Math 8061 Homework 6

Due Wednesday, 10/31/12

1. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a smooth function, and let $a \in \mathbb{R}$ be a regular value of f. Earlier in class, we showed that $M = f^{-1}(a)$ is a smooth (n-1) manifold. Now, prove that M is orientable.

2. Compute the flow of each of the following vector fields on \mathbb{R}^2 :

a)
$$X = y \frac{\partial}{\partial x} + x \frac{\partial}{\partial y}$$

b) $Y = -y \frac{\partial}{\partial x} + x \frac{\partial}{\partial y}$
c) $Z = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y}$
d) $W = x \frac{\partial}{\partial x} - 2y \frac{\partial}{\partial y}$

3. Let the vector fields X, Y, Z be as in the last problem.

- a) Check that $[X, Y] \neq 0$, and that their flows do not commute.
- b) Check that [Y, Z] = 0, and that their flows commute.

4. Consider the following vector fields on \mathbb{R}^3 :

$$X = z\frac{\partial}{\partial y} - y\frac{\partial}{\partial z}$$
$$Y = x\frac{\partial}{\partial z} - z\frac{\partial}{\partial x}$$
$$X = y\frac{\partial}{\partial x} - x\frac{\partial}{\partial y}$$

Prove that the flow of aX + bY + cZ is a rotation of \mathbb{R}^3 about the line \mathcal{L} through the origin and the point (a, b, c). *Hint: first, prove this for* (a, b, c) = (1, 0, 0). *Then, consider the effect of a linear transformation.*

5. (Ungraded exercise) Let $f: M \to N$ be a diffeomorphism, and let X and Y be vector fields on M. Check that $f_*[X, Y] = [f_*X, f_*Y]$.

You can find a proof of this in many places, including Lie's book. But it's a nice exercise in unwinding the definitions to sort this out for yourself, so I recommend doing that.