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Abstract

This report considers the problem of stabilising the temperature in the
mould during a casting process. A general mathematical model of the prob-
lem is formulated, as well as specific models. A simplified model disregarding
the state transition between liquid and solid is solved in one and two dimen-
sions. The 1D problem is solved by a Fourier coefficient method as well as
a finite difference method. The Fourier method is also used to obtain cer-
tain results very inexpensively. The 2D problem is solved by fine elements
using FEMLAB. The 1D finite difference method is then extended to a 1D
model including the change of state, which requires to solve a problem with
a moving boundary.



1.1 Introduction

For successful casting of certain AlSi parts (covers for electric devices) it
is necessary that the mould has a sufficiently high temperature. If the
temperature of the mould is too low the alloy cools too quickly, resulting in
low quality parts. However, the required temperature is quite high, more
than 300◦C, meaning that both reaching and maintaining this temperature
is problematic.

To maintain a high temperature the mould has 10-12 mm wide channels
drilled into it, through which a 400◦C liquid is pumped at a high velocity.
Currently the required temperature is reached by performing the casting
process and throwing away the low quality parts.

The casting process can be described as follows (Figure 1.1):

• Liquid alloy at a temperature of about 700◦C is poured into the mould.
(≈ 3 seconds).

• The alloy is cooling and solidifying. (≈ 60 seconds).

• The product is removed from the mould. (≈ 15 seconds).

• The mould is closed and the process restarts.

Figure 1.1: The casting process.

The temperature of the mould will rise gradually, and eventually production
of high-quality parts can begin. From experience it is known that a stable
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production temperature is reached after 60-80 iterations of the casting pro-
cess. The cost of the products that have to be thrown away is negligible,
more important is the time aspect. Currently it takes more than an hour to
reach a stable temperature, and it is therefore of interest to investigate how
to minimise this time. Of particular interest is the effect of the position of
the channels and the influence of preheating the mould before casting starts.
In Section 1.2 we will describe the important physical effects and derive the
governing equations. We will set up one-dimensional and two-dimensional
models, with different phenomena included respectively neglected. In Sec-
tion 1.3 a Fourier method will be described, how the solution to the one-
dimensional problem can be obtained directly. Section 1.4 will describe a
finite difference approach for the same problem. In Section 1.5 the two-
dimensional problem will be treated using FEMLAB. Section 1.6 will in-
troduce the aspect of a moving boundary between liquid and solid alloy into
the one-dimensional problem. In Section 1.7 the results will be summarised,
and an outlook about how to continue our work will be given.

1.2 Basic Modelling

To minimise the stabilisation time a mathematical model of the heat transfer
in the mould is desirable. The governing principle for this problem is conser-
vation of heat. Denoting heat by Q and the heat flux by q, the conservation
law takes the following form in the absence of heat sources/sinks:

d

dt

∫

Ω
Q dV +

∫

∂Ω
q dA = 0. (1.1)

According to Fourier’s Law the heat flux can be expressed as

q = −κ∇u, (1.2)

where u is the temperature and κ is the thermal conductivity, an experimen-
tally determined constant. Also, by introducing the specific heat capacity
Cp and the density ρ, the heat can be written as Q = ρ · Cp · u. Inserting
this into the conservation law and applying the divergence theorem gives,

d

dt

∫

Ω
ρ · Cp · u dV +

∫

Ω
∇q dV = 0. (1.3)

The integration is over a constant volume so the differentiation can be moved
inside, and the differential form of the conservation law is obtained by ob-
serving that the above equation must hold for subsets of the domain Ω.
After rearranging terms the differential form becomes:

ut = D∇
2u, (1.4)

where the new constant, named the diffusivity or the diffusion constant, is
defined as D = κ

ρ·Cp
.
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Models and Boundary Conditions

To apply equation (1.4) to the current problem the boundary conditions
must be defined, which requires a closer look at the geometry and determi-
nation of the thermal properties of the different items involved.
The mould and the machinery has in reality a somewhat complicated geom-
etry, but to obtain qualitative behaviour we consider a simplified geometry,
where the machinery, the mould and the mould chamber are all cubic. The
channels are also taken to have square cross sections1, so that a vertical
cross section of the mould will appear as shown in Figure 1.2.

Figure 1.2: 2D cross section of the mould. The 1D model is taken to be
along the diagonal.

The mould has a length of approximately 50 cm, while the mould chamber
is approximately 10 cm long. The surrounding machinery is not shown in
the figure, but has a size of about 150 cm. Because the mould is subjected
to a high pressure during the cooling process, the minimum channel distance
from the chamber is given to be 3 cm, and the size of the channels is about
11 mm. The cross section corresponds to a 2D model of the problem, while
a 1D model is obtained by considering the diagonal as shown in the figure.
A summary of the thermal properties of the mould and the alloy is shown in
Table 1.1. The fact that the alloy changes state from liquid to solid will be
ignored for the moment, and the properties given in the table are for solid
alloy. (The state transition of the alloy will be considered in Section 1.6.)

