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Abstract We survey some tools and techniques for determining geometric proper-
ties of a link complement from a link diagram. In particular, we survey the tools used
to estimate geometric invariants in terms of basic diagrammatic link invariants. We
focus on determining when a link is hyperbolic, estimating its volume, and bound-
ing its cusp shape and cusp area. We give sample applications and state some open
questions and conjectures.
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1 Introduction

Every link L ⊂ S3 defines a compact, orientable 3-manifold boundary consisting
of tori; namely, the link exterior X (L) = S3\N (L), where N (L) denotes an open
regular neighborhood. The interior of X (L) is homeomorphic to the link comple-
ment S3\L . Around 1980, Thurston proved that link complements decompose into
pieces that admit locally homogeneous geometric structures. In the most interest-
ing scenario, the entire link complement has a hyperbolic structure, that is a metric
of constant curvature −1. By Mostow–Prasad rigidity, this hyperbolic structure is
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unique up to isometry, hence geometric invariants of S3\L give topological invariants
of L that provide a wealth of information about L to aid in its classification.

An important and difficult problem is to determine the geometry of a link com-
plement directly from link diagrams, and to estimate geometric invariants such as
volume and the lengths of geodesics in terms of basic diagrammatic invariants of L .
This problem often goes by the namesWYSIWYG topology1 or effective geometriza-
tion [60]. Our purpose in this paper is to survey some results that effectively predict
geometry in terms of diagrams, and to state some open questions. In the process,
we also summarize some of the most commonly used tools and techniques that have
been employed to study this problem.

1.1 Scope and Aims

This survey is primarily devoted to three main topics: determining when a knot or
link is hyperbolic, bounding its volume, and estimating its cusp geometry. Our main
goal is to focus on the methods, techniques, and tools of the field, in the hopes that
this paper will lead to more research, rather than strictly listing previous results.

This focus overlaps significantly with the list of topics in Adams’ survey article
Hyperbolic knots [2]. That survey, written in 2003 and published in 2005, came out
just as the pursuit of effective geometrization was starting to mature. Thus, although
the topics are quite similar, both the results and the underlying techniques have
advanced to a considerable extent. This is especially visible in efforts to predict
hyperbolic volume (Sect. 4), where only a handful of the results that we list were
known by 2003. The same pattern asserts itself throughout.

Aswith all survey articles, the list of results and open problems thatwe can address
is necessarily incomplete.We are not addressing the very interesting questions on the
geometry of embedded surfaces, lengths and isotopy classes of geodesics, exceptional
Dehn fillings, or geometric properties of other knot and link invariants. Some of the
results and techniques we have been unable to cover will appear in a forthcoming
book in preparation by Purcell [76].

1.2 Originality, or Lack Thereof

With one exception, all of the results presented in this survey have appeared elsewhere
in the literature. For all of these results, we point to references rather than giving
rigorous proofs. However, we often include quick sketches of arguments to convey
a sense of the methods that have been employed.

The one exception to this rule is Theorem 4.11, which has not previously appeared
inwriting. Even this result cannot be described as truly original, since the proofworks
by assembling a number of published theorems.We include the proof to indicate how
to assemble the ingredients.

1WYSIWYG stands for “what you see is what you get”.
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1.3 Organization

We organize this survey as follows: Sect. 2 introduces terminology and background
that we will use throughout. Section3 is concerned with the problem of determining
whether a given link is hyperbolic. We summarize some of the most commonly
used methods used for this problem, and provide examples. In Sects. 4 and 5, we
address the problem of estimating important geometric invariants of hyperbolic link
complements in terms of diagrammatic quantities. In Sect. 4, we discuss methods
for obtaining two sided combinatorial bounds on the hyperbolic volume of link
complements. In Sect. 5, we address the analogous questions for cusp shapes and for
lengths of curves on cusp tori.
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part by NSF grants DMS–1404754 and DMS–1708249. Purcell is supported in part
by the Australian Research Council. All three authors acknowledge support from
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2 Definitions

In this section, we gather many of the key definitions that will be used throughout the
paper. Most of these definitions can be found (and are better motivated) in standard
textbooks on knots and links, and on 3–manifolds and hyperbolic geometry. We list
them briefly for ease of reference.

2.1 Diagrams of Knots and Links

Some of the initial study of knots and links, such as the work of Tait in the late
1800s, was a study of diagrams: projections of a knot or link onto a plane R2 ⊂ R

3,
which can be compactified to S2 ⊂ S3. We call the surface of projection the plane of
projection for the diagram.Wemay assume that a link has a diagram that is a 4-valent
graph on S2, with over-under crossing information at each vertex. When studying a
knot via diagrams, there are obvious moves that one can make to the diagram that do
not affect the equivalence class of knot; for example these include flypes studied by
Tait, shown in Fig. 1, and Reidemeister moves studied in the 1930s. Without going
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Fig. 1 A flype

into details on these moves, we do want our diagrams to be “sufficiently reduced,”
in ways that are indicated by the following definitions.

Definition 2.1 A diagram of a link is prime if for any simple closed curve γ ⊂ S2,
intersecting the diagram transversely in exactly two points in the interior of edges
edges, γ bounds a disk D2 ⊂ S2 that intersects the diagram in a single arc with no
crossings.

Two non-prime diagrams are shown in Fig. 2, left. The first diagram can be sim-
plified by removing a crossing. The second diagram cannot be reduced in the same
way, because the knot is composite; it can be thought of as composed of two simpler
prime diagrams by joining them along unknotted arcs. Prime diagrams are seen as
building blocks of all knots and links, and so we restrict to them.

Definition 2.2 Suppose K is a knot or link with diagram D. The crossing number
of the diagram, denoted c(D), is the number of crossings in D. The crossing number
of K , denoted c(K ), is defined to be the minimal number of crossings in any diagram
of K .

Removing a crossing as on the left of Fig. 2 gives a diagram that is more reduced.
The following definition gives another way to reduce diagrams.

Definition 2.3 Let K be a knot or link with diagram D. The diagram is said to
be twist reduced if whenever γ is a simple closed curve in the plane of projection
intersecting the diagram exactly twice in two crossings, running directly through the
crossing, then γ bounds a disk containing only a string of alternating bigon regions
in the diagram. See Fig. 2, right.

Any diagram can be modified to be twist reduced by performing a sequence of
flypes and removing unnecessary crossings.

Definition 2.4 Two crossings in a diagram D are called twist equivalent if they are
connected by a string of bigons, as in the far right of Fig. 2. A twist region in D is

Fig. 2 Left: two diagrams that are not prime. Right: a twist reduced diagram
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an equivalence class. We always require twist regions to be alternating (otherwise,
D can be simplified by removing crossings).

The number of twist regions in a prime, twist reduced diagram is the twist number
of the diagram, and is denoted t (D). The minimum of t (D) over all diagrams of K
is denoted t (K ).

2.2 The Link Complement

Rather than study knots exclusively via diagrams and graphs, we typically consider
the knot complement, namely the 3–manifold S3\K . This is homeomorphic to the
interior of the compact manifold X (K ) := S3\N (K ), called the knot exterior, where
N (K ) is a regular neighborhood of K .Whenwe consider knot complements and knot
exteriors, we are able to apply results in 3–manifold topology, and consider curves
and surfaces embedded in them. The following definitions apply to such surfaces.

