Math 8062 Homework 3

Due Thursday, 2/17/11

- 1. There is a standard way to glue together two (connected) manifolds M and N of the same dimension. Remove an open ball B^n from each of M and N, and glue $M \setminus B^n$ to $N \setminus B^n$ along the two (n-1) dimensional boundary spheres. The resulting manifold is called the *connected* sum of M and N, and is denoted M # N.
 - a) Prove that when $n \geq 3$, $\pi_1(M \setminus B^n) \cong \pi_1(M)$.
 - b) Prove that when $n \geq 3$, $\pi_1(M \# N) \cong \pi_1(M) * \pi_1(N)$.
- **2.** Let M be a manifold of dimension $n \geq 4$, and let C be a knot (i.e., an embedded circle) in M.
 - a) Prove that $\pi_1(M \setminus C) \cong \pi_1(M)$.
 - b) Is the hypothesis that $n \ge 4$ necessary?
- **3.** Let $X = S^2 \cup A$, where A is an axis connecting the north and south poles of S^2 . Find a cell complex structure on X, and use it to compute the fundamental group.
- **4.** Do problem 8 on page 53 of Hatcher.
- 5. Do problem 14 on page 54 of Hatcher.

General hint: for some of these problems, van Kampen's theorem will be more useful than Proposition 1.26 (the application to cell complexes).