1Actually the channels are drilled into the mould, meaning that they will have a circular
cross section.
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The surrounding machinery has properties very similar to the mould, hence
they will be assumed equal.

κ [W/Km] ρ [kg/m3] Cp [J/kg K] D [m2/s]

Mould 30 7800 460 8.36 ·10−6

Alloy 230 2650 920 94.34 ·10−6

Table 1.1: Thermal properties

Obviously the conductivity of the mould is much less than the conductivity
of the alloy, which partly explains why the temperature stabilisation process
is so slow. Mathematically the conductivity difference is handled through
the boundary conditions.
Considering the solution of equation (1.4) in the domain shown in Figure
1.2 it is evident that the temperature u must be continuous across the al-
loy/mould border at all times, except at the exact moment when alloy is
being poured into the mould chamber. The second boundary condition fol-
lows from applying the conservation principle at the boundary. Naming the
alloy/mould boundary ΓM and applying Fourier’s Law (1.2) on each side
gives the flux continuity condition:

κ1∇u
∣

∣

Γ+

M

= κ2∇u
∣

∣

Γ−

M

, (1.5)

where the index 1 refers to the mould and the index 2 refers to the alloy.
Naturally there will also be boundary conditions at the channel/mould and
machine/air interfaces2, but these pose no problem as they are simply of
the Dirichlet type. While the channel/mould condition should be out of
discussion, there are different possible boundary conditions how to model
the heat loss from the machine to the air. Mostly precise would be Newton’s

Law of Cooling, but due to the low conductivity of the mould/machine
the machine edges will not heat up significantly over the relevant timespan
considered here, so it is sufficiently precise to prescribe Dirichlet boundary
conditions of room temperature at the machine edges.
The resulting 1D and 2D models with boundary conditions are shown in
Figure 1.2 (a) and (b). Note that the distance from the channels to the
machine/air interface is greatly downscaled in Figure 1.2 (b).

The Process of Repeated Casting

The initial condition when the casting starts is that the mould and machin-
ery have room temperature (≈ 30◦C), while the liquid alloy in the mould
chamber is at 700◦C. To obtain a time-continuous solution for the casting
process the opening of the mould would have to be modelled. However, the

2There will be no mould/machine interface since the thermal properties are assumed
equal.

5



(a) 1D

(b) 2D

Figure 1.3: 1D and 2D models with boundary conditions.
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heat loss to air during opening is assumed to be small enough to be neglected
in the first approximation. If the pouring time, which is rather short, is also
ignored, a solution over a long time can be found by the following steps:

1. Start with initial temperature of 700◦C inside the chamber and 30◦C
in the mould.

2. Solve the heat equation over 60 seconds.

3. Set the temperature in the chamber again to 700◦C. This represents
pouring in the liquid alloy for the next casting.

4. Go to 2.

During this process the temperature of the mould will heat up from 30◦C to
a stable temperature of about 400◦C. This temperature will not be constant
over time, but it will be the same at the beginning of each casting. So
the temperature in the mould will “converge” to a periodic behaviour. Of
interest is an understanding how fast this stable temperature is reached and
how the time to reach it depends on different parameters, e.g. the position
of the channels or a possible preheating of the mould.

1.3 A Fourier Method for the 1D Problem

In this section we apply a Fourier expansion in eigenfunctions to the one-
dimensional problem to obtain some analytical estimates. The mathematical
description of the one-dimensional problem can due to symmetry be given on
half the domain with homogeneous Neumann boundary conditions at x = 0
and homogeneous Dirichlet boundary conditions at x = L (by choosing a
temperature scale which is 0 at the temperature of the channels of 400◦C):

ut(x, t) = D1uxx(x, t) on (0, d) × (0,∞) (1.6)

ut(x, t) = D2uxx(x, t) on (d, L) × (0,∞)

u(x, 0) = u0(x) ∀x ∈ [0, L]

ux(0, t) = 0 ∀t > 0

u(L, t) = 0 ∀t > 0

u−(d, t) = u+(d, t) ∀t > 0

κ1u
−

x (d, t) = κ2u
+
x (d, t) ∀t > 0,

where

• x is the distance from the symmetrical centre,

• t is time,

• u(x, t) is temperature,
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• d is the distance to from the centre to the edge of mould,

• L is the distance to from the centre to the channels,

• u0(x) is the initial temperature distribution across the system,

• D1 and D2 are the diffusion constants of the two materials, and

• κ1 and κ2 are the heat conductivity constants of the two materials.

