystal of silicon atoms. The dif-
fusion happens due to hopping events, i.e. the copper atom changes position with silicon
atoms. Since the hopping of a copper atom has been the effect of interest in the first place
(as introduced in Chapter 2), it is a natural decision to use the diffusion of a copper atom
as a criterion to compare the optimal prediction system to the original system.

In textbooks and papers on statistical mechanics (as in [25, 31]) diffusion constants are
often calculated by the Green-Kubo formula

κ =

∫ ∞

t=0

〈vi(t) · vi(0)〉 dt. (4.1)

This formula assumes the system to be in thermodynamical equilibrium and ergodic. Here
vi(t) is the velocity of particle i at time t. The function

a(t) = 〈vi(t) · vi(0)〉 (4.2)

is called velocity autocorrelation function. The parentheses 〈·〉 denote ensemble average,
which is equivalent to space and time averaging, since the system is ergodic.
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Another statement from statistical mechanics is the Einstein relation

κ = lim
t→∞

1

2t

〈
|ri(t) − ri(0)|

2〉 , (4.3)

where ri(t) is position of particle i at time t. Again, the system is assumed to be in equi-
librium and ergodic. Both relations (4.1) and (4.3) are presented for the one-dimensional
case. In three space dimensions they have to be multiplied by the constant 1

3
. The equality

of (4.1) and (4.3) is proven e.g. in [25].

In our computations, however, we do not use any of these relations. Instead we obtain the
diffusion constant by Monte-Carlo sampling, i.e. we solve the same system over and over
again, but sample the initial conditions from the canonical distribution Z̃−1e−T (p). The
reason, why we prefer this over using the Green-Kubo formula or the Einstein relation,
which require the system to be solved only once, is that for our model problem (and also
for many real problems) the expressions

∫ T

t=0

〈vi(t) · vi(0)〉 dt (4.4)

and
1

2T

〈
|ri(T ) − ri(0)|

2〉 (4.5)

converge very slowly to (4.1) respectively (4.3). This is problematic, since in long time
computations the copper atom often travels towards the boundaries of the silicon crystal,
which should be avoided for the following reasons:

• Boundary effects appear due to the larger equilibrium distance between two silicon
atoms (surface tension).

• The copper atom may hop over the outermost silicon atom and completely leave
the crystal.

• In the case of the optimal prediction system, the copper atom could hop too close
to (even into) the area of virtual particles, which would violate the assumption of a
clear separation between particles.

In solving the system repeatedly, we can compute up to much shorter times, such that the
above effects are extremely unlikely to happen. And if they do still happen, their influence
will not be relevant in the average.

Since in Monte-Carlo sampling the expected error decays with the square root of the num-
ber of samples, on the one hand the quantity of interest can in principle be approximated
arbitrarily well, on the other hand a very high accuracy would require an inefficiently large
number of samples. For our model problem, between 5000 and 25000 samples turned out
to yield completely satisfying results, in the sense that the error due to the Monte-Carlo
sampling is significantly smaller than the difference in the two quantities in comparison,
as shown by the numerical results in Subsection 4.4.1.
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4.1.2 Monte-Carlo Sampling in the Model Problem

Monte-Carlo sampling in our numerical experiments means solving the same system, as
shown in Figure 2.5, Figure 3.6, and Figure 3.7, N times. The initial conditions, i.e. posi-
tions qi and momenta pi should be sampled from the canonical distribution Z−1e−βH(q,p).
Due to the simple structure of the kinetic energy, sampling the momenta pi is just sampling
independently from Gaussian distributions. Sampling the positions from Z̃−1e−βV (q), on
the other hand, would require high-dimensional sampling from a nonlinear distribution,
which additionally for low temperatures has very high peaks. For such a distribution the
standard methods as acceptance-rejection methods or Metropolis sampling (as described
e.g. in [15, 24]), would be far from easy to apply efficiently. We circumvent such prob-
lems by sampling only the momenta pi from the canonical distribution, and keeping the
positions qi fixed at the potential minimum (as described in Section 2.4).

Obviously sampling only the momenta is not exactly the same as sampling both the posi-
tions and the momenta from Z−1e−βH(q,p). But in the same manner as the kinetic energy
decays very quickly to its equilibrium value (as observed in Section 2.4), we can assume
both the positions and the momenta to be distributed according to the canonical distribu-
tion after a similarly short time. Additionally, keeping the positions fixed in the initial
conditions, automatically guarantees that we remain in the correct domain M L, as intro-
duced in Subsection 3.1.1.

4.1.3 Criteria of Comparison

As reasoned in the previous subsection, we will compute statistical quantities about the
original system and the optimal prediction approximation by Monte-Carlo sampling. The
so obtained quantities hold as criteria for a comparison of the two systems. In the follow-
ing sections, we will focus on the following three statistical quantities:

1. The distribution of the position of one copper atom inside the silicon crystal.
A single copper atom, which is initially located always at the same position, will
describe very different paths over time, given its momentum and the positions and
momenta of the silicon atoms are randomly sampled from the canonical distribu-
tion Z−1e−βH(q,p), respectively sampled in the way described in Subsection 4.1.2.
The copper atom will change its position inside the crystal by hopping over silicon
atoms. Since hopping events depend very sensitively on the positions and momenta
at a given time, the way the copper atom moves through the crystal will be very
different in each experiment. If the initial conditions are randomly sampled from
the canonical distribution, the position of the one copper atom can be described
by a diffusion process, i.e. the distribution function for the position of the copper
atom might be described by a diffusion equation. We approximate this distribution
function by Monte-Carlo sampling.
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Once there are distribution functions for the position of the copper atom for the orig-
inal system and the optimal prediction approximation, these distribution functions
have to be compared. One way to compare them, which we will do in Subsec-
tion 4.4.2, is simply evaluating the difference between them, respectively plotting
the relative error in the maximum norm in space. Another way, which is more
physically motivated, is to construct a model for the diffusion process, which can
be solved analytically. This model can then be used to obtain diffusion parameters,
which hold as statistical quantities for comparing the two systems. In Section 4.2,
we will model the copper diffusion as a random walk and provide its analytical
treatment. The numerical application will then follow in Subsection 4.4.3.

