
Non-Markovian Optimal Prediction with

Integro-Differential Equations

Benjamin Seibold
Lawrence Berkeley National Laboratory

1 Cyclotron Road
Berkeley, CA 94720

July 16, 2001

Abstract

We apply the non-Markovian Optimal Prediction method to the

Hald system of two coupled oscillators to approximate the mean so-

lution by an integro-differential equation. We derive four versions of

integro-differential equations, coming from different approximations

to the memory kernel, and compare how well they approximate the

mean solution. This question is particularly investigated in depen-

dence on the initial values for one oscillator. An error estimate for the

different approximations is carried out. We discuss efficient methods

for computing the memory kernel, and we generalize classical Runge-

Kutta methods to methods for a class of integro-differential equations

which includes the equations that arise in this context.

1 Introduction

The method of optimal prediction of Chorin, Kast, Kupferman [7, 6, 5] is

an approach to approximating the average solution of a large system of non-

linear equations, whose inital data is only partly known, by a significantly

smaller system. The unknown initial data are assumed to be drawn from

a probability distribution. Optimal prediction describes a strategy how to

1

find a low dimensional system, whose solution is close to the components of

the average solution corresponding to the known initial conditions. Even for

Hamiltonian systems this mean solution will decay [4], and this decay is not

described by first order optimal prediction [10]. Chorin, Hald and Kupferman

observed in [4] that the average solution is described by the Mori-Zwanzig

formalism, which allows no obvious way to be solved directly. While first

order optimal prediction is shown to be a very crude approximation to the

Mori-Zwanzig formula, several better approximations have been proposed,

giving the desired decay. The most important are the “t-model” [2] and the

approximation by an integro-differential equation. This paper will focus on

the latter approach, which has been described in [3].

We consider the “Hald model”, a simple model problem, which has been

introduced in [1]: A four dimensional Hamiltonian system of two harmonic

oscillators with a nonlinear coupling. The initial conditions of the first oscil-

lator are known and the initial conditions of the second oscillator are drawn

from the canonical distribution ρ(x) = Z−1e−
H(x)

T . We seek the mean position

and momentum of the first oscillator, which can be obtained by Monte-Carlo

sampling. An important weakness of this approach is that everytime the

initial conditions for the first oscillator are changed, the whole expensive

computation has to be done all over again. Chorin, Hald and Kupferman de-

scribe in [3] how to formulate a two dimensional system of integro-differential

equations, which approximates the mean solution. It requires a memory ker-

nel K(t), which has to be approximated by Monte-Carlo sampling. This is as

expensive as finding the mean solution directly, but the kernel is independent

of the particular initial conditions for the first oscillator, which makes this

approach valuable for cases of repeated computations with different inital

data. Not to forget cases, in which experience from other fields allows ob-

taining the memory kernel even less expensively. In section 2 the derivation

of the optimal prediction equations for the Hald system will be performed.

Nevertheless, most of the statements given in section 2 are also valid for

2

general systems.

In applications the smaller system will still be quite large, thus efficient

methods for sampling the memory kernel and solving the system of integro-

differential equations are required. Section 3 deals with the computation of

the memory kernels and an algorithm for fast Monte-Carlo sampling will be

stated. In section 4 we generalize Runge-Kutta methods to numerical meth-

ods for a class of integro-differential equations which includes the optimal

prediction equations. These methods have a reasonable order of accuracy,

good stability behaviour and are comparably cheap.

In section 5 the given methods will be applied to the “Hald model” with a

special choice of initial data. Section 6 will especially focus on the quality of

the different approximations in dependence on the initial values. In section 7

an attempt to estimate the influence of the different approximations on the

error is undertaken.

2 Derivation of the Optimal Prediction Equa-

tions for the Hald System

The Hald system is a Hamiltonian system which describes two harmonic

oscillators with a nonlinear coupling. It was introduced in [3]. The Hald

Hamiltonian is

H(x1, x2, x3, x4) =
1

2
(x2

1 + x2
2 + x2

3 + x2
4 + x2

1x
2
3), (2.1)

Here x1, x2 are position and momentum of the first oscillator and x3, x4 are

position and momentum of the second oscillator. The resulting equations of

motion are:

d

dt
ϕ =

d

dt









ϕ1

ϕ2

ϕ3

ϕ4









=









ϕ2

−ϕ1 − ϕ1ϕ
2
3

ϕ4

−ϕ3 − ϕ3ϕ
2
1









= R(ϕ). (2.2)

3

It is assumed that

ϕ̂(0) =

(

ϕ1(0)
ϕ2(0)

)

=

(

x1

x2

)

= x̂ (2.3)

are known initial conditions, while

ϕ̃(0) =

(

ϕ3(0)
ϕ4(0)

)

(2.4)

are random.

We assume the existence of a canonical measure on R
4

ρ(x1, x2, x3, x4) = Z−1e−
H(x1,x2,x3,x4)

T . (2.5)

In the following we set T = 1. By fixing ϕ̂(0) = x̂ = (x1, x2) we obtain a

conditioned measure for ϕ̃(0) = (ϕ3(0), ϕ4(0))

ρ̃(ϕ3, ϕ4) = Z̃−1e−H(x1,x2,ϕ3,ϕ4) = Z̃−1e−
1
2
(x2

1+x2
2+(1+x2

1)ϕ2
3+ϕ2

4) (2.6)

= Z̄−1e−
1
2
((1+x2

1)ϕ2
3+ϕ2

4).

2.1 Projections

As in [3] we define the conditional expectation of a function f(x̂, x̃) =

f(x1, x2, x3, x4) as

E[f |x̂] =

∫ +∞
−∞

∫ +∞
−∞ f(x1, x2, x3, x4)e

−H(x1,x2,x3,x4)dx3dx4
∫ +∞
−∞

∫ +∞
−∞ e−H(x1,x2,x3,x4)dx3dx4

. (2.7)

It is the orthogonal projection onto the space of functions v(x̂) = v(x1, x2)

with respect to the inner product

(u, v) = E[uv] =

∫

u(x)v(x)e−H(x)dx
∫

e−H(x)dx
, (2.8)

so we denote

Pf = E[f |x̂]. (2.9)

Another orthogonal projection in the same space is the finite rank projection

P ′f =
2
∑

i=1

a−1
i (f, xi)xi = a−1

1 (f, x1)x1 + a−1
2 (f, x2)x2, (2.10)

where ai = (xi, xi).

4

2.2 Mean Solution

Let ϕ(x, t) denote the solution of (2.2) with initial conditions ϕ(x, 0) = x.

Then the mean solution, which we are interested in, is

Pϕ(x, t) = E[ϕ(x, t)|x̂]. (2.11)

The conditional expectation P can be approximated by Monte-Carlo sam-

pling. The mean solution can be calculated as follows:

• Fix x̂ = (x1, x2)

• Sample x̃ = (x3, x4) N times from the conditioned distribution given

by (2.6)

• Solve N times (2.2) with inital values (x̂, x̃)

• Average over all solutions

It is obvious that this is extremely expensive.

