Math 8062 Homework 7

Due Wednesday, 4/17/11

1. Do problem 29 on page 158 of Hatcher.

2. Let M and N be closed, connected, oriented manifolds of dimension n. Let M # N be their connected sum. Prove that

$$\tilde{H}_k(M \# N) \cong \tilde{H}_k(M) \oplus \tilde{H}_k(N),$$

for all $k \neq n$. Hint: be careful when k = n - 1!

3. Sort out the diagram-chasing proof of problem 38 on page 159 of Hatcher, and be ready to explain it orally. Observe that this gives an axiomatic proof of the Mayer-Vietoris sequence.

- **4.** Let M^n and N^n be smooth *n*-manifolds, where M is orientable and N is not.
 - a) Let $f: M \to N$ be a smooth map, and assume f is an immersion (i.e. Df has full rank at every point). Prove that f lifts to the orientation double cover of N.
 - b) Find an example to demonstrate that the immersion hypothesis is necessary.
- **5.** [Extra credit] Let S_g and S_h be surfaces of genus g and h, respectively. Suppose g > h.
 - a) Construct a map $f: S_g \to S_h$ of degree 1.
 - b) Prove that every map from S_h to S_g has degree 0. *Hint: consider the rank of* $\pi_1(S_g)$ and $\pi_1(S_h)$, where rank is the minimum number of elements required to generate the group.