Definition 2.5 An orientable surface S properly embedded in a compact orientable
3–manifold M is incompressible if whenever E ⊂ M is a disk with ∂E ⊂ S, there
exists a disk E ′ ⊂ S with ∂E ′ = ∂E . S is ∂-incompressible if whenever E ⊂ M is
a disk whose boundary is made up of an arc α on S and an arc on ∂M , there exists a
disk E ′ ⊂ S whose boundary is made up of the arc α on S and an arc on ∂S.

Definition 2.6 Let M be a compact orientable 3–manifold. A two–sphere S ⊂ M is
called essential if it does not bound a 3–ball.

Consider a (possibly non-orientable) properly embedded surface S ⊂ M . Let ˜S
be the boundary of a regular neighborhood N (S) ⊂ M . If S �= S2, it is said to be
essential if ˜S is incompressible and ∂-incompressible.

We will say that M is Haken if it is irreducible and contains an essential surface
S. In this case, we also say the interior M is Haken.

Finally, we will sometimes consider knot complements that are fibered, in the
following sense.

Definition 2.7 A 3–manifold M is said to be fibered if it can be written as a fiber
bundle over S1, with fiber a surface. Equivalently, M is the mapping torus of a
self-homeomorphism f of a (possibly punctured) surface S. That is, there exists
f : S → S such that

M = S × I/(x, 0) ∼ ( f (x), 1).

The map f is called the monodromy of the fibration.



6 D. Futer et al.

2.3 Hyperbolic Geometry Notions

The knot and link complements that we address in this article also admit geometric
structures, as in the following definition.

Definition 2.8 A knot or link K is said to be hyperbolic if its complement admits
a complete metric of constant curvature −1. Equivalently, it is hyperbolic S3\K =
H

3/Γ , where H
3 is hyperbolic 3–space and Γ is a discrete, torsion-free group of

isometries, isomorphic to π1(S3\K ).

Thurston showed that a prime knot in S3 is either hyperbolic, or it is a torus
knot (can be embedded on an unknotted torus in S3), or it is a satellite knot (can
be embedded in the regular neighborhood of a non-trivial knot) [81]. This article is
concerned with hyperbolic knots and links.

Definition 2.9 SupposeM is a compact orientable 3–manifold with ∂M a collection
of tori, and suppose the interior M ⊂ M admits a complete hyperbolic structure. We
say M is a cusped manifold.

Moreover, M has ends of the form T 2 × [1,∞). Under the covering projection
ρ : H3 → M , each end is geometrically realized as the image of a horoball Hi ⊂ H

3.
The preimage ρ−1(ρ(Hi )) is a collection of horoballs. By shrinking Hi if necessary,
we can ensure that these horoballs have disjoint interiors inH3. For such a choice of
Hi , ρ(Hi ) = Ci is said to be a horoball neighborhood of the cusp Ci , or horocusp in
M .

Definition 2.10 The boundary of a horocusp inherits a Euclidean structure from the
hyperbolic structure on M . This Euclidean structure is well defined up to similarity.
The similarity class is called the cusp shape.

Definition 2.11 For each cusp of M there is an 1–parameter family of horoball
neighborhoods obtained by expanding the horoball Hi while keeping the same lim-
iting point on the sphere at infinity. In the preimage, expanding Hi expands all
horoballs in the collection ρ−1(Ci ). Expand each cusp until the collection of horoballs
ρ−1(∪Ci ) become tangent, and cannot be expanded further while keeping their inte-
riors disjoint. This is a choice of maximal cusps. The choice depends on the order
of expansion of cusps C1, . . . ,Cn . If M has a single end C1 then there is a unique
choice of expansion, giving a unique maximal cusp referred to as the the maximal
cusp of M .

Definition 2.12 For a fixed set of embedded horoball neighborhoods C1, . . . ,Cn of
the cusps of a cusped hyperbolic 3–manifold M , we have noted that the torus ∂Ci

inherits a Euclidean metric. Any isotopy class of simple closed curves on the torus
is called a slope. The length of a slope s, denoted �(s), is defined to be the length of
a geodesic representative of s on the Euclidean torus ∂Ci .
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3 Determining Hyperbolicity

Given a combinatorial description of a knot or link, such as a diagram or braid
presentation, one of the first things we would often like to ascertain is whether
the link complement admits a hyperbolic structure. In this section, we describe the
currently available tools to check this and give examples of knots to which they apply.

There are three main tools used to prove a link or family of links is hyperbolic.
The first is direct calculation, for example using gluing and completeness equations,
often with the help of a computer. The second is Thurston’s geometrization theorem
for Haken manifolds, which says that the only obstruction to X (K ) being hyperbolic
consists of surfaces with non-negative Euler characteristic. The third is to perform a
long Dehn filling on a manifold that is already known to be hyperbolic, for instance
by one of the previous two methods.

3.1 Computing Hyperbolicity Directly

FromRiemannian geometry, amanifoldM admits a hyperbolic structure if and only if
M = H

3/Γ , where Γ ∼= π1(M) is a discrete subgroup of Isom+(H3) = PSL (2,C).
See Definition 2.8.

Therefore one way to find a hyperbolic structure on a link complement is to find
a discrete faithful representation of its fundamental group into PSL (2,C). This is
usually impractical to do directly. However, note that if a manifold M can be decom-
posed into simply connected pieces, for example a triangulation by tetrahedra, then
these lift to the universal cover. If this cover is isometric toH3, then the lifted tetrahe-
dra will be well-behaved in hyperbolic 3–space. Conversely, if the lifted tetrahedra fit
together coherently in H

3, in a group–equivariant fashion, one can glue the metrics
on those tetrahedra to obtain a hyperbolic metric on M . This gives a condition for
determining hyperbolicity, which is often implemented in practice.

Gluing and Completeness Equations for Triangulations

The first method for finding a hyperbolic structure is direct, and is used most fre-
quently by computer, such as in the software SnapPy that computes hyperbolic struc-
tures directly from diagrams [29]. The method is to first decompose the knot or link
complement into ideal tetrahedra, as in Definition 3.1, and then to solve a system of
equations on the tetrahedra to obtain a hyperbolic structure. See Theorem 3.6.

This method is most useful for a single example, or for a finite collection of
examples. For example, it was used by Hoste, Thistlethwaite, and Weeks to classify
all prime knots with up to 16 crossings [55]. Of the 1, 701, 903 distinct prime knots
with at most 16 crossings, all but 32 are hyperbolic.

Wewill give a brief description of themethod. For further details, there are several
good references, including notes of Thurston [80] where these ideas first appeared,
and papers by Neumann and Zagier [71], and Futer and Guéritaud [35]. Purcell is
developing a book with full details and examples [76].



8 D. Futer et al.

Definition 3.1 An ideal tetrahedron is a tetrahedron whose vertices have been
removed. When a knot or link complement is decomposed into ideal tetrahedra,
all ideal vertices lie on the link, hence have been removed.

There are algorithms for decomposing knot and link complements into ideal tetra-
hedra. For example, Thurston decomposes the figure–8 knot complement into two
ideal tetrahedra [80]. Menasco generalizes this, describing how to decompose a link
complement into two ideal polyhedra, which can then be subdivided into tetrahedra
[67]. Weeks uses a different algorithm in his computer software SnapPea [84].

Assuming we have a decomposition of a knot or link complement into ideal
tetrahedra, we now describe how to turn this into a complete hyperbolic structure.
The idea is to associate a complex number to each ideal edge of each tetrahedron
encoding the hyperbolic structure of the ideal tetrahedron. The triangulation gives a
complete hyperbolic structure if and only if these complex numbers satisfy certain
equations: the edge gluing and completeness equations.

