Math 8061 Homework 8

Due Monday, 12/13/10

1. Suppose M and N are connected, oriented smooth n-manifolds, and $f: M \to N$ is an immersion. Prove that f is orientation-preserving everywhere or orientation-reversing everywhere.

2. Let $T^2 \subset \mathbb{R}^4$ be a torus, parametrized by the map

$$f(\theta, \varphi) = (\cos \theta, \sin \theta, \cos \varphi, \sin \varphi).$$

That is, charts on T^2 are local inverses of f. Then T^2 is oriented by the 2-form $d\theta \wedge d\varphi$. Compute $\int_{T^2} \omega$, where (w, x, y, z) are the coordinates on \mathbb{R}^4 , and $\omega = xyz \, dw \wedge dy$.

3. Consider the 1-form $\omega = -y \, dx$ on \mathbb{R}^2 . Let γ be a piecewise smooth, embedded, closed curve in \mathbb{R}^2 , oriented counterclockwise.

a) Use Stokes' theorem to show that $\int_{\gamma} \omega$ is equal to the area enclosed inside γ .

b) Explain how this gives a short solution to problem 3(b) of Homework 6.

4. Let $M = \mathbb{R}^2 \setminus \{0\}$, and let ω be a closed 1-form on M. Let C be the unit circle, oriented counterclockwise. Prove that ω is an exact form if and only if $\int_C \omega = 0$.

Hint for the "only if" argument: define a function $f: M \to \mathbb{R}$ by

$$f(p) = \int_{\gamma} \omega,$$

where γ is an arbitrary piecewise-smooth curve from (1,0) to p. You will need to argue that this is well-defined, i.e., that the definition does not depend on the choice of γ .