2. The distribution of the number of hopping events up to a fixed time. Our task
is to check if optimal prediction preserves the nature of hopping. One criterion is
the number of hopping events up to a fixed time. As we are performing N exper-
iments of the same system with different initial data, we obtain a distribution for
the number of hopping events, i.e. each nonnegative number is mapped to a num-
ber of experiments which had exactly the given number of hopping events. This
distribution should be the same for the original system and the optimal prediction
approximation, if the nature of hopping is preserved. We will investigate this issue
in Subsection 4.4.4.

3. The fluctuation of energy of the first m atoms. For the original system and for
the optimal prediction approximation, we compute the energy of the first m atoms,
which is given by Formula (2.11). While for the original system the total energy
of all n atoms is constant over time (the system is Hamiltonian), the energy of the
first m atoms fluctuates around some fixed average, given the system is in thermo-
dynamical equilibrium. For the approximate optimal prediction system, the energy
of the m real particles is computed without considering the virtual particles. Hence
also this energy will fluctuate around some mean. In Subsection 4.4.5 we consider
the variance of this fluctuating energy in order to compare the two systems. This
test is particularly interesting, since we compare the exchange of energy among
real particles (for the original system) with the exchange of energy between real
and virtual particles (for the optimal prediction approximation).

Since the diffusion of the copper atom is the process we wanted to study in the first place,
the diffusion constants for the diffusion of the copper atom are of particular interest. In
the following section we will investigate the nature of the given diffusion process. In
particular, we construct a mathematical model which describes the hopping of the copper
atom as a special random walk.
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4.2 A Model for the Copper Diffusion

As reasoned previously, the diffusion process of a copper atom due to atomic hopping
is the main criterion for comparing the optimal prediction approximation with the origi-
nal system. In this section, we present an analytical model for the copper diffusion and
show how this model can be used to compute the time-dependent diffusion parameter of
a diffusion process which is obtained by numerical experiments.

4.2.1 Modeling Hopping as a Random Walk

When speaking of the diffusion of the copper atom we mean diffusion due to hopping
events, i.e. small displacements from its initial condition due to oscillations between the
same two silicon atoms should not be taken into account, but changes in the position
inside the crystal due to hopping events should. Hence the appropriate diffusion process
to describe the copper diffusion is discrete in space, with a spatial discretization d0, which
is the equilibrium distance between two silicon atoms. Unless the copper atom comes too
close to the boundaries of the crystal, it is valid to assume d0 to be constant.

Let us assume for the moment, that the diffusion process is linear. If it was continuous in
space, it would be described by the heat equation

ut(x, t) = κuxx(x, t), (4.6)
u(x, 0) = δ0(x), (4.7)

where κ is the diffusion constant. The heat equation is in many cases a valid approxima-
tion to discrete diffusion processes, as often the atomic distance d0 is small compared to
the relevant length scales. Hence for a large number of atoms, especially in liquids and
gases, the heat equation is typically used to describe atomic diffusion, e.g. in [25]. How-
ever, in our model problem and for the short times we consider, the atomic distance d0 is
the relevant length scale for the diffusion due to hopping. Hence, we need a diffusion pro-
cess which is discrete in space (on the spatial grid {−md0, . . . , (m − 1)d0,md0}). Linear
diffusion processes which are discrete in space are described by so called compartment
models:

u̇(t) = A · u(t),

u(0) = u0,
(4.8)

where A ∈ R
(2m+1)×(2m+1) is a matrix with column sums equal to zero (to ensure mass
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conservation, i.e. d
dt

∑

i ui(t) = 0), u(t) ∈ R
2m+1, and

u0 =














0
...
0
1
0
...
0














∈ R
2m+1. (4.9)

Here the initial conditions (4.7), respectively (4.9) represent the fact that the copper atom
always starts at the same position, in particular between the same two silicon atoms.

The analytical solution to (4.8) is

u(t) = exp(tA) · u0. (4.10)

A simple example for a diffusion process which is discrete in space is described by the
tridiagonal matrix (which is Toeplitz up to the boundary entries a11 and ann)

A =
κ

d2
0

·










−1 1
1 −2 1

. . . . . . . . .
1 −2 1

1 −1










, (4.11)

which is the standard finite difference approximation to the heat equation (4.6). Hence, the
compartment model (4.8) with the matrix (4.11) converges to the heat equation (4.6) (with
Neumann boundary conditions in this case) as d0 → 0. But as there are many possible
finite difference approximations to uxx, there are many possible matrices A which yield a
diffusion process converging to the heat equation for d0 → 0. It has to be pointed out that
two different matrices A1 and A2, which both yield the heat equation in the limit d0 → 0,
will in general describe different discrete diffusion processes.

To investigate which diffusion process describes the copper diffusion most accurately and
to obtain diffusion constants (given the process is linear), we model the evolution of the
copper atom’s position as a specific random walk. The experiment in Figure 2.5 shows
the typical behavior of the copper atom. It oscillates for some time between two silicon
atoms, and then suddenly jumps to a neighboring position inside the crystal. Sometimes
one hopping event is followed immediately by a further hopping event, resulting in a jump
over two or more silicon atoms. The latter event is likely to happen, since the copper atom
requires a certain amount of kinetic energy when performing a hopping event, in order to
overcome the potential barrier between silicon and copper. Since this kinetic energy is
not lost in the hopping event, the chances are good that the consecutive silicon atom is
being hopped over, too. In other words:



CHAPTER 4 A COMPARISON BY NUMERICAL EXPERIMENTS 61

Hopping events are correlated, in the sense that given the copper atom has
just hopped to the left (right), it is much more likely than normally that a
second hopping event to the left (right) follows.

This important aspect is ignored in many papers on this issue. E.g. in [4] the authors as-
sume that “The velocities of the particles before the jump is understood to be uncorrelated
from the velocities after the jump”, which is not a reasonable assumption in the case of
atomic hopping in a crystal at low temperatures.

The correlation between hopping events makes the modeling as a random walk much
more complicated, since a random walk with correlated jumps will have memory, i.e. be
non-Markovian. However, we can describe the hopping process as a Markovian random
walk by using the following trick:

• Hopping events are assumed to be uncorrelated.

