Study Guide for Final Exam

Math 4096, Spring 2020

- 1. You should know the definitions of the following terms.
 - knot, link
 - Reidemeister moves
 - the connected sum of two knots
 - prime/composite knot
 - split link
 - the crossing number of a knot or link
 - homeomorphism
 - isotopy (of links or surfaces)
 - Euler characteristic
 - orientability of a surface
 - the genus of a knot or link
 - torus knot
 - satellite knot
 - span of a polynomial
- 2. Know how to compute or construct the following:
 - tricolorability
 - linking number
 - going from a diagram to its Dowker code and back
 - Euler characteristic of a surface
 - Seifert surface of a knot or link
 - A satellite knot, given a pattern and a companion
 - \bullet a diagram in braid position, given an arbitrary diagram of K
 - \bullet a closed braid from a word in the σ_i 's
 - bracket polynomial
 - writhe
 - Jones polynomial

- **3.** Theorems to know:
 - Reidemeister's theorem about Reidemeister moves
 - Classification of surfaces by orientability, genus, and number of boundary components
 - The Euler characteristic of an (orientable) surface of genus g is $\chi(S) = 2 2g$.
 - Genus is additive under connected sum
 - Three types of knots: torus, satellite, hyperbolic
 - Alexander's theorem about putting links in braid position
 - The span of the Jones polynomial gives the crossing number of an alternating link
- 4. Do the following quantities depend on a diagram? Or are they link invariants?
 - number of crossings
 - number of link components
 - Dowker code
 - tricolorability
 - genus of a Seifert surface
 - writhe
 - bracket polynomial
 - span of the bracket polynomial
- **5.** There will be several statements that you will have to classify as True, False, or Unknown. Here, *true* means "true in all circumstances," and *unknown* means that humanity does not know if it is true or false. For statements that are false, you should give a counterexample. For statements that are true, you should give a short explanation (but less than a full proof).

Some examples:

- A diagram without nugatory crossings has the smallest possible number of crossings for that link.
- The crossing number is additive under connected sum.
- Every knot has an alternating diagram.
- The unknot is prime.
- Orientability of a surface is preserved by homeomorphisms.
- The large majority of knots are hyperbolic.