Math 9500 presentation ideas

Fall 2022

Below are some ideas for presentation topics. This is not meant to be an exhaustive list! If you find a topic from outside this list, by all means pursue it.

Whether you choose a topic from the list, or outside it, I ask that you come talk to me about your topic the week of November 1–4.

1. Research and report on some portion of the homeomorphism problem for 3–manifolds. Any one of the following is an interesting sub-case:

- The S^3 recognition problem (Rubinstein, Thompson)
- The lens space recognition problem (Lackenby–Schleimer)
- The unknot recognition problem (lots and lots of approaches here pick one or two)
- Distinguishing hyperbolic 3–manifolds by their fundamental groups (Sela) or by computing the hyperbolic structure (Casson, Manning, Scott–Short)
- \bullet Computational complexity (embedding known $NP-{\rm hard}$ questions into 3–manifold problems)

2. Constructions of 3–manifolds. There are several interesting ways to build them, surveyed in Chapter 11 of Martelli. We have barely touched on these. Choose one of:

- Heegaard splittings
- Dehn surgery on knots and links
- Surface bundles over S^1

If you choose one of these topics, you should discuss existence (which 3–manifold be expressed this way?) as well as non-uniqueness (how do you pass between two different Heegaard splittings or surgery descriptions of the same M?).

3. Pick a type of geometry. Give a reasonably detailed description of it and the 3–manifolds modeled on it.

4. In the special case of knot complements, the geometrization theorem is often stated as "every knot in S^3 is either a torus knot, a satellite, or a hyperbolic knot." Explain how this relates to the "usual" geometrization theorem, stated in terms of the pieces of the JSJ decomposition.

If you feel ambitious, you can add a description of the JSJ decomposition of knot complements (this is well described in a paper by Budney).

Again, there are lots of other possibilities!