0 10 20 30 40 50 60 70 80
−1

0

1

0 10 20 30 40 50 60 70 80

−1

0

1

Figure 1: average position and momentum of the first oscillator

We can see in Figure 1 that the mean solution decays, although the Hald

system is Hamiltonian. This phenomenon is described in [4]. Note that the

interesting behaviour at t = 12 is not a numerical artefact but indeed the

truth.

5

2.3 First Order Optimal Prediction

Define R = PR, then the first order optimal prediction system is given by

d

dt
Φ =

d

dt

(

Φ1

Φ2

)

=

(

Φ2

−Φ1 − Φ1

1+Φ2
1

)

=

(

R1(Φ1,Φ2)
R2(Φ1,Φ2)

)

= R(Φ). (2.12)

Hald shows in [8] that the first order optimal prediction system to a Hamilto-

nian system is again Hamiltonian and therefore a very crude approximation.

Figure 2 shows the first component of the decaying mean solution and the

first component of the non-decaying solution of the first order optimal pre-

diction equations.

0 2 4 6 8 10 12 14 16 18 20
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 2: mean solution and first order optimal prediction

2.4 Mori-Zwanzig

Let L =
∑4

j=1Rj(x)
∂

∂xj
. Then the Liouville equation

ut(x, t) = Lu(x, t), u(x, 0) = xi (2.13)

can be transformed into the Mori-Zwanzig formula [3]

∂

∂t
etLxi = etLRi(x) +

∫ t

0

e(t−s)LPLesQLQLxids+ etQLQLxi, (2.14)

which after replacing ϕi(x, t) = etLxi and applying P yields the identity

∂

∂t
Pϕi(x, t) = PRi(ϕ̂(x, t)) +

∫ t

0

Pe(t−s)LPLesQLQLxids. (2.15)

Now the following approximations are done:

6

• In the first term interchange P and Ri

• In the second term replace the second P by P ′,

which yields

∂

∂t
Pϕi(x, t) ≈ Ri(Pϕ̂(x, t)) +

∫ t

0

Pe(t−s)LP ′LesQLQLxids. (2.16)

2.5 The Memory Kernel

The use of P ′ instead of P allows the following calculation

P ′LesQLQLxi = P ′LQesQLQLxi =
2
∑

j=1

a−1
j (LQesQLQLxi, xj)xj (2.17)

= −
2
∑

j=1

a−1
j (esQLQLxi, QLxj)xj = −

2
∑

j=1

Ki,j(s)xj,

where Ki,j(t) = a−1
j (etQLQLxi, QLxj) is the so called “memory kernel”. We

have used that Q is symmetric and L is skewsymmetric for Hamiltonian

systems.

Substituting (2.17) back into (2.16), switching the direction of integration

and using ϕj(x, s) = esLxj yields

∂

∂t
Pϕi(x, t) ≈ Ri(Pϕ̂(x, t)) −

∫ t

0

2
∑

i=1

Ki,j(t− s)Pϕi(x, s)ds. (2.18)

Thus we approximate the mean Pϕ(x, t) by the following system of integro-

differential equations

ẏ(t) = R(y(t)) −
∫ t

0

K(t− s) · y(s)ds, (2.19)

where

y(t) =

(

y1

y2

)

and K(t) =

(

K1,1(t) K1,2(t)
K2,1(t) K2,2(t)

)

. (2.20)

7

2.6 Approximating The Memory Kernel

The kernel K(t) is independent of the certain intitial data for x̂, so we want

to precompute it. Unfortunately there is no obvious way to obtain the or-

thogonal dynamics semigroup etQL [12], so one does the third approximation:

• Calculate the kernel K(t) with the original dynamics semigroup etL

Ki,j(t) ≈ a−1
j (etLQLxi, QLxj) (2.21)

A justification for this can be found in [3].

Now the kernel can be calculated using

etLQLxi = etL(I − P)Lxi = etLLxi − etLPLxi (2.22)

= Ri(ϕ(x, t)) − Ri(ϕ̂(x, t))

QLxj = e0LQLxj = Rj(ϕ(x, 0)) − Rj(ϕ̂(x, 0)). (2.23)

For the Hald model one has R1(x) = R1(x̂), so

K1,1 ≡ K1,2 ≡ K2,1 ≡ 0. (2.24)

The constant a2 = (x2, x2) = 1, so

K2,2(t) = E[(R2(ϕ(x, t)) − R2(ϕ̂(x, t))) (R2(ϕ(x, 0)) − R2(ϕ̂(x, 0)))] (2.25)

Thus we obtain the system of integro-differential equations

ẏ1(t) = R1(y1(t), y2(t)) (2.26)

ẏ2(t) = R2(y1(t), y2(t)) −
∫ t

0

K2,2(t− s)y2(s)ds.

Because of (2.24) we will in the following write K (1) for K2,2 given by (2.25).

Our system version 1 is given by

ẏ1(t) = y2(t) (2.27)

ẏ2(t) = −y1(t) −
y1(t)

1 + y1(t)2
−
∫ t

0

K(1)(t− s)y2(s)ds.

We will introduce some further approximations before describing how to com-

pute the memory kernel.

8

2.7 Splitting The Kernel

In [3] a further approximation is performed, which can be described as

• “splitting the kernel and freezing one part”.

This splitting is motivated by a procedure in physics and although it is a

further approximation, it may eventually yield a system which has compu-

tational advantages. We start with the kernel given in (2.25) and using the

approximations

R2(ϕ̂) ≈ R2(Pϕ̂) ≈ PR2(ϕ̂) (2.28)

we obtain

K2,2(t− s) ≈ E[R2(ϕ(x, t))R2(ϕ(x, s))] − R2(Pϕ̂(x, t))R2(Pϕ̂(x, s)) (2.29)

The first part of (2.29) becomes the new memory kernel

K(2)(t) = E[R2(ϕ(x, t))R2(ϕ(x, 0))], (2.30)

while the second part of (2.29) will be taken into the integro-differential

equation using that its solution y(t) should be close to Pϕ̂(x, t). This yields

system version 2:

ẏ1(t) = y2(t) (2.31)

ẏ2(t) = −y1(t) −
y1(t)

1 + y1(t)2
−
∫ t

0

(

K(2)(t− s) − f (2)(y1(t))f
(2)(y1(s))

)

y2(s)ds,

where

f (2)(y1) = f (2)(y1, y2) = R2(y1, y2) = −y1 −
y1

1 + y2
1

. (2.32)

For the Hald system f (2) does not depend on y2, thus we write f (2)(y1) instead

of f (2)(y1, y2). In general f (2) will be a function of y1, . . . , ym. A more rigorous

motivation for splitting the memory kernel can be found in [16].