Consider H3 in the upper half space model, H3 ∼= C × (0,∞). An ideal tetrahe-
dron Δ ⊂ H

3 can be moved by isometry so that three of its vertices are placed at
0, 1, and ∞ in ∂H3 ∼= C ∪ {∞}. The fourth vertex lies at a point z ∈ C\{0, 1}. The
edges between these vertices are hyperbolic geodesics.

Definition 3.2 The parameter z ∈ C described above is called the edge parameter
associated with the edge from 0 to ∞. It determines Δ up to isometry.

Notice if z is real, then the ideal tetrahedron is flat, with no volume. We will
prefer to work with z with positive imaginary part. Such a tetrahedronΔ is said to be
geometric, or positively oriented. If z has negative imaginary part, the tetrahedron Δ

is negatively oriented.
Given a hyperbolic ideal tetrahedron embedded in H

3 as above, we can apply
(orientation–preserving) isometries of H3 taking different vertices to 0, 1, ∞. By
taking each edge to the geodesic from 0 to ∞, we assign edge parameters to all six
edges of the ideal tetrahedron. This leads to the following relations between edge
parameters:

Lemma 3.3 Suppose Δ is a hyperbolic ideal tetrahedron with vertices at 0, 1, ∞,
and z. Then the edge parameters of the six edges of Δ are as follows:

• Edges [0,∞] and [1, z] have edge parameter z.
• Edges [1,∞] and [0, z] have edge parameter 1/(1 − z).
• Edges [z,∞] and [0, 1] have edge parameter (z − 1)/z.

In particular, opposite edges in the tetrahedron have the same edge parameter.

Suppose an ideal tetrahedron Δ with vertices at 0, 1, ∞ and z is glued along the
triangle face with vertices at 0, ∞, and z to another tetrahedron Δ′. Then Δ′ will
have vertices at 0, ∞, z and at the point zw, where w is the edge parameter of Δ′
along the edge [0,∞]. When we glue all tetrahedra in H

3 around an ideal edge of
the triangulation, if the result is hyperbolic then the product of all edge parameters
must be 1 with arguments summing to 2π. More precisely, the sum of the logs of the
edge parameters must be 0 + 2π i .
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Definition 3.4 (Gluing equations) Let e be an ideal edge of a triangulation of a
3–manifold M , for example a knot or link complement. Let z1, . . . , zk be the edge
parameters of the edge of the tetrahedra identified to e. Thegluing equation associated
with the edge e is:

k
∏

i=1

zi = 1 and
k

∑

i=1

arg(zi ) = 2π. (1)

Writing this in terms of logarithms, (1) is equivalent to:

k
∑

i=1

log(zi ) = 2π i. (2)

A triangulation may satisfy all gluing equations at all its edges, and yet fail to give
a complete hyperbolic structure. To ensure the structure is complete, an additional
condition must be satisfied for each torus boundary component.

Definition 3.5 (Completeness equations) Let T be a torus boundary component of
a 3–manifold M whose interior admits an ideal triangulation.

Truncate the tips of all tetrahedra to obtain a triangulation of T . Letμbe anoriented
simple closed curve on T , isotoped to meet edges of the triangulation transversely,
and to avoid vertices. Each segment of μ in a triangle cuts off a single vertex of the
triangle, which comes from an edge of the ideal triangulation and so has an associated
edge parameter zi . If the vertex lies to the right of μ, let εi = +1; otherwise let
εi = −1. The completeness equation associated to μ is:

∑

i

εi log(zi ) = 0, which implies
∏

i

zεi
i = 1. (3)

With these definitions, we may state the main theorem.

Theorem 3.6 Suppose M is a 3-manifold with torus boundary, equipped with an
ideal triangulation. Suppose for some choice of positively oriented edge parameters
{z1, . . . , zn}, the gluing equations are satisfied for each edge, and the completeness
equations are satisfied for homology generators μ, λ on each component of ∂M.
Then the interior of M, denoted by M, admits a complete hyperbolic structure.
Furthermore, the unique hyperbolicmetric on M is given by the geometric tetrahedra
determined by the edge parameters.

In fact, the hypotheses of Theorem 3.6 are stronger than necessary. If M has k
torus boundary components, then only n − k of the n gluing equations are necessary
(see [71] or [28]). In addition, only one of μ or λ is required from each boundary
component [28].

Some classes of 3–manifolds that can be shown to be hyperbolic using Theo-
rem 3.6 include the classes of once-punctured torus bundles, 4-punctured sphere
bundles, and 2–bridge link complements [49]. (In each class, some low-complexity
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Fig. 3 Left: a diagram of a knot K . Center: adding a crossing circles for each twist region of K
produces a link J . Right: removing full twists produces a fully augmented link L with the property
that S3\J is homeomorphic to S3\L

examples must be excluded to ensure hyperbolicity.) These manifolds have natural
ideal triangulations guided by combinatorics. In the case of 2–bridge knot and link
complements, the triangulation is also naturally adapted to a planar diagram of the
link [78]. Once certain low-complexity cases (such as (2, q) torus links) have been
excluded, one can show that the gluing equations for these triangulations have a
solution. This gives a direct proof that the manifolds are hyperbolic.

Circle Packings and Right Angled Polyhedra

Certain link complements have very special geometric properties that allow us to
compute their hyperbolic structure directly, but with less work than solving nonlinear
gluing and completeness equations as above. These include the Whitehead link,
which can be obtained from a regular ideal octahedron with face-identifications
[80]. They also include an important and fairly general family of link complements
called fully augmented links, which we now describe.

Starting with any knot or link diagram, identify twist regions, as in Definition 2.4.
The left of Fig. 3 shows a knot diagram with two twist regions. Now, to each twist
region, add a simple unknotted closed curve encircling the two strands of the twist
region, as shown in the middle of Fig. 3. This is called a crossing circle. Because
each crossing circle is an unknot, we may perform a full twist along a disk bounded
by that unknot without changing the homeomorphism type of the link complement.

This allows us to remove asmany pairs of crossings as possible from twist regions.
An example is shown on the right of Fig. 3. The result is the diagram of a fully
augmented link.

Provided the original link diagram before adding crossing circles is sufficiently
reduced (prime and twist reduced; see Definitions 2.1 and 2.3), the resulting fully
augmented link will be hyperbolic, and its hyperbolic structure can be completely
determined by a circle packing. The procedure is as follows.

Replace the diagramof the fully augmented linkwith a trivalent graph by replacing
each neighborhood of a crossing circle (with or without a bounded crossing) by a
single edge running between knot strands, closing the knot strands. See Fig. 4, left.
Now take the dual of this trivalent graph; this is a triangulation of S2. Provided the
original diagram was reduced, there will be a circle packing whose nerve is this
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Fig. 4 Left: Obtain a 3-valent graph by replacing crossing circles with edges. Middle: The dual is
a triangulation of S2. Right: The nerve of the triangulation defines a circle packing that cuts out a
polyhedron in H3. Two such polyhedra glue to form S3\L

triangulation of S2. The circle packing and its orthogonal circles cut out a right
angled ideal polyhedron in H

3. The hyperbolic structure on the complement of the
fully augmented link is obtained by gluing two copies of this right angled ideal
polyhedron. More details are in [44, 75].

3.2 Geometrization of Haken Manifolds

The methods of the previous section have several drawbacks. While solving gluing
and completeness equationsworkswell for examples, it is difficult to use themethods
to find hyperbolic structures for infinite classes of examples. The method that has
been most useful to show infinite examples of knots and links are hyperbolic is
to apply Thurston’s geometrization theorem for Haken manifolds, which takes the
following form for manifolds with torus boundary components.

