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QUASIFUCHSIAN STATE SURFACES

DAVID FUTER, EFSTRATIA KALFAGIANNI, AND JESSICA S. PURCELL

Abstract. This paper continues our study of essential state surfaces in link
complements that satisfy a mild diagrammatic hypothesis (homogeneously ad-
equate). For hyperbolic links, we show that the geometric type of these sur-
faces in the Thurston trichotomy is completely determined by a simple graph–
theoretic criterion in terms of a certain spine of the surfaces. For links with A–
or B–adequate diagrams, the geometric type of the surface is also completely
determined by a coefficient of the colored Jones polynomial of the link.

1. Introduction

A major goal in modern knot theory is to relate the geometry of a knot com-
plement to basic topological invariants that are easy to read from a diagram of the
knot. In a recent monograph [13], we find connections between geometric invariants
of a knot or link complement, combinatorial properties of its diagram, and stable
coefficients of its colored Jones polynomials. The bridge among these different in-
variants consists of state surfaces associated to Kauffman states of a link diagram
[17]. These surfaces lie in the link complement and are naturally constructed from
a diagram, while certain graphs that form a spine for these surfaces aid in the
computation of Jones polynomials [7].

In this paper, we continue the study of these state surfaces, with the goal of ob-
taining additional geometric information on a link complement, and relating it back
to diagrammatical and quantum invariants of the link. In particular, we establish
combinatorial criteria that characterize the geometric types of state surfaces in the
Thurston trichotomy. This trichotomy, proved by Thurston [26] and Bonahon [2],
asserts that every essential surface in a hyperbolic 3-manifold fits into exactly one
of three types: semi-fiber, quasifuchsian, or accidental. (See Definition 1.2 below
for details.) We show that under a mild diagrammatic hypothesis, certain state
surfaces will never be accidental, and a simple graph–theoretic property determines
whether the state surface is a semi-fiber or quasifuchsian. For the class of A– or B–
adequate diagrams, which arise in the study of knot polynomial invariants [19,25],
the geometric type of the surface is determined by the colored Jones polynomials
of the knot. See Theorem 1.4 below.

The problem of determining the geometric types of essential surfaces in knot
and link complements has been studied fairly well in the literature. For exam-
ple, Menasco and Reid proved that no alternating link complement contains an
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embedded quasifuchsian closed surface [21], which led to the result that there are
no embedded totally geodesic surfaces in alternating link complements. More re-
cently, Masters and Zhang found closed, immersed quasifuchsian surfaces in any
hyperbolic link complement [20]. As for accidental surfaces, Finkelstein and Mo-
riah established conditions for the existence of closed accidental surfaces in a wide
range of link complements [10, 11]. This work was generalized by Wu [30].

Turning to surfaces with boundary, it is known that all three geometric types
occur in hyperbolic link complements. For example, Tsutsumi constructed hyper-
bolic knots with accidental Seifert surfaces of arbitrarily high genus [27]. On the
other hand, Fenley proved that minimal genus Seifert surfaces cannot be accidental
[9]. An alternate proof of this was given by Cooper and Long [5]. Wise showed
that checkerboard surfaces in alternating link complements are not virtual fibers
[29], and Adams showed that they are always quasifuchsian [1]. Here we give an
alternate proof of this fact, and provide broad families of non-accidental surfaces
constructed from non-alternating diagrams.

The results of this paper have some direct consequences in hyperbolic geometry.
First, they dovetail with recent work of Thistlethwaite and Tsvietkova, who gave
an algorithm to construct the hyperbolic structure on a link complement directly
from a diagram [24, 28]. Their algorithm works whenever a link diagram admits
a non-accidental state surface, which is exactly what our results ensure for a very
large class of diagrams. Second, the quasifuchsian surfaces that we construct fit
into the machinery developed by Adams [1]. He showed that if a cusped hyperbolic
manifold contains a properly embedded quasifuchsian surface with boundary, then
there are restrictions on the cusp geometry of that manifold.

1.1. Definitions and main results. To describe our results precisely, we need
some definitions. As we will be working with both orientable and non-orientable
surfaces, we need to clarify the notion of an essential surface.

Definition 1.1. Let M be an orientable 3–manifold and S ⊂ M a properly em-
bedded surface. We say that S is essential in M if the boundary of a regular

neighborhood of S, denoted S̃, is incompressible and boundary–incompressible.

Note that if S is orientable, then S̃ consists of two copies of S, and the definition is
equivalent to the standard notion of “incompressible and boundary–incompressible”
for orientable surfaces.

Definition 1.2. Let M be a compact 3–manifold with boundary consisting of tori,
and let S be a properly embedded essential surface inM . An accidental parabolic on
S is a free homotopy class of a closed curve that is not boundary–parallel on S but
can be homotoped to the boundary of M . If M is hyperbolic, then the embedding
of S into M induces a faithful representation ρ : π1(S) ↪→ π1(M) ⊂ PSL(2,C). In
this case, an accidental parabolic is a non-peripheral element of π1(S) that is, is
mapped by ρ to a parabolic in π1(M). A surface S with accidental parabolics is
called accidental.

IfM is hyperbolic, the surface S is called quasifuchsian if the embedding S ↪→ M
lifts to a topological plane in H

3 whose limit set Λ ⊂ ∂H3 is a topological circle.
Note that we permit S to be non-orientable: in this case, the two disks bounded by
the Jordan curve Λ will be be interchanged by isometries corresponding to π1(S).
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B–resolutionA–resolution

Figure 1. A– and B–resolutions of a crossing.

Finally, we say the surface S is a semi-fiber if it is a fiber in M or covered by a
fiber in a two-fold cover of M . If S is a semi-fiber but not a fiber, we call it a strict
semi-fiber.

By the work of Thurston [26] and Bonahon [2] (see also Canary, Epstein and
Green [3]), every properly embedded, essential surface S in a finite volume hyper-
bolic 3–manifold M falls into exactly one of the three types in Definition 1.2: S is
either a semi-fiber, or accidental, or quasifuchsian.

We will apply the above definitions to surfaces constructed from Kauffman states
of link diagrams. For any crossing of a link diagram D(K), there are two associated
diagrams, obtained by removing the crossing and reconnecting the diagram in one
of two ways, called the A–resolution and B–resolution of the crossing, shown in
Figure 1.

A choice of an A– or B–resolution for each crossing of D is called a Kauffman
state [17]. The result of applying a Kauffman state σ to a link diagram D is a
collection of circles sσ disjointly embedded in the projection plane S2 ⊂ S3. These
circles bound embedded disks whose interiors can be made disjoint by pushing
them below the projection plane. Now, at each crossing of D, we connect the pair
of neighboring disks by a half–twisted band to construct a state surface Sσ ⊂ S3

whose boundary is K.
State surfaces generalize the classical checkerboard knot surfaces, and they have

recently appeared in the work of several authors, including Przytycki [23] and Ozawa
[22]. They are the primary object of interest in this paper, for certain states. In
order to describe these states, we need a few more definitions.

