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D. viowne womsess. ’

Let J and K be two disjoint oriented knots in S3 (or R3) .
This section describes eight methods for defining an integer called
their linking number, all of which turn out to be equivalent, at least
up to sign. Assume J and X are polygonal.
(1) Let [J] be the homology class in Hl(S3 - K) carried by J .,
Since Hl(S3 - K) # Z, we may choose a generator vy of this group

and write [J] = ny . Define lkl(J,K) =n .
(2) Let M bea PL Seifert surfact for K, with bicollar (N,N+,N—)

of ﬁ as in the previous section. Assume (allowing adjustment of J

by a homotopy in S3 ~K) that J meets M 1n a finite number of points,

and at each such point J passes locally (a) from N to N+ or

(b) from N+ to N

s following its orientation. Weight the inter-

sections of type (a) with + 1 and those of type (b) with - 1 . The

sum of these numbers we denote by lkz(J,K) . [Note that this seems to

depend on M].

(3) Consider a regular projection of JWUK . At each point at which J

crosses under K, count

+ 1 for —‘-’J and -1 for —f—’ J
K K

The sum of these, over all crossings of J under K, is

called Zka(J,K) .

(4 J dis a loop in s3

- K, hence represents an element of 1r1(S3 - K)

with suitable basepoint. This fundamental group abelianizes to Z, and

the loop J 1is thereby carried to an integer, called £k4(J,K) .
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(5) [J] and [R] are l-cycles in g3

+ Choose a 2~chain ¢ € CZ(S3;Z)

such that ([K] = 3¢ . Then the intersection C-[J]

i8 a O-cycle, well-

defined up to homology. Since HO(S3) &2, C N corresponds to an

integer which we call ﬂks(J,K) .

(6} Regard J, k: sl . >

as maps.

In vector notation, define a map f :

: Slxsl-»S2 by the
K(u) -~ J(v)
f(u,v) K(u) = J(V), .
1

If we orient §* x S1 and 82

formula

then f has a well-defined degree. Let

£k6(J,K) = deg(f).

{(7) (Gauss Integral) Define £k7(J,K) to be the integer

-dxdz') + (z'-z)(dxdy’-dydx')
[x'-x)? + G'-n?+ (2'—2)2]3/2

4

1 j j jglfx)(dydz'—dzdy') + (y'-y) (dzdx'
J K

where

(x,y,2) ranges over J and (x',y',z")

(8} Let p:

over K ,

E+X be the infinite cyclic cover of X = S3 - K and

let <t generate Aut(X) .

Consider J ag a loop in X based at, say,

x€ImJ. Lift J to a path J in %,

starting at any ;b € P-l(x)

and call its terminal point ile p-l(x) . There is a unique integer n

such that Tm(io) - il . Define ZkB(J,K) =,

{. EXERCISE. Identify the choice in each of the above definitions

which affects the sign of the linking number.

&, THEOREM. £ki-i£kj; i, 1=1, ..., 8.
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PROOF: £k1 =- i £k4 : since the Hurewicz homomorphism h : ﬂl(S3-K) + Hl(S3—K)

which carries loops to l-cycles 1s just the abelianization map.
Zkz = + st : since we may take the C of (5) to be the

2-cycle carried by M

lkz = & £k3 : Using the given regular projection of (3)
construct a Seifert surface M for K according to the proof of theorem
A4, so that J is above M except near the underpasses and intersects
M once at each underpass. If the disks are bicollared in such a way
that K runs counterclockwise around the boundary as viewed from above,
then * 1 1is assigned to the underpasses in the same way in (2) as in (3).

£k4 = % st : As described in Appendix A , the ™ of (8) is
just the automorphism Ty induced by the loop J and the equality
follows from the isomorphism Aut(X) 51T1(X) / (commutator subgroup).

£k2 = + Zk8 : Construct X wusing the M of (2) by the method
of the previous section. Choose io € 'YOCL X . Then each intersection
of type (a) corresponds to a passage of J from Y

to while

1 Yi410
type (b) intersections to the reverse. So J ends up in Yr’ T = Zkz(J,K).

But if T : X > i is chosen as the shift Yi > Yi+1 we conclude that

LkB(J,K) = lkz(J,K) .

£k3 = t £k6 ¢ suppose there is a point z € 82 such that
f-l(z) 18 a finite set and f 1s a homeomorphism near each point of
f-l(z). Then deg f may be calculated by adding the points, weighted
-1 if f locally reverses orientation and +1 if f locally preserves
orientation. But there is such a point, namely the point z & 52
directly above the projection plane of (3), corresponding to the viewers

eye: f_l(z) has one element for each crossing of J under K. The

picture below shows why the two types of crossings correspond to different
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orientations.

see Spivek’s Calculus on Manifolds.
This integral (or its negative) 1s just an

analytic way of computing deg f .
DEFINITION. Define the linking number £k(J,K) to be any of the above.

REMARK. The sign ambiguity is usually not a bother, and disappears if
one chooses a 'convention' as in (3). Note that definition (6) (and
which others?) does not require that J and K be embeddings of Sl,
as long as they are disjoint, so the notion of linking number extends

to arbitrary disjoint curves in S3 or R3 .

THEOREM: If there are homotopies Jt : Sl > R3 and Kt H S1 + R3

so that Im Jt is disjoint from Im Kt for each 0 <t <1, then

lk(Jo,Ko) = ﬂk(Jl,Kl)

Kt(u,v) - Jt(u,v)
[Kt(u,v) + Jt(“’v)l and we have

PROOF. Using (6) define ft(u,v) -

homotopic maps fo’fl : S1 x S1 - 82 . Hence they have the same degree.

THEOREM: £%(J,K) = £k(K,J)
£k (-3,K) = -Lk(J,K)

where -J 18 J with the reverse orientation.