Theorem 3.7 (Geometrization of Haken manifolds) Let M be the interior of a com-
pact manifold M, such that ∂M is a non-empty union of tori. Then exactly one of the
following holds:

• M admits an essential torus, annulus, sphere, or disk, or
• M admits a complete hyperbolic metric.

Thus the method to prove M is hyperbolic following Theorem 3.7 is to show
M cannot admit embedded essential surfaces of nonnegative Euler characteristic.
Arguments ruling out such surfaces are typically topological or combinatorial in
nature.

Some sample applications of thismethod are as follows.Menasco used themethod
to prove any alternating knot or link, aside from a (2, q)-torus link, is hyperbolic
[68]. Adams and his students generalized Menasco’s argument to show that almost
alternating and toroidally alternating links are hyperbolic [8, 9]. There are many
other generalizations, e.g. [43].

Menasco’s idea was to subdivide an alternating link complement into two balls,
above and below the plane of projection, and crossing balls lying in a small neigh-
borhood of each crossing, with equator along the plane of projection. An essential
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surface can be shown to intersect the balls above and below the plane of projection in
disks only, and to intersect crossing balls inwhat are called saddles. These saddles act
as fat vertices on the surface, and can be used to obtain a bound on the Euler charac-
teristic of an embedded essential surface. Combinatorial arguments, using properties
of alternating diagrams, then rule out surfaces with non-negative Euler characteristic.

More generally, classes of knots and links can be subdivided into simpler pieces,
whose intersection with essential surfaces is then examined. Typically, surfaces with
nonnegative Euler characteristic can be restricted to lie in just one or two pieces, and
then eliminated.

Thurston’s Theorem 3.7 can also be used to show that manifolds with certain
properties are hyperbolic. For example, consider again the gluing equations. This
gives a complicated nonlinear system of equations. If we consider only the imaginary
part of the logarithmic gluing equation (2), the system becomes linear: the sums of
dihedral angles around each edgemust be 2π. It is much easier to solve such a system
of equations.

Definition 3.8 SupposeM is the interior of a compactmanifoldwith torus boundary,
with an ideal triangulation.A solution to the imaginarypart of the (logarithmic) gluing
equations (2) for the triangulation is called a generalized angle structure on M . If
all angles lie strictly between 0 and π, the solution is called an angle structure. See
[35, 66] for background on (generalized) angle structures.

Theorem 3.9 (Angle structures and hyperbolicity) If M admits an angle structure,
then M also admits a hyperbolic metric.

The proof has been attributed to Casson, and appears in Lackenby [62]. The idea
is to consider how essential surfaces intersect each tetrahedron of the triangulation.
These surfaces can be isotoped into normal form. A surface without boundary in
normal form intersects tetrahedra only in triangles and in quads. The angle structure
onM can be used to define a combinatorial area on a normal surface. An adaptation of
the Gauss–Bonnet theorem implies that the Euler characteristic is a negative multiple
of the combinatorial area. Then one shows that the combinatorial area of an essential
surfacemust always be strictly positive, hence Euler characteristic is strictly negative.
Then Theorem 3.7 gives the result.

Knots and links that can be shown to be hyperbolic using the tools of Theorem 3.9
include arborescent links, apart from three enumerated families of non-hyperbolic
exceptions. This can be shown by constructing an ideal triangulation (or a slightly
more general ideal decomposition) of the complement of an arborescent link, and
endowing it with an angle structure [34].

Conversely, every hyperbolic knot or link complement in S3 admits some ideal
triangulationwith an angle structure [52]. However, this triangulation is not explicitly
constructed, and need not have any relation to the combinatorics of a diagram.
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3.3 Hyperbolic Dehn Filling

Another method for proving that classes of knots or links are hyperbolic is to use
Dehn filling. Thurston showed that all but finitely many Dehn fillings on a hyperbolic
manifold with a single cusp yield a closed hyperbolic 3–manifold [80].

More effective versions of Thurston’s theorem have been exploited to show hyper-
bolicity for all but a bounded number of Dehn fillings. Results in this vein include the
2π–theorem that yields negatively curved metrics [21], and geometric deformation
theorems of Hodgson and Kerckhoff [51]. The sharpest result along these lines is
the 6–Theorem, due independently to Agol [11] and Lackenby [62]. (The statement
below assumes the geometrization conjecture, proved by Perelman shortly after the
papers [11, 62] were published.)

Theorem 3.10 (6–Theorem) Suppose M is a hyperbolic 3–manifold homeomorphic
to the interior of a compact manifold M with torus boundary components T1, . . . , Tk.
Suppose s1, . . . , sk are slopes, with si ⊂ Ti . Suppose there exists a choice of disjoint
horoball neighborhoods of the cusps of M such that in the induced Euclidean metric
on Ti , the slope si has length strictly greater than 6, for all i . Then the manifold
obtained by Dehn filling along s1, . . . , sk , denoted M(s1, . . . , sk), is hyperbolic.

Theorem 3.10 can be used to prove that a knot or link is hyperbolic, as follows.
First, show the knot complement S3\K is obtained by Dehn filling a manifold Y that
is known to be hyperbolic. Then, prove that the slopes used to obtain S3\K from Y
have length greater than 6 on a horoball neighborhood of the cusps of Y . See also
Sect. 5 for ways to prove that slopes are long.

Some examples of links to which this theorem has been applied include highly
twisted links, which have diagrams with 6 or more crossings in every twist region.
(See Definition 2.4.) These links can be obtained by surgery, as follows. Start with a
fully augmented link as described above, for instance the example shown in Fig. 3.
Performing a Dehn filling along the slope 1/n on a crossing circle adds 2n crossings
to the twist region encircled by that crossing circle, and removes the crossing circle
from the diagram. When |n| ≥ 3, the result of such Dehn filling on each crossing
circle is highly twisted.

Using the explicit geometry of fully augmented links obtained from the circle
packing, we may give a lower bound on the lengths of the slopes 1/ni on cross-
ing circles. Then Theorem 3.10 shows that the resulting knots and links must be
hyperbolic [44].

Other examples can also be obtained in this manner. For example, Baker showed
that infinite families of Berge knots are hyperbolic by showing they are Dehn fillings
of minimally twisted chain link complements, which are known to be hyperbolic,
along sequences of slopes that are known to grow in length [18].

The 6–Theorem is sharp. This was shown by Agol [11], and by Adams and his
students for a knot complement [5]. The pretzel knot P(n, n, n), which has 3 twist
regions, and the same number of crossings in each twist region, has a toroidal Dehn
filling along a slope with length exactly 6.
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3.4 Fibered Knots and High Distance Knots

We finish this section with a few remarks about other ways to prove manifolds are
hyperbolic, and give references for further information. However, these methods
seem less directly applicable to knots in S3 than those discussed above, and the full
details are beyond the scope of this paper.

Recall Definition 2.7 of a fibered knot. When the monodromy is pseudo-Anosov,
the knot complement is known to be hyperbolic [82]. The figure–8 knot complement
can be shown to be hyperbolic in this way; see for example [80, p. 70]. Certain links
obtained as the complement of closed braids and their braid axis have also been
shown to be hyperbolic using these methods [50]. It seems difficult to apply these
methods directly to knots, however.

