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Essential surfaces in highly twisted link complements

RYAN BLAIR
DAvID FUTER
MAGGY ToOMOVA

We prove that in the complement of a highly twisted link, all closed, essential,
meridionally incompressible surfaces must have high genus. The genus bound is
proportional to the number of crossings per twist region. A similar result holds for
surfaces with meridional boundary: such a surface either has large negative Euler
characteristic or is an n—punctured sphere visible in the diagram.

57M25, 5TM50

1 Introduction

Links in S3 are most easily visualized via a projection diagram. However, obtaining
topological and geometric information directly from link diagrams has proved to be
a difficult task. Historically, alternating links are one of the few classes of links for
which this information has been accessible. For instance, links with prime alternating
diagrams contain no incompressible tori by work of Menasco [12] and have minimal-
genus Seifert surfaces constructible directly from the diagram by work of Crowell [4]
and Murasugi [13]. The goal of this paper is to extend results in this vein to diagrams
with a high degree of twisting. To state our results, we must define what this means.

A bigon in a link diagram D(K) is a disk in the projection plane whose boundary
consists of two arcs in the projection of K. Define an equivalence relation on crossings
in a diagram in which two crossings are considered equivalent if they are connected
by a string of one or more consecutive bigons. Then a twist region of a diagram is
an equivalence class of crossings. The minimal number of crossings in a twist region
of D(K) is called the height of D, denoted /(D), and the number of twist regions
of D(K) is called the twist number, denoted (D).

The height and twist number of a diagram turn out to be deeply related to the geometric
structure of the link it depicts. Lackenby [11] showed that given a prime alternating
diagram, the hyperbolic volume of the link complement is bounded both above and
below by linear functions of the twist number ¢(D). Futer, Kalfagianni and Purcell [6]
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extended these volume estimates to nonalternating diagrams for which i(D) > 7;
that is, diagrams where every twist region contains at least 7 crossings. Additionally,
the results of Futer and Purcell [8] imply that when /(D) is large, there is a close
connection between the link diagram and any generalized Heegaard decomposition for
the exterior of K.

In this paper, we show that 4(D) provides a linear lower bound on the genus of essential
surfaces in a link complement. Stating our results precisely requires several definitions.

A link diagram is prime if every simple closed curve in the projection plane P that
meets D(K) transversely in two points in the interior of edges bounds a disk in P
that is disjoint from all crossings of the diagram. A diagram is called twist reduced if,
for every simple closed curve in P that meets D(K) in exactly two crossings, those
two crossings belong to the same twist region. (See Figure 1, left.) We will implicitly
assume that the diagram D(K) is connected and alternating within each twist region
(so the configuration of Figure 1, right, cannot occur). It is easy to verify that every
prime link K has a prime, twist-reduced diagram with alternating twist regions. This
can be achieved by first applying a maximal number of type II Reidemeister moves that
eliminate crossings and then applying flypes to consolidate crossings into a minimal
number of twist regions.

Figure 1: Left: In a twist-reduced diagram, these crossings must belong to
the same twist region. Right: In a twist-reduced diagram with alternating
twist regions, this configuration cannot occur.

A surface embedded in S3 is n—punctured if it meets K transversely in exactly n
points. Two n—punctured surfaces are equivalent if they are transversely isotopic with
respect to K. A surface F embedded in S3 is c—incompressible if every disk or
I-punctured disk D embedded in S3 such that D N F = 3D is transversely isotopic
to a disk or 1-punctured disk contained in F while fixing the boundary. Although
c—incompressibility is a strictly stronger condition than incompressibility, it is often
better behaved than incompressibility and more natural to use when studying surfaces
in link exteriors. We can now state the main theorem.
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Theorem 1.1 Let K C S be a link with a connected, prime, twist-reduced diagram
D(K). Suppose D(K) has at least 2 twist regions and h(D) > 6. Let F C S3~K be
a closed, essential, c—incompressible surface in the link complement. Then we have
X(F) <5—h(D).

Furthermore, if K is a knot, then x(F) < 10—2h(D).

A special case of Theorem 1.1 was proved by Futer and Purcell [7, Theorem 1.4]: if
h(D) > 6, then x(F) < 0, which implies that F cannot be a sphere or torus.

There is an analogous statement for surfaces with meridional boundary.

Theorem 1.2 Let K C S be a link with a connected, prime, twist-reduced diagram
D(K). Suppose D(K) has at least 2 twist regions and h(D) > 6. Let F C S3~K be
a connected, essential, c—incompressible surface in S*~ K whose boundary consists of
meridians of K. Then one of the following holds:

(i) F is a sphere with n punctures, which intersects the projection plane in a single
closed curve that meets the link n times and is disjoint from all twist regions.

() x(F)=<5-h(D).

In other words: either F is “visible in the projection plane”, or we obtain the same
Euler characteristic estimate as in Theorem 1.1.

