

INVOLUTIONS OF KNOTS THAT FIX UNKNOTTING TUNNELS

DAVID FUTER

Mathematics Department, Michigan State University, East Lansing MI 48824, USA dfuter@math.msu.edu

Accepted 22 March 2006

ABSTRACT

Let K be a knot that has an unknotting tunnel τ . We prove that K admits a strong involution that fixes τ pointwise if and only if K is a two-bridge knot and τ its upper or lower tunnel.

Keywords: Unknotting tunnel; two-bridge knot involution; handlebody.

Mathematics Subject Classification 2000: 57M25, 57M60

1. Introduction

Let L be a link of one or two components in S^3 . An unknotting tunnel for L is a properly embedded arc τ , with $L \cap \tau = \partial \tau$, such that the complement of a regular neighborhood of $L \cup \tau$ is a genus-2 handlebody. Not all links have such a tunnel; those that do are said to have tunnel number one. As described in [2], an unknotting tunnel induces a strong inversion of the link complement — that is, an involution of S^3 that sends each component of L to itself with reversed orientation.

When L is a two-component link, it is known that this involution can be chosen to fix τ pointwise. As a result, an argument of Adams in [1] gives us some geometric information about the tunnel: when the complement of L is hyperbolic, τ is isotopic to a geodesic in the geometric structure. Adams conjectures that the same is true for knots: that any unknotting tunnel for a hyperbolic knot is isotopic to a geodesic. As for links, this conjecture would follow easily if it were known that τ is fixed pointwise by some strong inversion of the knot.

The main result of this paper is that this happens only in the well-known special case of 2-bridge knots. (See Sec. 3 for background on 2-bridge knots and their unknotting tunnels.)

Theorem 1.1. Let $K \subset S^3$ be a knot with an unknotting tunnel τ . Then τ is fixed pointwise by a strong inversion of K if and only if K is a two-bridge knot and τ is its upper or lower tunnel.

2. Tunnels and Involutions

Notation 2.1. From now on, K will denote a knot in S^3 that has an unknotting tunnel τ . Thus $K \cup \tau$ is realized as a graph with two vertices and three edges τ , K_1 , and K_2 , where $K = K_1 \cup K_2$. When identifying τ as a particular tunnel τ_0 of the knot K, we mean that $K \cup \tau$ is equivalent to $K \cup \tau_0$ via an isotopy of S^3 that preserves K setwise. Note that this notion of equivalence is stronger than isotopy of tunnels in the knot exterior, because the endpoints of τ are not allowed to pass through each other.

Definition 2.2. For any graph $\Gamma \subset S^3$, let $N(\Gamma)$ be an open regular neighborhood of Γ . We call $E(\Gamma) = S^3 \setminus N(\Gamma)$ the *exterior* of Γ .

An unknotting tunnel induces a genus-2 Heegaard splitting of S^3 into handlebodies $V_1 = \overline{N(K \cup \tau)}$ and $V_2 = E(K \cup \tau)$. Let Σ be the Heegaard surface: $\Sigma = \partial N(K \cup \tau)$. A genus-2 handlebody admits a hyper-elliptic involution that preserves the isotopy class of every simple closed curve on its boundary; it is unique up to isotopy. Thus the hyper-elliptic involutions of V_1 and V_2 can be joined over Σ to an orientation-preserving involution φ_{τ} on all of S^3 . This involution sends K to itself with reversed orientation; i.e. is a strong inversion of K (see [2]).

The action of φ_{τ} preserves the meridians of K_1 and K_2 on Σ while reversing the orientation on K — so it must switch the two vertices of $K \cup \tau$ and thus reverse the orientation on τ . It is conceivable, however, that some other involution ψ might fix τ pointwise while switching K_1 with K_2 . Theorem 1.1 says that this only happens for 2-bridge knots.

3. Two-Bridge Knots

Definition 3.1. A rational tangle is a pair (B, t), where B is a 3-ball and t consists of two disjoint, properly embedded arcs γ_1 and γ_2 . We further require that the γ_i are both isotopic to ∂B via disjoint disks D_i .

Definition 3.2. A knot $K \subset S^3$ is called a *two-bridge knot* if some sphere S splits (S^3, K) into two rational tangles. S is then called a *bridge sphere* for K.