Another method is to consider bridge surfaces of a knot. Briefly, there is a notion
of distance that measures the complexity of the bridge splitting of a knot. Bachman
and Schleimer proved that any knot whose bridge distance is at least 3 must be
hyperbolic [17]. It seems difficult to bound bridge distance for classes of examples
directly from a knot diagram. Recent work of Johnson and Moriah is the first that
we know to obtain such bounds [61].

4 Volumes

Asmentioned in the introduction, the goal of effective geometrization is to determine
or estimate geometric invariants directly from a diagram. As volume is the first and
most natural invariant of a hyperbolic manifold, the problem of estimating volume
from a diagram has received considerable attention. In this section, we survey some
of the results and techniques on both upper and lower bounds on volume.

4.1 Upper Bounds on Volume

Many bounds in this section involve constants with geometric meaning. In particular,
we define

vtet = volume of a regular ideal tetrahedron in H
3 = 1.0149 . . .

and
voct = volume of a regular ideal octahedron in H3 = 3.6638 . . .

These constants are useful in combinatorial upper bounds on volume because every
geodesic tetrahedron in H

3 has volume at most vtet , and every geodesic octahedron
has volume at most voct. See e.g. Benedetti and Petronio [19].
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Bounds in Terms of Crossing Number
The first volume bounds for hyperbolic knots are due to Adams [1]. He showed that,
if D = D(K ) is a diagram of a hyperbolic knot or link with c ≥ 5 crossings, then

vol (S3\K ) ≤ 4(c(D) − 4)vtet. (4)

Adams’ method of proof was to use the knot diagram to divide S3\K into tetrahedra
with a mix of ideal and material vertices, and to count the tetrahedra. Since the sub-
division contains at most 4(c(D) − 4) tetrahedra, and each tetrahedron has volume
at most vtet , the bound follows.

In a more recent paper [3], Adams improved the upper bound of (4):

Theorem 4.1 Let D = D(K ) be a diagram of a hyperbolic link K , with at least 5
crossings. Then

vol (S3\K ) ≤ (c(D) − 5)voct + 4vtet.

Again, the method is to divide the link complement into a mixture of tetrahedra
and octahedra, and to bound the volume of each polyhedron by vtet or voct respectively.
The subdivision into octahedra was originally described by D. Thurston.

The upper bound of Theorem 4.1 is known to be asymptotically sharp, in the sense
that there exist diagrams of knots and links Kn with vol (S3\Kn)/c(Kn) → voct as
n → ∞; see [26]. On the other hand, this upper bound can be arbitrarily far from
sharp. A useful example is the sequence of twist knots Kn depicted in Fig. 5. Since
the number of crossings is n + 2, the upper bound of Theorem 4.1 is linear in n.
However, the volumes of Kn are universally bounded and only increasing to an
asymptotic limit:

vol (S3\Kn) < voct, lim
n→∞ vol (S3\Kn) = voct

This holds as a consequence of the following theorem of Gromov and Thurston [80,
Theorem 6.5.6].

Theorem 4.2 Let M be a finite volume hyperbolic manifold with cusps. Let N =
M(s1, . . . , sn) be a Dehn filling of some cusps of M. Then vol (N ) < vol (M).

Fig. 5 Every twist knot Kn has two twist regions, consisting of 2 and n crossings. Every Kn can
be obtained by Dehn filling the red component of the Whitehead link L , depicted on the right
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Returning to the case of twist knots, every Kn can be obtained by Dehn filling on
one component of the Whitehead link L , depicted in Fig. 5, right. Thus Theorem 4.2
implies vol (S3\Kn) < vol (S3\L) = voct.

Bounds in Terms of Twist Number

Following the example of twist knots in Fig. 5, it makes sense to seek upper bounds
on volume in terms of the twist number t (K ) of a knot K (see Definition 2.4), rather
than the crossing number alone.

The following result combines the work of Lackenby [63] with an improvement
by Agol and D. Thurston [63, Appendix].

Theorem 4.3 Let D(K ) be a diagram of a hyperbolic link K . Then

vol (S3\K ) ≤ 10(t (D) − 1)vtet.

Furthermore, this bound is asymptotically sharp, in the sense that there exist knot
diagrams Dn = D(Kn) with vol (S3\Kn)/t (Dn) → 10vtet.

Themethodof proof is as follows. First, one constructs a fully augmented link L , by
adding an extra component for each twist region of D(K ) (see Fig. 3). As described in
Sect. 3.1, the link complement S3\L has simple and explicit combinatorics, making
it relatively easy to bound vol (S3\L) by counting tetrahedra. Then, Theorem 4.2
implies that the same upper bound on volume applies to S3\K .

As a counterpart to the asymptotic sharpness of Theorem4.3, there exist sequences
of knots where t (Kn) → ∞ but vol (S3\Kn) is universally bounded. One family of
such examples is the double coil knots studied by the authors [40].

Subsequent refinements or interpolations between Theorems 4.1 and 4.3 have
been found by Dasbach and Tsvietkova [30, 31] and Adams [4]. These refinements
produce a smaller upper bound compared to that of Theorem 4.3 when the diagram
D(K ) has both twist regions with many crossings and with few crossings. However,
the worst case scenario for the multiplicative constant does not improve due to the
asymptotic sharpness of Theorems 4.1 and 4.3.

4.2 Lower Bounds on Volume

By results of Jorgensen and Thurston [80], the volumes of hyperbolic 3–manifolds
are well-ordered. It follows that every family of hyperbolic 3–manifolds (e.g. link
complements; fiberedknot complements, knot complements of genus 3, etc.) contains
finitely many members realizing the lowest volume. Gabai, Meyerhoff, and Milley
[46] showed that the three knot complements of lowest volume are the figure-8 knot,
the 52 knot, and the (−2, 3, 7) pretzel, whose volumes are

vol (41) = 2vtet = 2.0298 . . . , vol (52) = vol (P(−2, 3, 7)) = 2.8281 . . . .

(5)
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Agol [12] showed that the two multi-component links of lowest volume are the
Whitehead link and the (−2, 3, 8) pretzel link, both of which have volume voct =
3.6638 . . .. Yoshida [86] has identified the smallest volume link of 4 components,
with volume 2voct. Beyond these entries, lower bounds applicable to all knots (or all
links) become scarce. Not even the lowest volume link of 3 components is known to
date.

Nevertheless, there are several practical methods of obtaining diagrammatic lower
bounds on the volume of a knot or link, each of which applies to an infinite family
of links, and each of which produces scalable lower bounds that become larger as
the complexity of a diagram becomes larger. We survey these methods below.

Angle Structures

Suppose that S3\K has an ideal triangulation τ supporting an angle structure θ.
(Recall Definition 3.8.) Every ideal tetrahedron of τ , supplied with angles via θ, has
an associated volume. As a consequence, one may naturally define a volume vol (θ)
by summing the volumes of the individual tetrahedra.

Conjecture 4.4 (Casson) Let τ be an ideal triangulation of a hyperbolic manifold
M, which supports an angle structure θ. Then

vol (θ) ≤ vol (M),

with equality if and only if θ solves the gluing equations and gives the complete
hyperbolic structure on M.

While Conjecture 4.4 is open in general, it is known to hold if the triangulation
τ is geometric, meaning that some (possibly different) angle structure θ′ solves the
gluing equations on τ . In this case, a theorem of Casson and Rivin [35, 77] says that
θ′ uniquely maximizes volume over all angle structures on τ , implying in particular
that vol (θ) ≤ vol (θ′) = vol (M).