From the collection of state circles sσ we obtain a trivalent graphHσ by attaching
edges, one for each crossing of the original diagram D(K), as shown by the dashed
lines of Figure 1. As in [13], the edges ofHσ that come from crossings of the diagram
are referred to as segments, and the other edges are portions of state circles. See
Figure 2.

In the literature, a graph that is more common than the graph Hσ is the state
graph Gσ, which is formed from Hσ by collapsing components of sσ to vertices.
Remove redundant edges between vertices to obtain the reduced state graph G′

σ.

Definition 1.3. Following Lickorish and Thistlethwaite [19, 25], a state σ of a
diagram D is said to be adequate if every segment of Hσ has its endpoints on
distinct state circles of sσ. In this case, the diagram D is called σ–adequate. When
σ is the all–A state (all–B state), we call the diagram A–adequate (B–adequate).

In any state σ, the circles of sσ(D) divide the projection plane into components.
Every crossing of D is associated to a segment of Hσ, which belongs to one of
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Figure 2. Left: A link diagram. Center: The graph Hσ cor-
responding to an adequate, homogeneous state σ. Right: State
surface Sσ.

these components. Label each segment A or B, in accordance with the choice of
resolution at this crossing. We say that the state σ is homogeneous if all edges in
a complementary region of sσ have the same A or B label. In this case, we say
that D is σ–homogeneous. An example is shown in Figure 2. If a link K admits
a diagram that is both σ–homogeneous and σ–adequate, for the same state σ, we
call K homogeneously adequate.

Ozawa showed that the state surface Sσ of an adequate, homogeneous state
σ is essential in the link complement [22]. A different proof of this fact follows
from machinery developed by the authors [13]. The state surfaces SA and SB

corresponding to the all–A and all–B states, respectively, also play a significant
role in quantum topology. In [13], we show that coefficients of the colored Jones
polynomials detect topological information about these surfaces. For instance, if K
is an A–adequate link, then SA is a fiber in the link complement precisely when a
particular coefficient vanishes (and similarly for SB).

In this paper, we show that for hyperbolic link complements, the colored Jones
polynomial completely determines the geometric type of SA in the Thurston tri-
chotomy of Definition 1.2. To state our result, let

Jn
K(t) = αnt

mn + βnt
mn−1 + . . .+ β′

nt
rn+1 + α′

nt
rn

denote the n-th colored Jones polynomial of a link K, where mn and rn denote the
highest and the lowest degree. Recall that J2

K(t) is the usual Jones polynomial.
Suppose that K is a link admitting an A–adequate diagram D. Consider the all–A
state graph GA and the reduced graph G

′
A. By [8, Theorem 3.1], for all n > 1, we

have |α′
n| = 1 and |β′

n| = 1− χ(G′
A). Thus we may define the stable coefficient

(1) β′
K := |β′

n| = 1− χ(G′
A).

Similarly, if D is B–adequate, then |αn| = 1 and |βn| = 1 − χ(G′
B), hence there is

a stable coefficient βK := |βn| = 1− χ(G′
B) = 1− χ(G′

B).
Finally, recall that a link diagram D is called prime if any simple closed curve

that meets the diagram transversely in two points bounds a region of the projection
plane without any crossings. A prime knot or link admits a prime diagram.

One of our results is the following theorem.
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Theorem 1.4. Let D(K) be a prime, A–adequate diagram of a hyperbolic link K.
Then the stable coefficient β′

K determines the geometric type of the all–A surface
SA, as follows:

• If β′
K = 0, then SA is a fiber in S3�K.

• If β′
K �= 0, then SA is quasifuchsian.

Similarly, if D(K) is a prime B–adequate diagram of a hyperbolic link K, then
the stable coefficient βK determines the geometric type of SB. This surface will be
a fiber if βK = 0, and quasifuchsian otherwise.

Remark 1.5. The class of A– or B–adequate links includes all alternating links,
positive and negative closed braids, closed 3–braids, Montesinos links, Conway
sums of alternating tangles, and planar cables of all the above. It also includes
all but a handful of prime knots up to 12 crossings. See [13, Section 1.3] for more
discussion and references. The class of homogeneously adequate links includes all
of the above and also contains the homogeneous links studied by Cromwell [6].

We note that the class of homogeneously adequate links is strictly larger than
that of A– and B–adequate links: For example, consider the knot K = 12n0873
of Knotinfo [4]. Its Jones polynomial JK(t) = 3t−4 − 7t−3 + 11t−2 − 14t−1 + 15−
14t + 11t2 − 7t3 + 3t4 is not monic, hence K is neither A– nor B–adequate. On
the other hand, according to [4], K is written as the closure of the homogeneous
braid b = σ1σ2σ

−1
3 σ−1

4 σ2σ
−1
3 σ1σ2σ

−1
3 σ2σ

−1
4 σ−1

3 , where σi denotes the i-th standard
generator of the 5–string braid group. It is not hard to see that the Seifert state of
the closed braid diagram is homogeneous and adequate.

At this writing, it is not known whether every hyperbolic link admits a homoge-
neously adequate diagram. See [22] and [13, Chapter 10] for related discussion and
questions.

The main new result of this paper is the following theorem.

Theorem 1.6. Let D(K) be a prime link diagram with an adequate, homogeneous
state σ. Then the state surface Sσ is essential and admits no accidental parabolics.
Furthermore, Sσ is a semi-fiber whenever it is a fiber, which occurs if and only if
G′

σ is a tree.

Theorem 1.4 follows immediately from Theorem 1.6: simply restrict to A–
adequate diagrams, and note that equation (1) above implies β′

K = 0 precisely
when G′

A is a tree.
The result that checkerboard surfaces in hyperbolic alternating link complements

are quasifuchsian (compare Adams [1]) also follows immediately from Theorem 1.6.
This is because checkerboard surfaces correspond to the all–A and all–B states of
alternating link diagrams, which are always homogeneous and adequate, and the
corresponding graphs G′

A and G′
B will be trees only when the reduced alternating

diagram of the link depicts a (2, q) torus link, which is not hyperbolic.
The main novel content of Theorem 1.6 is that Sσ is never accidental. Indeed, in

[13, Theorem 5.21], we showed that Sσ is a fiber precisely when the reduced state
graph G′

σ is a tree and that it is never a strict semi-fiber. Thus, by Thurston and
Bonahon [2], for a hyperbolic link K the surface Sσ is quasifuchsian precisely when
G′

σ is not a tree.
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1.2. Organization. In Section 2, we discuss accidental parabolic elements in the
fundamental group of a state surface. We observe that the existence of such ele-
ments gives rise to an essential embedded annulus in the complement of the state
surface, and then exclude such annuli in the case where K is a knot (see Theorem
2.6). This, in particular, implies the main results for knots.