• In a single hopping event the copper atom can also hop over two or more silicon
atoms at once.

These two assumptions lead to a model, which is typical in the context of stochastic
processes (e.g. in [30]). Let Xt denote the position of the copper atom at time t. The
random walk is given by the following properties:

1. Let (Tn)n∈N
be the hopping times of the process. Then the times between two

hopping events ∆Tn = Tn − Tn−1 are independent and have the distribution

P (∆Tn ∈ [s, s + ds)) = α · exp(−αs) ds, (4.12)

where α is a parameter controlling the hopping rate. We will investigate its connec-
tion to the diffusion constant κ later. From the derivations in [30, pp. 53-58] and
[29, pp. 222-227] it follows that for a Markovian process which is discrete in space
and continuous in time, the hopping times Tn must be a Poisson process and satisfy
(4.12).

2. A hopping event is a change of position of the copper atom inside the silicon crystal.
Let ∆n ∈ Z \ {0} denote the number of silicon atoms which the copper atoms hops
over to the right in the n-th hopping event. Consequently ∆n < 0 means hopping
to the left. ∆n is assumed to be independent and distributed according to

P (|∆n| = i) = pi, (4.13)

where (pi)i∈N is a non-negative sequence, i.e. (p) : N → R
+
0 , which satisfies

∑

i∈N
pi = 1

2
and

∑

i∈N
i2pi < ∞. For an easy analysis one can assume that

only finitely pi are non-zero, i.e. the hopping behavior is described by a vector
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p = (p1, . . . , pk). By assuming that P (∆n = i) = P (∆n = −i) we consider
only symmetric random walks. While this restriction is in principle not necessary,
it simplifies some of the following analysis. Assumed that the copper atom does
not come close to the boundaries of the silicon crystal, our random walk is indeed
symmetric, as the numerical experiment in Subsection 4.4.3 will show.

An analysis of the described random walk (along the lines of the analysis in [30, pp. 53-
58]) yields that its variance at time t is

Var(Xt) = αt · 2
k∑

i=1

(d0i)
2pi. (4.14)

In comparison equals the variance of the heat equation (4.6) and the discrete diffusion
process given by (4.11)

Var(Yt) = 2κt (4.15)
at time t. As the described random walk should also be described by the heat equation in
the limit d0 → 0, we obtain the relation

κ = α ·
k∑

i=1

(d0i)
2pi, (4.16)

which allows us to speak also for the discrete diffusion process (4.8) of a diffusion con-
stant κ, which is consistent with the diffusion constant κ in the continuous diffusion pro-
cess (4.6).

Following the derivation in [30, pp. 56-57] one obtains that the probability distribution of
the random walk Xt is described by the differential equation (4.8), where the matrix A is
given by

A = α ·











. . . . . . . . . . . . . . . . . . . . .
pk . . . p1 −1 p1 . . . pk

. . . . . . . . . . . . . . . . . . . . .
pk . . . p1 −1 p1 . . . pk

. . . . . . . . . . . . . . . . . . . . .











. (4.17)

In the context of random walks, the matrix (4.17) is called infinitesimal generator. Of
course, as a matrix is finite dimensional, this k-diagonal structure has to be changed at
the upper and lower rows. In the termini of differential equations this means that bound-
ary conditions have to be specified. In our case we can assume that in no Monte-Carlo
experiment the copper atom leaves the crystal or comes close to the boundaries, which
is reasonable since the computational time is comparably short. In this case the appro-
priate boundary conditions are Neumann boundary conditions, i.e. no flux through the
boundaries, and thus energy conservation, i.e.

d

dt

∑

i

ui(t) = 0. (4.18)
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This assumption is satisfied, if the matrix A has zero column sums. The best results are
achieved, if A is chosen at least so large, that for the whole computation time the values
of u(t) close to the boundaries will be negligibly small anyhow. Note that depending on
the type of boundary conditions the matrix A need not be symmetric anymore.

An important example for the above kind of process is the case
{

p1 = 1
2

pi = 0 ∀i ≥ 2,
(4.19)

which corresponds to a symmetric hopping over only single silicon atoms, where the sin-
gle hopping events are completely uncorrelated. The generating matrix would be exactly
the finite difference approximation (4.11). Since in our model problem single hopping
events are correlated, we have at least p2 > 0.

The question, which values for p1, . . . , pk are to be chosen to describe the real process
in the best way, can be answered by Monte-Carlo sampling, which we will do in Sub-
section 4.4.3. While one could in principle also approximate the constant α in (4.12)
using Monte-Carlo sampling, we leave it as parameter and instead compute the diffusion
parameter κ by the method described in Subsection 4.2.2, since it turned out to be more
stable and additionally allows to include a time dependence in κ, i.e. to consider κ(t).

4.2.2 Using the Model to Obtain Diffusion Parameters

The random walk model, as presented above, can be used to obtain diffusion parameters
of a distribution which is obtained by Monte-Carlo sampling of a numerical simulation.
Let v(x, t) denote the numerically obtained probability distribution for the position of the
copper atom. Here x stands for the position of the copper atom (i.e. x ∈ Z), and t denotes
time. In the argumentation below, t is always assumed to be continuous. Of course,
v(x, t) is actually sampled only at discrete times ti, where ti+1 − ti is the time step of the
integrator. At time t = 0 we have

v(x, 0) =

{

1 x = 0

0 x 6= 0.
(4.20)

Since it is unclear, if the diffusion parameter κ is constant in time, we let it be a time
dependent parameter κ(t). Over a comparably short time interval τ ∈ [t, t+∆t), however,
we can assume the diffusion process (4.8) to be linear with a constant diffusion parameter
κ(t).

Let A be the generating matrix (4.17) as constructed in Subsection 4.2.1. Motivated by
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relation (4.16) we define

Ã =
1

k∑

i=1

(d0i)2pi

·











. . . . . . . . . . . . . . . . . . . . .
pk . . . p1 −1 p1 . . . pk

. . . . . . . . . . . . . . . . . . . . .
pk . . . p1 −1 p1 . . . pk

. . . . . . . . . . . . . . . . . . . . .











, (4.21)

such that
A = κÃ. (4.22)

Since in Subsection 4.4.3 we approximate the values p1, . . . , pk by Monte-Carlo sampling,
the matrix Ã can be completely determined.