In order to obtain an analytical solution, we seek for solutions of the eigen-
value problem:

−D1u
′′

1(x) = λu(x) ∀x ∈ (0, d) (1.7)

−D2u
′′

2(x) = λu(x) ∀x ∈ (d, L)

u′(0) = 0

u(L) = 0

u1(d) = u2(d)

κ1u
′

1(d) = κ2u
′

2(d).

Each such function has a particular simple evolution under the heat equation

ut(x, t) = λu(x, t) (1.8)

u(x, 0) = u0(x),

which is just an ordinary differential equation. Its solution is

u(x, t) = e−λtu0(x). (1.9)

Calculation of the Eigenfunctions

To obtain solutions to (1.7), we use the following ansatz with parameters a

and b:

u1(x) = sin(b(L − d)) cos(ax) (1.10)

u2(x) = cos(ad) sin(b(L − x)).

This automatically guarantees continuity at x = d as well as the correct
boundary conditions at x = 0 and x = L. The second condition κ1u

′

1(d) =
κ2u

′

2(d) yields the relation

tan(b(L − d)) tan(ad) =
κ2b

κ1a
, (1.11)

and finally we employ the eigenvalue relation −D(x)u′′(x) = λu(x), which
yields

D1a
2 = λ = D2b

2. (1.12)
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Substituting b =
√

D1

D2
a into (1.11) yields a relation for a

tan

(

√

D1

D2
a(L − d)

)

tan(ad) =
κ2

κ1

√

D1

D2
, (1.13)

which is fulfilled by a sequence of (an)n∈N, corresponding to a sequence of
eigenfunctions and eigenvalues λn = D1a

2
n. Unfortunately equation (1.13)

can not be solved analytically in any straight forward way, so the values
an have to be approximated numerically. This can be done up to machine
accuracy by Newton iteration. Reasonable starting values can be found by
a few bisection steps.
The first four eigenfunctions with the corresponding eigenvalues can be seen
in Figures 1.4 to 1.7.
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Figure 1.4: λ1 = 0.00256
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Figure 1.5: λ2 = 0.04855
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Figure 1.6: λ3 = 0.10479
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Figure 1.7: λ4 = 0.23930

Representation of Functions in the Fourier Basis

Omitting strict proofs for completeness we have found a basis of eigenfunc-
tions of the subspace of L

2([0, L]), which fulfils the boundary conditions at
x = 0 and x = L and continuity and slope conditions at x = d. Note that
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the eigenfunctions will be linearly independent, but will in general not be
orthogonal. While the operator κ(x)∂xx is always self-adjoint, the operator
D(x)∂xx will only be self adjoint, if κ1

κ2
= D1

D2
.

Since this is in general not the case, the approximate representation of a
function u(x) on [0, L] is not just obtained by

u(x) ≈

N
∑

n=1

< u, un >

< un, un >
un(x). (1.14)

Instead we have to compute the Gramian

G =







< u1, u1 > · · · < u1, uN >
...

. . .
...

< uN , u1 > · · · < uN , uN >






(1.15)

as well as the vector

b =







< u, u1 >
...

< u, uN >






. (1.16)

The vector of Fourier coefficients is then obtained by

c = G−1
· b, (1.17)

i.e. we can approximate a function u(x) by

u(x) ≈

N
∑

n=1

cnun(x). (1.18)

Note that (1.18) becomes (1.14) for diagonal G, i.e. for the case κ1

κ2
= D1

D2
.

The Method

The Fourier method for solving the original problem (1.6) will be the fol-
lowing:

1. Fix a number of Fourier coefficients N .

2. Calculate the parameters a1, . . . , aN for the first N eigenfunctions as
well as the eigenvalues λ1, . . . , λN .

3. Set up the Gramian G and its compute its inverse.

4. Calculate the Fourier coefficients c1, . . . , cN of the initial temperature
distribution u0.
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5. The solution at any time t > 0 will be

u(x) ≈

N
∑

n=1

e−λntcnun(x). (1.19)

The main advantage of this method lies in the fact that once the Fourier
coefficients are computed, we can calculate the result at any later time t >

0 directly, unlike finite difference methods, which have to go though the
complete evolution in time.

Applying the Method to the Original Problem

The initial condition in our problem is discontinuous at x = d, while all
our eigenfunctions are continuous at x = d. We can still apply our method,
but we will have to expect strong oscillations and slowly decaying Fourier
coefficients. Luckily we are solving the heat equation, which lets high Fourier
coefficients decay exponentially fast, so for t not too small we will be close
to the correct solution.
In Figures 1.8 to 1.11 the application of this method to our problem can be
seen. Observe the oscillations for small times and the quality of the solution
for larger times.

