Math 8061 Homework 6

Due Thursday, 11/11/10

1. Consider the following vector fields on \mathbb{R}^2 :

$$V = x \frac{\partial}{\partial y} + y \frac{\partial}{\partial x}, \qquad W = x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x}.$$

Prove that these vector fields do not commute in two ways:

- a) by checking that $[V, W] \neq 0$.
- b) by computing their flows, and checking that they do not commute.

2. Let $f: M \to N$ be a diffeomorphism, and let X and Y be vector fields on M. Prove that $f_*[X, Y] = [f_*X, f_*Y]$.

3. Let V and W be the vector fields that span the contact structure on \mathbb{R}^3 :

$$V = Y = \frac{\partial}{\partial y}, \qquad W = \frac{\partial}{\partial x} + y \frac{\partial}{\partial z}.$$

Let $\gamma: [0,1] \to \mathbb{R}^2$ be an embedded smooth curve in the xy plane, such that $\gamma(1) = \gamma(0)$.

- a) Prove that there is a smooth curve $\delta : [0, 1] \to \mathbb{R}^3$, such that $\delta'(t)$ is a linear combination of V and W, and such the projection π_{xy} to the xy plane sends $\delta(t)$ to $\gamma(t)$. *Hint*: $\delta(t)$ can be defined by integrating $\delta'(t)$. So, define $\delta'(t)$ so that all the requirements are satisfied.
- b) Note that since δ projects to γ , the point $\delta(1)$ must be directly above or below $\delta(0)$. Prove that the vertical distance $|\delta(1) \delta(0)|$ is equal to the area enclosed by γ . *Hint*: First, prove this in the special case where γ is the boundary of a rectangle. Then, use rectangles to approximate an arbitrary smooth curve γ .

This is a special case of Stokes' theorem, and the argument in part (b) mimics the proof.

4. Let \mathcal{D} be the distribution on \mathbb{R}^3 spanned by

$$X = \frac{\partial}{\partial x} + yz\frac{\partial}{\partial z}, \qquad Y = \frac{\partial}{\partial y}.$$

- a) Find an integrable submanifold of \mathcal{D} passing through the origin.
- b) Is \mathcal{D} involutive? Explain your answer in light of part (a).