On the interval τ ∈ [t, t + ∆t) we define the error functional

F (κ) =

∫ t+∆t

t

‖e(τ−t)κÃ · v(t) − v(τ)‖2
2 dτ, (4.23)

i.e. we use the L
2 norm on the domain

(x, t) ∈ {−md0,−(m − 1)d0, . . . , (m − 1)d0,md0} × [t, t + ∆t). (4.24)

We choose this norm, since all points in the domain (4.24) are equally taken into account.
Hence it is particularly stable with respect to errors in v due to the Monte-Carlo sampling.

On the domain (4.24) we wish to chose the particular κ which minimizes the error (4.23)
between the real evolution v(x, τ) and the evolution which the analytical model (4.8) with
initial values v(x, t) would yield

F (κ) → min . (4.25)

A necessary condition for (4.25) is

F ′(κ) = 0. (4.26)

This implicit relation can be solved by Newton iteration

κ(i+1) = κ(i) −
F ′(κ(i))

F ′′(κ(i))
. (4.27)

The functions F ′ and F ′′, which are required for (4.27), can be obtained by some analysis
as

F ′(κ) = v(t)T · Ã ·

∫ t+∆t

t

(τ − t)e(τ−t)κÃ ·
(

e(τ−t)κÃ · v(t) − v(τ)
)

dτ, (4.28)
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and

F ′′(κ) = v(t)T · Ã2 ·

∫ t+∆t

t

(τ − t)2e(τ−t)κÃ ·
(

2e(τ−t)κÃ · v(t) − v(τ)
)

dτ. (4.29)

In both expressions the integrals can be numerically approximated using the trapezoidal
rule on the time steps ti. In this way the diffusion parameter κ(t) belonging to the time
interval [t, t + ∆t) can be computed for all time steps ti. Hence, the value κ(ti−1) is a
good starting value for the Newton iteration for κ(ti).

The length ∆t of the considered time interval must on the one hand be large enough to
have already some diffusion taken place, on the other hand – given the diffusion turns
out to be time-dependent – it must be small enough to justify the approximation that the
diffusion parameter κ(t) is constant on the interval [t, t+∆t). In Subsection 4.4.3 we will
compute diffusion parameters for the numerical data obtained for our model problem.

4.3 An Experiment Containing Sonic Waves

In this section we present the results of a first Monte-Carlo experiment. We solve the
original system, consisting of n = 35 atoms, where the one copper atom starts at the 11th

position from the left, N = 5000 times for a time of t∗ = 2.0 · 10−12s. The temperature
of the experiments in this section is T = 4000K.

4.3.1 Numerical Results

The distribution function over time for the position of the copper atom in the silicon
crystal is plotted in Figures 4.1 and 4.2. The initial position of the copper atom is position
11. Since for each experiment the copper atom starts at the same position, at time t = 0
the distribution is 1 at x = 11 and 0 for all other positions.

As it can be observed in Figure 4.1, the copper atom describes some diffusion process
on a long time scale, as the variance of the distribution is significantly larger at time
t = 2.0 · 10−12s than at time t = 0s. But obviously this process is no linear diffusion with
a constant diffusion parameter. In particular, the distribution does not satisfy a maximum
principle, since the maximum increases around the times t1 = 0.5 · 10−12s, t2 = 1.0 ·
10−12s, t3 = 1.5 · 10−12s, and t4 = 2.0 · 10−12s. This behavior is too systematic and
too large in effect to be only due to errors in the Monte-Carlo sampling (as estimates
as described in Subsection 4.4.1 indicate). It must be a feature of the process, and this
feature is not caught in the random walk model in Subsection 4.2.1.
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Figure 4.1: Distribution of the copper atom’s position (viewed from the side)
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Figure 4.2: Distribution of the copper atom’s position (viewed from the top)
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4.3.2 Sonic Waves

The fact that the distribution’s maximum increases for a short time each 5 · 10−13 seconds
means that at these times for more Monte-Carlo experiments than before the copper atom
is “pushed” back to its initial position. A process which can possibly “push” the copper
atom back to its initial position is a sonic wave, caused by a hopping event (obviously
a non-equilibrium effect) or by the starting configuration (remember that we do not start
exactly in thermodynamical equilibrium, as explained in Section 2.3). Such a wave is
normally small in effect and not to recognize by looking at the plot. But it can certainly
be strong enough to influence the hopping behavior when it hits the copper atom again
after being reflected.
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Figure 4.3: A sonic wave traveling through the crystal

Figure 4.3 shows an exaggerated example of a sonic wave. The wave is started at the
left side of the crystal, travels through to the right, is being reflected and travels back
to the left. Since the system is non-linear, the wave loses structure while traveling, and
especially when being reflected. This behavior reflects the fact that the system is going
towards thermodynamical equilibrium. In this example the wave indeed produces hopping
events of the copper atom, when running over its position. It has to be pointed out that
not every wave which hits the copper atom yields a hopping event. On the contrary, the
waves in a “real” simulation are much weaker and seldom yield a hopping event. It just
happens a little bit more often than normally, which is enough to increase the maximum
of the distribution in Figures 4.1 and 4.2
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In order to ensure whether sonic waves can be the reason for the short time intervals
of anti-diffusion in distribution in Figures 4.1 and 4.2, we need to compute, or at least
estimate, the velocity of sound inside the silicon crystal. The example shown in Figure 4.3
may already give a hint, but as it is strongly exaggerated, we wish to estimate the velocity
of sound analytically.