Proving Theorem 1.6 in the more general case of links is harder and involves
knowing more details about the complement of the state surface. In Section 3, we
describe the structure of an ideal decomposition of the state surface complement,
which was first constructed in [13]. In Section 4, we study normal annuli in this
polyhedral decomposition, and prove that such an annulus can never realize an
accidental parabolic. We expect that some of the combinatorial results established
in Section 4 will also prove useful for studying more general essential surfaces in
the complements of homogeneously adequate links.

2. Embedded annuli and knots

In this section, we prove that if an essential state surface Sσ has an accidental
parabolic, that is, if a non-peripheral curve in Sσ is homotopic to the boundary,
then such a homotopy can be realized by an embedded annulus. This will quickly
lead to a proof of Theorem 1.6 in the special case where K is a knot.

Definition 2.1. Let M be a compact orientable 3–manifold with ∂M consisting
of tori, and S ⊂ M a properly embedded surface. We use the notation M\\S
to denote the path–metric closure of M�S. Up to homeomorphism, M\\S is the
same as the complement of a regular neighborhood of S.

The parabolic locus P is the portion of ∂M that remains in ∂(M\\S). If every
torus of ∂M is cut along S, then the parabolic locus P will consist of annuli.
Otherwise, it will consist of annuli and tori. The remaining, non-parabolic boundary

∂(M\\S)�∂M can be identified with S̃, the boundary of a regular neighborhood of
S. In the special case where M = S3�K is a link complement and S = Sσ is a state
surface, we use the notation Mσ to refer to M\\Sσ = (S3�K)\\Sσ = S3\\Sσ.

The following lemma recounts a standard argument. It should be compared, for
example, to [5, Lemma 2.1].

Lemma 2.2. Let M be a compact orientable 3–manifold with ∂M consisting of
tori. Let S ⊂ M be a properly embedded essential surface If S has an accidental
parabolic, then there is an embedded essential annulus A ⊂ M\\S with one boundary

component on S̃ and the other on the parabolic locus P = ∂M\\∂S. Furthermore, if
∂S meets every component of ∂M , the component ∂A ⊂ P is parallel to a component

of ∂S̃.

Proof. If S admits an accidental parabolic, then there exists a non-peripheral closed
curve γ on S which is freely homotopic into ∂M through M . The free homotopy
defines a map of an annulus A1 into M , with one boundary component on γ and
the other on ∂M . Put A1 into a general position with respect to S. Because S
may be non-orientable, we will work with the boundary of a regular neighborhood

of S, denoted S̃. We may move the component of ∂A1 on S̃ in a bi-collar of S to

be disjoint from S̃. Now, any closed curve of intersection of A1 and S̃ that bounds

a disk in A1 can be pushed off S̃ by the fact that S̃ is incompressible (because S is
essential; see Definition 1.1). Likewise, we can push off any arcs of intersection of
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QUASIFUCHSIAN STATE SURFACES 4329

A1 and S̃ which have both endpoints on ∂M , because S̃ is boundary incompressible.

Because we have moved the other boundary component of A1 off S̃, there can be

no arcs of intersection of A1 and S̃. There may be closed curves of intersection that
are essential on A1.

Apply a homotopy to minimize the number of closed curves of intersection. Then
there is a sub-annulus A2 ⊆ A1 that is outermost, i.e. has one boundary component

on ∂M and one on S̃. Note that A2 might equal A1. By construction, the interior

of A2 is mapped to the interior of M\\S̃. We may assume that the mapping of

A2 into M\\S̃ is non-degenerate, i.e. cannot be homotoped into the boundary of

(M\\S̃), for otherwise the map of A1 into M can be simplified by homotopy. Now,
the annulus theorem of Jaco [16, Theorem VIII.13] implies there exists an essential

embedding of an annulus A into M\\S̃, with one end in S̃ and the other end on
the parabolic locus P .

Now M\\S̃ is the disjoint union of an I–bundle over S and a manifold homeo-
morphic to M\\S, with the non-parabolic portions of M\\S homeomorphic to the

non-parabolic portions of M\\S̃. The I–bundle over S cannot contain any acci-
dental parabolic annuli, for such an annulus would realize a homotopy between a
peripheral and a non-peripheral curve in S. Thus A must lie in the component of

M\\S̃ which is homeomorphic to M\\S. �

In [13], we constructed a polyhedral decomposition of Mσ. In the next section,
we will outline several of its pertinent features, while referring to [13,14] for details.
To handle the case where K is a knot, we mainly need the following result.

Theorem 2.3 (Theorem 3.23 of [13]). Let D(K) be a connected diagram with an
adequate, homogeneous state σ. There is a decomposition of Mσ into 4–valent,
checkerboard colored ideal polyhedra. The ideal vertices lie on the parabolic locus

P , the white faces are glued to other polyhedra, and the shaded faces lie in S̃σ, the
non-parabolic part of ∂Mσ.

Normal surface theory ensures that the intersections of the annulus A of Lemma
2.2 with the polyhedral decomposition of Mσ can be taken to have a number of
nice properties.

Definition 2.4. We say a surface is in normal form if it satisfies the following
conditions:

(i) Each component of its intersection with the polyhedra is a disk.
(ii) Each disk intersects a boundary edge of a polyhedron at most once.
(iii) The boundary of such a disk cannot enter and leave an ideal vertex through

the same face of the polyhedron.
(iv) The surface intersects any face of the polyhedra in arcs.
(v) No such arc can have endpoints in the same ideal vertex of a polyhedron, or

in a vertex and an adjacent edge.

Lemma 2.5. Let D(K) be a link diagram with an adequate, homogeneous state
σ. Suppose the state surface Sσ has an accidental parabolic. Then the embedded
annulus A of Lemma 2.2 can be moved by isotopy into normal form with respect to
the polyhedral decomposition of S3\\Sσ. The intersections of A with white faces of
the polyhedra are all lines running from one boundary component of A to the other.
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Proof. Note that Mσ = S3\\Sσ is topologically a handlebody, hence irreducible.
By Haken [15] we may isotope A into normal form. Consider the intersections of
A with white faces. A component of intersection cannot be a simple closed curve,
by item (iv) of the definition of normal form. If a component of intersection is an
arc with both endpoints on N(K), we can remove this intersection by [13, Lemma
3.20]: every white face of the polyhedral decomposition is boundary incompressible
in M\\Sσ. Similarly, suppose an arc of intersection has both endpoints on Sσ.
Then we may pass to an outermost such arc and obtain a normal bigon, that is, a
normal disk with two sides. This contradicts [13, Proposition 3.24]: the polyhedral
decomposition of M\\Sσ contains no normal bigons. �

We are now ready to prove that an adequate, homogeneous state surface for a
knot admits no accidental parabolics.