In particular, the known case of Conjecture 4.4 has been applied to the family of
2–bridge links. In this case, the link complement has a natural angled triangulation
whose combinatorics is closely governed by the link diagram [49, Appendix]. It
follows that, for a sufficiently reduced diagram D of a 2–bridge link K ,

2vtett (D) − 2.7066 ≤ vol (S3\K ) ≤ 2voct(t (D) − 1), (6)

which both sharpens the upper bound of Theorem 4.3 and proves a comparable lower
bound.

There are rather few other families where this method has been successfully
applied. One is the weaving knots studied by Champanerkar, Kofman, and
Purcell [27].

In the spirit of open problems, we mention the family of fibered knots and links.
Agol showed that these link complements admit combinatorially natural veering
triangulations [13], which have angle structures with nice properties [36, 53]. A
proof of Conjecture 4.4, even for this special family, would drastically expand the list
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of link complements for which we have practical, combinatorial volume estimates.
See Worden [85] for more on this problem.

Guts

Onepowerfulmethodof estimating the volumeof aHaken3–manifoldwas developed
by Agol, Storm, and Thurston [14], building on previous work of Agol [10].

Definition 4.5 Let M be a Haken hyperbolic 3–manifold and S ⊂ M a properly
embedded essential surface. We use the symbol M\\S to denote the complement in
M of a collar neighborhood of S. Following the work of Jaco, Shalen, and Johannson
[58, 59], there is a canonical way to decompose M\\S along essential annuli into
three types of pieces:

• I–bundles over a subsurface Σ ⊂ S,
• Seifert fibered pieces, which are necessarily solid tori when M is hyperbolic,
• All remaining pieces, which are denoted guts (M, S).

Thurston’s hyperbolization theorem (a variant of Theorem 3.7) implies that guts
(M, S) admits a hyperbolic metric with totally geodesic boundary. By Miyamoto’s
theorem [70], this metric with geodesic boundary has volume at least
voct |χ(guts (M, S))|, where χ denotes Euler characteristic.

Agol, Storm, and Thurston showed [14]:

Theorem 4.6 Let M be a Haken hyperbolic 3–manifold and S ⊂ M a properly
embedded essential surface. Then

vol (M) ≥ voct |χ(guts (M, S))| .

The proof of Theorem 4.6 relies on geometric estimates due to Perelman. Agol,
Storm, and Thurston double M\\S along its boundary and apply Ricci flow with
surgery. They show that the metric on guts (M, S) converges to the one with totally
geodesic boundary, while volume decreases, and while the metric on the remaining
pieces shrinks away to volume 0.

Theorem 4.6 has been applied to several large families of knots. For alternat-
ing knots and links, Lackenby computed the guts of checkerboard surfaces in an
alternating diagram [63]. Combined with Theorems 4.3 and 4.6, this implies:

Theorem 4.7 Let D be a prime alternating diagram of a hyperbolic link K in S3.
Then voct

2
(t (D) − 2) ≤ vol (S3\K ) ≤ 10vtet(t (D) − 1),

Thus, for alternating knots, the combinatorics of a diagramdetermines vol (S3\K )

up to a factor less than 6. Compare (6) in the 2–bridge case. The authors of this
survey have extended the method from alternating links to the larger family of semi-
adequate links, and the even larger family of homogeneously adequate links. We
refer to [41] and the survey paper [42] for definitions of these families and for the
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precise theorem statements. The method gives particularly straightforward estimates
in the same vein as Theorem 4.7 for positive braids [41, 47] and for Montesinos
links [33, 41]. In another direction, Howie and Purcell generalized the method from
alternating links in S3 to alternating links on surfaces in any compact 3-manifold and
obtained generalizations of Theorem 4.7 in this setting [57].

Question 4.8 Does every knot K ⊂ S3 admit an essential spanning surface S such
that the Euler characteristic χ(guts (S3\K , S)) can be computed directly from dia-
grammatic data?

The answer to Question 4.8 is “yes” whenever K admits a homogeneously ade-
quate diagram in the terminology of [41]. However, it is not knownwhether K always
admits such a diagram. This is closely related to [41, Question 10.10].

Dehn Filling Bounds

A powerful method for proving lower bounds on the volume of N = S3\K involves
two steps: first, prove a lower bound on vol (M) for some surgery parent M of N ,
using one of the above methods; and second, control the change in volume as we
Dehn fill M to recover N .

The following theorem, proved in [37], provides an estimate that has proved useful
for lower bounds on the volume of knot complements.

Theorem 4.9 Let M be a cusped hyperbolic 3–manifold, containing embedded
horocusps C1, . . . ,Ck (plus possibly others). On each torus Ti = ∂Ci , choose a
slope si , such that the shortest length of any of the si is �min > 2π. Then the manifold
M(s1, . . . , sk) obtained by Dehn filling along s1, . . . , sk is hyperbolic, and its volume
satisfies

vol (M(s1, . . . , sk)) ≥
(

1 −
(

2π

�min

)2
)3/2

vol (M).

Earlier results in the same vein include an asymptotic estimate by Neumann and
Zagier [71], as well as a cone-deformation estimate by Hodgson and Kerckhoff [51].

The idea of the proof of Theorem 4.9 is as follows. Building on the proof of
the Gromov–Thurston 2π-Theorem, construct explicit negatively curved metrics on
the solid tori added during Dehn filling. This yields a negatively curved metric on
M(s1, . . . , sk) whose volume is bounded below in terms of vol (M). Then, results
of Besson, Courtois, and Gallot [20, 22] can be used to compare the volume of the
negatively curved metric on M(s1, . . . , sk) with the true hyperbolic volume.

Theorem 4.9 leads to diagrammatic volume bounds for several classes of hyper-
bolic links. For example, the following theorem from [37] gives a double-sided
volume bound similar to Theorem 4.7.

Theorem 4.10 Let K ⊂ S3 be a link with a prime, twist–reduced diagram D(K ).
Assume that D(K ) has t (D) ≥ 2 twist regions, and that each region contains at

least 7 crossings. Then K is a hyperbolic link satisfying

0.70735 (t (D) − 1) < vol (S3\K ) < 10 vtet (t (D) − 1).
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The strategy of the proof of Theorem 4.10 is to view S3\K as a Dehn filling
on the complement of an augmented link obtained from the highly twisted diagram
D(K ). The volume of augmented links can be bounded below in terms of t (D)

using Miyamoto’s theorem [70]. The hypothesis that each region contains at least 7
crossings ensures that the filling slopes are strictly longer than 2π, hence Theorem4.9
gives the result.

Similar arguments using Theorem 4.9 have been applied to links obtained by
adding alternating tangles [38], closed 3–braids [39] and weaving links [27].

Knots with Symmetry Groups

We close this section with a result about the volumes of symmetric knots. Suppose
K ⊂ S3 is a hyperbolic knot, and G is a group of symmetries of K . That is, G acts
on S3 by orientation–preserving homeomorphism that send K to itself. It is a well-
known consequence of Mostow rigidity that G is finite and acts on M = S3\K by
isometries [80, Corollary 5.7.4]. Furthermore, G is cyclic or dihedral [55].

Define n = n(G) to be the smallest order of a subgroup StabG(x) stabilizing a
point x ∈ S3\K , or else n = |G| if the group acts freely.While this definition depends
on how G acts, it is always the case that n(G) is at least as large as the smallest prime
factor of |G|.

The following result follows by combining several statements in the literature.
Since it has not previously been recorded, we include a proof.