4.3.3 The Velocity of Sound

In the following we assume that the equilibrium distance between two silicon atoms d0

is constant value. Obviously this in an incorrect assumption close to the boundaries. But
for a rough estimate for the velocity of sound we can neglect the boundary effects. The
equilibrium distance is then given implicitly by the relation

∞∑

i=1

f ′(d0 · i) = 0. (4.30)

This relation can be solved numerically by Newton iteration. For our model problem we
obtain the value

d0 = 1.87 · 10−10m. (4.31)
As derived in [25] we need to compute the Young modulus

Y = d0 ·
∂2Hloc

∂d2
0

(d0). (4.32)

Here Hloc is the potential energy of a single silicon atom (without loss of generality we
can assume its position to be 0)

Hloc =
∞∑

i=−∞
i6=0

f(0 − qi) =
∞∑

i=−∞
i6=0

f(d0 · i) = 2 ·

∞∑

i=1

f(d0 · i). (4.33)

In three space dimensions, Hloc is differentiated with respect to volume, which in one
dimension is differentiation with respect to d0. Substituting (4.33) into (4.32) yields

Y = 2d0 ·

∞∑

i=1

i2 · f ′′(d0 · i) (4.34)

In our model problem the numerical value is

Y = 5.05 · 10−9 kg·m
s2 . (4.35)

The velocity of sound is then obtained by the relation

c =

√

Y

ρ
=

√

Y · d0

mSi

, (4.36)
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which yields for our model problem

c = 4.50 · 103 m
s . (4.37)

Further important for our estimate are the distances

sleft = q11 − q1 = 1.04 · 10−9m, (4.38)
sright = q35 − q11 = 2.12 · 10−9m, (4.39)

which are the distances of the copper atom to the left respectively right boundary of the
crystal. Assuming that the velocity of sound is constant inside the crystal, we can now
estimate the time the sonic waves take to come back to the copper atom.

t∗left =
2 · sleft

c
=

2.08 · 10−9m
4.50 · 103 m

s
= 4.64 · 10−13s, (4.40)

t∗right =
2 · sright

c
=

4.24 · 10−9m
4.50 · 103 m

s
= 9.43 · 10−13s. (4.41)

So here we have the special case that the wave traveling to right takes twice as long
to hit the copper atom again as the wave traveling to the left. Considering the strong
simplifications in the above derivation we obtain the rough estimate, that the wave to
the left influences the hopping behavior every 0.5 · 10−12 seconds, and the wave to the
right influences the hopping behavior every 1.0 · 10−12 seconds. These values coincide
perfectly with the times observed in Figures 4.1 and 4.2, which brings us to the conclusion
that indeed sonic waves are the reason for the short intervals of antidiffusion which could
be in Figures 4.1 and 4.2.

Figure 4.4 shows a sketch of how sonic waves travel inside the crystal for the original
system (as presented in Figures 4.1 and 4.2), given a non-equilibrium events starts them
at t = 0. Note that in a real experiment waves lose structure while traveling and when
being reflected due to the nonlinearity of the system. Hence the wave to right has not the
same influence when coming back to the copper atom as the wave to the left. Also do the
waves in reality not hit the copper atom at exactly the same time.

Observe further (this aspect can be seen in Figure 4.2) that at times t1 = 0.5 · 10−12s and
t3 = 1.5 · 10−12s the distribution is a bit asymmetric, while at times t2 = 1.0 · 10−12s and
t4 = 2.0 · 10−12s it is symmetric again. This can be explained by the fact that at times t1

and t3 only a wave from the left hits the copper atom, while at times t2 and t4 the wave
coming from the right eliminates this asymmetry.

4.3.4 Sonic Waves in the Optimal Prediction System

So sonic waves, which travel through the crystal, disturb the pure diffusive nature of the
hopping of the copper atom. This is an important observation, since sonic waves are
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Figure 4.5: Behavior of sonic waves in the
optimal prediction approximation

non-equilibrium effects, but optimal prediction in this context assumes the system to be
in perfect thermodynamical equilibrium. Which leads us to the question, in which way
sonic waves are reproduced by the optimal prediction system.

Figure 4.6 shows an exaggeratedly strong sonic wave in the optimal prediction system
(without any copper atoms). Note that this wave is being reflected by the block of virtual
particles. This is understandable, since optimal prediction assumes the system to be in
equilibrium, while a sonic wave is a non-equilibrium effect. But this observation means
that optimal prediction in the form presented in Chapters 1 and 3 does not reproduce the
correct behavior of non-equilibrium effects like sonic waves.

Figure 4.7 shows the probability distribution for the position of the copper atom in Monte-
Carlo computations of the optimal prediction system. While in principle the long scale
diffusive behavior is very similar, the non-equilibrium antidiffusion effects are not visible.
This can be explained by computing the distance from the copper atom to the first virtual
particle

s̃right = q25 − q11 = 1.07 · 10−9m. (4.42)

Note that s̃right is almost equal to sleft. This yields a behavior as shown in Figure 4.5. Sonic
waves travel almost symmetrically to both sides, hence their influences cancel each other
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Figure 4.6: A sonic wave in the optimal prediction system

out. This was not the case in the original system, since the wave to the right lost a lot of
its structure while traveling twice the distance.

Due to this difference in the way the optimal prediction approximation treats sonic waves
compared to the original system, a comparison between the original system and the opti-
mal prediction approximation becomes quite complicated in the presence of sonic waves.
Therefore we will show in the following section how one can eliminate the influence of
sonic waves.

On the other hand it has to be pointed out that the effect of sonic waves is particularly
strong in a one-dimensional problem. In three space dimensions waves travel to all di-
rections and hence are negligibly small already after a short distance of traveling. Since
waves caused by hopping events or by the initial conditions are small in effect anyhow,
optimal prediction is still a promising candidate for computations in three space dimen-
sions. As an important result we can conclude:

Optimal prediction in the form presented in Chapters 1 and 3 promises to
be a good approximation to the original system, if the influence of non-
equilibrium effects is small.

The question if the method of optimal prediction can be generalized to a molecular dy-
namics problem which is not in equilibrium (e.g. with a temperature gradient present)
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Figure 4.7: Distribution of the copper atom’s position for the optimal prediction system

could be an interesting challenge for further work.

Also we have only investigated so far, under which circumstance optimal prediction does
not work. The question, whether it holds as a valid approximation if non-equilibrium
effects are small, will be answered in the following section.