Theorem 2.6. Let D(K) be a knot diagram with an adequate, homogeneous state
σ. Then the state surface Sσ cannot be accidental.

Proof. Suppose not: suppose Sσ is accidental. Then Lemma 2.2 implies there is

an embedded annulus A in Mσ with one boundary component on S̃σ and the other
on the parabolic locus N(K). Consider the intersections of A with a fixed white
face W . Because the boundary component of A on N(K) runs parallel to Sσ, the
annulus A must intersect each ideal vertex of W . Moreover, by Lemma 2.5, any
component of intersection A ∩W runs from the component of A on N(K) to the

component on S̃σ. Hence on W , this intersection is an arc from an ideal vertex of

W to one of the sides of W (shaded faces are on S̃σ).
Because A is normal, item (v) of Definition 2.4 implies that such an arc cannot

run from an ideal vertex to an adjacent edge. But now we have a contradiction:
there is no way to embed a collection of arcs in W such that each arc meets one
ideal vertex and one side of W without having an arc that runs from an ideal vertex
to an adjacent edge. �

3. Details of the ideal polyhedra

The proof of Theorem 2.6 for links requires knowing more information about the
polyhedral decomposition of [13]. In this section, we review some of the relevant
features, referring to [13, Chapters 2–4] for more details.

A non-prime arc is an arc with both endpoints on the same state circle of Hσ,
and interior disjoint from Hσ, which separates the subgraph of Hσ on one side of
the state circle into two graphs, each of which contain segments. Such a subgraph
is called a non-prime half–disk. A collection of non-prime arcs is called maximal
if, once we cut along all such arcs and all state circles, the graph decomposes into
subgraphs, each of which contains a segment, and no larger collection of non-prime
arcs has the same property.

Let {α1, . . . , αn} denote a maximal collection of non-prime arcs. We define a
polyhedral region to be a non-trivial region of the complement of the state circles
and the αi. The manifold Mσ = S3\\Sσ decomposes into one upper polyhedron
and several lower polyhedra. Each lower polyhedron corresponds to precisely one of
these polyhedral regions. Furthermore, the state circles and segments that meet this
polyhedral region naturally define a subgraph of Hσ and a prime, alternating sub-
diagram of D(K). The 1–skeleton of the lower polyhedron is exactly the same as
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QUASIFUCHSIAN STATE SURFACES 4331

the 4–valent projection graph of the prime, alternating link diagram corresponding
to this subgraph of Hσ.

Our maximal collection of non-prime arcs ensures that the polyhedral regions
correspond to prime sub-diagrams of D(K) and to lower polyhedra without normal
bigons. Meanwhile, the vertices, edges, and faces of the upper polyhedron have the
following description:

(1) Each white face corresponds to a (non-trivial, i.e. non-innermost disk) com-
plementary region of Hσ ∪ (

⋃n
i=1 αi).

(2) Each shaded face lies on S̃σ and is the neighborhood of a tree that we call
a spine. The spine is directed, in that each edge has a natural orientation.
Innermost disks are sources. Arrows are attached corresponding to tenta-
cles, which run from a state circle adjacent to a segment (the head) and
then turn left (all–A case) or right (all–B case) and have their tail along
a state circle, as well as non-prime switches, where four arrows meet at a
non-prime arc. See [13, Figure 3.7] for an illustration of these terms.

When an arc is running through the directed spine in the direction of
the arrows, we say it is running downstream.

(3) Each vertex of the upper polyhedron corresponds to a strand of D(K)
between consecutive under-crossings. In the graph Hσ, this strand follows
a zig-zag, that is, an alternating sequence of portions of state circles and
segments (possibly zero segments). See Figure 4, right, for a zig-zag with
one segment.

(4) Each edge of the upper polyhedron starts at the head of a tentacle of a
shaded face. As a result, ideal edges can be given an orientation, which
matches the orientation of the directed spine in that tentacle.

White faces of the lower polyhedra are glued to white faces of the upper poly-
hedron. We may transfer combinatorial information about the upper polyhedron
into the lower ones via a map called the clockwise map.

Definition 3.1. Let W be a white face of the upper polyhedron, with n sides. If
W belongs to an all–A polyhedral region, the clockwise map φ on W is defined by
composing the gluing map of the white face with a 2π/n clockwise rotation. See
Figure 3. If W belongs to an all–B polyhedral region, the map φ is defined by
composing the gluing map with a 2π/n counter-clockwise rotation. We sometimes
call it the counter-clockwise map.

As illustrated in Figure 3, the clockwise or counter-clockwise map φ is orientation–
preserving. This is because the “viewer” is in the upper polyhedron: we see the
boundary of the upper polyhedron from the inside and each lower polyhedron from
the outside. With this convention, the gluing map preserves orientations, hence φ
does also.

In the special case where D(K) is prime and alternating, there is exactly one
lower polyhedron, and the 1–skeleta of both the upper and lower polyhedra coincide
with the 4–valent graph of the diagram. In this case, both the clockwise and
counter-clockwise maps can be seen as the “identity map” on regions of the diagram
[18]. In the non-alternating setting, more details about the clockwise map can be
found in [13, Sections 4.2 and 4.5].

The following lemma describes the effect of the clockwise and counter-clockwise
maps on normal squares, that is, normal disks with four sides. Here we allow a
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Upper polyhedron

(a) Gluing map (b) Clockwise map

e1

In S3�K

β
β

β
β

Figure 3. An arc β and its image under the gluing map and the
clockwise map.

portion of the quadrilateral that runs over N(K) (i.e. a neighborhood of an ideal
vertex of the polyhedral decomposition) to count as a side.

Lemma 3.2. Let U be a polyhedral region of the projection plane, let W1, . . . ,Wk

be the white faces in U , and let P ′ be the lower polyhedron associated to U . Then
the clockwise (counter-clockwise) map φ : W1 ∪ · · · ∪ Wk → P ′ has the following
properties:

(1) If x and y are points on the boundary of white faces in U that belong to the
same shaded face of the upper polyhedron, then φ(x) and φ(y) belong to the
same shaded face of P ′.

(2) Let S be a normal square in the upper polyhedron with two sides on shaded

faces (that is, on S̃σ) and two sides on white faces V and W , with V and
W both belonging to polyhedral region U . Let βv = S ∩V and βw = S ∩W .
Then the arcs φ(βv) and φ(βw) can be joined along shaded faces to give
a normal square S′ ⊂ P ′, defined uniquely up to normal isotopy. Write
S′ = φ(S).

