Math 8062 Homework 4

Due Thursday, 2/24/11

- 1. Let $X = S^2 \cup A$, where A is an axis connecting the north and south poles of S^2 . Describe the universal cover \widetilde{X} of X and the action of $\pi_1(X)$ on the universal cover.
- **2.** A covering map $p: Y \to X$ is called *regular* if the corresponding subgroup $p_* \pi_1(Y, y_0)$ is normal in $\pi_1(X, x_0)$. Otherwise, the cover is *irregular*. Construct irregular covers of the Klein bottle by the Klein bottle and by the torus.
- **3.** Let M and N be (topological) manifolds, with a covering map $p: N \to M$. Let $\mathcal{A} = \{(U_{\alpha}, \varphi_{\alpha})\}$ be a smooth atlas on M, such that $\varphi_{\alpha}(U_{\alpha})$ is an open ball $B_{\alpha} \subset \mathbb{R}^{n}$.
 - a) For each $(U_{\alpha}, \varphi_{\alpha}) \in \mathcal{A}$, prove that $p^{-1}U_{\alpha}$ is a disjoint union of slices, each mapped homeomorphically to U_{α} .
 - b) Prove that

$$\mathcal{B} = \{ (V_{\alpha}, \, \varphi_{\alpha} \circ p) : V_{\alpha} \text{ is a component of } p^{-1}U_{\alpha} \}$$

is a smooth atlas on N.

- c) Prove that the smooth atlas \mathcal{B} makes p into a smooth map, and furthermore that $p: V_{\alpha} \to U_{\alpha}$ is a diffeomorphism.
- d) Let Y be a smooth vector field on M. Construct a smooth vector field Z on N, such that $p_*Z_x = Y_{p(x)}$, for all $x \in N$. (Here, p_* denoted the pushforward of tangent vectors, not the induced action on π_1 .) Note that this gives a natural way to pull back vector fields to a cover, whereas normally vectors push forward and co-vectors (and differential forms) pull back.