Calculation of the Periodic Solution

Our original problem is governed by a quasi-periodic behaviour:

1. Set the function values on [0, d] to a constant value ualloy, keep function
unchanged on [d, L].

2. Apply the heat equation for a fixed time t∗.

3. Goto 1.

As we have pointed out in Section 1.2 this process will “converge” to a
periodic behaviour. We can now use our Fourier method to approximate
the function, which has the property that after applying steps 1. and 2.
above to it, we obtain the same function again. In technical terms: We can
obtain the stabilisation temperature directly.
The idea is to employ the fact that the diffusion constant at [0, d] is larger
than on [d, L], and thus the temperature profile will be comparably flat on
[0, d]. For the moment we assume it to be (nearly) constant. Then setting
the function values on [0, d] to a fixed value is just adding the function

h(x) =

{

1 on [0, d)
0 on [d, L]

(1.20)

Let now cn be the Fourier coefficients of our sought function and βn the
Fourier coefficients of h. Then the steps above yield the following:

11



0 0.05 0.1

0

200

400

600

800

Initial condition
t = 0 sec        
t = 1 sec        
t = 10 sec       
t = 60 sec       

Figure 1.8: Using 5 eigenfunctions
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Figure 1.9: Using 10 eigenfunctions

0 0.05 0.1

0

200

400

600

800

Initial condition
t = 0 sec        
t = 1 sec        
t = 10 sec       
t = 60 sec       

Figure 1.10: Using 25 eigenfunc-
tions
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Figure 1.11: Using 60 eigenfunc-
tions

1. c̃n = cn + k · βn, where k ∈ R is some constant

2. cn = e−λnt∗ · c̃n.

Solving for cn yields

cn =
e−λnt∗

1 − e−λnt∗
· k · βn (1.21)

The value of k can be found by employing the fact that we know that after
adding h the value at x = 0 will be equal to ualloy:

ualloy =

N
∑

n=1

(cn + kβn)un(0) = k ·

N
∑

n=1

1

1 − e−λnt∗
· βnun(0) (1.22)

This yields the following formula for Fourier coefficients of the stabilisation
temperature:

cn =
ualloy

∑N
n=1

1
1−e−λnt∗ · βnun(0)

·
e−λnt∗

1 − e−λnt∗
· βn (1.23)
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In Figures 1.12 and 1.13 the results of this approximation are shown in com-
parison to the correct value obtained by a finite difference method with very
small space and times steps. It can be seen that in spite of the fairly crude
approximation to assume the temperature inside the alloy to be constant,
the results are remarkably accurate.
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Figure 1.12: Direct Fourier method

0 0.05 0.1 0.15 0.2 0.25

0

200

400

600

800

Initial condition           
direct Fourier approximation
computation over time       

Figure 1.13: Another geometry

Note that this method allows to compute the stabilisation temperature di-
rectly, but does not give information about the time required to reach to this
temperature. Here a formulation as a fixed point problem and estimation
of the contraction constant could give answers.

Conclusions

A Fourier expansion in eigenfunctions can be applied to the one-dimensional
problem given in (1.6). As the results in this section show, the use of just
10 eigenfunctions gives accurate results, so the computational effort is sig-
nificantly smaller compared to finite difference methods, which have to go
through the whole evolution in time, while the Fourier method allows to com-
pute the temperature distribution after 60 seconds directly. Additionally,
the Fourier method allows to obtain results of interest, e.g. the stabilisation
temperature, directly and thus very cheaply.

However, Fourier methods are limited to linear problems, i.e. they work
well as long as the simple heat equation is being solved, but there is no
straightforward way to include effects like a moving boundary as in consid-
ered Section 1.6. Here finite difference methods have to be used.

1.4 A Finite Difference Method for the 1D Prob-

lem

We would like to solve the 1D problem using finite differences to compare to
the analytic solution presented above and the 2D FEMLAB finite element
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numerics that follows. Also it is a first step before we can consider intro-
ducing a moving boundary to represent the solidification of the alloy within
the mould.
From Section 1.2 the model is given by

ut = D1uxx on(0, d) × (0,∞), (1.24)

ut = D2uxx on(d, L) × (0,∞),

u(x, 0) = u0(x) ∀x ∈ [0, L],

ux(0, t) = 0 ∀t > 0,

u(L, t) = 400 ∀t > 0,

u+(d, t) = u−(d, t) ∀t > 0,

κ1u
+
x (d, t) = κ2u

−

x (d, t) ∀t > 0.