There is an interesting analogue between several results involving the height /(D) and
results involving the distance of bridge surfaces. The latter is an integer measure of
complexity of a bridge surface for a knot that has deep implications for the underlying
topology and geometry of the knot exterior. The distance of a bridge surface provides a
lower bound on the genus of certain essential surfaces in the knot exterior (see Bachman
and Schleimer [2]), while Theorems 1.1 and 1.2 demonstrate an analogous property
for height. It is known that both diagrams with large height and bridge surfaces with
large distance produce knots with no exceptional surgeries; compare the work of Blair,
Campisi, Johnson, Taylor and Tomova [3] to that of Futer and Purcell [7]. Additionally,
both height and bridge distance give strong restrictions on the Heegaard surfaces for
the knot exterior; compare Tomova [15] to Futer and Purcell [8].

The analogous results about height and bridge distance are all the more striking given
that the two notions are in some ways orthogonal. For instance, for 2—bridge knots,
distance is essentially equal to the number of twist regions (D) in a minimal diagram
(Zupan [16]), while the height #(D) is the minimal number of crossings per twist
region. It would be interesting to know whether the analogous results are indicative of
some deeper underlying structure.
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Here is a brief outline of the proofs of Theorems 1.1 and 1.2. We begin by adding a
number of extra link components to K, so that there is a link component encircling
each twist region. (See Figure 2.) In Section 2, we review the construction of this
augmented link L and show that F' can be moved by isotopy into a favorable position
with respect to the added link components. In Section 3, we describe a decomposition of
the augmented link complement into right-angled ideal polyhedra and again isotope F
into a favorable position with respect to these polyhedra.

Sections 4 and 5 constitute the heart of the paper. Here, we use the combinatorics of the
ideal polyhedra to estimate the number of times that the surface F must intersect the
extra link components that we added to construct L. Each of these intersections will
make a definite contribution to the Euler characteristic of F, implying the estimates of
Theorems 1.1 and 1.2.

2 Augmented links and crossing disks

In the arguments that follow, we assume that D(K) satisfies the hypotheses of Theo-
rems 1.1 and 1.2. Specifically, D(K) is a connected, prime, twist-reduced diagram
with at least 2 twist regions and /(D) > 6. By Futer and Purcell [7, Theorem 1.4],
these hypotheses on D(K) imply that K is prime and S3~K is irreducible.

The proof of Theorems 1.1 and 1.2 relies on the geometric study of augmented links.
Let us recap the relevant definitions, while pointing the reader to Purcell’s survey
paper [14] for more details.

For every twist region of D(K), we add an extra link component, called a crossing
circle, that wraps around the two strands of the twist region. The result is a new link J.
(See Figure 2.) Now, the manifold S 3.J is homeomorphic to .S 3L, where L is
obtained by removing all full twists (pairs of crossings) from the twist regions of J.
This link L is called the augmented link corresponding to D(K). By [7, Theorem 2.4],
both J and L are prime and S3~L = S3~J is irreducible.

Every crossing circle C; bounds a crossing disk D; that is punctured twice by strands
of K. These twice-punctured disks play a particularly significant role in the hyperbolic
geometry of S3~ L. Note that S3~K can be recovered from S*~ L by 1/n; Dehn
filling on C;, where |n;| is the number of full twists that we removed from the
corresponding twist region.

A key goal in proving Theorems 1.1 and 1.2 is to place the surface F into a particularly
nice position with respect to the crossing circles and crossing disks. This will be done in
two steps. First, we move F by isotopy through S3~ K into a position that minimizes
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Figure 2: An augmented link L is constructed by adding a crossing circle
around each twist region of D(K), then removing full twists. The crossing
circles are shown in red. Figure borrowed from [7].

the intersections with the crossing disks. Then, in the next section, we drill out the
crossing circles and place the remnant surface F° C F in normal form with respect to
a polyhedral decomposition.

Lemma 2.1 Let F be a c—incompressible surface in S~ K whose boundary (if any)
consists of meridians. Move F by isotopy into a position that minimizes the number of
components of intersection with the crossing disks. Then every component of intersec-
tion between F and a crossing disk D; is an essential arc in D; with endpoints in C;.

Proof The first step of the proof is to rule out closed curves of intersection. Since D;
is a twice-punctured disk, every closed curve in D; is either trivial or parallel to one of
the boundary components. Isotope F to intersect the union of the D; minimally.

Since F is incompressible and S3~ K is irreducible, no curve of intersection can
bound a disk in D; as we could eliminate such a curve of intersection via an isotopy
of F. Similarly, since F is c—incompressible and K is prime, no closed curve of
intersection can be parallel to a meridian of K. Thus all closed curves of F'N D; are
parallel to C;. We may then move F by isotopy in S3~ K past the crossing circle C;
and remove all remaining curves of intersection F' N D;, contradicting our minimality
assumption. See Figure 3.

Now that we have ruled out closed curves of intersection F N D;, all components of
intersection must be arcs. An arc with an endpoint on K cannot occur, because F
is a meridional surface and after a small perturbation of F' we can assume that F' is
disjoint from the points of intersection between K and the crossing disks. Therefore,
every component of F'N D; is an arc from C; to C;. If any of these arcs are inessential
in D;, then an outermost such arc « can be removed via an isotopy of F' supported in
a neighborhood of the subdisk of D; cobounded by « and an arc in C;. Thus, every
component of intersection between F' and a crossing disk D; is an essential arc in D;
with endpoints in C;. O
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F

Figure 3: If F intersects a crossing disk D; in a closed curve, this closed
curve must be parallel to the crossing circle C; and can be removed by isotopy.