Theorem 4.11 Let K ⊂ S3 be a hyperbolic knot. Let G be a group of orientation–
preserving symmetries of S3 that send K to itself. Define n = n(G) as above. Then

vol (S3\K ) ≥ |G| · xn,

where xn = 2.848 if n > 10 and n �= 13, 18, 19 and xn takes the following values
otherwise.

voct/12 = 0.30532 . . . n = 2 2.16958 n = 7, 8
vtet/2 = 0.50747 . . . n = 3 2.47542 n = 9
0.69524 n = 4 2.76740 n = 10
1.45034 n = 5 vol (m011) = 2.7818 . . . n = 13
2.00606 n = 6 vol (m016) = 2.8281 . . . n = 18, 19

Proof First, suppose that G acts on M = S3\K with fixed points. Then the quotient
O = M/G is a non-compact, orientable hyperbolic 3–orbifold whose torsion orders
are bounded below by n. We need to check that vol (O) ≥ xn . If n = 2, this result is
due to Adams [7, Corollary 8.2]. If n = 3, the result is essentially due to Adams and
Meyerhoff; see [15, Lemma 2.2] and [16, Lemma 2.3]. If n ≥ 4, the result is due to
Atkinson and Futer [16, Theorem 3.8]. In all cases, it follows that vol (M) ≥ |G| · xn .

Next, suppose that G acts freely on M = S3\K . Then the quotient N = M/G
is a non-compact, orientable hyperbolic 3–manifold. If vol (N ) ≥ 2.848, then the
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theorem holds automatically because xn ≤ 2.848 for all n. If vol (N ) < 2.848, then
Gabai, Meyerhoff, and Milley showed that N is one of 10 enumerated 3–manifolds
[46, Theorem 1.2]. In SnapPy notation, these are m003, m004, m006, m007, m009,
m010, m011, m015, m016, and m017. We restrict attention to these manifolds.

Since G acts freely on M , the solution to the Smith conjecture implies that G
also acts freely on S3. By a theorem of Milnor [69, p. 624], G contains at most one
element of order 2, which implies that it must be cyclic. Thus P = S3/G is a lens
space obtained by a Dehn filling on N .

An enumeration of the lens space fillings of the 10 possible manifolds N appears
in the table on [38, p. 243]. This enumeration can be used to show that all possibilities
satisfy the statement of the theorem.

Suppose that a lens space L(p, q) is a Dehn filling of N . If N actually occurs
as a quotient of M = S3\K , then M must be a cyclic p–fold cover of N . We may
rigorously enumerate all cyclic p–fold covers using SnapPy [29]. In almost all cases,
homological reasons show that these covers are not knot complements. For instance,
N = m003 has two lens space fillings: L(5, 1) and L(10, 3). This manifold has six
5–fold and six 10–fold cyclic covers, none of which has first homology Z. Thus
m003 is not a quotient of a knot complement. The same technique applies to 8 of
the 10 manifolds N .

The two remaining exceptions determine several values of xn . Themanifoldm011
has 9–fold and 13–fold cyclic covers that are knot complements in S3. The value of x9
is already smaller than vol (m011), but the value of x13 is determined by this example.
Similarly, the manifold m016, which is the (−2, 3, 7) pretzel knot complement, has
18–fold and 19–fold cyclic covers that are knot complements, determining the values
of x18 and x19. �

5 Cusp Shapes and Cusp Areas

Several results discussed above, such as Theorems 3.10 and 4.9, require the slopes
used in Dehn filling along knot or link complements to be long. To obtain lower
bounds for lengths of slopes, we consider an additional invariant of hyperbolic knots
and links, namely their cusp shapes and cusp areas.

Definition 5.1 Let C1, . . . ,Cn be a fixed choice of maximal cusps for a link com-
plement M , as in Definition 2.11. The cusp area of a component Ci , denoted by
area (∂Ci ), is the Euclidean area of ∂Ci . The cusp volume, denoted by vol (Ci ), is
the volume of Ci . Note that area (∂Ci ) = 2 vol (Ci ). When M has multiple cusps,
the cusp area and cusp volume depend on the choice of maximal cusp.

This section surveys some methods for estimating the area of a maximal cusp and
the length of slopes on it, and poses some open questions.
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5.1 Direct Computation

Similar to the techniques in Sect. 3, if we can explicitly determine a geometric trian-
gulation of a hyperbolic 3–manifold, then we can determine its cusp shape and cusp
area. This is implemented in SnapPy [29].

For fully augmented links, whose geometry is completely determined by a circle
packing, the cusp shape is also determined by the circle packing. The cusp area
can be computed by finding an explicit collection of disjoint horoballs in the fully
augmented link, as in [44].

Under very strong hypotheses, it is possible to apply the cone deformation tech-
niques of Hodgson and Kerckhoff [51] to bound the change in cusp shape under
Dehn filling. Purcell carried this out in [74], starting from a fully augmented link.
However, the results only apply to knots with at least two twist regions and at least
116 crossings per twist region.

To obtain more general bounds for larger classes of knots and links, additional
tools are needed. The main tools are pleated surfaces and packing techniques.

5.2 Upper Bounds and Pleated Surfaces

If M is a hyperbolic link complement, then for any choice of maximal cusp, there is
a collection of slopes whose Dehn fillings gives S3. These are the meridians of M .
Because S3 is not hyperbolic, the 6–Theorem implies that in any choice of maximal
cusp for M , one or more of these slopes must have length at most 6. Indeed, the
6–Theorem is proved by considering punctured surfaces immersed in M and using
area arguments to bound the length of a slope.

Definition 5.2 Let M be a hyperbolic 3–manifold with cusps a collection of cusps
C , and let S be a hyperbolic surface. A pleated surface is a piecewise geodesic, proper
immersion f : S → M . Properness means that any cusps of S are mapped into cusps
of M . The surface S is cut into ideal triangles, each of which is mapped into M by
a local isometry. In M , there may be bending along the sides of the triangles. See
Fig. 6.

An essential surface S in a hyperbolic 3–manifold M can always be homotoped
into a pleated form. The idea is to start with an ideal triangulation of S, then homotope
the images of the edges in M to be ideal geodesics in M . Similarly, homotope the
ideal triangles to be totally geodesic, with sides the geodesic edges in M . This gives
S a pleating. See [25, Theorem 5.3.6] or [62, Lemma 2.2] for proofs.

The main result on slope lengths and pleated surfaces is the following, which is
a special case of [11, Theorem 5.1] and [62, Lemma 3.3]. The result is used in the
proof of the 6–Theorem.
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Fig. 6 The lift of a pleated
surface to the universal cover
H

3 of M . The piecewise
linear zig-zag lies in a single
horosphere

Theorem 5.3 Let M = S3\K be a hyperbolic knot complement with a maximal
cusp C. Suppose that f : S → M is a pleated surface, and let �C(S) denote the total
length of the intersection curves in f (S) ∩ ∂C. Then

�C(S) ≤ 6|χ(S)|.

The idea of the proof of Theorem 5.3 is to find disjoint horocusp neighborhoods
H = ∪Hi in S such that f (Hi ) ⊂ C , and such that �(∂Hi ) is at least as big as the
length of f (∂Hi ) measured on C . This allows us to compute as follows:

�C(S) ≤
s

∑

i=1

�(∂Hi ) =
s

∑

i=1

area (Hi ) ≤ 6

2π
area (S) = 6

2π
· 2π|χ(S)|.