(3) Let S be a square in the upper polyhedron with one side on a shaded face,
two sides on white faces V and W , and the fourth side on N(K), meeting
the upper polyhedron in a single ideal vertex between V and W . Suppose
further that V and W both belong to the polyhedral region U . Then the arcs
βv = S ∩ V and βw = S ∩ W meet at a single ideal vertex in the lower
polyhedron, and their other endpoints can be joined along a shaded face to
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In S3�K Upper polyhedron

βw

βv

βw

βv

Figure 4. Two arcs in white faces in the same all–A polyhedral
region, meeting the same ideal vertex, must be as shown. In an
all–B region, the picture is mirror reversed.

give a normal square S′ ⊂ P ′, defined uniquely up to normal isotopy. Write
S′ = φ(S).

(4) If S1 and S2 are disjoint normal squares in the upper polyhedron, all of
whose white faces belong to U , then φ(S1) is disjoint from φ(S2).

Proof. Items (1) and (2) are proved in [13, Lemma 4.8] in the case where U is an
all–A polyhedral region. The proof of the all–B case is identical, with “clockwise”
replaced by “counter-clockwise”. We do need to prove items (3) and (4).

For (3), let S be a normal square in the upper polyhedron as described: sides βw

and βv are arcs in white faces V and W lying in U , meeting at a single ideal vertex
in the upper polyhedron. The proof of (2) implies that the endpoints of φ(βw) and
φ(βv) on shaded faces can be connected by an arc in a single shaded face. Thus we
focus on the endpoints which lie on an ideal vertex.

Because the clockwise (or counter-clockwise) map takes vertices of white faces
to vertices, each of the arcs φ(βw) and φ(βv) still has one end on an ideal vertex in
P ′. We need to verify that they have this end on the same ideal vertex of P ′.

Assume, without loss of generality, that U is an all–A polyhedral region and the
map φ is clockwise. (The proof for the counter-clockwise map will be identical.)

Recall that an ideal vertex in the upper polyhedron corresponds to a zig-zag
in the graph Hσ. Because V and W belong to the same polyhedral region, they
are not separated by any state circles. As a result, the vertex between them must
be a zig-zag with a single segment. This single segment corresponds to a single
over-crossing of the diagram and a single segment of the graph Hσ, as in Figure
4. But now the clockwise map rotates the vertices of each white face clockwise, to
lie in the center of the next segment of Hσ in the clockwise direction. Now, the
endpoints of βv and βw are rotated to the center of the same segment, namely the
segment corresponding to the single over–crossing of the ideal vertex.

Finally, for item (4), as φ is a homeomorphism on white faces, sides of φ(S1)
and φ(S2) on white faces are disjoint. If both φ(S1) and φ(S2) pass through the
interior of a shaded face F , then the argument of [13, Lemma 4.8] shows they are
disjoint. If φ(S1) passes through the interior of a shaded face F and φ(S2) passes
through a vertex, then they will be disjoint in F . Finally, if φ(S1) and φ(S2) both
pass through ideal vertices of F , if they pass through distinct vertices then their
images will be disjoint. If they pass through (a neighborhood of) the same vertex
in the upper polyhedron, since the squares are disjoint, in the adjacent white faces
the arcs of S1 must lie on the same side of the arc of S2. This will be preserved by

Licensed to Temple Univ. Prepared on Fri May 16 14:59:34 EDT 2014 for download from IP 68.82.141.125/155.247.166.234.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



4334 D. FUTER, E. KALFAGIANNI, AND J. PURCELL

the clockwise map acting on both faces, and so the images can be connected at the
vertex in a manner that keeps them both disjoint. �

4. The case of links

The goal of this section is to prove Theorem 4.1, which generalizes Theorem 2.6
to links with multiple components. We note that, unlike Theorem 2.6, this result
needs the hypothesis of prime diagrams.

Theorem 4.1. Let D(K) be a prime, σ–adequate, σ–homogeneous link diagram.
Then the state surface Sσ has no accidental parabolics.

Suppose, to the contrary, that the state surface Sσ is accidental. Then Lemma
2.2 implies there is an embedded annulus A ⊂ Mσ with one boundary component

on S̃σ and the other on the parabolic locus N(K). After placing A in normal form
(as in Lemma 2.5), we obtain a number of normal squares in individual polyhedra.
Following the annulus, these squares A1, . . . , An alternate by lying in the upper
polyhedron, then a lower polyhedron, then the upper polyhedron again, and so
on. Each Ai has two sides on white faces, one on a shaded face, and one on
N(K). Finally, each Ai is glued to Ai+1 along a white face of the decomposition.
Throughout this section, we adopt the convention that odd-numbered squares are
in the upper polyhedron.

The proof of Theorem 4.1 is broken up into a number of lemmas, which analyze
the intersection pattern of these squares and their clockwise images. In §4.1, we
perform the first reductions in the proof and show Proposition 4.4: the annulus
A must be composed of at least 4 squares, and some white face met by A has at
least 4 sides. Then, in §4.2, we use the conclusion of Proposition 4.4 to restrict the
possibilities for D(K) further and further, until we show in §4.3 that Sσ has no
accidental parabolics.

4.1. First reductions in the proof. We begin with the following lemma.

Lemma 4.2. The annulus A must contain at least 4 normal squares.

Proof. Since the squares Ai alternate between the upper and lower polyhedra, the
number of these squares must be even. Thus, suppose A consists of only two
squares: A1 in the upper polyhedron and A2 in a lower polyhedron. Since A1 is
glued to A2 along both of its white faces, these white faces V and W must lie in
the same polyhedral region U .

By Lemma 3.2 (3), we may map A1 into the lower polyhedron by a map φ. The
normal square A′

1 = φ(A1) runs through one ideal vertex, white faces V and W ,
and a single shaded face. Without loss of generality, the map φ rotates clockwise.

Recall that A1 is glued to A2 across V , and that the clockwise map φ differs
from the gluing map by a 2π/n rotation. Thus in V , the arc of A′

1 differs from that
of A2 by a single clockwise rotation. Similarly in W . Thus the arcs of A′

1 and of A2

in V and W must be as in Figure 5, left. The dashed lines in that figure indicate
the clockwise motions of A2. These must be the lines on the white faces V and W
corresponding to A′

1. Note that the points where the dashed lines meet a vertex,
labeled x and y, must agree in the polyhedron. Putting these two points together,
the diagram must be as in Figure 5, right.