9

2.8 A Different Splitting

The splitting performed in (2.29) is not unique. Instead of splitting

R2(ϕ) − R2(ϕ̂) = −ϕ1 − ϕ1ϕ
2
3 + ϕ1 +

ϕ1

1 + ϕ2
1

= −ϕ1ϕ
2
3 +

ϕ1

1 + ϕ2
1

(2.33)

into R2 and R2 we now use the same procedure to split into −ϕ1ϕ
2
3 and

− ϕ1

1+ϕ2
1

and obtain system version 3:

ẏ1(t) = y2(t) (2.34)

ẏ2(t) = −y1(t) −
y1(t)

1 + y1(t)2
−
∫ t

0

(

K(3)(t− s) − f (3)(y1(t))f
(3)(y1(s))

)

y2(s)ds,

where

f (3)(y1) = − y1

1 + y2
1

(2.35)

and

K(3)(t) = E[
(

ϕ1(x, t)ϕ3(x, t)
2
) (

ϕ1(x, 0)ϕ3(x, 0)2
)

]. (2.36)

This yields a function f (3)(y) which is bounded. The importance of this fact

will be discussed in section 5.1. Of course there are infinitely many other

possible ways of splitting the kernel, and stricly speaking only the choice

f (2)(y1) = R2(y1, y2) is in some sense “natural”. The splitting perfomed in

system version 3 yields an especially easy structure for the Hald system, but

for general systems there is no recipe for an “easy” splitting.

2.9 Normalizing the Memory Kernel

For the plot presented in [3] the memory kernel K (3) was divided by the

constant E[x2
1 + x2

2] ≈ 1.715. In physics the procedure of splitting the kernel

is followed by this “normalization”.

Thus we define

K(4) =
1

E[x2
1 + x2

2]
·K(3) (2.37)

10

The corresponding system is denoted by system version 4:

ẏ1(t) = y2(t) (2.38)

ẏ2(t) = −y1(t) −
y1(t)

1 + y1(t)2
−
∫ t

0

(

K(4)(t− s) − f (4)(y1(t))f
(4)(y1(s))

)

y2(s)ds,

where

f (4)(y1) = f (3)(y1) = − y1

1 + y2
1

(2.39)

It should be pointed out, that the assumptions for applying the physical

splitting and dividing procedure are not satisfied here.

3 Computation of the Memory Kernels

The three memory kernels given by (2.25), (2.30) and (2.36) are of the type

K(i)(t) = E[gi(ϕ(x, t))gi(ϕ(x, 0))], (3.1)

where

g1(ϕ1, ϕ2, ϕ3, ϕ4) =
ϕ1

1 + ϕ2
1

− ϕ1ϕ
2
3 (3.2)

g2(ϕ1, ϕ2, ϕ3, ϕ4) = −ϕ1 − ϕ1ϕ
2
3 (3.3)

g3(ϕ1, ϕ2, ϕ3, ϕ4) = −ϕ1ϕ
2
3 (3.4)

Remembering that ϕ(x, t) is the solution of (2.2) with inital data x, we can

compute K(i) by Monte-Carlo sampling:

• Sample N initial values (x1, . . . , x4) from the canonical distribution

given by (2.5)

• Solve N times (2.2) on [0, T] with inital values (x1, . . . , x4)

• Average over all values gi(ϕ(x, t)) · gi(x)

11

Monte-Carlo sampling with 50000 samples yields the following kernel-functions:

0 5 10 15 20 25 30
−0.2

−0.1

0

0.1

0.2

0.3
Kernel K(1), 50000 samples

time

0 5 10 15 20 25 30
−1.5

−1

−0.5

0

0.5

1

1.5

2
Kernel K(2), 50000 samples

time

0 5 10 15 20 25 30
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
Kernel K(3), 50000 samples

time

Figure 3: memory kernels K
(1),K(2) and K

(3)

While K(3) is not too far from K(1), K(2) is much larger and is therefore

a very bad approximation to K (1). This does not give much hope in the

quality of approximation version 2. Note that K (4)(0) = 1
1.715

K(3)(0) ≈
K(1)(0), an interesting effect of the unmotivated normalization. K (3) shows

less oscillatory behaviour than K (1), especially for longer times, which may

have structural and computational advantages.

12

3.1 2D-Kernel as Quality Control

The canonical distribution Z−1e−H(x) is invariant under the flow (2.2), there-

fore

E[gi(ϕ(x, t))gi(ϕ(x, s))] = E[gi(ϕ(x, t− s))gi(ϕ(x, 0))]. (3.5)

This does not mean, that Monte-Carlo sampling with a finite number of

samples gives the same values. Computing the kernel as a two dimensional

function

K∗(t, s) = E[gi(ϕ(x, t))gi(ϕ(x, s))] (3.6)

yields a function which is nearly constant along the diagonals t− s = σ, but

not exactly. This observation can be used for two purposes:

• Use the variance of the values along one diagonal as a quality control,

respectively as a control for the required number of samples.

• First compute the kernel as a two dimensional function, then set K(σ)

as the average over all K∗(t, s) with t−s = σ. This has a point, because

solving the system is in general much more expensive than computing

the products gi(ϕ(x, t))gi(ϕ(x, s)).

3.2 Fast Monte-Carlo Sampling

The mean solution and the kernels require the computation of multidimen-

sional integrals of the types

E[ϕ|x̂] =

∫ +∞

−∞

∫ +∞

−∞
ϕ(x̂, x̃, t)e−H(x̂,x̃)dx̃ (3.7)

K(i)(t) = E[gi(ϕ(x, t))gi(ϕ(x, 0))] (3.8)

=

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
gi(x̂, x̃)e

−H(x̂,x̃)dx̃dx̂,

which can in general only be done approximately, e.g. by Monte-Carlo sam-

pling. The error given by Monte-Carlo sampling decreases like 1√
N

, where N

13

is the number of samples. Thus already a moderate number of samples yields

acceptable results, but its use is very limited, if high accuracy is required.

It has to be pointed out, that in this paper the difference between the

mean solution and the various approximations is governed by the several

approximations performed in section 2, thus classical Monte-Carlo sampling

with about 50000 samples yields a completely sufficient approximation to the

mean solution and the kernels.

If the crude approximations in section 2 are improved, an error of order
1√
N

will not be acceptable anymore. This problem can be overcome by a

technique introduced by Chorin in [9], which is based on orthogonal polyno-

mials.

Approximating
∫ +∞

−∞
g(x)e−H(x)dx (3.9)

by Monte-Carlo sampling yields an error of the magnitude of the standard

deviation
C(g)√
N
, (3.10)

where

C(g) =

√

1√
π

∫

g2(x)e−H(x)dx−
(

1√
π

∫

g(x)e−H(x)dx

)2

. (3.11)

Let

{p0(x), p1(x), . . . , pm(x)} (3.12)

be a set of polynomials of degree deg pm = m, which are orthonormal with

respect to the inner product

(u, v) =

∫ +∞

−∞
u(x)v(x)e−H(x)dx. (3.13)

Orthonomality of (3.12) yields
∫ +∞

−∞
g(x)e−H(x)dx =

∫ +∞

−∞

(

g(x) −
m
∑

k=1

bkpk(x)

)

e−H(x)dx (3.14)

14

for arbitrary coefficients bk, because for all k > 0
∫ +∞

−∞
pk(x)e

−H(x)dx = (1, pk) = 0. (3.15)

Choosing the coefficients b1, . . . , bm such that C (g −
∑m

k=1 bkpk) is small will

dramatically reduce the number of required samples to achieve a given accu-

racy.