4.4 An Experiment Without Sonic Waves

In Section 4.3 we showed that sonic waves are disturbing the pure diffusive behavior of
the hopping of the copper atom. Since the diffusion should hold as an important criterion
to compare the original system with the optimal prediction approximation, we have to
eliminate the sonic waves’ influence. In order to achieve this, we change the following
parameters:

• Increase the number of atoms to n = 70, and place the copper atom the 22nd po-
sition. For the optimal prediction system, we choose m = 50. This increases the
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Figure 4.8: Distribution of the copper atom’s position for the original system with n = 70
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distances sleft and sright to

sleft = q22 − q1 = 2.01 · 10−9m, (4.43)
sright = q70 − q22 = 3.64 · 10−9m. (4.44)

Of importance for the optimal prediction system is the distance

s̃right = q50 − q22 = 1.90 · 10−9m. (4.45)

• Decrease the computation time to t∗ = 4.0 · 10−13s.

• Increase the temperature to T = 7000K, in order to increase the diffusion.

These changes have the effect that the computation time t is longer than the time a sonic
wave takes to travel from the copper atom to left boundary of the crystal, respectively to
the first virtual particle, and vice versa, i.e.

ct∗ = 1.8 · 10−9m < min (sleft, sright, s̃right) . (4.46)

Hence, we can expect to observe no disturbances due to sonic waves, as we did in Sec-
tion 4.3. We can afford to decrease the computation time such significantly, since we can
re-obtain the required accuracy by taking more Monte-Carlo samples. For the following
results, we used N = 25000 Monte-Carlo samples. As a further change, we increase the
time step to 2.5 · 10−15s, which we can afford to do, because the computation time t∗ is
so short.

Figure 4.8 shows the distribution of the position of the copper atom in the silicon crystal
when solving the original system. In Figure 4.9 the analogous distribution can be seen
for the optimal prediction system. Unlike the numerical results for the first experiment
in Section 4.3, these two distributions look quite similar, and the features from the first
experiment due to sonic waves cannot be observed here.

Still, the distributions show unexpected aspects. One of these aspects is the time evolution
of the maximum, which is obviously not equal to the behavior of the maximum for the
heat equation. Another aspect is the asymmetry in the distribution, which shows up after
t = 3.0 · 10−13s. While we cannot provide explanations for these effects, we will observe
connections in the following analysis of the results.

4.4.1 Estimating the Monte-Carlo Error

We can only trust the numerical results in this chapter, if the error due to Monte-Carlo
sampling is significantly smaller than the difference between the results of the original
and the optimal prediction system. Hence, we need to estimate the Monte-Carlo error. We
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will do this estimate for the distribution of the original system, as shown in Figure 4.8.
Similar results are obtained for the computations with the optimal prediction system.

Let vN(x, t) denote the distribution which is obtained numerically using N Monte-Carlo
samples. Let further u(x, t) denote the truth, which we wish to approximate, and let
eN = ‖vN(x, t) − u(x, t)‖max denote the error. Typically, in Monte-Carlo sampling, the
error decays like

eN = O
(

N− 1
2

)

. (4.47)

Consider N ∗ = 25000 to be the number of samples in our experiment. In order to estimate
the error eN∗ , consider experiments with N1, . . . , Nk samples, where Ni � N∗ ∀i =
1, . . . , k. The differences with respect to vN∗(x, t) may be denoted by ẽNi

= ‖vNi
(x, t)−

vN∗(x, t)‖max. Under these circumstances we can assume that

ẽNi
≈ eNi

= O
(

Ni
− 1

2

)

. (4.48)

The values ẽk can be computed numerically. Plotted on a log-log scale they should lie on
a line with slope − 1

2
. Extrapolating this line to the point N ∗ should yield an estimate for

the error due to Monte-Carlo sampling for N ∗ samples.
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Figure 4.10: Estimating the error due to Monte-Carlo sampling
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Figure 4.10 shows this idea applied to our current problem. We obtain an error of about
eN∗ ≈ 4.4 · 10−3. Compared to the distance to the optimal prediction plot, as shown in
the following subsection, the error due to Monte-Carlo sampling turns out to be indeed
negligibly small.

4.4.2 The Error in Distribution
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Figure 4.11: Relative error in the two distributions

Let v(x, t) denote the numerically obtained distribution for the original system and ṽ(x, t)
the numerically obtained distribution for the optimal prediction approximation. As a first
comparison of these two distributions, we consider the difference between them, respec-
tively, the error which is made in ṽ(x, t) with respect to v(x, t). However, we do not want
to consider the absolute error

|v(x, t) − ṽ(x, t)|, (4.49)
since the same difference is less relevant where the distribution v(x, t) is large, and more
relevant where the distribution v(x, t) is small. Therefore we wish to consider the relative
error. As the distribution is almost zero for large x, dividing the difference by v(x, t) at
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each point will make the relative error go to infinity for large x. Hence we consider the
expression

e(t) =
maxx |v(x, t) − ṽ(x, t)|

maxx |v(x, t)|
(4.50)

as the relative error. By taking for each t the maximum over all x we eliminate the effects
described above.

Figure 4.11 shows the relative error e(t) over time. Note that up to the time t = 3.0·10−13s
the relative error is less than 4.5%. After this time the relative error increases to 9.4%.
Apart from errors simply due to the Monte-Carlo sampling, this increase could very well
be connected to the asymmetries, which could be observed in the plots in Figure 4.8 and
Figure 4.9. As a first result in comparing the two system we can conclude that a relative
error of less than 10% (less than 5% up to time t = 3.0 · 10−13s), is not overwhelm-
ingly small, but indicates very well that the distributions are quite similar. The following
analysis of diffusion parameters should provide a more physically motivated comparison.

4.4.3 Diffusion Parameters

In the following we wish to compute the diffusion parameters κ(t) for the two systems as
shown in Figure 4.8 and Figure 4.9, using the method described in Subsection 4.2.2. For
applying this method, we first need to obtain the parameters of the random walk model as
described in Subsection 4.2.1, i.e. the sequence (pi)i∈N

, where pi is the probability that in
a hopping event the copper atom hops over exactly i silicon atoms. Since we are dealing
with finite crystal, we will consider a vector (p1, . . . , pk), where

∑k

i=1 pi = 1
2
. Note that

due to the importance of the variance (4.14), the question which value for k is reasonable
depends on the decay of (i2pi)i∈N

, rather than the decay of (pi)i∈N
itself.