But note in particular that there is a circle coming from the edges of the poly-
hedra which separates the two endpoints of the solid line representing A2. (It also
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yA2 A′
1
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A2
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1
V

W

A2

A′
1

Figure 5. A picture of a lower polyhedron, in the case where A
is cut into only two squares A1 and A2.

separates the two endpoints of the dashed line representing A′
1.) Since these end-

points must be connected by an embedded arc of A2 in a shaded face, we have a
contradiction. �
Lemma 4.3. Let A1 ⊂ A be a normal square in the upper polyhedron. If both white
faces met by A1 are triangles, these triangles are in different polyhedral regions.

Proof. Suppose that A1 lies in the upper polyhedron with both of its white faces in
the same polyhedral region, and both of those white faces are triangles. Then we
may map A1 to the lower polyhedron of this polyhedral region via the clockwise (or
counter-clockwise) map. Without loss of generality, we may assume that the map
φ is clockwise in this region. Since A1 is glued to A2 and An, this lower polyhedron
contains both A2 and An.

The square A2 in a lower polyhedron runs through one shaded face, one trian-
gular white face, one other white face, and an ideal vertex. By Lemma 3.2, part
(3), A′

1 = φ(A1) is also a normal square that passes through an ideal vertex. Be-
cause A1 is glued to A2, we have one side of A′

1 and one side of A2 in the same
white triangle, and these sides differ by a single clockwise rotation. Thus A′

1 and
A2 must be as shown in Figure 6, left. Note that the shaded face met by A2 and
the shaded face met by A′

1 cannot agree: if they did, this single shaded face would
meet the white face along two edges, contradicting [13, Proposition 3.24] (no nor-
mal bigons). Hence the arcs shown in that figure can connect to closed curves only
if the triangular faces labeled V1 and V2 actually coincide.

Since V1 = V2, the configuration must be as in Figure 6, right. But now, recall
that A1 is glued to square An along this white face V1 = V2. By Lemma 4.2, the
squares A2 and An are distinct. Furthermore, since A is embedded, A2 and An are
disjoint. However, the side of An on the face V1 = V2 differs from A′

1 by a single
clockwise rotation. It is impossible for this arc to be disjoint from A2, which is a
contradiction. �

We can now prove the main result of this section.

Proposition 4.4. The annulus A consists of at least 4 squares. In addition, some
white face met by A has at least 4 sides.

Proof. The first claim in the proposition is proved in Lemma 4.2. To prove the
second claim, let A1 ⊂ A be a normal square in the upper polyhedron. We will
show that this particular normal square meets a white face with at least 4 sides.
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1
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Figure 6. Configurations for triangular faces in the same polyhe-
dral region.

First we rule out white faces that are bigons. In a bigon face, each edge is
adjacent to each of the two vertices. Thus any arc from an ideal vertex to an edge
would violate condition (v) of Definition 2.4, meaning A cannot be normal if it
meets a bigon face. This contradiction implies every white face met by A1 has at
least 3 sides.

If both white faces met by A1 are triangles, then Lemma 4.3 implies that these
triangles are in different polyhedral regions. To study this situation, we need the
following lemma.

Lemma 4.5. Suppose A1 is a normal square in the upper polyhedron, with one
side on an ideal vertex, two sides on white faces V and W , where V is triangular,
and one side, labeled γ, on a shaded face. Label the state circles around V so that
∂Ai runs from a vertex of V on the state circle C1 to a tentacle whose tail is on
the state circle C2. Then either

(1) W is inside the region R1 on the opposite side of C1 from V or
(2) W is inside R2 on the opposite side of C2 from V .

Furthermore, when we direct γ from V to W , it runs across C1 or C2, respectively,
running downstream. See Figure 7.

Proof. The square A1 has one side on the parabolic locus, which is a vertex of the
upper polyhedron. Each vertex is a zig-zag. Because A1 meets a vertex on C1, part
of the zig-zag must lie on C1.

If all of the zig-zag lies on C1, that is, if the zig-zag consists of a single bit of
state surface, then W lies in R1 on the opposite side of C1 from V .

If the zig-zag contains one or more segments, then at least one segment of the
zig-zag is attached to C1, on one side or the other. If the segment is attached to C1

on the side of the region R1, then W must be inside R1. (Otherwise, there would be
a staircase from state circle C1 back to C1, contradicting the Escher Stairs Lemma
[13, Lemma 3.4].) If the segment is attached to the side opposite R1, then because
it belongs to a single vertex, it must in fact be the segment labeled s in Figure
7, which connects C1 to C2 alongside face V . In this case, the zig-zag includes a
portion of C2, and W will lie on one side or the other of C2. By the assumption
that V and W are in different polyhedral regions, W must lie inside the region R2

on the opposite side of C2 from V .
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V

A1 ∩ V

C2

C1

C3

s

R2

R1

F1

F2 F3

Figure 7. Notation for Lemma 4.5. The conclusion of the lemma
is that square A1 must run through shaded face F2 to a shaded
face W contained in region R1 or region R2.

Now we argue that γ runs downstream across C1 or C2 when directed away from
V towards W . As in Figure 7, the shaded face containing γ is called F2. For ease
of exposition, we also refer to F2 as the blue face. Thus γ starts next to white face
V by entering a blue tentacle adjacent to C2.

First suppose W is in R2. If γ crosses C2 immediately from the tail of the blue
tentacle, then it must do so running downstream, since only heads of tentacles
(rather than no non-prime switches or innermost disks) can attach to tails of tenta-
cles on the opposite side of a state circle. So suppose γ runs upstream into the head
of the blue tentacle, crossing state circle C3. Since C3 does not separate V and W ,
in fact γ must cross it twice, and the Utility Lemma [13, Lemma 3.11] implies that
γ crosses it first running upstream, then downstream. Between the second time
γ crosses C3 and the first time it crosses C2, γ must exit out of every non-prime
half–disk it enters, otherwise such a disk would separate C2 and C3. But no half–
disk can separate C2 and C3, because they are connected by a segment. Thus the
Downstream Lemma [13, Lemma 3.10] implies γ crosses C2 running downstream.

Finally, suppose W is in R1. The arc γ begins in a blue tentacle with head on
C3 and tail on C2. If γ crosses C2 first, it will be running downstream. But C2

does not separate V and W in this case, so γ must cross it twice. This contradicts
the Utility Lemma. Thus γ crosses C3 first, running upstream. Again it crosses
C3 twice, and by the Utility Lemma, the second crossing of C3 occurs running
downstream. Then, as in the previous paragraph, the Downstream Lemma implies
that γ crosses C1 running downstream. �

Now we finish the proof of Proposition 4.4.
Let the notation be as in Lemma 4.5. In addition, as in Figure 7, let Fi be the

shaded face that has a tentacle lying on state circle Ci. Thus γ runs through shaded
face F2.