If g allows an expansion in a Hermite series

g(x) =

∞
∑

k=1

akpk(x), (3.16)

where

ak =
1√
π

∫ +∞

−∞
pk(x)g(x)e

−H(x)dx, (3.17)

one can approximate a1, . . . , am by Monte-Carlo sampling, yielding the values

a∗1, . . . , a
∗
m, and set bk = a∗k.

4 Numerical Methods for the Integro-Differential

Equations that Arise in Optimal Prediction

In this section we generalize Runge-Kutta methods to methods for (2.27),

(2.31), (2.34) and (2.38) and investigate order of convergence, stability and

computational effort. Most ideas can be transferred to other types of methods

like e.g. multistep methods, but also for integro-differential equations Runge-

Kutta methods bear obvious abvantages as opposed to multistep methods,

such as stability and easy starting. Their disadvantage, the larger number

of right hand side evaluations, is less important, as we will see. Finally,

generalized Runge-Kutta methods qualify for deferred correction methods, if

high order accuracy is neccessary.

It should be poined out that great parts of the numerical discussion in

this section is valid for much more general problems than the specific prob-

lem described in section 2.

15

The presented integro-differential equations are of the types

ẏ(t) = R(y(t)) +

∫ t

0

K(t− s)y(s)ds, y(0) = y0 (4.1)

and

ẏ(t) = R(y(t)) +

∫ t

0

(K(t− s) + f(y(t))f(y(s)))y(s)ds, y(0) = y0. (4.2)

Both are generalizations of the ordinary differential equation

ẏ(t) = R(y(t)), y(0) = y0, (4.3)

so we want to generalize well-known numerical methods for (4.3) to methods

for (4.1) and (4.2), i.e. every method for (4.1) or (4.2) will be a numerical

method for (4.3) if K ≡ f ≡ 0. The numerical methods will be presented for

(4.2), equation (4.1) will then be the special case f ≡ 0.

4.1 Constructing Generalized Methods

All methods and their analysis will be presented for the case of equidis-

tant time steps. While the given methods can be generalized to variable

stepsizes, their analysis does in general not carry over – a well known issue

from ordinary differential equations. We will denote the exact solution of

the integro-differential equation by y(t) and the approximate solution on the

grid ∆ = {t0, . . . , tN} = {0, h, 2h, . . . , (N − 1)h, T} by uk = u(hk).

The basic idea in generalizing methods is to treat the right hand side of

(4.2) in the same way as for ordinary differential equations, with an additional

issue that the memory integral has to be approximated numerically.

Let us assume that we have a numerical solution u0, . . . , un at times

t0, . . . , tn and want to obtain un+1 at time tn+1 = tn + h. For the exact

solution y(t) the right hand side at tn is

F [tn, y] = R(y(tn)) +

∫ tn

0

(K(tn − s) + f(y(tn))f(y(s))) y(s)ds, (4.4)

16

which only makes sense for functions defined on the whole interval [0, tn]. We

approximate the integral by an O(hq)-accurate quadrature rule and obtain

an approximate right hand side

F̃ [tn, y] = R(y(tn)) + h

n
∑

j=0

wn,j (K(tn − tj) + f(y(tn))f(y(tj))) y(tj), (4.5)

where wn,j are appropriate weights. This right hand side also makes sense

for our numerical solution u, which is only defined at the grid points:

F̃ [tn, u] = R(un) + h

n
∑

j=0

wn,j (K(tn − tj) + f(un)f(uj))uj. (4.6)

We are using a q-th order quadrature rule, so smooth functions y satify:

F̃ [tn, y] = F [tn, y] +O(hq). (4.7)

4.2 Consistency

Suppose now a general one step method for ordinary differential equations

un+1 = un + hF(un+1, un, tn+1, h,R), (4.8)

which is p-th order accurate for (4.3), i.e.

yn+1 = yn + hF(yn+1, yn, tn+1, h,R) +O(hp+1), (4.9)

is generalized to a method for (4.1) or (4.2)

un+1 = un + hF(un+1, un, tn+1, h, F̃). (4.10)

Substituting the correct solution y(t) of (4.1) respectively (4.2) into (4.10)

yields:

yn+1 = yn + hF(yn+1, yn, tn+1, h, F̃) +O(hp+1)

= yn + hF(yn+1, yn, tn+1, h, F +O(hq)) +O(hp+1)

= yn + hF(yn+1, yn, tn+1, h, F) +O(hq+1) +O(hp+1),

17

which proves the statement:

A p-th order one step method for ordinary differential equations gener-

alized to equations of the type (4.1) respectively (4.2) is of order min(p, q), if

a q-th order quadrature rule is used and the method is zero-stable.

It should be pointed out that the order of the quadrature rule is given

only by the weights wn,j, so a high order quadrature rule has the same cost

as a low order rule. Therefore even for a first order method one should

not use the rectangle rule (wn,0, . . . , wn,n) = (1, . . . , 1, 0), but the second

order trapezoidal rule (wn,0, . . . , wn,n) = (1
2
, 1, . . . , 1, 1

2
), or the fourth order

Simpson’s rule (wn,0, . . . , wn,n) = (1
3
, 4

3
, 2

3
, 4

3
, . . . , 4

3
, 1

3
). Although the order of

the method cannot be increased, a better quadrature rule may give smaller

error constants. Unfortunately, the order of practicable quadrature rules is

bounded by the following facts:

• Newton-Cotes rules of higher order than 8 lead to instability caused by

negative weights wn,j.

• Compound rules of higher order than 3 work only for a certain number

of points, but our method requires quadrature rules which work for all

possible numbers of points. We will deal with this issue in section 4.6.3.

In the case of variable step sizes the weights will have to be computed

online, which is negligible effort for real problems.

4.3 Zero-Stability

A numerical method is called zero-stable, if the numerical solution is Lipschitz

with respect to pertubations of the initial values and the right hand side.

It is the condition which guarantees a consistent method to converge.

Although Runge-Kutta methods for (4.3) are always be zero-stable, their

generalized version is not automatically zero-stable, because in each step all

previous values u0, . . . , un are used. On the other hand it is not a classical

18

multistep method either, because the number of previous values used for each

step varies from step to step. Therefore stability analysis of all our methods

cannot be just reduced to analyzing roots of polynomials.

Numerical experiments with our generalized methods show zero-stablility

for equations (2.27), (2.31) and (2.34). Allow us to state the following asser-

tion, which we will not prove here.

If the kernel K is uniformly bounded on [0, T], i.e. ||K(t, s)|| ≤ M for

all t, s ≤ T , and f is Lipschitz, then a zero-stable method generalized to (4.1)

is zero-stable, if a consistent quadrature rule is used.

4.4 Computational Effort

The memory term in (4.2) requires us to firstly store the whole history of

the solution and secondly approximate an integral from 0 to t in every time

step. Approximating the memory integral is O(k) work in the k-th step.

For N steps this yields a computational effort of O(N 2) for our numerical

methods, which can become a problem for long calculations with small time

steps. This problem can be remedied, if

||K(t, s)|| → 0 fairly quickly as |t− s| → ∞, (4.11)

by setting K(t, s) = 0 for |t − s| > L for some reasonable L > 0 (“finite

memory”).