The notations are the same as in Section 1.3, only the temperature scale is
centred naturally around 0◦C, not around 400◦C, as it was necessary for the
Fourier method.
We are to study the varying temperature as the mould is repeatedly used.
Therefore before the mould is used at all we consider an initial condition
u0(x) as

u0(x) =







700 : x ∈ [0, d]
30 : x ∈ (d, L)

400 : x = L

(1.25)

The high temperature for x ∈ [0, d] represents the instant insertion of the
hot alloy at 700◦C. The lower temperature 30◦C for x ∈ (d, L) represents
the steel of the mould at room temperature. The 400◦C is the temperature
at the channels. When we wish to test the effect of repeated mouldings we
can record the temperature of the mould at the end of one cycle and use it
as the initial condition in the next.

A First Order Explicit Method

First we need to define a grid of points in the x and t directions. For
simplicity we define a grid so a line of points occurs on the boundary x = d

(see Figure 1.14). Then for a typical point P we can make the finite difference
approximations

ut(P ) ≈
ui,j+1 − ui,j

k
, (1.26)

uxx(P ) ≈
ui−1,j − 2ui,j + ui−1,j

h2
, (1.27)

where h = xi,j −xi−1,j, k = xi,j −xi,j−1. Substituting these expressions into
our heat equation (1.24) yields the explicit finite difference method

ui,j+1 = rui−1,j + (1 − 2r)ui,j + rui+1,j, (1.28)
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where

r :=
kDm

h2
. (1.29)

Here Dm = D1 in the region x < d and Dm = D2 otherwise.

t

x
x=di=0   1    2    3   ......

j=0
1

2

3
P

x=L
t=0

k

h

Figure 1.14: Grid layout for finite difference approximation in the 1D model

This defines how to find the points away from the boundary points. Now
define the value of i at which x = d as s and the total number of points
to x = L as n. On the boundary x = 0 we can guarantee homogeneous
Neumann boundary conditions by assuming a fictitious point x−1,j , which
would equal x1,j, and therefore

uxx(0, t) ≈
−2u0,j + 2u1,j

h2
, (1.30)

We have assumed that the boundary at x = d is nonsmooth, so we cannot
define the second derivative across it. However using respectively backward
and forward difference approximations for u−

x (d, t) and u+
x (d, t) we have

u−

x (d, t) ≈
us,j − us−1,j

k
(1.31)

u+
x (d, t) ≈

us+1,j − us,j

k
(1.32)

And so we can use the boundary conditions to find an expression for the
value of u(d, t) as

us,j =
κ2us+1,j + κ1us−1,j

κ1 + κ2
(1.33)

The Dirichlet boundary condition at x = L is straightforward to apply, i.e.

un,j = 400. (1.34)
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This completes the explicit method. Note that it has a CFL-condition

k

h2
< C, (1.35)

as all explicit methods have for the heat equation, so for computations with
an accurate resolution in x, an implicit method is required.

A Second Order Implicit Method

For accurate computations explicit methods are restricted by the CFL-
condition as stated before. We therefore set up a Crank-Nicolson method
for our heat equation. It is second order accurate, unconditionally stable,
and the conditions at the fixed (x = d) and moving boundary (see Section
1.6) apply very easily in this method.
From e.g. [5] we use the expression for the partial derivative uxx at the
midpoint between six points on the grid as

uxx ≈
1

h2
(ui+1,j − 2ui,j + ui−1,j + ui + 1, j + 1− 2ui,j+1 + ui−1,j+1). (1.36)

The time derivative approximation remains the same

ut ≈
1

k
(ui,j+1 − ui,j) (1.37)

Substituting these into the heat equation (1.24) gives the following expres-
sion for an interior point P

−rui−1,j+1 + (2 + 2r)ui,j+1 − rui+1,j+1 (1.38)

= rui−1,j + (2 − 2r)ui,j + rui+1,j,

where

r :=
kDm

h2
. (1.39)

Here Dm = D1 in the region x < d and Dm = D2 otherwise. The boundary
condition at x = 0 and x = L can be kept from the explicit case. The
boundary condition at x = d can be guranteed in an easier and more precise
way, namely by the implicit relation

κ1us+1,j+1 − (κ1 + κ2)us+1,j + κ2us+1,j−1 = 0. (1.40)

Results and Conclusions

This simple finite difference case gave the same results as the Fourier expan-
sion solution presented in Section 1.3. While it on the one hand provides a
control for the results obtained previously, it will one the other hand be the
basis for the more interesting problem of a moving boundary, considered in
Section 1.6.
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1.5 Solving the 2D Problem with FEMLAB