A 2-bridge knot has a 4-plat projection with two maxima at the top and two minima at the bottom [3]. Any horizontal plane lying between the maxima and minima, together with the point at infinity, then serves as a bridge sphere for K. The 4-plat projection also reveals two unknotting tunnels for K: an upper tunnel τ_1 connecting the two maxima, and a lower tunnel τ_2 connecting the two minima.

Two-bridge knots also have four *dual tunnels*, which may be isotopic to the upper or lower tunnels in special cases. Morimoto and Sakuma classified the six total tunnels up to homeomorphism and isotopy of the knot exterior [7]. Kobayashi showed that any unknotting tunnel of a 2-bridge knot is exterior-isotopic to one of these six [4].

The following result is an immediate consequence of [2, Sec. 3].

Lemma 3.3. Let K be a two-bridge knot, and τ_1 and τ_2 be its upper and lower tunnels. Let φ_{τ_i} be the involution of S^3 that comes from the handlebody decomposition induced by τ_i . Then φ_{τ_1} can be chosen to fix τ_2 pointwise, and φ_{τ_2} can be chosen to fix τ_1 pointwise.

Proof. As described in [3], there is an isotopy of K from the 4-plat projection to a tri-symmetric projection, carrying τ_1 to part of the vertical axis of symmetry and τ_2 to part of the horizontal axis. (See Fig. 1.) Abusing notation slightly, we continue to call these isotoped tunnels τ_1 and τ_2 . Now, the involution φ_{τ_1} is evident in the figure as a 180° rotation about the horizontal axis containing τ_2 , and thus fixes τ_2 pointwise. Similarly, φ_{τ_2} is a rotation about the vertical axis containing τ_1 , fixing τ_1 pointwise.

For the purpose of recognizing two-bridge knots based on involutions, our main tool is a theorem of Scharlemann and Thompson about planar graphs.

Definition 3.4. A finite graph $\Gamma \subset S^3$ is called *planar* if it lies on an embedded 2-sphere in S^3 . Γ is called *abstractly planar* if it is homeomorphic to a planar graph.

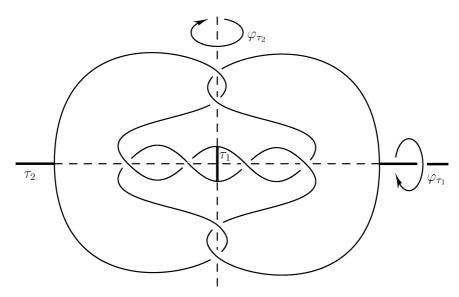


Fig. 1. Upper and lower tunnels, and the corresponding involutions, in the tri-symmetric projection.

Theorem 3.5 [8]. A finite, connected graph $\Gamma \subset S^3$ is planar if and only if

- (1) Γ is abstractly planar,
- (2) every proper subgraph of Γ is planar, and
- (3) $E(\Gamma)$ is a handlebody.

Remark 3.6. For our purposes, we will only need the special case of this theorem when Γ consists of one vertex and two edges. This was first proved in an unpublished preprint of Hempel and Roeling.

Corollary 3.7. Let K be a knot with unknotting tunnel τ , where τ splits K into edges K_1 and K_2 . If both $K_1 \cup \tau$ and $K_2 \cup \tau$ are unknots, then K is a two-bridge knot with bridge sphere $\partial N(\tau)$. Furthermore, τ is an upper or lower tunnel.

Proof. Let $f: S^3 \to S^3$ be a map that contracts $\overline{N(\tau)}$ to a point and is the identity outside a small regular neighborhood of $\overline{N(\tau)}$. Then $\Gamma = f(K \cup \tau)$ is a graph with one vertex and two edges, which is clearly abstractly planar. Each proper subgraph $\Gamma_i \subset \Gamma$ is the image of $K_i \cup \tau$, and is thus an unknotted circle. Also, $E(\Gamma)$ is a handlebody since $E(K \cup \tau)$ is a handlebody. Thus, by Theorem 3.5, Γ is planar.

