Math 4061 Homework 7

Due Thursday, 4/22/10

- **1.** Let S be the hyperboloid z = 2xy.
- (a) Prove that at the origin, S has mean curvature H = 0 and Gaussian curvature K = -4.
- (b) Let T be a surface obtained by turning S about the origin until the principal vectors at (0,0,0) become tangent to the x-axis and y-axis. Describe a parametrization of T.
- **2.** Let S the ellipsoid described by the equation $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$
- (a) Let $R \subset S$ be the region where $x \ge 0, y \ge 0, z \ge 0$. Sketch the image of R under the Gauss map. What is its area?
- (b) Compute $\iint_R K \, dA = \iint_R K |\sigma_u \times \sigma_v| \, du \, dv$, without doing any calculus. *Hint:* examine the proof of Theorem 7.1 in the book.
- (c) Prove that the integral of Gaussian curvature over the entire surface is $\iint_S K \, dA = 4\pi$.

3. Let $\gamma(t) = (x(t), z(t))$ be a unit-speed curve, such that x(t) > 0 for all t. Let S be the surface obtained by revolving γ about the z-axis.

- (a) Prove that $\gamma(t) = (x(t), 0, z(t))$ is a geodesic in S.
- (b) Let t_0 be a number such that z(t) reaches a local maximum at t_0 , and let $\delta(s)$ be the circle obtained by revolving the point $(x(t_0), z(t_0))$ about the z-axis. Is $\delta(s)$ a geodesic in S?

Hint: this should only need the definition of a geodesic. Drawing pictures will help!

4. The Little Prince lives on a planet whose radius is 5m, and tends to a rose garden whose area is $100m^2$. If the rose garden is an equilateral triangle on this planet, what is the angle at each corner?