Corollary 2.2 Suppose that F is moved by isotopy into a position that minimizes the
number of components of F N\ J; D;, as in Lemma 2.1. This position also minimizes
the number of points of intersection between F and the crossing circles C; .

Proof By Lemma 2.1, every component of N D; is an arc from C; back to C;. Each
arc has two endpoints on C;. Suppose F* is an isotopic copy of F that minimizes the
number of points of intersection between F' and the crossing circles C;. As described
in the proof of Lemma 2.1, c—incompressibility of F* and primeness of K implies
we can eliminate loops of intersection between F* and any D; that bound disks or
I-punctured disks in D; via an isotopy that fixes F* N | J; C;. Similarly, we can
remove those loops of intersection between F* and any Dj; that are isotopic to C;
in D; via an isotopy of F* that fixes F* N (J; C;. Hence, we can assume that the
points of intersection between F* and the C; are in two-to-one correspondence with
the components of intersection of F* and the D;. Thus, minimizing the number
of components of F N | J; D; also minimizes the number of points of intersection
between F and the crossing circles Cj. O

Our next step is to drill out the crossing circles C;. Suppose, following Corollary 2.2,
that F intersects ( J; D;, and thus | J; C;, minimally. Let F° = F~|J; C; be the
remnant of F after removing the crossing circles.

Lemma 2.3 Let L be the augmented link, as in Figure 2. Then, after isotoping F to
minimize the number of components of F N | J; D;, F° = F~|J; C; is an essential

c—incompressible surface in S*~L .

Proof Suppose that F° is compressible in S3~L. Let y be an essential curve in F°
that bounds a compressing disk D in S3~L. If y is essential in F, then we contradict
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the incompressibility of F. Hence y bounds a disk E in F that is disjoint from K
but meets _J; C; in a nontrivial number of points. Since E U D is a 2—sphere bounding
a 3-ball, there is an isotopy of F taking E to D that strictly reduces the number of
components of F N | J; D;, a contradiction.

Suppose that F° is incompressible and c—compressible in S~ L. Let y be an essential
curve in F° that bounds a 1-punctured disk D in S3~L. If y is essential in F, then
we contradict the c—incompressibility of F'. Hence y bounds a punctured disk E
in F that meets J; C; in at least two points and meets K in at most one point. If £
meets K in exactly one point, then, since K is prime, £ U D is a 2—sphere bounding
a 3-ball that meets K in a single unknotted arc. Thus, there is an isotopy of F
transverse to K taking E to D that strictly reduces the number of components of
F N U; Di, acontradiction. If E is disjoint from K, then the isotopy of F taking E
to D is supported in a 3-ball disjoint from K and again strictly reduces the number of
components of F N | J; D;, a contradiction.

Suppose that F° is boundary parallel in the exterior of L. Then either F° is isotopic
to the boundary of a regular neighborhood of a component of L, or F° is boundary
compressible. If F° is boundary compressible, then, since all boundary components of
the exterior of L are tori, either F° is compressible in S3~ L, which is a contradiction
as previously demonstrated, or F° is a boundary-parallel annulus. If F° is a boundary-
parallel annulus, then F is not essential in S3~ K, a contradiction. If F° is isotopic
to the boundary of a regular neighborhood of a component of L, then again F is not
essential in S3~ K, a contradiction. O

3 The polyhedral decomposition

In this section, we consider the intersection between the punctured surface F° and a
certain polyhedral decomposition of S3~ L. For the purposes of this paper, a right-
angled ideal polyhedron is a convex polyhedron in hyperbolic 3—space, all of whose
vertices lie on the sphere at infinity, and all of whose dihedral angles are /2. A
right-angled polyhedral decomposition of a 3—manifold M is an expression of M as
the union of finitely many right-angled ideal polyhedra, glued by isometries along their
faces. Note that a right-angled polyhedral decomposition endows M with a complete
hyperbolic metric.

In our setting, where M is the augmented link complement S3~ L, there is a well-
studied way to decompose M into two identical right-angled ideal polyhedra, first
considered by Adams [1] and later popularized by Agol and Thurston [10, Appendix].
Purcell’s survey article [14] describes the polyhedral decomposition in great detail.
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For our purposes, the salient features are summarized in the following theorem and
illustrated in Figure 4.

Theorem 3.1 Let D(K) be a prime, twist-reduced diagram of a link K with at
least 2 twist regions. Let L be the augmented link constructed from D(K). Then
the augmented link complement S*~ L is hyperbolic, and there is a decomposition
of S*~ L into two identical totally geodesic polyhedra P and P’. In addition, these
polyhedra have the following properties:

(i) The faces of P and P’ can be checkerboard colored so that all shaded faces are
triangles corresponding to portions of crossing disks and white faces correspond
to regions into which L cuts the projection plane.

(i1) All ideal vertices are 4—valent.

(iii) The dihedral angle at each edge of P and P’ is /2.

Proof The hyperbolicity of S3~ L is a theorem of Adams [1]; cf Futer and Purcell [7,
Theorem 2.2]. The remaining assertions are proved in Purcell [14, Proposition 2.2]. O

Figure 4: Decomposing S3~L into ideal polyhedra. First, slice along the
projection plane, then split remaining halves of two-punctured disks. This
produces the polygon on the right. Figured borrowed from [7].