Since Γ is planar, its subgraphs Γ_1 and Γ_2 bound disjoint disks D_1 and D_2 in S^3 . (See Fig. 2.) These disks pull back via f to disjoint disks $E_1, E_2 \subset E(\tau)$. Each E_i thus provides an isotopy of $K_i \cap E(\tau)$ to $\partial N(\tau)$, making $(E(\tau), K \cap E(\tau))$ a rational tangle. Meanwhile, $N(\tau)$ intersects K in two short arcs that are clearly boundary-parallel, so that is a rational tangle too. Therefore, K is a 2-bridge knot with bridge sphere $\partial N(\tau)$.

It is known (from [9], for example) that a splitting of a 2-bridge knot into rational tangles is unique up to isotopy. Thus an ambient isotopy of S^3 carries K to a 4-plat projection and $N(\tau)$ to a half-space containing just the two maxima (or minima). Thus τ is an upper or lower tunnel for K.

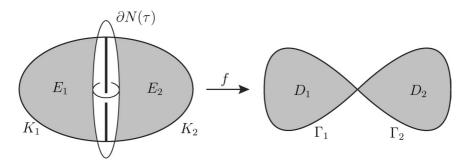


Fig. 2. The graphs and disks of Corollary 3.7.

4. Cyclic Groups Acting on Handlebodies

A key ingredient in the proof of Theorem 1.1 is the equivariant loop theorem of Meeks and Yau.

Theorem 4.1 [5]. Let M be a compact, connected 3-manifold with connected boundary, and G be a finite group acting smoothly on M. Let H be the kernel of the homomorphism of fundamental groups induced by the inclusion $\partial M \hookrightarrow M$. Then there is a collection $\Delta = \{D_1, \ldots, D_n\}$ of disjoint, properly embedded, essential disks in M such that

- (1) $\partial D_i \subset \partial M$ for all i,
- (2) H is the normal subgroup of $\pi_1(M)$ generated by the ∂D_i , and
- (3) Δ is invariant under the action of G.

Notation 4.2. Let M and Δ be as above, and denote by S be the union of the disks in Δ . Let $M|\Delta = M \setminus N(S)$, where the regular neighborhood is chosen to be invariant under the action of G.

To adapt this theorem for our purposes, we assume that M is a handlebody and analyze the pieces of $M|\Delta$.

Lemma 4.3. Let V be a handlebody, and let G be a finite group acting smoothly on V. Let Δ be the collection of disks guaranteed by Theorem 4.1. Then each component of $V|\Delta$ is a ball.

Proof. First, suppose that V is cut along just one disk D. It is well-known that the result is one or two handlebodies. Here is an outline of the proof, suggested by Schleimer. Let V' be one component of the resulting manifold. Then $\pi_1(V')$ injects into $\pi_1(V)$, because if a loop $\gamma \subset V'$ bounds a disk $E \subset V$, one can do disk swaps with D to find a disk in V' that γ also bounds. Thus $\pi_1(V')$ is free (as a subgroup of the free group $\pi_1(V)$), and so V' is a handlebody. Applying this argument repeatedly, we see that every component of $V | \Delta$ is a handlebody.

Let X be one component of $V|\Delta$. ∂X consists of a subset of ∂V along with some number of distinguished disks E_1, \ldots, E_k that come from removing N(S). We already know that X is a handlebody, and we prove that X is a ball by showing that it contains no essential disks.

Suppose that $D \subset X$ is a disk with $\gamma = \partial D \subset \partial X$. Clearly, D can be isotoped so that γ is disjoint from the distinguished disks E_j . Thus γ is a simple closed curve in ∂V that bounds a disk $D \subset V$. By Theorem 4.1, some loop freely homotopic to γ is generated by conjugates of the ∂D_i in $\pi_1(\partial V)$. Passing to homology, we see that the class $[\gamma]$ is a linear combination of the $[\partial D_i]$ in $H_1(\partial V)$.

Let us express ∂V as a union of open subsets A and B, where $B = \partial V \setminus \partial X$ and A is an open regular neighborhood of ∂X in ∂V . Thus $A \cap B$ is a disjoint union

of open regular neighborhoods of the ∂E_j . γ lies in A but is homologous to some cycle c in B, because

$$[\gamma] = \sum_{i=1}^{n} a_i [\partial D_i] \in H_1(\partial V), \text{ and } \partial D_i \subset B \text{ for all } i.$$

Now, the Mayer-Vietoris sequence gives us

$$\cdots \to H_1(A \cap B) \xrightarrow{i_*} H_1(A) \oplus H_1(B) \xrightarrow{j_*} H_1(\partial V) \to \cdots$$

induced by the chain maps i(x) = (x, x) and j(x, y) = x - y. Since $[\gamma] - [c] = 0 \in H_1(\partial V)$, $([\gamma], [c]) \in \ker(j_*)$. But since the sequence is exact, $([\gamma], [c]) \in \operatorname{Im}(i_*)$. Thus γ is homologous in $H_1(A)$ to a cycle that lies in $A \cap B$. But $H_1(A \cap B)$ is generated by the $[\partial E_j]$, so γ must be homologically trivial in ∂X .