Although the one dimensional computations in Sections 1.3 and 1.4 gave
insight into the qulitative behaviour of the solution, the particular val-
ues obtained were differing strongly from reality. Clearly the correct ra-
tios between volumes and surfaces cannot be reflected in 1D models. The
canonical step towards obtaining quantatively better results is going over to
two-dimensional simulations. In this section we will use the finite element
toolbox FEMLAB to compute solutions to the 2D problem.
Summarising Section 1.2, the 2D problem can be written as:

ut(x, y, t) = D1∇
2u(x, y, t) on Ω1 × (0,∞) (1.41)

ut(x, y, t) = D2∇
2u(x, y, t) on Ω2 × (0,∞)

u(x, y, 0) = u0(x, y) on Ω1 ∪ Ω2

u(x, y, t)
∣

∣

ΓC
= Tc ∀t > 0

u(x, y, t)
∣

∣

ΓA
= Ta ∀t > 0

u(x, y, t)
∣

∣

Γ+

M

= u(x, y, t)
∣

∣

Γ−

M

∀t > 0

κ1∇u(x, y, t)
∣

∣

Γ+

M

= κ2∇u(x, y, t)
∣

∣

Γ−

M

∀t > 0,

where ΓC is the channel/mould interface, ΓA is the machine/air interface,
ΓM is the mould/alloy interface, Tc is the channel temperature and Ta is the
room temperature.
To solve the above model the FEMLAB program was used. FEMLAB is
finite element toolbox built on top of MATLAB, and can be used to solve
a wide variety of engineering problems with little programming effort. For
the current problem the element method is particularly well suited because
the flux continuity condition (the last equality of equation (1.41)) will be
fulfilled simply by virtue of the domain decomposition. This is easily seen
from the weak formulation. The rest of the conditions, i.e. the Dirichlet
boundary conditions and the initial conditions are easily specified through
the program interface.
Simple scripting allows for simulation of the casting process, and some ex-
amples of graphical FEMLAB output are shown in Figures 1.15 and 1.16
(a)-(d). In all computations the FEMLAB defaults were used, i.e. second
order Lagrange elements in combination with the very general MATLAB

function ode15s for the time evolution.

Position of Channels

With a working 2D model some of the questions posed in the introduction
can be answered. Figure 1.17 shows a plot of the temperature stabilisation
time, measured in number of castings required for stabilisation, as a function
of the diagonal distance between the mould chamber and the alloy. The
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(a) Initially (b) After 10 castings

(c) After 20 castings (d) After 30 castings

Figure 1.15: Solution of the 2D model with FEMLAB
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(a) Initially (b) After 10 castings

(c) After 20 castings (d) After 30 castings

Figure 1.16: Values along the diagonal of the solution shown in Figure 1.15

1 2 3 4 5 6 7
18

18.5

19

19.5

20

20.5

21

21.5

22

22.5

23

channel distance (cm)

#
 o

f 
c
a

s
ti
n

g
s

Figure 1.17: Temperature stabilisation time vs. channel distance.
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temperature was considered as stable when the average difference between
two subsequent mould temperature distributions was below a given constant.

Expectedly, the stabilisation time decreases with decreasing distance, so the
conclusion is that the channels should be placed as close to the chamber
as possible. Of more interest is the fact that the stable temperature only
varied between 511◦C and 544◦C. This implies that the channels in fact have
little effect on the stable temperature, meaning that production temperature
might be reached even without the channels, although this would of course
take much longer.

Preheating

An alternative to starting the casting immediately is preheating the mould
by letting the hot fluid run through the channels for a certain amount of time.
Figure 1.18 shows the stabilisation time, measured in number of subsequent
castings required for stabilisation, as a function of preheating times in the
range 0-30 minutes.
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Figure 1.18: Stabilisation time vs. preheating time.

After only 20 minutes of preheating there is a reduction of almost 50% in the
required number of castings, so preheating might certainly be worthwhile.
When having information about the relative costs involved for preheating
and rejecting low-quality products, it is very likely to find an optimal, i.e.
cost-efficient, preheating time.

1.6 The 1D Problem with Change of State

So far we have ignored the change of state of the alloy during the casting
process. But in fact the alloy in inserted in the liquid state, and is solid
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when being taken out (at least almost completely). In this section we will
include the state transition into the one-dimensional problem, to answer the
question, if it makes a relevant difference to consider or neglect the change
of state.

Due to the temperature gradient the alloy will start solidifying at the outside
(at x = d), once the temperature has reached the melting temperature of
about 500◦C. So we will have a boundary between solid and liquid state,
which will move to the interior (toward x = 0). Considering this effect will
change the results for the following reasons:

• The conductivities and diffusion constants are different for liquid and
solid alloy.

• When solidifying, the latent energy of liquid alloy will be released.

The cooling process will consist of three steps:

1. All alloy is liquid.

2. The alloy is solid at x = d and liquid at x = 0. Somewhere in between
a boundary moves toward x = 0.

3. All alloy is solid.

Steps 1. and 3. can be computed as presented in previous sections. Step
2. however requires a description of the moving boundary, physically and in
our finite difference scheme.