Our goal is to place F° in normal form with respect to this polyhedral decomposition.
Our convention is that the ideal vertices of the polyhedra are truncated to form boundary
faces that tile the boundary tori of S~ L. Then, dF intersects the boundary faces in a
union of arcs.

Definition 3.2 Let P be a truncated ideal polyhedron. An embedded disk D C P is
called normal if its boundary curve y = dD satisfies the following conditions:
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(i) 1y is transverse to the edges of P.
(i) y doesn’t lie entirely in a face of P.

(iii)) No arc of y in a face of P has endpoints on the same edge, or on a boundary
face and an adjacent edge.

(iv) y intersects each edge at most once.

(v) y intersects each boundary face at most once.

If M is a 3—manifold subdivided into ideal polyhedra, a surface S is called normal if
its intersection with each polyhedron is a disjoint union of normal disks.

It is a well-known fact, originally due to Haken [9], that every essential surface in an
irreducible 3—manifold can be isotoped into normal form. However, in our context, we
would like to make F° normal while preserving the conclusion of Lemma 2.1. This
requires carefully managing the complexity of the surface.

Definition 3.3 Let M be a 3—manifold with a prescribed polyhedral decomposition.
Let S C M be a properly embedded surface, transverse to the edges and faces of the
polyhedra. Order the faces of the polyhedral decomposition as f1,..., f,. Then the
complexity of S is the ordered n—tuple

() = (#(S N f1),.... #(S N f).

Here # denotes the number of components. Given two surfaces S and S’, we say that
¢(S) < ¢(S’) if the inequality holds in each coordinate. We say that ¢(S) < ¢(S”) if
¢(S) <¢(S7) and there is a strict inequality in at least one coordinate.

Lemma 3.4 Let M be an irreducible 3—manifold with incompressible boundary and
with a prescribed polyhedral decomposition. Let S C M be a properly embedded
essential surface, transverse to the edges and faces of the polyhedra. Then S can be
isotoped to a normal surface by a sequence of moves that monotonically reduces the
complexity ¢(S).

The following argument is adapted from Futer and Guéritaud [5, Theorem 2.8], and
the figures are also drawn from that paper.

Proof We need to ensure that S satisfies the conditions of Definition 3.2. By
hypothesis, S is transverse to the polyhedra. This transversality implies that for
every polyhedron P, each component of S N dP is a simple closed curve, and gives
condition (i). Additionally, since .S is incompressible, we can assume that we have
isotoped S to meet each polyhedron in a collection of properly embedded disks.
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Now, whenever some component of S N dP violates one of the conditions (ii)—(v), we
will describe a move that reduces the complexity ¢(.S). That is, for each face o of the
polyhedra, the intersection number #(S N o) will either remain constant or decrease,
with a strict decrease for at least one face.

Suppose that y is a closed curve, violating (ii). Without loss of generality, we may
assume that y is innermost on the face o. Then y bounds a disk D C o whose interior
is disjoint from S. But since S is incompressible, y also bounds a disk D’ C S.
Furthermore, since M is irreducible, the sphere D U,, D’ must bound a ball. Thus,
we may isotope S through this ball, moving D’ past D. This isotopy removes the
curve y from the intersection between S and o. In addition, the isotopy will remove
the intersections between D’ and any other faces of P.

Next, suppose that y runs from an edge e back to e, violating the first half of condi-
tion (iii). Then y and a subarc of e cobound a disk D C o, and we can assume y is
innermost (ie S does not meet D again). We can use this disk D to guide an isotopy
of S past the edge e, as in the left panel of Figure 5. This isotopy removes y from
the intersection between S and o. Some intersection components between S and the
interiors of other faces adjacent to e will also merge. Hence, #(S M o) stays constant
or decreases for each face.

Suppose that an arc ¥ runs from a boundary face to an adjacent interior edge in a
face o, violating the second half of condition (iii). Then y has endpoints in adjacent
edges of do, and we may assume without loss of generality that it is outermost in o .
Thus y once again cuts off a disk D from o. By isotoping S along this disk, as in the
right panel of Figure 5, we remove y from S Mo and alter the intersection of S with
any other face by an isotopy of arcs in that face.

)

Figure 5: When a surface violates condition (iii) of normality, then an isotopy
in the direction of the arrow removes intersections between .S and all the faces
that meet the edge e.
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Suppose a component y’ of S NJP intersects an edge e twice, violating (iv). Let y
be the closure of a component of ' — e such that y together with a subarc of e
cobound a disk D. By passing to an outermost arc of intersection between S and D,
we can assume that D NS =dD NS = y. If y is contained in a face of dP, then
we violate (iii). Hence, we can assume that y meets the face of dP that contains a
neighborhood of dy in at least two components. While fixing dD N e, isotope the
rest of D slightly into the interior of P. If S meets the interior of D, it does so in
simple closed curves. Since S meets P in a collection of properly embedded disks, we
can eliminate all components of intersection between S and the interior of D via an
isotopy of S that is supported in the interior of P and fixes c¢(S). After this isotopy,
D is a boundary compressing disk for the component of S N P that contains y’ in
its boundary. As in Figure 5, left, we may use D to guide an isotopy of S past the
edge e. Since y meets the face of dP that contains a neighborhood of dy in at least
two components, this isotopy will strictly reduce #(S N o) for that face and will not
increase #(S N o) for any other face o that meets e.