It should be remarked that for our model problem the kernels given in

section 3 decay, but keep on oscillating with a relevant amplitude for long

times. Numerical experiments show that setting these oscillations to zero

can change the solution significantly.

We will measure the cost of our methods in evaluations of R, K and f .

This may seem exagerated for our model problem, especially because K is

19

being precomputed, but in general K(t0), . . . , K(tn) will be large matrices,

which may be difficult to compute and store.

4.5 Stiffness

The vague but useful concept of stiffness can be carried over from ordinary

differential equations:

A method for (4.2) is called stiff, if explicit methods require unneccessar-

ily small time steps to guarantee stability.

If (4.3) is stiff, in general (4.2) will also be stiff, and even if (4.3) is well

behaved, K can make (4.2) stiff. As an example consider (4.1) with R ≡ 0

and K = −α2. The solution is y(t) = y0 cos(αt), so even a constant K can

make (4.1) very stiff. Thus implicit methods for (4.2) are important. In the

following we will present the trapezoidal rule as an example of an implicit

method.

4.6 Generalized Runge-Kutta Methods

We will generalize the explicit and implicit trapezoidal rule as well as the

classical Runge-Kutta 4 method to methods for (4.2). All these methods

will have the same order of accuracy as for ordinary differential equations,

which is not at all trivial for methods using intermediate time steps like

Runge-Kutta 4. We assume all our methods to be zero-stable.

4.6.1 Explicit Trapezoidal Rule

We approximate the integral in

yn+1 = yn +

∫ tn+1

tn

(

R(y(σ)) +

∫ σ

0

(K(σ − s) + f(y(σ))f(y(s)))y(s)ds

)

dσ

(4.12)

20

by the trapezoidal rule at tn and tn+1 and discretize the memory integrals by

an at least second order quadrature rule

un+1 = un +
h

2

(

R(un) + h

n
∑

j=0

wn,j (K(tn − tj) + f(un)f(uj))uj (4.13)

+R(un+1) + h

n+1
∑

j=0

wn+1,j (K(tn+1 − tj) + f(un+1)f(uj))uj

)

.

To make sense of un+1 in the right hand side we now perform one explicit

Euler predictor step to approximate un+1. This corresponds to the explicit

method with Butcher array
0
1 1

1
2

1
2

.

An interesting feature is that in each step only one memory sum has to

be computed, although two sums appear in (4.13). The reason is that the

second sum in the n-th step is basically the first sum in the (n + 1)-st step,

only the last summand can vary. The following algorithm gives an efficient

implementation of the explicit trapezoidal rule:

ksaved = R(u0)
I2 = h

2
f(u0)u0

do
I1 = h

2
(Kn+1u0 + 2Knu1 + ... + 2K1un)

k1 = ksaved

ũ = un + hk1

f̃ = f(ũ)

k2 = R(ũ) +
(

I1 + h
2
K0ũ

)

+ f̃ ·
(

I2 + h
2
f̃ · ũ

)

un+1 = un + hk1+k2

2

fn+1 = f(un+1)
ksaved = R(un+1) +

(

I1 + h
2
K0un+1

)

+ fn+1 ·
(

I2 + h
2
fn+1un+1

)

I2 = I2 + hfn+1un+1

loop

21

evaluations of R f K

k-th step 2 2 k + 1
N steps 2N 2N 1

2
(N2 + 3N + 2)

As stated before we have O(N) evaluations of R and f and O(N 2) evaluations

of K.

4.6.2 Implicit Trapezoidal Rule

We start again with (4.13), but now we solve for un+1, which corresponds to

the implicit trapezoidal rule with Butcher array
0
1 1

2
1
2

1
2

1
2

.

Putting everything depending on un+1 to the left hand side yields the

following generally nonlinear implicit equation for un+1

Aun+1 −
h

2
R(un+1) − Bf(un+1) −

h2

2
wn+1,n+1f

2(un+1)un+1 = c, (4.14)

where

A = I − h2

2
wn+1,n+1K(0), (4.15)

B =
h2

2

n
∑

j=0

wn+1,jf(uj)uj, (4.16)

c = un +
h

2

(

R(un) + h

n
∑

j=0

wn,j (K(tn − tj) + f(un)f(uj)) uj (4.17)

+ h

n
∑

j=0

wn+1,jK(tn+1 − tj)uj

)

.

This equation can be solved by Newton iteration. In the case f ≡ 0, i.e.

for equation (4.1) it takes an especially simple structure, which differs from

ordinary differential equations only by having A instead of I in front of un+1.

Once the constants have been computed, the iteration itself does not

require any evaluations of K anymore. As we have seen before the cost of

22

long time calculations will be governed by evaluations of K, which makes

the normally very expensive iteration steps of implicit methods less painful

in relation to ordinary differential equations.

4.6.3 Runge-Kutta 4

The classical Runge-Kutta 4 method with Butcher array

0
1
2

1
2

1
2

0 1
2

1 0 0 1
1
6

2
6

2
6

1
6

can be generalized to a fourth order method for (4.2), but the implemen-

tation effort is tremendous compared to the version for ordinary differential

equations. The three major problems are as follows:

• To obtain fourth order we have to use at least Simpson’s rule for the

memory term. The compound Simpson’s rule is only defined for an odd

number of points, but the number of points in the memory sum takes

every value from 1 to N . Using a four-point Newton-Cotes rule for the

last points, if the number of points is even, will preserve fourth order.

While this fix works for Simpson’s rule, numerical experiments show

that it fails for higher order integration rules like compound Boole’s

rule, which leaves Simpson’s rule as the highest order quadrature rule

that works for our numerical methods.

• In the 2nd and 3rd stage steps with length h
2

are performed. This yields

values at t0, t1, . . . , tn, tn + h
2
, which is nonequidistant. If our grid is

equidistant, we can use the nonequidistant three-point rule (3
8
, 9

8
, 0),

respectively four-point rule 5
192

(13, 50, 25, 8) for the last points. In the

case of nonequidistant time steps we will have to calculate weights

anyway, which makes this a minor issue. It should be pointed out

that using halfsteps for the approximation of the memory integral will

23

destroy the fourth order accuracy, because halfsteps are not fourth

order accurate.

• In the first two steps there may be just two values available for the

memory integral, which therefore can only be approximated by the

trapezoidal rule. Still our method will be fourth order, because ap-

proximating an interval of length h, respectively h
2

by the trapezoidal

rule yields an error of O(h3) in the right hand side. Therefore the local

error in this one step is O(h4) instead of O(h5), which maintains the

fourth order, because it is just one step.

As with the trapezoidal rule one can save half of the evaluations of K,

because the two halfsteps use the same history and the last stage corresponds

to the first stage in the next step.

4.7 Conclusions

The presented generalized Runge-Kutta 4 method works very well for the

optimal prediction equations in our model problem. For more complex ap-

plications the equations that arise are expected to be stiff, which makes the

implicit trapezoidal rule a good method. All methods become easier if f ≡ 0.