To finish the proof, we pull a side of A1 off the parabolic locus, i.e. off the ideal
vertex, and into shaded face F1 or F3. This creates a normal square with two white
sides and two shaded sides.

If W is in R1, pull A1 off the ideal vertex and into the tentacle of F1, to obtain
an arc σ ⊂ F1. This arc σ must run downstream across C1, by the Utility Lemma

Licensed to Temple Univ. Prepared on Fri May 16 14:59:34 EDT 2014 for download from IP 68.82.141.125/155.247.166.234.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



4338 D. FUTER, E. KALFAGIANNI, AND J. PURCELL

[13, Lemma 3.11] and the Downstream Lemma [13, Lemma 3.10] (as in the above
argument).

If W is in R2, pull A1 off the ideal vertex and into the tentacle of F3, obtaining
an arc σ ⊂ F3. Again the arc σ must run downstream across C2.

In either case, we have arcs γ and σ which run downstream from the same state
circle (either C1 if W ⊂ R1, or C2 if W ⊂ R2). They terminate in the same white
face, namely W . This contradicts the Parallel Stairs Lemma [13, Lemma 3.14]. �

4.2. Annuli and squares. In the next sequence of lemmas, we use Proposition
4.4 to set up the proof that the state surface Sσ has no accidental parabolics.
The overall theme of the proof is that each successive lemma places stiffer and
stiffer restrictions on the annulus A, the polyhedral decomposition, and the diagram
D(K). In the end, we will reach a contradiction.

So far, we have an essential annulus A ⊂ Mσ, composed of normal squares
A1, . . . , An. Each of these squares has two sides on white faces, one on a shaded
face, and the final side on an ideal vertex.

In the arguments below, it is actually easier to view the pieces of A as squares
with two sides on shaded faces and two sides on white faces. This is accomplished
as follows. Recall that the parabolic locus ∂N(K)\\Sσ consists of annuli. One of
the boundary circles of A is embedded on one of these parabolic annuli. We may
isotope A slightly through Mσ, to move the boundary circle of A from the parabolic

locus and onto S̃σ.
In the polyhedral decomposition, the pushed-off copy of A will be cut into a

collection of normal squares with two sides on white faces and two sides on shaded
faces, such that one side on a shaded face cuts off a single ideal vertex. We denote
these squares by S1, . . . , Sn. Note each Si is obtained by pulling Ai off an ideal
vertex and into an adjacent shaded face.

In fact, there are two different directions in which we may pull A off the parabolic
locus. We make the choice as follows.

Convention 4.6. Let V be a white face with four or more vertices, which meets
the annulus A. (The existence of such a white face is guaranteed by Proposition
4.4.) We arrange the labeling of normal squares Ai so that square A1 in the upper
polyhedron is glued along V to square A2 in some lower polyhedron.

The normal square A1 meets a vertex of V , which means that one component of
V�A1 has two or more vertices. We pull A off the parabolic locus in the direction
of this (larger) component of V�A1. Thus, if S1 is the normal square corresponding
to A1, the arc S1 ∩ V has at least two vertices on each side.

Lemma 4.7. The annulus A intersects only two white faces, V and W , which be-
long to the same polyhedral region. Furthermore, every normal square Si intersects
V and W in a way that cuts off at least two vertices on each side.

Proof. Let V be the white face of Convention 4.6, and let A1 and S1 be the corre-
sponding normal squares. Let W be the other white face met by S1. Since S1 does
not cut off an ideal vertex in V , and is glued to square S2 across V , [13, Proposition
4.13] implies that V and W are in the same polyhedral region U .1

1In the monograph [13], Proposition 4.13 and Lemma 4.10 are stated for A–adequate diagrams.
As [13, Section 4.5] explains, these results and the other structural results about the polyhedra
also apply to σ–adequate, σ–homogeneous diagrams.

Licensed to Temple Univ. Prepared on Fri May 16 14:59:34 EDT 2014 for download from IP 68.82.141.125/155.247.166.234.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



QUASIFUCHSIAN STATE SURFACES 4339

Now, Lemma 3.2, part (2) says that we may map S1 into the lower polyhedron
corresponding to U and obtain a normal square S′

1 = φ(S1). Note that the arc
S′
1∩V will differ from S2∩V by a single rotation, by the definition of the clockwise

(or counter-clockwise) map. Since S′
1 cuts off more than a single vertex in V ,

[13, Lemma 4.10] implies that S′
1 intersects S2 non-trivially, in both of its white

faces. But this means that S2 meets both V and W in arcs that cut off more than
a single vertex on each side.

The square S2 is glued along W to a square S3 in the upper polyhedron. The
arc S3 ∩W cuts off more than a single vertex on each side, because it is glued to
S2. Thus, as above, [13, Proposition 4.13] implies that both white faces of S3 are
in the same polyhedral region U , and [13, Lemma 4.10] implies that S′

3 = φ(S3)
intersects S2 non-trivially, in both of its white faces. In other words, S3 meets the
same white faces V and W in arcs that cut off more than a single vertex on each
side. Continue in this fashion to obtain the same conclusion for every Si. �

Let Si be an even-numbered square in a lower polyhedron. Lemma 4.7 tells us
that Si is glued to Si−1 across V and to Si+1 across W , where V and W are the
same as i varies.

Definition 4.8. To continue studying the intersection patterns of normal squares
in the lower polyhedron, we define

Ti =

{
φ(Si) if i is odd,

Si if i is even.

Note that every Ti lives in the lower polyhedron of the polyhedral region U .
For every square Ti, we label its four sides as follows. The sides of Ti in white

faces V and W are denoted vi and wi, respectively. One shaded side of Si was
created by pulling a side of Ai off the parabolic locus; the corresponding side of Ti

is denoted pi. (Note that by Lemma 3.2, part (3), if an odd-numbered square Si in
the upper polyhedron has a shaded side that cuts off an ideal vertex, then so does
Ti = φ(Si).) We will orient the arcs vi and wi so that they point toward pi, and
orient pi from vi toward wi. That is, pi is oriented from V to W .

Similarly, an odd-numbered square Si in the upper polyhedron also contains an
arc qi that was pulled off the parabolic locus. As before, we orient qi from V to W .

Lemma 4.9. Let i be even, so that Si = Ti is in a lower polyhedron, and suppose
that we pulled Si off an ideal vertex that lies to the right of pi. Then

(1) vi−1 = φ(vi) and wi+1 = φ(wi), with orientations preserved.
(2) pi±1 cuts off an ideal vertex to its right.
(3) In the upper polyhedron, qi±1 also cuts off an ideal vertex to its right.

Proof. By construction, vi ⊂ Si is glued to an arc of Si−1 ∩ V , whose image under
φ is vi−1. Similarly for wi and wi+1. Since φ is orientation–preserving, (1) follows.

