Math 8161 Homework 1

Due Thursday, 9/10/09

1. Suppose (X, D) is a metric space. Which of the following functions are metrics on X?

- a) $D_1(x, y) = k D(x, y)$, where k is a positive real number.
- b) $D_2(x,y) = k D(x,y)$, where k is any real number.
- c) $D_3(x,y) = D^n(x,y)$, where n is a positive integer.
- d) $D_4(x, y) = D^r(x, y)$, where 0 < r < 1.

2. Let *P* and *P'* be points of \mathbb{R}^2 , and let

$$M(P, P') = \{ Q \in \mathbb{R}^2 : d(P, Q) = d(P', Q) \},\$$

where d is some metric on \mathbb{R}^2 . Describe geometrically what M(P, P') will look like when d is the Euclidean metric, the taxicab metric, and the max metric.

3. Let (X, D) be a metric space. Let $\{F_i\}, i \in I$ be a family of closed sets with the following property: for every $x \in X$, there is a r > 0, such that $B_r(x)$ intersects only finitely many of the F_i . Prove that the union $\cup_I F_i$ is closed.

4. Prove that the Euclidean, taxicab, and max metrics on \mathbb{R}^2 are *equivalent* – that is, they have the same open sets. *Note:* rephrasing this in terms of continuity, or in terms of sequences, might make the checking less tedious.

5. Let $B[0,1] = \{f : [0,1] \to \mathbb{R} : f \text{ is bounded}\}$ be the set of all bounded functions on [0,1], equipped with the usual sup metric:

$$D(f,g) = \sup\{|f(x) - g(x)| : x \in [0,1]\}.$$

Define a function $\varphi: B[0,1] \to \mathbb{R}$ by the formula $\varphi(f) = f(0)$. Is φ continuous? Prove your answer.

6. Let (X, D) be a metric space, and $S \subset X$ an arbitrary subset. For any point $x \in X$, the distance to S is defined to be

$$D(x,S) = \inf \{ D(x,y) : y \in S \}.$$

Now, we can construct a function $f: X \to \mathbb{R}$ by f(x) = D(x, S). Prove that f is continuous.