The Stefan Condition

Let s(t) be the position of the boundary between liquid and solid state.
The large diffusion constant in the liquid alloy and the fact that one will
have a temperature increase at the boundary due to the release of latent
heat give rise to the approximation that the temperature in the liquid alloy
(x ∈ [0, s(t)]) is constant at the melting temperature of the alloy. In the
solid alloy (x ∈ [s(t), d]) as well as in the mould (x ∈ [d, L]) there will be a
temperature profile with the condition for the slopes at x = d. Note that
now the conductivity and diffusion constant for solid alloy have to be used.

The observation that the latent heat released must be equal to the heat
conducted back through the point x = s(t) yields a condition for the speed
of the boundary, which is known as the Stefan condition [3]:

ṡ(t) =
k

λρ
· ux(s(t), t) (1.42)

Here k is the conductivity and ρ the density of the solid alloy, and λ is the
latent heat coefficient of the alloy.
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Finite Difference Scheme with Moving Boundary

We include the moving boundary between liquid and solid alloy into our
finite difference method by an operator splitting approach. We take an
equidistant grid with mesh size h, which is aligned with the boundary be-
tween solid alloy and the mould (x = d). The position of the moving bound-
ary s(t) is saved as a floating point number. In each time step we compute
the following:

1. Approximate ux(s(t), t) by finite differences and change s(t) according
to (1.42).

2. Evolve the heat equation with time step ∆t. Here s(t) is included as
an additional grid point.

Figure 1.19 shows the finite difference method with the boundary included
as an additional point. The distance between s(t) and the next grid point
in the solid phase is denoted by h2.

s(t)
x

hh2

liquid alloy solid alloy mouldT

Figure 1.19: Finite Difference Scheme with Moving Boundary

The two steps are implemented in the following way:

1. Let umelt denote the melting temperature of the alloy and uj the tem-
perature at the next grid point. The temperature gradient at the
moving boundary ux(s) could be approximated by

ux(s) ≈
uj − umelt

h2
, (1.43)

but this causes numerical instabilities once h2 becomes small, which
can happen if the moving boundary can fall close to a grid point. We
thus use the stable approximation

ux(s) ≈
uj+1 − umelt

h + h2
. (1.44)
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This yields the new position of the boundary to be

s(t + ∆t) = s(t) + ∆t
k

λρ
·
uj+1 − umelt

h + h2
. (1.45)

2. As in the Section 1.4 we use the Crank-Nicolson method for the heat
equation, and include the moving boundary as an additional grid point.
Since the temperature at the boundary and at all grid points left of
it is constant at the melting temperature of the alloy, no computation
has to be done here. For simplicity we keep these points in our com-
putation. For all points right of the moving boundary besides the first
one, the matrices stay unchanged, too. Only for the first grid point
right to the moving boundary we have to modify the matrices. Let the
boundary be grid point j − 1, the point of our interest be grid point
j, and the point right to it grid point j + 1. Since in general h2 < h,
we have to approximate uxx at this point by

uxx ≈

uj+1−uj

h
−

uj−uj−1

h2

1
2(h + h2)

=
h2uj+1 − (h2 + h)uj + huj−1

h+h2

2 hh2

(1.46)

=
2

h(h + h2)
· uj+1 −

2

hh2
· uj +

2

h2(h + h2)
· uj−1.

This yields the following finite difference approximation around the
point j:

−
∆tD

h(h + h2)
· un+1

j+1 + (1 +
∆tD

hh2
) · un+1

j −
∆tD

h2(h + h2)
· un+1

j−1 (1.47)

=
∆tD

h(h + h2)
· un

j+1 + (1 −
∆tD

hh2
) · un

j +
∆tD

h2(h + h2)
· un

j−1.

This yields the following scheme for the evolution of one time step
with the heat equation:

Aun+1 = Bun, (1.48)

where

A =























1 0 0 0 0 0 0
0 1 0 0 0 0 0

0 −
∆tD1

h2(h+h2)
1 + ∆tD1

hh2
−

∆tD1

h(h+h2)
0 0 0

0 0 −
∆tD1

2h2 1 + ∆tD1

h2 −
∆tD1

2h2 0 0
0 0 0 −κ1 κ1 + κ2 −κ2 0

0 0 0 0 −
∆tD2

2h2 1 + ∆tD2

h2 −
∆tD2

2h2

0 0 0 0 0 −
∆tD2

2h2 1 + ∆tD2

h2























(1.49)
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and

B =























1 0 0 0 0 0 0
0 1 0 0 0 0 0

0 ∆tD1

h2(h+h2)
1 −

∆tD1

hh2

∆tD1

h(h+h2)
0 0 0

0 0 ∆tD1

2h2 1 −
∆tD1

h2

∆tD1

2h2 0 0
0 0 0 0 0 0 0

0 0 0 0 ∆tD2

2h2 1 −
∆tD2

h2

∆tD2

2h2

0 0 0 0 0 ∆tD2

2h2 1 −
∆tD2

h2























.