T
W

Figure 6: When a surface violates condition (v) of normality, isotoping the
disk D’ past D removes intersections between S and the faces.

Finally, suppose that y meets a boundary face twice, violating (v). Then the polyhedron
P contains a boundary compression disk D for S such that dD N dM is contained in
the boundary face. Since S is boundary incompressible, ¥ must also cut off a disk
D’ C S, as in Figure 6. Since S3<L is irreducible, it follows that the disk D Uy D’ is
boundary parallel. Thus we may isotope S through a boundary-parallel ball, moving D’
past D, which eliminates all components of intersection between D’ and dP. Since
dD’ meets the edge of a boundary face, this isotopy strictly lowers ¢(.S).

Since each of the above moves reduces the complexity ¢(S), a minimum-complexity
position will be normal. |

As a consequence, we get the following structural statement.

Lemma 3.5 Let F° = F~J;C; be as in Lemma 2.3. Suppose that F° has been
isotoped into normal form via the procedure of Lemma 3.4. Then the following hold:
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(i) For each crossing disk D;, each component of F° N D; is an essential arc in D;
with endpoints in C;.

(ii) For each shaded face o of the polyhedra, F° N ¢ is an arc from an ideal vertex
at a crossing circle to the opposite edge. See Figure 7.

G, i Ci

K K

Figure 7: Left: A normal disk D; is subdivided by the projection plane of
L into two shaded faces, one in each polyhedron. By Lemma 3.5, each
component of F° N D; is a collection of arcs from C; to C;. Right: The
picture in a single shaded face o.

Proof Recall that in the construction of F° we have assumed that we have isotoped F
to minimize the number of components of F N | J; D;. Hence, by Lemma 2.1, con-
clusion (i) holds before we begin the normalization procedure. Additionally, there is
an isotopy of F° supported in a neighborhood of the D; such that after this isotopy
any component of F° N D; meets any shaded face of the polyhedra in at most one
arc. Since each arc of intersection of F° N D; is essential in D;, then for each shaded
face o of the polyhedra, F° No is an arc from an ideal vertex at a crossing circle to
the opposite edge. Hence, we can assume both conclusion (i) and conclusion (ii) hold
before we begin the normalization procedure.

We claim that before the normalization procedure, the total number of arcs of F° in
shaded faces is

2) #HFND) =Y #FNGC).

This is because each component of F° N D; runs from C; to C; and consists of one
arc in each of the two shaded faces comprising D;. Each such arc runs from an ideal
vertex at C; to the opposite edge, as in Figure 7.

Now, consider what happens during the normalization procedure of Lemma 3.4. That
procedure monotonically reduces the complexity c¢(F). In other words, for every
face o, #(F No) either stays constant or goes down. But by Corollary 2.2, the quantity
2% ;#(F N D;) is already minimal before normalization. Since this quantity is the
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total number of intersections between F° and the shaded faces, it follows that #(F N o)
stays constant for every shaded face o. This means that the intersections between F
and the shaded faces remain as in Figure 7, and conclusions (i) and (ii) remain true
throughout the normalization process. O

Lemma 3.6 Assume that F° is in normal form. For each cusp torus T; corresponding
to a crossing circle C;, each component of dF° N T; consists of (n; — 1) segments
parallel to shaded faces and 2 diagonal segments that have one endpoint on a white
face and one endpoint on a shaded face. Here, n; is the number of crossings in the twist
region of C;. See Figure §.

Proof Recall from [7, Lemma 2.6] that the cusp torus 7; corresponding to a crossing
circle C; is cut by the polyhedra into two rectangular boundary faces, one in each
polyhedron. In the universal cover of T;, we have a rectangular lattice spanned by s
and w, where s is a step parallel to a shaded face (horizontal in Figure 8) and w is
a step parallel to a white face (vertical in Figure 8). In order to recover S~ K from
S3~L, we need to fill the torus 7; along a slope corresponding to the meridian of C;
in S3~J. By [7, Theorem 2.7], this Dehn filling slope is homologous to w + n;s .

A A

A A
=l =l

Figure 8: The cusp torus 7; of a crossing circle C; is subdivided into two
boundary rectangles. There are two combinatorial possibilities, depending
on whether the number of crossings 7; in the twist region is even (shown on
the left) or odd (shown on the right). The normal curve in 7; representing a
component of F° must be as shown in red.

In S3~J, the punctured surface F° meets the neighborhood of each crossing circle in
a meridian. By the above paragraph, each component of dF° on 7T; has homological
intersection 1 with the shaded faces. On the other hand, by Lemma 3.5, each puncture
of F° at C; gives rise to a single arc in the shaded disk. Thus, each curve of dF°
on 7; only has geometric intersection number 1 with the shaded faces. The only way
to achieve this while staying in the homology class w + ;s is to take n; — 1 segments
parallel to s along with two diagonal segments whose sum is w + s. |
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In the following section we need a vocabulary that allows us to translate combinatorial
statements regarding normal loops in the boundary of P into combinatorial statements
regarding the knot diagram D(K). The following remark provides this translation.

