Math 4061 Homework 5

Due Tuesday, 3/30/10

1. Let S be the unit sphere in \mathbb{R}^3 , and let $\sigma : \mathbb{R}^2 \to S$ be the stereographic projection

$$\sigma(x,y) = \left(\frac{2x}{1+x^2+y^2}, \frac{2y}{1+x^2+y^2}, \frac{-1+x^2+y^2}{1+x^2+y^2}\right),$$

which covers all of S except the north pole. Show that the first fundamental form of σ is

$$ds^{2} = \frac{4(dx^{2} + dy^{2})}{(1 + x^{2} + y^{2})^{2}}.$$

2. Let S be a *helicoid* (see page 211 for a picture). S can be parametrized by a single chart

$$\sigma(u, v) = (\sinh u \cos v, \sinh u \sin v, v), \text{ where } u > 0.$$

Let T be the *catenoid* obtained by revolving the catenary curve

$$\gamma(u) = (\cosh u, 0, u)$$

about the z-axis.

- (a) Compute the first fundamental form of σ .
- (b) Find a parametrization τ of the catenoid T, such that the first fundamental form of τ is the same as that of σ .
- (c) Are the surfaces S and T isometric? Are they diffeomorphic?

3. Let $\gamma(t) = (x(t), 0, z(t))$ be a unit-speed curve in the xz plane, which does not intersect the z-axis. Let S be the surface obtained by revolving γ about the z-axis. Prove that

$$\operatorname{area}(S) = 2\pi \int_{\gamma} x(t) \, dt.$$

(This is called *Pappus's average-radius theorem*, since $\int x(t) dt$ divided by the length of γ is the average distance of S from its axis of revolution.)

4. Let $\gamma(u)$ be a unit-speed curve in \mathbb{R}^3 , whose curvature κ is never 0. Let N(u) and B(u) be the normal and binormal vectors at $\gamma(u)$. Let r be a constant such that $\kappa r < 1$ at every point of γ . The tube of radius r about γ is the surface T parametrized by

$$\sigma(u, v) = \gamma(u) + r\cos(v) N(u) + r\sin(v) B(u)$$

Prove that $\operatorname{area}(T) = 2\pi r \operatorname{length}(\gamma).$

5. Let T be the torus obtained by revolving the circle $(x - 2)^2 + z^2 = 1$ about the z-axis. Compute the area of T using both problem 3 and problem 4, and check that the answers match.