(1.50)
The above matrices represent the structure:

• The first two lines correspond to the liquid alloy, which stays at
the constant melting temperature. They stand for possibly large
block identity matrices.

• The third lines correspond to the first point next to the moving
boundary.

• The fourth line again represents possibly large tridiagonal matri-
ces corresponding to the solid alloy. D1 is the diffusion constant
for solid alloy.

• The fifth lines guarantee the slope condition at the boundary be-
tween solid alloy and mould to be satisfied. κ1 is the conductivity
of solid alloy, and κ2 is the conductivity of the mould.

• The sixth and seventh lines stands again for tridiagonal matri-
ces belonging to the mould. D2 is the diffusion constant of the
mould. The last line guarantees homogeneous Dirichlet boundary
conditions.

The Complete Cooling Process

As stated previously, the cooling process consists of three steps, which we
have treated separately so far. Note that the assumption of the liquid alloy
to have constant temperature when a moving boundary is existent, is only
approximately correct. As could be seen in previous sections, there is a
temperature gradient in the alloy, although not as large as the gradient in
the mould. This means, we have to define when the first step ends, i.e.
when the melting temperature is reached. We chose this condition to be
that the average temperature over the whole alloy becomes less than the
melting temperature. One can see in the numerical results below, that the
temperature will have a small discontinuity in time due to this effect.
The transfer from the second to the third step, however, is not a problem.
Once the moving boundary has reached x = 0, we go over to a first finite
difference scheme without a moving boundary again, only with solid instead
of liquid alloy.
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Numerical Results

Figures 1.20 to 1.25 show the cooling process over a long time, without
removing the product. The computation with the moving boundary between
solid and liquid alloy is plotted in comparison to a computation where the
heat equation without a moving boundary is being solved over the whole
time, once using the conductivities and diffusion constants of liquid alloy,
and once using the appropriate constants for solid alloy.

One can observe that the latent energy plays an important role, since the
computation with moving boundary show a significantly slower cooling as
both other computation. If one wants accurate results, the latent energy
must not be neglected. Furthermore it has to be pointed out that the one-
dimensional computation reflects the qualitative behaviour, but does not
give quantitatively correct results. As one can see in Figure 1.22, after
60 seconds the material is still half liquid, although the mould is at room
temperature in the beginning.

1.7 Conclusions and Outlook

The Fourier coefficient method for the 1D problem described in Section
1.3 provides a way of gaining insight into the solution’s behaviour with
little computational effort. Particularly handy is the possibility of directly
computing the stabilisation temperature. For the model considering the
state transition, however, the Fourier method cannot be used. The moving
boundary between liquid and solid state can be included into the finite
difference method, as shown in Section 1.6.

Solving the 2D problem with FEMLAB is naturally much more computa-
tionally intensive, but the results are also more informative, and should be
closer to reality. The simulations clearly show that the channels should be
placed as close to the chamber as possible, and that preheating the mould
might be a good idea if the associated cost is not too great.

However, as seen in Section 1.6, ignoring the change of state is an over-
simplification of the problem. A natural next step would therefore be to
extend the 2D model to also include the moving boundary between liquid
and solid state. Since in 2D the geometry of the moving boundary becomes
non-trivial, including the state transition into a FEMLAB or finite differ-
ence simlulation is by no means a trivial task. Furthermore, in both 1D and
2D the effect of neglecting the heat loss during the opening of the mould
should be investigated for more precise results.

Although the 1D and 2D models show indications of what might happen in
different situations and represent the qualitative behaviour well, only a com-
plete 3D simulation can hope to accurately approximate the true solution,
especially if one wants to consider the real geometry of the mould.

The preferred option to obtain quantitative results should be a 3D simulation
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Figure 1.20: Liquid alloy (t = 10s)

0 0.05 0.1
0

200

400

600

x / m
T

 / 
°C

initial condition   
all alloy liquid    
all alloy solid     
with change of state

Figure 1.21: Solidification (t = 48s)
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Figure 1.22: b = 5.5cm (t = 60s)
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Figure 1.23: b = 2cm (t = 110s)
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Figure 1.24: All solidified (t = 135s)
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Figure 1.25: Solid alloy (t = 180s)
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with a simplified geometry, where the state transition is described in a mostly
simple way. Since 3D simulations with FEMLAB are memory intensive, for
a simple geometry coding a numerical method by hand might be the best
option.
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