Since X is a handlebody without any homologically essential disks, it must be a ball. \Box

The following application of Meeks and Yau's theorem to a form of the Smith conjecture for handlebodies was suggested by Agol.

Theorem 4.4. Let V be a handlebody, and let $g: V \to V$ be an orientation-preserving, periodic diffeomorphism. Then

- (1) The fixed-point set of g is either empty or boundary-parallel.
- (2) W = V/(g) is also a handlebody, in which the image of the fixed-point set is again empty or boundary-parallel.

Proof. Let Δ be the collection of disks in V given by Theorem 4.1. By Lemma 4.3, $V|\Delta$ is a disjoint union of balls. The fixed-point set a may be empty, or it may have one or more components. If a is non-empty, we will prove that it is boundary-parallel by first considering its intersection with the individual balls and then seeing how the pieces join up.

For each component B of $V|\Delta$, ∂B consists of a subset of ∂V , together with some number of distinguished disks E_1, \ldots, E_k that come from removing N(S). Since $V|\Delta$ is g-invariant, g maps B either onto itself or onto another ball. Thus, if $B \cap a$ is non-empty, g must send B to itself.

Double B along its boundary to get S^3 . If g maps B to itself, its action will extend to an orientation-preserving, periodic, smooth map $h: S^3 \to S^3$. By the solution to the Smith conjecture [6], the fixed-point set of h is a single unknotted circle. Thus the double of $B \cap a$ is the unknot, making $B \cap a$ a single, boundary-parallel arc. We can choose the isotopic arc $b \subset \partial B$ so that it intersects the E_j in a minimal way: if an endpoint of $B \cap a$ lies in some E_j , then $b \cap E_j$ is a radius of that disk. Otherwise, b is disjoint from the distinguished disks.

To prove that a is boundary-parallel in all of V, it remains to show how the isotopies in the individual balls extend across the disks in Δ . If some $D_i \in \Delta$ is disjoint from a, it presents no problem. If D_i does intersect a, it is preserved by g,

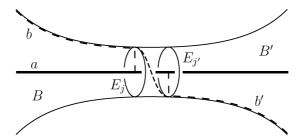


Fig. 3. When the components of $V|\Delta$ are glued together along Δ , the fixed-point locus a remains isotopic to the boundary.

and the intersection must be a point or an arc. If D_i intersects a in an arc, then that component of a is already boundary-parallel through D_i . If D_i intersects a transversely, in a point, then the corresponding pair of disks $E_j \subset \partial B$ and $E_{j'} \subset \partial B'$ will each intersect it in a point too. In this case, the isotopies of $a \cap B$ and $a \cap B'$ to ∂V can be joined over $N(D_i)$, as in Fig. 3. Thus any non-empty fixed-point locus a must be boundary-parallel.

To prove part (2) of the theorem, consider the quotient of $V|\Delta$ under the action of g. This quotient is still a disjoint union of balls, which are glued along disks on their boundaries to reconstruct W. Thus W can be viewed as a thickened graph, whose vertices are in the disjoint balls and whose edges correspond to gluings. As a thickened graph, W must be a handlebody, and the image of a under the quotient map is boundary-parallel by the same argument as above.

5. Proof of Theorem 1.1

Lemma 3.3 proves the "if" direction of the theorem. To prove the "only if" direction, suppose that a strong inversion ψ of K fixes its unknotting tunnel τ pointwise. By the Smith conjecture solution, the fixed-point locus of ψ is an unknotted circle. τ already lies on the fixed-point axis; call the remaining arc of the axis a.