While explicit methods for (4.2) are just more complicated to implement, for

implicit methods an f 6≡ 0 may yield an additional nonlinear term. Thus just

from a computational point of view splitting the kernel should be avoided.

The presented way of generalizing numerical methods could not be suc-

cessfully applied to achieve methods of order higher than four, because of the

previously descibed problems with high order quadrature rules. For a higher

order approach deferred correction methods will be preferable, for which the

presented methods qualify as the required low order methods.

24

5 Numerical Results for Fixed Initial Data

In this section we solve the four integro-differential equations (2.27), (2.31),

(2.34) and (2.38) for inital data x̂ = (x1, x2) = (1, 0) and compare the results

with the mean solution, which is being computed by Monte-Carlo sampling as

described in section 2.2. The memory kernels K (1), . . . , K(4) are precomputed

by Monte-Carlo sampling as described in section 3. They will be used for

all following computations with different initial data. For all Monte-Carlo

computations 50000 samples were used. Checks with different numbers of

samples show that the error produced by Monte-Carlo sampling is smaller

than the resolution of the plots.

All integro-differential equations were solved numerically with the gener-

alized Runge-Kutta 4 method presented in section 4.6.3 with constant step

size h = 0.1. To provide the neccessary values of K (i) at the halfsteps the

kernels were computed by the classical Runge-Kutta 4 method with step size

h = 0.05. The mean solution was integrated by the classical Runge-Kutta 4

method with step size h = 0.1. Checks with smaller step sizes show that the

error produced by numerically integrating the equations is smaller than the

resolution of the plots.

The computations yield the following results:

0 2 4 6 8 10 12 14 16 18 20
−1

0

1
mean solution
approximation version 1

0 2 4 6 8 10 12 14 16 18 20

−1

0

1
mean solution
approximation version 1

Figure 4: mean solution and approximation version 1

25

0 2 4 6 8 10 12 14 16 18 20
−1

0

1
mean solution
approximation version 2

0 2 4 6 8 10 12 14 16 18 20

−1

0

1
mean solution
approximation version 2

Figure 5: mean solution and approximation version 2

0 2 4 6 8 10 12 14 16 18 20
−1

0

1
mean solution
approximation version 3

0 2 4 6 8 10 12 14 16 18 20

−1

0

1
mean solution
approximation version 3

Figure 6: mean solution and approximation version 3

0 2 4 6 8 10 12 14 16 18 20
−1

0

1
mean solution
approximation version 4

0 2 4 6 8 10 12 14 16 18 20

−1

0

1
mean solution
approximation version 4

Figure 7: mean solution and approximation version 4

5.1 Observations and Interpretation

None of the approximations gives overwhelming results, but obviously ap-

proximation 1,3 and 4 look similar to the mean solution, while approxima-

tion 2 shows a totally different behaviour. Systems 2,3 and 4 differ from

system 1 in that way, that one further approximation in the derivation of the

integro-differential equations is performed. Thus the apparent discrepancy

26

in the behaviour must result from this fact. An explanation why system 2

gives such different results than systems 3 and 4 is given by the following

facts:

• K(3) and K(4) are about as large as K(1), while K(2) has much larger

values (see section 3).

• f (3) = f (4) = − y1

1+y2
1

is bounded by 1
2
, thus the products f(y1(t))f(y1(s))

in (2.34) and (2.38) are always bounded by 1
4

and become negligibly

small for values y1 � 1 or y1 � 1. On the other hand f (2) = −y1− y1

1+y2
1

is unbounded and therefore the right hand side of (2.31) is not even

Lipschitz. Indeed, Okunev shows in [16] that system version 2 can

produce a blow up for large initial data.

This leads us to the conclusion that the procedure of splitting the memory

kernel is only reasonable, if the new kernel K is not too far away from the

old kernel and the function f is bounded and not too large. For this reason

we will from now on not focus on system version 2 anymore.

Approximations version 1,3 and 4 follow the mean solution quite well up

to t = 10, then decay too slowly or fall out of phase. One reason for this fact

is that the mean solution shows very irregular behaviour at t = 12, which an

integro-differential equation of type (2.27) or (2.34) is unlikely to reproduce.

Up to t = 6 systems 1 and 4 produce pretty good approximations to the

mean solution, while system 3 shows too strong decay. It seems as if the

“normalization” of the kernel gives exactly the correct rate of decay for short

times.

The question, if the procedure of splitting the kernel has advantages,

cannot be answered yet. On the one hand system 4 yields a slightly better

approximation than system 1. On the other hand system 2 gives horrible

results. In section 6 we will investigate if these observations are valid for

general initial data.

27

6 Scaling of the Mean Solution and Approx-

imations

In this section we will focus on qualitative behaviour of the mean solution

and the approximations, if the initial values for the first oscillator x1, x2 are

being scaled.

We will consider

• the mean solution E[ϕ(x, t)|x̂]

and the approximations

• first order optimal prediction Φ̇ = R(Φ)

• the t-model

Φ̇(t) = R(Φ(t)) + S(t,Φ(t)), (6.1)

where
(

S1(t,Φ1,Φ2)
S2(t,Φ1,Φ2)

)

=

(

0

−t Φ2
1Φ2

(1+Φ2
1)2

)

(6.2)

The derivation of (6.1) is given in [2].

• the integro-differential equation version 1

ẏ(t) = R(y(t)) −
∫ t

0

K(1)(t− s) · y(s)ds (6.3)

• the integro-differential equation version 3

ẏ(t) = R(y(t)) −
∫ t

0

(

K(3)(t− s) − f(y(t))f(y(s))
)

· y(s)ds (6.4)

• the integro-differential equation version 4, i.e. with the renormalized

kernel.

28

As seen before, the mean solution is a decaying oscillation, first order optimal

prediction oscillates without decay, and both the t-model and the integro-

differential equations yield decaying oscillations.

We now consider initial values
(

ϕ1(0)
ϕ2(0)

)

=

(

x1

x2

)

= α

(

1
1

)

, α ∈ (0,∞) (6.5)

and ask, how period and decay of the mean solution change under scaling

the initial conditions and how well the different approximations reflect this

behaviour. Such rather qualitative analysis may say more about the quality

of the approximations than comparing the results for a certain choice of initial

values.

6.1 Numerical Results

The following graphs show the first component (position) of the mean solu-

tion and its approximations for initial values α ∈ {0.1, 0.5, 1, 2, 4, 10}. The

second components (momentum) show the same qualitative behaviour.

The first set of graphs compares first order optimal prediction, the t-model

and the integro-differential equation version 1 with the mean solution.

0 2 4 6 8 10 12 14 16 18 20

−0.1

−0.05

0

0.05

0.1

Position of 1st Oscillator, 20000 samples

time
0 2 4 6 8 10 12 14 16 18 20

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Position of 1st Oscillator, 20000 samples

time

29

0 2 4 6 8 10 12 14 16 18 20

−1

−0.5

0

0.5

1

Position of 1st Oscillator, 20000 samples

time
0 2 4 6 8 10 12 14 16 18 20

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Position of 1st Oscillator, 20000 samples

time

0 2 4 6 8 10 12 14 16 18 20
−6

−4

−2

0

2

4

6
Position of 1st Oscillator, 20000 samples

time
0 2 4 6 8 10 12 14 16 18 20

−15

−10

−5

0

5

10

15
Position of 1st Oscillator, 20000 samples

time

mean solution
first order optimal prediction
t−model
integrodifferential equation version 1

The second set of graphs compares the integro-differential equations ver-

sion 1, 3 and 4 with the mean solution.