The values p1, . . . , pk can be approximated by Monte-Carlo sampling. We use the ex-
periments for the original system, which we used to obtain the distribution shown in
Figure 4.8. Since in each of the N = 25000 Monte-Carlo experiments we saved the po-
sition of the copper atom over time, we can precisely locate any hopping event. As the
copper atom does not reach too large velocities, in the data the copper atom always hops
over exactly one silicon atom. Since we wish to interpret two or more directly consec-
utive hopping events into the same direction as one large hopping event, we fix a time
(∆t1 = 6.0 · 10−14s worked well for our data) in which consecutive hopping events are
clustered to a single one.

Before this evaluation can be done, a technical problem has to be solved, namely the
elimination of double-hopping events into different directions.

Figure 4.12 and Figure 4.13 show two typical examples of such cases. In Figure 4.12 two
“hopping” events follow very closely, one to the right followed by one to the left. But
obviously this is not what we would consider a real hopping event, since it is due to the
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momentum of the neighboring silicon atom, and does effectively not affect the position
of the copper atom. Consequently, the event shown in Figure 4.13 should be counted as
only one hopping event to the left. We achieve to treat such cases correctly by eliminating
all events as shown in Figure 4.12, given they happen in a short time interval of length
∆t2 = 2.0 · 10−14s, before the clustering of hopping events is done.
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Figure 4.14: Probabilities of hopping over more than a single atom
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The numerical results of the process described above are shown in Figure 4.14. The hop-
ping probabilities are given by the red box histogram. Note that the hopping probabilities
to the left are not exactly the same as the probabilities to hop to the right. This is partly
due to Monte-Carlo errors, partly due to boundary effects from those experiments where
the copper atom comes close to a boundary of the crystal. Since we wish to consider
a symmetric random walk, we choose as values p1, . . . , pk the average probabilities of
hopping to the left and hopping to the right from the results shown in Figure 4.14.

As derived in Subsection 4.2.1, the variance of the above distribution
∑k

i=1 i2pi is pro-
portional to the diffusion constant κ in the random-walk model (see equation (4.16)). In
Figure 4.14 the values i2pi are denoted by the blue curve (scaled to fit into the same plot).

As Figure 4.14 indicates, only p1, . . . , p11 are greater than zero. Hence, we choose k = 11
for the computation of the diffusion parameters.
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Figure 4.15: Diffusion parameters over time

Once the values p1, . . . , p11 are obtained, the time-dependent diffusion parameters can
be computed using the method described in Subsection 4.2.2. Figure 4.15 shows the
so obtained diffusion parameters κ(t) for the original system and the optimal prediction
approximation. In both cases we chose ∆t = 2.5 · 10−14s. Note that in the figure the
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value κ(t), which corresponds to the diffusion on the interval [t, t+∆t), is plotted at time
t + ∆t

2
. Important observations and estimates are:

• The diffusion parameters κ(t) are far from being constant. Instead, they start close
to 0, have a strong peak at t = 3.0 ·10−14s, after which they rapidly decay to a small
value again, followed by a slow increase to a moderate value, around which they
fluctuate from then on. Since sonic waves cannot be the reason for this behavior, it
can be due to the following aspects:

– The random walk model as described in Subsection 4.2.1 is just a simpli-
fied model, which need not represent the actual hopping behavior accurately
enough. An investigation of this aspect and finding better models for the hop-
ping process would be first steps in further work on this issue.

– Due to the choice of initial values the initial configuration is not exactly in
thermodynamical equilibrium. Hence, the strong changes over time in κ(t)
may express the system approaching its equilibrium.

• Considering that κ(t) shows such pronounced behavior, the two functions κ(t) for
the original system, and κ̃(t) for the optimal prediction approximation are remark-
ably close to each other. Up to time t = 1.4 · 10−13s the the distance between
the two curves is quite small. After that time the error becomes larger, but shows
the same features, in particular they fluctuate around the same value after time
t = 3.0 · 10−13s.

• In order to roughly estimate if the obtained diffusion parameter is reasonable, we
compare it with a correct diffusion constant measured in reality. In [5] the diffusion
constant of copper in a silicon crystal at a temperature of Tr = 1273K is given as
κr = 4.4 ·10−10 m2

s
. In [25] the dependence of the diffusion constant on temperature

is given by the relation

κ = κ0 · exp

(

−
∆E

kBT

)

. (4.51)

Since the process of hopping is technically more complicated in three dimensions,
no precise and unique value for the energy barrier ∆E, which the copper atom has
to overcome, can be given. A reasonable value is ∆Er ≈ 2eV. This yields for the
copper diffusion in reality

exp

(

−
∆Er

kBTr

)

≈ 6.3. (4.52)

In our model problem we had Tm = 7000K and ∆Em = 0.43eV, which yields:

exp

(

−
∆Em

kBTm

)

≈ 1.0. (4.53)

Employing relation (4.51) we obtain that

κm ≈ κr · e
6.3−1.0 ≈ 200 · κr ≈ 9 · 10−8 m2

s
. (4.54)



CHAPTER 4 A COMPARISON BY NUMERICAL EXPERIMENTS 81

A look at Figure 4.15 shows that our experimentally obtained diffusion parameters
are indeed in this region.

Summarizing the results from Subsection 4.4.2 and Subsection 4.4.3 one can conclude
that the optimal prediction approximation reproduces the diffusion process due to hopping
of the copper atom quite accurately.

4.4.4 The Number of Hopping Events

In the previous Subsections we have seen that the diffusive behavior of the hopping of
the copper atom is preserved by optimal prediction. To be a valid approximation, opti-
mal prediction should preserve the nature of hopping itself, in particular the number of
hopping events which happen up to a given time t∗.

Figure 4.16 shows the number of hopping events for the computation described in Sec-
tion 4.4. The solid blue line represents the original system, and the dashed red line stands
for the optimal prediction system. Plotted are the histograms, i.e. the ratio of all ex-
periments which had exactly N hopping events over the number of hopping events N .
Obviously the two graphs are close enough to each other, that one can speak of the same
hopping behavior.

It should be remarked that for the experiment which is described in Section 4.3 the cor-
responding curves, as shown in Figure 4.17, show the same behavior, but are not such
close as the ones shown in Figure 4.16. Obviously the sonic waves in the first experiment,
which were not reproduced correctly by the optimal prediction system, disturbed also the
nature of hopping in principle. In the absence of sonic waves, however, optimal prediction
preserves the nature of hopping. Note that the results shown in Figure 4.16 are obtained
at a temperature of T = 7000K, while the results shown in Figure 4.17 are obtained at a
temperature of T = 4000K. Hence the plots in Figure 4.17 have their maximum at zero.

