Math 4061 Homework 1

Due Thursday, 1/28/10

1. For $t \in \mathbb{R}$, let $\delta(t)$ be a parametrized curve which does not pass through the origin. Let t_0 be a time at which δ comes closest to the origin. Prove that $\delta(t_0) \cdot \delta'(t_0) = 0$.

2. Let γ be a parametrized curve such that $\gamma''(t) = 0$ for all t. What can you say about the shape of γ ?

- **3.** Consider the graph of the absolute value function y = |x 1| in \mathbb{R}^2 .
 - a) Find a parametrization of this curve.
 - b) Find a four-times-differentiable parametrization of this curve.
 - c) Does there exist a regular parametrization?
- 4. Consider a 3-dimensional logarithmic spiral, parametrized by

$$\alpha(t) = (e^{-t} \cos t, e^{-t} \sin t, e^{-t}).$$

- a) Compute the arclength between $\alpha(0)$ and $\alpha(r)$.
- b) Prove that the total length of α , as t ranges in $[0, \infty)$, is finite.
- **5.** Consider the parametric curve $\gamma : [1, \infty) \to \mathbb{R}^2$, parametrized by

$$\gamma(t) = \left(\frac{\sin t}{t^2}, \frac{1}{t}\right).$$

- a) Does γ have a unit-speed reparametrization?
- b) Prove that the total length of γ is finite. *Hint:* Can you estimate the integral instead of computing it?