0 2 4 6 8 10 12 14 16 18 20

−0.1

−0.05

0

0.05

0.1

Position of 1st Oscillator, 20000 samples

time
0 2 4 6 8 10 12 14 16 18 20

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Position of 1st Oscillator, 20000 samples

time

30

0 2 4 6 8 10 12 14 16 18 20

−1

−0.5

0

0.5

1

Position of 1st Oscillator, 20000 samples

time
0 2 4 6 8 10 12 14 16 18 20

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Position of 1st Oscillator, 20000 samples

time

0 2 4 6 8 10 12 14 16 18 20
−6

−4

−2

0

2

4

6
Position of 1st Oscillator, 20000 samples

time
0 2 4 6 8 10 12 14 16 18 20

−15

−10

−5

0

5

10

15

Position of 1st Oscillator, 20000 samples

time

integrodifferential equation version 1
integrodifferential equation version 3
integrodifferential equation version 4

mean solution

Allow us to first list the results in the following table:

period decay
α small α large α small α medium α large

mean solution less than 2π 2π fast medium slow

1st order OP
√

2π 2π none
t-model ≈ like 1st order OP slow fast slow
IDE 1 ≈ like 1st order OP fast fast fast
IDE 3 longer than 1st order OP fast medium slow
IDE 4 between IDE 1 and IDE 3 fast medium slow

6.2 Arguments for Some Observations

For most of the observations listed above heuristic explanations can be given.

Some are rigorous arguments, others are based on experience and may be con-

31

sindered more “handwaving”. Still they give some insight into the behaviour

of the different approximations, thus we do not omit them.

• The period of the mean solution is about 2π for large α and smaller for

small α:

The mean solution is not periodic, so we define by “period” heuristically

the distance between two consecutive maxima with a value which is not

too small. The first and the second maximum of the first components

e.g. have the distance 2π for large α and about 5.5 for small α. From

(2.2) it follows that

ϕ̈1 = −(1 + ϕ3(t)
2)ϕ1 (6.6)

The comparison theorem [17] yields, that the period of ϕ1(t) is always

less than or equal 2π, and it will be the smaller the larger ϕ3(t) is.

For short times the value of ϕ3(t) will be governed by the value of the

initial values x3, x4, which are sampled from the distribution

ρ(x3, x4) = Z−1 exp

(

−1

2

(

(1 + α2)x2
3 + x2

4

)

)

. (6.7)

For large α the variance of f is much smaller than for small α making

shorter periods less important. Thus for large α the mean solution’s

period is about 2π, while our experiments show, that for small α it is

shorter, but still longer than the approximations’ period.

• The mean solution decays the slower the larger α is:

The rate of decay is given by the fact how quickly all possible solutions

with the same x1, x2 depart from each other, which is like the period

governed by the variance of the initial values x3, x4. Thus large α yield

a much smaller rate of decay.

• First order optimal prediction oscillates faster for small α:

The equations of motion
(

Φ̇1

Φ̇2

)

=

(

Φ2

−Φ1 − Φ1

1+Φ2
1

)

(6.8)

32

become asymptotically equal to

(

Φ̇1

Φ̇2

)

=

(

Φ2

−2Φ1

)

for α (and there-

fore Φ1) small and

(

Φ̇1

Φ̇2

)

=

(

Φ2

−Φ1

)

for α large. Thus first order

optimal prediction has a period of about
√

2π for small α and about

2π for large α.

• The t-model has about the same period as first order optimal prediction:

Equation (6.1) is basically first order optimal prediction with an addi-

tional term in the right hand side, which produces decay. Unless the

decay is too fast (as e.g. for α ≈ 2), this “damping” term is small and

hence does not influence the period much.

• The t-model decays fast for moderate values of α, otherwise slowly:

Figure 10 shows the solution of the t-model for the cases α ∈ {0.1, 2, 1000}.
The t-model produces a slow and “smooth” decay for small α, a very

fast decay for moderate α, and for large α the solution does at first

decay slowly and then quickly decays to 0.

0 10 20 30 40 50 60 70 80 90

−0.1

−0.05

0

0.05

0.1

0 10 20 30 40 50 60 70 80 90

−2

−1

0

1

2

0 10 20 30 40 50 60 70 80 90
−1500

−1000

−500

0

500

1000

1500

Figure 10: solution of the t-model for different initial values

33

This behaviour can be explained by the function S(t,Φ), which for

every fixed t vanishes for Φ → 0 as well as Φ → ∞, but has a value for

moderate values of Φ.

6.3 Scaling of the Integro-Differential Equations

The effect of the convolution term in the right hand side of (2.27) and (2.34)

is much more complicated than the influence of S in the t-model.

To be able to compare the equations let us state that just setting f ≡ 0

in (2.34) produces a visible difference in the results only for α ≈ 1. Thus ap-

proximations version 3 and 4 can basically be obtained by solving (2.27) with

the kernels K(3) respectively K(4). This observation is based on numerical

experiments, supported by the fact that f(y) vanishes for y → 0 and y → ∞.

Although K(3) and K(4) look very similar to K(1), surpisingly the corre-

sponding solutions show a very different behaviour:

• While approximation 1 has nearly the same period as first order op-

timal prediction, approximation 3 oscillates slower, approximating the

mean solution much better for small α. The period of approximation

4 is slightly shorter than the period of approximation 3, which was to

expect, because the kernel is smaller, i.e. closer to first order optimal

prediction. For large α on the other hand approximation 1 has the same

period as the mean solution, while approximations 3 and 4 oscillate too

slowly.

• More surpising is the rate of decay. While the rate of decay of approx-

imation 1 is almost independent of α and therefore much too strong

for large α, approximations 3 and 4 decay slower for large α, i.e. they

reflect the behaviour of the mean solution — a very interesting effect

of the splitting.

34

6.4 Conclusions

The mean solution oscillates and decays the slower the larger the initial values

are. Qualitatively all approximations reflect this behaviour for the period.

The approximations that arise from splitting the kernel also show the correct

behaviour for the rate of decay, while the other approximations fail to do so.

For small initial values the integro-differential equations are the closest

approximations to the mean solution. Among them approximation 3 captures

the period the best.

An almost perfect approximation for large initial values is first order

optimal prediction, all other approximations decay too fast. Among the

integro-differential equations version 1 has the correct period, but decays

much too fast, while approximations 3 and 4 decay much slower, but their

period is too large.