Remark 3.7 The homeomorphism from S*~J to S*~L can be taken to be the
identity outside a neighborhood of the union of the crossing disks in S3. We can
view this fact diagrammatically by shrinking the twist regions in the diagram of K
until each is contained in a regular neighborhood of the arc of intersection between
the corresponding crossing disk and the plane of projection for K. By Theorem 3.1,
the white faces of the polyhedral decomposition of the complement of L meet the
complement of the neighborhood of the union of the crossing disks in S3 exactly in the
plane of projection for L. Equivalently, the white faces of the polyhedral decomposition
of the complement of J meet the complement of a regular neighborhood of the twist
regions of K exactly in the plane of projection for K. In this way, arcs and loops in
the white faces of the polyhedral decomposition are arcs and loops in the complement
of the twist regions in the plane of projection for K.

Additionally, in light of Lemma 3.6, we know exactly how a normal surface meets the
faces of the boundary of a polyhedron that correspond to cusp tori. In particular, if
a normal loop in the boundary of a polyhedron meets only white faces and cusp tori
faces, then each component of intersection with the cusp tori faces is a segment in
the s direction. Hence, if a normal surface meets the boundary of a polyhedron in a
loop that is disjoint from the shaded faces and this loop meets the collection of cusp
tori faces in n components, then there is a curve in the plane of projection for K that
cuts through twist regions # times and meets K in exactly 2n points. See Figure 9.

/S

e

Figure 9: Curves in P that are contained in the union of the white faces and
the boundary faces give rise to curves in the plane of projection.
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4 Intersections with crossing circles

In this section, we bound from below the number of times that a c—-incompressible
surface F must meet the crossing circles. We note that some, but not all, of the
subsequent lemmas carry the hypothesis that F is closed. This will allow us maximum
flexibility in proving Theorems 1.1 and 1.2.

Lemma 4.1 Suppose that F C S3~K is a closed, c—incompressible surface. Then F
must intersect a crossing circle.

Proof Suppose that F is disjoint from every C;. Then F = F°, and by Lemma 3.5
we can assume F' is normal and disjoint from the crossing disks. By Theorem 3.1,
the shaded faces of P U P’ glue to form the crossing disks. Thus F N (0P U dP’) is
entirely contained in the white faces.

Since P and P’ are checkerboard colored, every side of every white face borders a
shaded face. But F' is disjoint from the shaded faces, hence it cannot meet any edge of
the white faces. Thus any intersection of F' with a white face must be a simple closed
curve, contradicting the normality of F = F°. |

Lemma 4.2 Suppose that F C S3~K is a c-incompressible surface, either meridional
or closed. Let A C F° be a normal disk that meets exactly one crossing circle cusp.
Then A must also meet a cusp corresponding to K .

In particular, if F is closed, some normal disk A C F° must meet at least two crossing
circles.

Proof Let y C dA be the unique arc of dA in a boundary face 7; corresponding to a
crossing circle C;. By Lemma 3.6, y is either a segment in the s direction, parallel to
a shaded face, or else a diagonal segment that runs from a white face to a shaded face.
We consider these possibilities in turn.

Case 1 Suppose that y runs parallel to the shaded faces, from a white face »’ to
another white face w. Consider where dA can go next. If dA crosses an edge of
a polyhedron into a shaded face o, Lemma 3.5 implies that it must next run into a
boundary face 7; corresponding to some crossing circle C;. But by hypothesis, dA
meets only one boundary face, hence 7; = 7. Thus, A must meet 7; both in a
segment parallel to a shaded face and in a diagonal segment that runs from a white face
to a shaded face, contradicting normality.

If 0A runs from o directly into the boundary face 7 of a crossing circle C;, then
again we must have 7; = 7, which means that © = «’ and dA contains only two
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segments. But then, as Figure 10 shows, we can use Remark 3.7 to find a loop in D(K)
corresponding to y that intersects K twice with nontrivial regions on each side. This
contradicts the primeness of the diagram D(K).

.’ > S
. s 0A ~ 0A
4 A .
s . .
¢ . .
. .
" w N w .
’ A *
] ' *
] 1 .
B (o8 )
' '
1 ' '
! ! 1
I '
1} ’ !
. 4 '
« K K - K N K ’
. . .
N . ~ .

~
~
---------

Figure 10: The two cases in the proof of Lemma 4.2. Left: dA must intersect
a cusp of K, or else the dotted arc lies in a single white face, violating
primeness. Right: A must intersect a cusp of K, because the two endpoints
of the dotted arc are separated by an odd number of knot strands.

The remaining possibility, if y is a segment in the s direction, is that dA runs through w
to a truncated ideal vertex corresponding to K. This is our desired conclusion.

Case 2 Suppose now that y is a diagonal segment that runs from a shaded face o to
a white face w. Then, observe that the two ends of y are separated by an odd number
of knot strands. (See Figure 10.) Thus, to form a closed curve, dA must either cross a
strand of K, which is our desired conclusion, or cross through another shaded face o’.
But then, as above, dA would have to run through ¢’ to a boundary face 7 of some
crossing circle C;, which contradicts either normality (if 7; = 7} ) or the hypotheses
G T; # T)).