Notation 5.1. Let $\pi: S^3 \to S^3$ be the quotient map induced by the action of ψ . Label $\hat{K} = \pi(K)$, $\hat{\tau} = \pi(\tau)$, and $\hat{a} = \pi(a)$. Then π is a branched covering map of S^3 by S^3 , branched along the unknot $\hat{\tau} \cup \hat{a}$.

Recall the genus-2 Heegaard splitting of S^3 by $V_1 = \overline{N(K \cup \tau)}$ and $V_2 = E(K \cup \tau)$. ψ acts as an involution on each V_i ; let $W_i = \pi(V_i)$ be the quotients. Since W_1 is a closed regular neighborhood of the knot $\hat{K} \cup \hat{\tau}$, it is a solid torus. By Theorem 4.4, W_2 is a handlebody, and since $T = \partial W_1 = \partial W_2$ is a torus, W_2 is itself a solid torus. The result now follows in two steps.

Claim 5.2. $\hat{K} \cup \hat{a}$ is a two-bridge knot with bridge sphere $\partial N(\hat{\tau})$.

Proof. The involution ψ acts on each V_i separately, and a is the fixed-point set of ψ in V_2 . By Theorem 4.4, it follows that \hat{a} is boundary-parallel in W_2 . Thus $W_2 \setminus N(\hat{a}) = E(\hat{K} \cup \hat{\tau} \cup \hat{a})$ is a genus-2 handlebody, and $\hat{\tau}$ is an unknotting tunnel for $\hat{K} \cup \hat{a}$. Furthermore, $\hat{\tau} \cup \hat{a}$ is the unknot by the solution to the Smith conjecture, and $\hat{K} \cup \hat{\tau}$ is the unknot because $W_2 = E(\hat{K} \cup \hat{\tau})$ is a solid torus. Thus Corollary 3.7 tells us that $\partial N(\hat{\tau})$ splits $\hat{K} \cup \hat{a}$ into rational tangles.

Claim 5.3. K is a two-bridge knot, and τ is its upper or lower tunnel.

Proof. Claim 5.2 tells us that $\partial N(\hat{\tau})$ is a bridge sphere for $\hat{K} \cup \hat{a}$. In particular, $\hat{K} \cap E(\hat{\tau})$ is isotopic to $\partial N(\hat{\tau})$ via a disk \hat{D} that is disjoint from \hat{a} . Since \hat{D} is disjoint from the branch locus of π , it lifts to two disjoint disks, D_1 and D_2 , that realize isotopies of K_1 and K_2 , respectively, to $\partial N(\tau)$. Therefore, $(E(\tau), K \cap E(\tau))$ is a rational tangle and K is a 2-bridge knot.

It follows that τ is an upper or lower tunnel for K, by the same argument as in Corollary 3.7.

Acknowledgments

This theorem materialized amid the warm hospitality of the Isaac Newton Institute for Mathematical Sciences at Cambridge University. I have benefited greatly from conversations with Ian Agol, Yoav Moriah, and Makoto Sakuma. Steve Kerckhoff and Saul Schleimer both devoted a great deal of time to hearing and vetting early versions of the proof, and deserve my sincerest gratitude.

References

- C. Adams, Unknotting tunnels in hyperbolic 3-manifolds, Math. Ann. 302 (1995) 177–195.
- [2] S. Bleiler and Y. Moriah, Heegaard splittings and branched coverings of B^3 , Math. Ann. **281** (1988) 531–543.
- [3] G. Burde and H. Zieschang, Knots (de Gruyter, Berlin, New York, 1985).
- [4] T. Kobayashi, Classification of unknotting tunnels for 2-bridge knots, in *Proceedings of the 1998 Kirbyfest*, Geometry and Topology Monographs, Vol. 2 (1999), pp. 259–290.
- [5] W. Meeks and S.-T. Yau, The equivariant Dehns lemma and loop theorem, Comment. Math. Helv. 56 (1981) 225–239.
- [6] J. Morgan and H. Bass (eds.), The Smith Conjecture (Academic Press, New York, 1984).
- [7] K. Morimoto and M. Sakuma, On unknotting tunnels for knots, Math. Ann. 289 (1991) 143–167.
- [8] M. Scharlemann and A. Thompson, Detecting unknotted graphs in 3-space, J. Differential Geom. 34 (1991) 539–560.
- [9] H. Schubert, Knoten mit zwei Brücken, Math. Z. 66 (1956) 133–170.