7 An Estimate of the Errors Produced by the

Different Approximations

As derived in section 2.4 the following identity is valid

∂

∂t
Pϕi(x, t) = PRi(ϕ̂(x, t)) +

∫ t

0

Pe(t−s)LPLesQLQLxids, (7.1)

where Pϕi(x, t) is the i-th component of the mean solution. The first order

optimal prediction equations can be obtained by performing the following

approximations:

• Drop the memory term
∫ t

0
Pe(t−s)LPLesQLQLxids

• Interchange P and Ri

Let Φi(t) denote the i-th component of the solution of the first order optimal

prediction equations

Φ̇(t) = R(Φ(t)), Φ(0) = x̂ (7.2)

35

To estimate the error made by first order optimal prediction

Ei(t) = Pϕi(x, t) − Φi(t) (7.3)

we introduce the following functions:

ψi(t) = x̂ +

∫ t

0

PRi (ϕ̂(x, s)) ds (7.4)

ζi(t) = x̂ +

∫ t

0

Ri (Pϕ̂(x, s)) ds (7.5)

Both ψi and ζi can be approximated by Monte-Carlo sampling. ζi is obtained

by applying Ri to the mean solution and approximating the integral by the

trapezidal rule. ψi is approximated as follows:

• Fix x̂ = (x1, x2) and sample x̃ = (x3, x4) N times from the conditioned

distribution given by (2.6)

• Solve N times (2.2) with inital values (x̂, x̃)

• Apply Ri to each of the N solutions, then average

• Approximate the integral by the trapezoidal rule

The error Ei can then be represented as

Ei(t) = Pϕi(x, t) − Φi(t) (7.6)

= (Pϕi(x, t) − ψi(t)) + (ψi(t) − ζi(t)) + (ζi(t) − Φi(t))

The three terms have the following interpretations:

• Pϕi(x, t) − ψi(t) Dropping the memory term

• ψi(t) − ζi(t) Interchanging P and Ri

• ζi(t) − Φi(t) Going over to an ordinary differential equation

36

For the Hald oscillator the second components of the functions above are of

interest, because R2 is nonlinear. Figure 11 shows numerical approximations

to the functions Pϕ2(x, t),ψ2(t),ζ2(t) and Φ2(t).

0 2 4 6 8 10 12
−1.5

−1

−0.5

0

0.5

1

1.5
mean solution
ψ

2
(t)

ζ
2
(t)

1st order OP

Figure 11: mean solution, first order optimal prediction and functions “in between”

One can observe that neither dropping the memory term nor interchanging

P and Ri produce large errors, while going over to an ordinary differential

equation changes the function significantly. In other words, none of the ap-

proximations yields a large error in one step, but putting a slightly incorrect

value back into the equations right hand side lets errors build up.

In comparison of the two approximations interchanging P and Ri yields a

smaller error than dropping the memory term. On the other hand the latter

approximation has been significantly improved by non-Markovian optimal

prediction by integro-differential equations or the t-model, giving rise to the

assertion that exacly the interchange of P and Ri is the step which prevents

better results. A similar investigation for non-Markovian optimal prediction

could clarify this issue.

37

8 Conclusions

We have described how to apply the non-Markovian optimal prediction the-

ory efficiently to Hamiltonian systems, including improvements in the com-

putation of the memory kernels and generalizing Runge-Kutta methods to

numerical methods for the integro-differential equations that arise. We ap-

plied the stated methods to the Hald oscillator as a simple model problem and

performed a comparison of the different versions of non-Markovian optimal

prediction.

None of the described approximations gave overwhelming results, al-

though some approximations gave comparably good resuls for special choices

of initial values. Surpizingly an approximation based on splitting and nor-

malizing the kernel often gave better results than the version which calculates

the kernel directly. This was to observe especially for large initial values. On

the other hand an other version of splitting gave horrible results and could

even produce a blow up. Because there is no reason to prefer a priori one

splitting to an other, we draw the conclusion that splitting the kernel is a

procedure which should be avoided.

Our attempt to get an impression about the importance of the several

approximations has circumstantiated the assertion that a way has to be found

to avoid interchanging the right hand side of the first order optimal prediction

equations with the conditional expectation projection.

9 Acknowledgements

We would like to thank Prof. A.J. Chorin and Prof. O.H. Hald for useful

advice and encouragement and Ms. T. Chow, Mr. E. Ingerman, Mr. K. Lin,

Mr. P. Okunev and Ms. H. Shvets for helpful discussions and comments.

38

References

[1] J. Bell, A.J. Chorin and W. Crutchfield, Stochastic optimal prediction

with application to averaged Euler equations, Proc. 7th Nat. Conf. Com-

put. Fluid Mech., C.A. Lin (ed), Pingtung, Taiwan, (2000), pp. 1-13.

[2] A.J. Chorin, O. Hald and R. Kupferman, Optimal prediction with mem-

ory, submitted for publication, 2001.

[3] A.J. Chorin, O. Hald and R. Kupferman, Non-markovian optimal pre-

diction, Monte Carlo Methods and Applications, Vol. 7, No. 1-2, pp.

99-109 (2001).

[4] A.J. Chorin, O. Hald and R. Kupferman, Optimal prediction and the

Mori-Zwanzig representation of irreversible processes, Proc. Nat. Acad.

Sc. USA, 97, (2000), pp. 2968-2973.

[5] A.J. Chorin, A. Kast and R. Kupferman, On the prediction of large-

scale dynamics using unresolved computations, Contemp. Math., 238,

(1999), pp. 53-75.

[6] A.J. Chorin, A. Kast and R. Kupferman, Unresolved computation and

optimal prediction, Comm. Pure Appl. Math., 52, (1999), pp. 1231-1254.

[7] A.J. Chorin, A. Kast and R. Kupferman, Optimal prediction of under-

resolved dynamics, Proc. Nat. Acad. Sc. USA, 95 (1998), pp. 4094-4098.

[8] A.J. Chorin, Probability, Mechanics, and Irreversibility, Lecture notes,

UC Berkeley Math. Dept., 2000.

[9] A.J. Chorin, Hermite expansions in Monte-Carlo computation, J. Comp.

Phys. 8, (1971), pp. 171-186.

[10] A.J. Chorin, R. Kupferman and D. Levy, Optimal prediction for Hamil-

tonian partial differential equations, J. Comput. Phys., 162, (2000), pp.

267-297.

39

[11] O. Hald, Optimal prediction and the Klein-Gordon equation, Proc. Nat.

Acad. Sc. USA, 96, (1999), pp. 4774-4779.

[12] O. Hald and R. Kupferman, Existence of orthogonal dynamics, preprint,

2001.

[13] O. Hald and R. Kupferman, Convergence of optimal prediction for non-

linear Hamiltonian systems, submitted for publication, 2000.

[14] A. Kast, Optimal prediction of stiff oscillatory mechanics, Proc. Nat.

Acad. Sci. USA, 97, (2000), in press.

[15] P. Linz, Analytical and numerical methods for Volterra equations,

Philadelphia, SIAM (1985).

[16] P. Okunev, On comparative performance of three different algorithms

for the non-markovian optimal prediction applied to the Hald system,

LBNL-Report, 2001.

[17] V.V. Stepanov, A course of differential equations, Leningrad, State pu-

plishing house for physical and mathematical literature (1959).

40

