Math 8061 Homework 1

Due Wednesday, 9/5/12

- **1.** Let M be an n-dimensional manifold with boundary. Prove that the boundary ∂M is an (n-1) dimensional manifold, without boundary.
- **2.** A topological space X is called *connected* if it cannot be expressed as the disjoint union of two non-empty, open sets. X is called *path-connected* if every $x, y \in X$ are joined by a path: that is, there is a continuous map $f: [0,1] \to X$, such that f(0) = x and f(1) = y.
 - a) Prove that every path-connected metric space is connected. You may assume the classical fact that the interval [0, 1] is connected.
 - b) Prove that a connected manifold is path-connected. Note that the book outlines a proof of this in Proposition 1.8, relying on an (unproved) Lemma A.16 in the Appendix. To do this problem, you would need to either prove Lemma A.16, or argue directly.
- **3.** Let $SL(n,\mathbb{R})$ be the set of $n \times n$ matrices with determinant 1, considered as a subspace of \mathbb{R}^{n^2} .
 - a) Prove that $SL(n, \mathbb{R})$ is a manifold of dimension $n^2 1$. Hint: Think about the degrees of freedom in choosing the image of a standard basis for \mathbb{R}^n .
 - b) Is $SL(n, \mathbb{R})$ compact?
 - c) Is $SL(n, \mathbb{R})$ connected?
- **4.** Let O(3) be the set of 3×3 matrices A, such that ||Av|| = ||v|| for every vector $v \in \mathbb{R}^3$.
 - a) Prove that O(3) is a manifold. What is its dimension?
 - b) Is O(3) compact?
 - c) Is O(3) connected?