D. LINKING NUMBERS.

Let J and K be two disjoint oriented knots in s^3 (or R^3). This section describes eight methods for defining an integer called their <u>linking number</u>, all of which turn out to be equivalent, at least up to sign. Assume J and K are polygonal.

- (1) Let [J] be the homology class in $H_1(S^3-K)$ carried by J. Since $H_1(S^3-K)\cong Z$, we may choose a generator γ of this group and write [J] = $n\gamma$. Define $\ell k_1(J,K)=n$.
- (2) Let M be a PL Seifert surfact for K, with bicollar (N,N^+,N^-) of M^+ as in the previous section. Assume (allowing adjustment of J by a homotopy in S^3 K) that J meets M in a finite number of points, and at each such point J passes locally (a) from N^- to N^+ or (b) from N^+ to N^- , following its orientation. Weight the intersections of type (a) with +1 and those of type (b) with -1. The sum of these numbers we denote by $\ell k_2(J,K)$. [Note that this seems to depend on M].
- (3) Consider a regular projection of $J \cup K$. At each point at which J crosses under K, count

+1 for
$$\longrightarrow_K$$
 and -1 for \longrightarrow_K J

The sum of these, over all crossings of J under K, is called $\ell k_3(J,K)$.

(4) J is a loop in S^3 - K, hence represents an element of $\pi_1(S^3 - K)$ with suitable basepoint. This fundamental group abelianizes to Z, and the loop J is thereby carried to an integer, called $\ell k_4(J,K)$.

- (5) [J] and [K] are 1-cycles in s^3 . Choose a 2-chain $C \in C_2(s^3; Z)$ such that $[K] = \partial C$. Then the intersection $C \cdot [J]$ is a 0-cycle, well-defined up to homology. Since $H_O(s^3) = Z$, $C \cdot [J]$ corresponds to an integer which we call $\ell k_5(J,K)$.
- (6) Regard J, K : $S^1 \rightarrow R^3$ as maps.

In vector notation, define a map $\,f:\,\text{S}^1\times\text{S}^1\to\text{S}^2\,\,$ by the formula

$$f(u,v) = \frac{K(u) - J(v)}{|K(u) - J(v)|}$$

If we orient $S^1 \times S^1$ and S^2 then f has a well-defined degree. Let $\ell k_6(J,K) = \deg(f)$.

(7) (Gauss Integral) Define $\ell k_7(J,K)$ to be the integer

$$\frac{1}{4\pi} \iint_{J} \frac{(x'-x)(dydz'-dzdy') + (y'-y)(dzdx'-dxdz') + (z'-z)(dxdy'-dydx')}{[(x'-x)^{2} + (y'-y)^{2} + (z'-z)^{2}]^{3/2}}$$

where (x,y,z) ranges over J and (x',y',z') over K.

- (8) Let $p: \tilde{X} \to X$ be the infinite cyclic cover of $X = S^3 K$ and let τ generate $\operatorname{Aut}(\tilde{X})$. Consider J as a loop in X based at, say, $x \in \operatorname{Im} J$. Lift J to a path \tilde{J} in \tilde{X} , starting at any $\tilde{X}_0 \in p^{-1}(x)$ and call its terminal point $\tilde{X}_1 \in p^{-1}(x)$. There is a unique integer m such that $\tau^m(\tilde{X}_0) = \tilde{X}_1$. Define $\ell k_8(J,K) = m$.
- EXERCISE. Identify the choice in each of the above definitions which affects the sign of the linking number.
- **2.** THEOREM. $\ell k_j = \pm \ell k_j$; i, j = 1, ..., 8.

PROOF: $\ell k_1 = \pm \ell k_4$: since the Hurewicz homomorphism $h: \pi_1(S^3-K) \to H_1(S^3-K)$ which carries loops to 1-cycles is just the abelianization map.

 $\ell k_2 = \pm \ell k_5 \; ; \quad \text{since we may take the C of (5) to be the}$ 2-cycle carried by M .

 ℓ k₂ = ± ℓ k₃: Using the given regular projection of (3) construct a Seifert surface M for K according to the proof of theorem A4, so that J is above M except near the underpasses and intersects M once at each underpass. If the disks are bicollared in such a way that K runs counterclockwise around the boundary as viewed from above, then ± 1 is assigned to the underpasses in the same way in (2) as in (3).

 $\ell k_4 = \pm \ell k_8 : \text{ As described in Appendix A, the } \tau^m \text{ of (8) is}$ just the automorphism τ_J induced by the loop J and the equality follows from the isomorphism $\text{Aut}(\tilde{\mathbf{X}}) \cong \pi_1(\mathbf{X})$ / (commutator subgroup).

 $\ell k_2 = \pm \ell k_8 : \text{ Construct } \tilde{X} \text{ using the M of (2) by the method}$ of the previous section. Choose $\tilde{x}_0 \in Y_0 \subset \tilde{X}$. Then each intersection of type (a) corresponds to a passage of \tilde{J} from Y_1 to Y_{1+1} , while type (b) intersections to the reverse. So \tilde{J} ends up in Y_r , $r = \ell k_2(J,K)$. But if $\tau: \tilde{X} \to \tilde{X}$ is chosen as the shift $Y_1 \to Y_{1+1}$ we conclude that $\ell k_8(J,K) = \ell k_2(J,K)$.

 $\ell k_3 = \pm \ell k_6$: suppose there is a point $z \in S^2$ such that $f^{-1}(z)$ is a finite set and f is a homeomorphism near each point of $f^{-1}(z)$. Then deg f may be calculated by adding the points, weighted -1 if f locally reverses orientation and +1 if f locally preserves orientation. But there is such a point, namely the point $z \in S^2$ directly above the projection plane of (3), corresponding to the viewer's eye: $f^{-1}(z)$ has one element for each crossing of J under K. The picture below shows why the two types of crossings correspond to different

 (s^3-K)

1

3).

J,K).

:8

an i

orientations.

 $\ell k_7 = \pm \ell k_6$: see Spivak's Calculus on Manifolds.

 $\label{this integral} This \ integral \ (\mbox{or its negative}) \ \mbox{is just an}$ analytic way of computing $\mbox{deg } f$.

- **3.** DEFINITION. Define the <u>linking number</u> $\ell k(J,K)$ to be any of the above.
- **REMARK. The sign ambiguity is usually not a bother, and disappears if one chooses a 'convention' as in (3). Note that definition (6) (and which others?) does not require that J and K be embeddings of S¹, as long as they are disjoint, so the notion of linking number extends to arbitrary disjoint curves in S³ or R³.
- **5.** THEOREM: If there are homotopies $J_t: S^1 \to R^3$ and $K_t: S^1 \to R^3$ so that Im J_t is disjoint from Im K_t for each $0 \le t \le 1$, then $\ell k(J_o, K_o) = \ell k(J_1, K_1)$.

PROOF. Using (6) define $f_t(u,v) = \frac{K_t(u,v) - J_t(u,v)}{|K_t(u,v) + J_t(u,v)|}$ and we have homotopic maps $f_0, f_1: S^1 \times S^1 \to S^2$. Hence they have the same degree.

6. THEOREM:
$$\ell k(J,K) = \ell k(K,J)$$
 $\ell k(-J,K) = -\ell k(J,K)$

where -J is J with the reverse orientation.