Math 8061 Homework 2

Due Thursday, 9/23/10

1. Let \mathbb{CP}^n be the complex projective *n*-space. That is,

 $\mathbb{CP}^n = \mathbb{C}^{n+1}/\sim$, where $(z_0, \ldots, z_n) \sim (\lambda z_0, \ldots, \lambda z_n)$ for $\lambda \in \mathbb{C} \setminus \{0\}$.

Prove that \mathbb{CP}^n is a smooth manifold, of real dimension 2n. *Hint:* see page 7 of Lee's book for a construction of charts on \mathbb{RP}^n , and generalize this construction to \mathbb{CP}^n . You will need to check that the transition maps between these charts are smooth.

2. Smooth structures on a manifold with boundary can be defined as follows. For an arbitrary set $A \in \mathbb{R}^n$, a function $f : A \to \mathbb{R}^n$ is considered smooth at $p \in A$ if there is a smooth function $\tilde{f} : B_{\epsilon}(p) \to \mathbb{R}^n$ that agrees with f on $A \cap B_{\epsilon}(p)$. This gives a natural definition of smooth functions on subsets of \mathbb{H}^n , the (closed) upper half-space of \mathbb{R}^n . Now, for a manifold M^n , charts to \mathbb{H}^n are called smoothly compatible if the transition maps are smooth, and a smooth atlas is defined accordingly.

- a) Let M be a manifold with boundary, with smooth atlas $\{(U_i, \varphi_i)\}$. Let N be a manifold without boundary, with smooth atlas $\{(V_j, \psi_j)\}$. Show that a smooth structure on $M \times N$ can be given by the atlas $\{(U_i \times V_j, \varphi_i \times \psi_j)\}$.
- b) Suppose that M and N are both manifolds with boundary. What (if anything) will go wrong if one attempts to construct a smooth structure on $M \times N$ using the method of part (a)?

3. Let M be a smooth manifold. The collection $C^{\infty}(M)$ of smooth functions $f: M \to \mathbb{R}$ has a natural structure as a vector space over \mathbb{R} . (In fact, $C^{\infty}(M)$ is an algebra, because the product of two smooth functions is a smooth function.) Prove that, if dim(M) > 0, the vector space $C^{\infty}(M)$ is infinite-dimensional.

4. Let *M* be a smooth manifold, and let $f : M \to \mathbb{R}$ be a positive, continuous function. Prove that there exists a *smooth* function $g : M \to \mathbb{R}$, such that 0 < g(x) < f(x) for all $x \in M$.