Thus, in all cases, JA must meet a cusp corresponding to K. |

Lemma 4.3 Suppose that F C S*~K is a closed, c-incompressible surface. Then F
must intersect at least 3 crossing circles.

Proof Suppose F meets strictly fewer than three crossing circles. By Lemmas 4.1
and 4.2, F must meet exactly two distinct crossing circles, C; and C;.

Recall that Lemma 3.6 implies that each component of intersection between dF° and
the cusp torus 7; contains n; —1 > 5 segments parallel to s and only two other segments
(and similarly for 7;). By Lemma 4.2, a normal disk A C F cannot intersect 7; only.
It follows that some disk A C F intersects each of 7; and 7} in a segment parallel to s .
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Consider how the curve dA can close up. This curve cannot meet the ideal vertices
corresponding to K, and it cannot meet any additional shaded faces either (otherwise
Lemma 3.5 would force A to run into an additional crossing circle Cg ). The only re-
maining possibility is that dA runs through a white face from 7; to 7, and then through
another white face back to 7;. Now, Figure 11 shows that we can use Remark 3.7 to find
aloop in the projection plane corresponding to dA that intersects K four times, with two
intersections adjacent to the twist region of C; and the remaining intersections adjacent
to the twist region of Cj. This violates the hypothesis that D(K) is twist reduced. O

Figure 11: Lemma 4.3. If JA meets exactly two crossing circle cusps in
segments parallel to s, then the diagram D(K) cannot be twist reduced.

Lemma 4.4 Every cusp T; of a crossing circle C; contains an even number of com-
ponents of dF°. Furthermore, if K is a knot and F is a closed surface, then every
cusp T; met by F° contains at least 4 components of 0F°.

Proof The first result is an immediate consequence of the fact that F is separating.

For the second conclusion, suppose that F' is a closed surface and K is a knot. Since F
is closed, it must separate S into two components. The knot K must lie in one of these
components. But every arc of F N D; separates the two strands of K that puncture the
disk D;. Therefore, since K lies on one side of F', the arcs of F N D; must come in
pairs. Hence, if F intersects a crossing circle C; at all, it must meet it at least 4 times. O

Corollary 4.5 If F is closed, the punctured surface F° must meet the crossing circle
cusps b times, where b > 12 if K is a knot and b > 6 if K is a link.

Proof Immediate from Lemmas 4.3 and 4.4. O
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S Combinatorial length

The lemmas in the previous section give us a lot of control over the number of times that
F° meets the cusps 7T; corresponding to the crossing circles. To prove Theorems 1.1
and 1.2, we need to show that each component of dF° N 7T; makes a substantial
contribution to the Euler characteristic of F°, hence to that of F as well.

This can be done in one of two ways: either by estimating the geometric length of
each component of dF° on a maximal cusp corresponding to the crossing circle C;, or
by estimating its combinatorial length in the sense of bounding the complexity of the
normal disks comprising F°. The paper of Futer and Purcell contains readily applicable
estimates on both combinatorial length and geometric length [7, Theorem 3.10 and
Proposition 5.13], and either result would suffice for Theorem 1.1. We choose to
pursue the combinatorial approach, because this is the approach that will generalize to
meridional surfaces in Theorem 1.2.

The notion of combinatorial length was developed by Lackenby, as part of his study of
Dehn surgeries on alternating knots [10]. The main idea is that the Euler characteristic
of a surface can be controlled by understanding the intersections between that surface
and the truncated ideal vertices in an ideal polyhedral decomposition.

Let us recap the key definitions. Every normal disk A C F° has a well-defined
combinatorial area, computed using the dihedral angles of the polyhedra in a manner
that mimics the area formula for hyperbolic polygons.

Definition 5.1 Let D be a normal disk in a right-angled ideal polyhedron P, with
the boundary faces of P lying on dM . Let n be the number of interior edges of P
crossed by dD. Then the combinatorial area of D is defined to be

area(D) = %n +mxl0DNOM|—2m.

Furthermore, the combinatorial area of a normal surface H is defined to be the sum of
the combinatorial areas of all of its constituent normal disks and is denoted by area(H).

Proposition 5.2 (Gauss—Bonnet theorem) Let H C M be a normal surface in a
3—manifold with a right-angled polyhedral decomposition. Then

area(H) = —2n x(H).

Specializing to the case where M = S3~L, we have a way to “see” combinatorial
area from the crossing circles.
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Definition 5.3 Let A be a normal disk with respect to the polyhedral decomposition of
S3<L.Let y1,...,yn be the segments of A that lie in boundary faces corresponding
to crossing circles, and suppose that n > 1. Then, for each y;, we define

(i, &) = 2L,

In other words, the area of A is distributed evenly among its intersections with the
crossing circle cusps.

It is worth remarking that our definition of £(y;, A) differs slightly from the corre-
sponding definition in Futer and Purcell [7, Definition 4.9]. The difference is that the
latter definition divides the area of A among all segments of A in boundary faces, not
just those corresponding to crossing circles. Definition 5.3 is designed to give stronger
versions of some of the following estimates.

Lemma 5.4 Let S be any normal surface in the polyhedral decomposition of S3~L .
Then

area(S) > Z Lyi, D),

where the sum is taken over all normal disks A C S and all segments of 0A in crossing
circle cusps.