4.4.5 Energy Fluctuations

While the total energy is constant for the original system as well as for the optimal pre-
diction approximation, the energy of the first m atoms

Eleft(t) =
1

2

m∑

i=1

p2
i (t)

mi

+
m∑

i,j=1
i<j

fα(qi(t) − qj(t)) (4.55)

fluctuates over time. This expression fluctuates also for the optimal prediction, since the
influence of the virtual atoms is neglected in the potential energy. The fluctuations in
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Figure 4.16: Number of hopping events for n = 70 atoms at T = 7000K
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Figure 4.17: Number of hopping events for n = 35 atoms at T = 4000K
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(4.55) represent the exchange of energy between atoms, which is a quantity that should
be preserved by optimal prediction. Since for optimal prediction we consider the energy
of exactly the real particles, this test enlightens the exchange of energy between real and
virtual atoms.

For each of the N = 25000 experiments we consider the variance of (4.55) over time

V =

∫ t∗

t=0

(Eleft(t) − Eleft(0))
2 dt, (4.56)

which measures the impact of fluctuation. Hence we obtain N values V1, . . . , VN for the
original system and for the optimal prediction approximation.
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Figure 4.18: Histogram of total energy fluctuation for the two systems

Figure 4.18 shows the histogram for the variances Vi for the two systems. The solid
blue line stands for the original system, and the dashed red line corresponds to optimal
prediction. The average energy fluctuations for both systems are denoted by the blue and
red vertical lines. While the average fluctuations are close for the two systems, and the
two distributions look similar in principle, they obviously do not coincide. For optimal
prediction most energy fluctuations are stronger than for the original system. On the other
hand, particularly high energy fluctuations happen more frequently in the original system.
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Possible physical reasons for this behavior could be:

• The fact, that in optimal prediction most fluctuations are stronger than in the original
system, can be due to the additional fluctuative “Langevin” terms in expression
(1.25).

• The high fluctuations in the original system can happen, since around the mth atom
free energy exchange can take place among a whole cluster of atoms. In optimal
prediction, on the hand, there is no free energy exchange between the virtual atoms,
since they have no momentum, but instead always follow the potential minimum.

Apart from these physical explanations, the difference in the distributions in Figure 4.18
can of course also be due to the error in the asymptotic approximation in Subsection 3.2.1.
Remember that we only used the zeroth order approximation, which places the virtual par-
ticles always at the potential minimum. This could be too inflexible to correctly simulate
the energy exchange. On the other hand could the first order approximation model the rate
of exchange of energy more accurately. Also remember that our computations were done
at strongly increased temperatures (T = 7000K). At “correct” temperatures (T = 500K)
the energy fluctuations in optimal prediction might be much closer to the truth.
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Chapter 5

Conclusions and Outlook

In this thesis, we could successfully apply the method of optimal prediction to a model
problem in the context of molecular dynamics. The model problem was chosen to sim-
ulate the important effects which arise in a surface coating process between copper and
silicon, in particular the effect of atomic hopping.

Under the assumption of a low temperature, asymptotic methods were applied to resolve
the conditional expectations, which arise in optimal prediction. The zeroth order asymp-
totic expansion was used to derive a new and smaller system of equations. As a direct
result of the asymptotic method we obtained a system which was formally smaller than
the original system, but did not efficiently decrease the computational effort. Employ-
ing the property that potentials in molecular dynamics range only over short distances,
we could derive a new system of equations, which gave rise to an interpretation as a
boundary layer condition. This system yielded an obvious computational speed-up for
our model problem.

In order to investigate, if the approximate optimal prediction system preserves the im-
portant properties of the original system, we provided various criteria, which could be
checked by numerical experiments. In particular, we modeled and investigated the diffu-
sion process of a single copper atom due to atomic hopping. While on the one hand the
diffusion process turned out to be of a complicated nature, on the other hand the optimal
prediction approximation showed to be very close to the original system in its diffusive
behavior. Other statistical quantities, as the number of hopping events, were also pre-
served by the optimal prediction system.

On the other hand various examples showed under which conditions optimal prediction
fails. In particular, sonic waves and other non-equilibrium effects caused a very different
behavior between the original system and optimal prediction, which assumes the system
to be in a perfect equilibrium.

A natural next step in research on this topic would be to apply the method to a more com-
plex problem, possibly in two or three space dimensions, and with focus on other effects



CHAPTER 5 CONCLUSIONS AND OUTLOOK 86

than atomic hopping. Many of the results shown in this thesis should be transferable to
three space dimensions in a straightforward manner, but various other aspects will be-
come more problematic. On the other hand one can expect that non-equilibrium effects,
as sonic waves, be smaller in effect in three space dimensions, and the fraction of atoms,
which can be averaged out, be larger. Also many of the statistical quantities, which we
considered at strongly increased temperatures, should be approximated much better at the
physically correct temperatures.

Another obvious step in a further investigation is to analyze the first order asymptotic ex-
pansion, which was derived in Chapter 3, and to use it for a derivation of an improved sys-
tem, which preserves physical quantities, as e.g. the exchange of energy between atoms,
more accurately.

A further question, which is to be investigated, is how to generalize the methods presented
herein to problems not in equilibrium, in particular how to introduce non-equilibrium
effects into the equations of motion derived in Chapter 3.

Summarizing the results, we have shown that optimal prediction can in principle be ap-
plied to problems in molecular dynamics which take place at comparably low tempera-
tures. Although the method turned out to react sensitively to non-equilibrium effects and
application together with other approximations, it showed to approximate the truth well
in equilibrium. Using the boundary layer condition version we could achieve an obvi-
ous speed-up. While the speed-up by optimal prediction itself cannot compete with the
speed-up gained by other methods (e.g. the fast multipole method in a similar field), the
emphasis lies more on the physical interpretation and on the possibility to apply it in prin-
ciple together with other methods. Altogether, the method of optimal prediction can be
called “promising” in the context of molecular dynamics.
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