Conclusion (2) follows immediately from Lemma 3.2, part (3) because Si was
created by pulling Ai off an ideal vertex in a direction that is consistent for all i.
Similarly, conclusion (3) follows from Lemma 3.2, part (3) because φ is orientation–
preserving. �

Lemma 4.10. Each square Ti encircles a bigon shaded face of the lower polyhedron.
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Figure 8. Proof of Lemma 4.10: Squares T1, T2, and T3 must
meet a lower polyhedron as shown.

Proof. Assume without loss of generality that V and W are in an all–A polyhedral
region. We may also assume without loss of generality that p2 was created by
pulling A2 off an ideal vertex so that the vertex lies to the right of p2. (Otherwise,
interchange the labels of faces V and W , reversing the order of the indices and the
orientation on every pi.)

By Lemma 4.9, the arc v1 is clockwise from v2 in face V , and w3 is clockwise from
w2 in face W . Moreover, v2 intersects both v1 and v3, and similarly w2 intersects
both w1 and w3. But T1 = φ(S1) and T3 = φ(S3) are clockwise images of disjoint
squares, hence are disjoint by Lemma 3.2 (4). Thus T1, T2, and T3 must be as
shown in Figure 8. In particular, p1 and T3 run parallel through the same shaded
face. Dotted lines in the figure indicate that the boundary of the corresponding
shaded face may meet additional vertices.

The arc p2 cuts off an ideal vertex to its right, so by Lemma 4.9, the arcs p1 and
p3 also cut off ideal vertices to their right. Thus the dotted line to the right of p1
in Figure 8 must actually be solid. By primeness of the lower polyhedron, all other
dotted lines must also be solid. Thus T2 and T3 each encircle a single bigon shaded
face.

We may repeat the above argument with T2k taking the place of T2, for any k;
hence each Ti encircles a bigon. �

Lemma 4.11. The white faces V and W met by annulus A are the only white faces
of the polyhedral decomposition. As a consequence, D(K) is the standard diagram
of a (2, n) torus link, and Sσ is an annulus.

Proof. Recall that by Lemma 4.7, there is a polyhedral region U containing white
faces V and W , such that every normal square Si passes through V and W . These
normal squares define squares Ti in the lower polyhedron, as in Definition 4.8. By
Lemma 4.10, every Ti encircles a bigon shaded face of this lower polyhedron. The
number of these bigons is n, the same as the number of normal squares in A.

This is enough to conclude that all the shaded faces of the lower polyhedron
corresponding to U are bigons, chained end to end. Thus V and W are the only
white faces of this lower polyhedron. The 1–skeleton of this lower polyhedron
coincides with the standard diagram of a (2, n) torus link, as on the left of Figure 9.

Licensed to Temple Univ. Prepared on Fri May 16 14:59:34 EDT 2014 for download from IP 68.82.141.125/155.247.166.234.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



QUASIFUCHSIAN STATE SURFACES 4341

.

..

vi wi

..

.

φ−1(wi)

φ−1(vi) qi

Figure 9. Proof of Lemma 4.11. Left: Ti encircles a bigon in the
lower polyhedron. Center: The clockwise preimage Si = φ−1(Ti)
in the upper polyhedron. Right: The ideal vertex cut off by Si.

If the diagram D(K) is prime and alternating, there is only one lower polyhedron
whose 1–skeleton corresponds to D(K). Thus D(K) is the standard diagram of a
(2, n) torus link, where n is even. The rest of the argument reduces us to this case.

In the general case, the upper polyhedron may be more complicated. However,
one polyhedral region in the upper polyhedron looks like that of a (2, n) torus link,
as in the middle panel of Figure 9. A priori, there may be additional segments
attached to the opposite sides of all state circles involved. This is indicated in that
figure by the dashed lines along state circles.

For each square Ti in the lower polyhedron, label three sides of Ti by vi, wi, and
pi, as in Lemma 4.9. Focusing attention on T2 = S2, we may assume that arc p2 in
a shaded face was pulled off an ideal vertex to its right. (Otherwise, as in Lemma
4.10, switch the labels of V and W .) Applying Lemma 4.9, part (2) inductively,
we conclude that for each even index j, arc pj was pulled off an ideal vertex to its
right.

Now, let i be an odd index, so that Si is a square in the upper polyhedron. Since
Ti encircles an ideal bigon, as in Figure 9, the clockwise preimage Si = φ−1(Ti)
must be as in the middle panel of Figure 9. By Lemma 4.9, the arc qi of Si that was
pulled off the parabolic locus must cut off an ideal vertex to its right. This means
that portions of state circles adjacent to qi to its right must actually be solid, to
form a single zig-zag, with no segments to break it up. In other words, we have
the third panel of Figure 9. The third panel of Figure 9 shows two dotted closed
curves, each meeting the link diagram exactly twice. Using the hypothesis that the
diagram is prime, each of these closed curves cannot enclose segments (which would
correspond to crossings of the diagram).

We conclude that two consecutive state circles in Hσ are innermost and contain
no additional polyhedral regions. Repeating the same argument for the next odd-
numbered square Si+2 leads to the conclusion that the next two state circles in
Hσ are also innermost. Continuing in this way, we conclude that there is only one
polyhedral region, which corresponds to the diagram of a (2, n) torus link. �
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4.3. Completing the proofs. We are now ready to prove Theorem 4.1 and The-
orem 1.6.

Proof of Theorem 4.1. Suppose that Sσ has an accidental parabolic. Then Lemma
2.2 implies there is an embedded essential annulus A ⊂ S3\\Sσ. By Lemma 4.7, A
intersects only two white faces, V and W . By Lemma 4.11, V and W are the only
faces of the polyhedral decomposition, hence D(K) is the standard diagram of a
(2, n) torus link and Sσ is an annulus.

Note that the only non-trivial simple closed curve in an annulus is boundary–

parallel. Therefore, the component of ∂A that lies on S̃σ is actually parallel to

∂S̃σ. This contradicts the assumption that A is an essential annulus realizing an
accidental parabolic. �

Proof of Theorem 1.6. By [13, Theorem 3.25], Sσ is essential in S3
�K, and by

Theorem 4.1 it has no accidental parabolics. By [13, Theorem 5.21] (or [12]) Sσ is
a fiber in S3�K if and only if G′

σ is a tree. Furthermore, by [13, Theorem 5.21], if
Sσ lifts to a fiber in a double cover of S3�K, then Mσ is an I–bundle, hence G′

σ is
a tree.

It follows that if K is hyperbolic, the surface Sσ is quasifuchsian if and only if
the reduced state graph G′

σ is not a tree. �
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