Proof This is immediate, since Definition 5.3 ensures that the area of each disk is
counted with the appropriate weight. Note that the inequality might be strict, because
there may be normal disks in S that have positive area but do not meet any crossing
circle cusps. a

In the case where S is the meridional, c—incompressible surface F°, we have a lot of
control over the areas of disks and the corresponding combinatorial areas.

Proposition 5.5 [7, Proposition 5.3] Let D be a normal disk in a polyhedron P of a
right-angled polyhedral decomposition of M, such that 0D passes through at least one
boundary face. Let m = |dD NdM|. If D is not a bigon or an ideal triangle, then

area(D) > an

Lemma 5.6 Let A C F° be a normal disk that meets n crossing circle cusps, where
n > 1. Then, for each segment y; of A in a crossing circle cusp,

L(yi, A) > max{%, %}
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Proof Let m be the number of segments of A in all boundary faces (belonging either
to K or to a crossing circle). By Lemma 4.2, m > 2. Furthermore, by Lemma 3.5,
A cannot be a bigon (because the boundary of a bigon runs between two consecutive
ideal vertices). If A is an ideal triangle, then area(A) = . Thus, by Proposition 5.5,
area(A) > 7 in all cases. By Definition 5.3, it follows that

b/

It remains to show that £(y;, A) > /3. If n <3, we are done by the previous paragraph.
Alternately, if n > 3, Proposition 5.5 gives area(A) > mm/2, where m > n. Thus

area(A m
E(ViAh%zz—Zz%. O

We can now complete the proof of Theorem 1.1.

Proof of Theorem 1.1 Let F C S*~ K be a closed, c-incompressible surface. Isotope
F into a position that minimizes the intersection number with the crossing disks D; .
After drilling out the crossing circles, we obtain a surface F° = F N S*~ L, which
can be placed in normal form via the procedure of Lemma 3.4.

Let b be the number of boundary components of F° on the crossing circle cusps of
S3<L. By Corollary 4.5, we have b > 6, with b > 12 in case K is a knot. Furthermore,
by Lemma 3.6, each of these b components consists of (r; + 1) segments in boundary
faces, where n; > h(D). Thus, by Lemma 5.6, each component of dF° contributes at
least (h(D) + 1)7/3 to the area of F°.

Now, we may compute

(1) =2 (x(F)—b) = 27 x(F°) by the construction of F°
= area(F°) by the Gauss—Bonnet formula
> Z Lyi, N) by Lemma 5.4
i

> % -b-(h(D)+1) byLemma 5.6,
which simplifies to give

@ X(F) = 25— (D)),

Substituting b > 6 for links and b > 12 for knots gives the desired result. |

The same ideas, with one added ingredient, also prove Theorem 1.2.
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Proof of Theorem 1.2 Let F C S3~K be a compact, connected, meridional, c—
incompressible surface. Isotope F into a position that minimizes the intersection
number with the crossing disks D;. Drill out the crossing circles, and normalize F°
in S3<L.

Unlike the setting of closed surfaces (that is, unlike Lemma 4.1), it may happen that
F° is disjoint from the crossing circle cusps, ie F° = F. Then, by Lemma 3.5, each
normal disk A C F° must be disjoint from the shaded faces. In other words, dA is
a closed curve in the white projection plane, which intersects the cusps of K some
number of times. This closed curve bounds a disk A in the polyhedron P, unique up
to isotopy. Recall that P is glued to P’ along all its white faces, and the gluing map
is the identity on white faces. Thus we have an identical normal curve in P’, which
again bounds a normal disk A’ that is unique up to isotopy. Since A and A’ are glued
to each other along all their edges, we conclude that F = F° is a sphere punctured
some number of times by K and, by Remark 3.7, that it meets the projection plane
for K along the single closed curve dA = dA’.

Next, consider what happens if dF° contains b components along the crossing circle
cusps, where b > 0. By Lemma 4.4, b is even. If b > 6, then we argue exactly as in
the proof of Theorem 1.1 and the computation (1) produces the same estimate (2) as
for closed surfaces, namely

x(F) <5—-h(D).

If b = 2, then dF° must intersect only one crossing circle C;, and in particular
every normal disk of F° has at most one segment along a crossing circle cusp. Thus
Lemma 5.6 tells us that £(y, A) > & for every segment y along 7;, hence each
component of dF° along T; contributes at least (4(D) 4 1)z to the area of F°. As a
consequence, a calculation as in (1) gives

—2n(x(F)=b)=nm-b-(h(D)+1).
After substituting b = 2, this simplifies to
X(F) =1=h(D).

Similarly, if » =4, then dF° intersects either one or two crossing circles. Consequently,
every normal disk of F° has at most two segments along a crossing circle cusp. Thus
Lemma 5.6 (with n < 2) tells us that £(y, A) > /2 for every segment y along a
crossing circle cusp 7;. Hence, each component of dF° along T; contributes at least
(h(D) + 1)r/2 to the area of F°, and a calculation as in (1) gives

2 (x(F)—b) > %-b -(h(D) + 1).
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After substituting b = 4, this simplifies to

X(F) =3—h(D). m
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