Here, the first inequality is by construction. The second equality is a general fact
about hyperbolic surfaces, proved by a calculation in H

2. The third inequality is
a packing theorem due to Böröczky [23]. The final equality is the Gauss–Bonnet
theorem.

Sample Applications

As noted above, the 6–Theorem implies that the length of a meridian is at most 6.
Theorem 5.3 has also been used to estimate the lengths of other slopes. For example,
a λ–curve is defined to be a curve that intersects the meridian μ exactly once. The
knot-theoretic longitude, which is null-homologous in S3\K , is one example of a
λ–curve, and need not be the shortest λ–curve. There may be one or two shortest
λ–curves. For any λ–curve λ, note that �(μ)�(λ) gives an upper bound on cusp area.

By applying Theorem 5.3 to a singular spanning surface in a knot complement,
the authors of [6] obtain the following upper bounds on meridian, λ–curve, and cusp
area.

Theorem 5.4 Let K be a hyperbolic knot in S3 with crossing number c = c(K ). Let
C denote the maximal cusp of S3\K. Then, for the meridian μ and for the shortest
λ–curve,
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�(μ) ≤ 6 − 7

c
, �(λ) ≤ 5c − 6, and area (∂C) ≤ 9c

(

1 − 1

c

)2

.

Another instance where Theorem 5.3 applies is to knots with a pair of essential
spanning surfaces S1 and S2; in this case the surface S is taken to be the disjoint
union of the two spanning surfaces. The following appears in [24].

Theorem 5.5 Let K be a hyperbolic knot with maximal cusp C. Suppose that S1 and
S2 are essential spanning surfaces in M = S3\K and let i(∂S1, ∂S2) �= 0 denote the
minimal intersection number of ∂S1, ∂S2 in ∂C. Finally, let χ = |χ(S1)| + |χ(S2)|.
Then, for the meridian μ and the shortest λ–curve,

�(μ) ≤ 6χ

i(∂S1, ∂S2)
, �(λ) ≤ 3χ, and area (∂C) ≤ 18χ2

i(∂S1, ∂S2).

Theorem 5.5 is useful because the checkerboard surfaces of many knot diagrams
are known to be essential. For instance, the checkerboard surfaces of alternating
diagrams are essential. Indeed, in [6] the authors use pleated checkerboard surfaces
to prove themeridianof an alternatingknot satisfies �(μ) < 3 − 6/c.Other knotswith
essential spanning surfaces include adequate knots, which arose in the study of Jones
type invariants. Ozawa first proved that two surfaces in such links are essential [73];
see also [41]. More generally, Theorem 5.5 applies to knots that admit alternating
projections on surfaces so that they define essential checkerboard surfaces. These
have been studied by Ozawa [72] and Howie [56].

All the results above indicate that meridian lengths should be strictly less than 6.
For knots in S3, no examples are known with length more than 4.

Question 5.6 Do all hyperbolic knots in S3 satisfy �(μ) ≤ 4?

For links in S3, Goerner showed there exists a link in S3 with 64 components, and
a choice of cusps for which each meridian length is

√
21 ≈ 4.5826 [48].

Question 5.7 Given a hyperbolic link L ⊂ S3, consider the shortestmeridian among
the components of L . What is the largest possible value of the shortest meridian? Is
it

√
21?

The 6–Theorem gives a bound on the length of any non-hyperbolic Dehn fillings.
By geometrization, non-hyperbolic manifolds are either reducible (meaning they
contain an essential 2–sphere), or toroidal (meaning the contain an essential torus),
or small Seifert fibered. The 6–Theorem is only known to be sharp on toroidal fillings.
Thus one may ask about the maximal possible length for the other types of fillings.
See [54] for related questions and results.

Upper Bounds on Area Via Cusp Density

The cusp density of a cusped 3–manifold M is the volume of a maximal cusp
divided by the volume of M . Böröczky [23] showed that cusp density is uni-
versally bounded by

√
3/2vtet , with the figure–8 knot complement realizing this



A Survey of Hyperbolic Knot Theory 25

bound. Recall from Theorem 4.3 that every hyperbolic knot K ⊂ S3 satisfies
vol (S3\K ) ≤ 10 vtet(t − 1), where t = t (D) is the twist number of any diagram.
Combining this with Böröczky’s theorem shows that a maximal cusp C ⊂ S3\K
satisfies

area (∂C) ≤ 10
√
3 · (t − 1) ≈ 17.32 · (t − 1).

We note that this bound can be arbitrarily far from sharp. This is already true
for Theorem 4.3. In addition, Eudave-Muñoz and Luecke [32] showed that the cusp
density of a hyperbolic knot complement can be arbitrarily close to 0.

5.3 Lower Bounds via Horoball Packing

Theorems 5.3 and 5.4 givemethods for bounding cusp area from above. To give lower
bounds on slope lengths, for example to apply the 6–Theorem, we must bound cusp
area or cusp volume from below. The main tool for this is to use packing arguments:
find a disjoint collection of horoballs with Euclidean diameters bounded from below
in a fundamental region of the cusp. Take their shadows on the cusp torus. The area
of the cusp torus must be bounded below by the areas of the shadows.

One sample result that has been used to bound cusp shape is the following, from
[64].

Lemma 5.8 Suppose that a one-cusped hyperbolic 3–manifold M contains at least
p homotopically distinct essential arcs, each with length at most L measured with
respect to the maximal cusp H of M. Then the cusp area area (∂H) is at least
p

√
3 e−2L .

Similar techniques were also used to bound cusp areas in [39] and in [45].
The idea of the proof is that an arc from the cusp to itself of length L lifts to an arc

in the universal cover between two horoballs. We may identify the universal cover
of M with the upper half-space model of H3, so that the boundary of one cusp in M
lifts to a horosphere at Euclidean height 1. The Euclidean metric on this horosphere
coincides with the hyperbolicmetric. Arcs of bounded length lead to horoballs whose
diameter is not too small, and whose shadows have a definite area.

At this writing there is no general lower bound of cusp shapes for all hyperbolic
knots. However, for alternating knots, Lackenby and Purcell found a collection of
homotopically distinct essential arcs of bounded length, then applied Lemma 5.8 to
to show the following [64].

Theorem 5.9 Let D be a prime, twist reduced alternating diagram of some hyper-
bolic knot K and let t = t (D) be the twist number of D. Let C be the maximal cusp
of M = S3\K. Then

A(t − 2) ≤ area (∂C) ≤ 10
√
3(t − 1),
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where A is at least 2.278 × 10−9.

For 2–bridge knots there is a much sharper lower bound [39]:

8
√
3

147
(t − 1) ≤ area (∂C) ≤

√
3voct
vtet

(t − 1).

Note that Theorem 5.9, along with Theorem 4.7 implies that the cusp density of
alternating knots is universally bounded below. This is not true for non-alternating
knots [32]. It would be interesting to study the extent to which Theorem 5.9 can be
generalized.

In general, we would like to know how to obtain many homotopically distinct
arcs that can be used in Lemma 5.8. The arcs used in the proof of Theorem 5.9 lie
on complicated immersed essential surfaces, described in [65]. It is conjectured that
much simpler crossing arcs should play this role.

Definition 5.10 Let K be a knot with diagram D(K ). A crossing arc is an embedded
arc α in S3 with ∂α ⊂ K , such that in D(K ), α projects to an unknotted embedded
arc running from an overstrand to an understrand in a crossing.

The following conjecture is due to Sakuma and Weeks [78].

Conjecture 5.11 In a reduced alternating diagram of a hyperbolic alternating link,
every crossing arc is isotopic to a geodesic.

Conjecture 5.11 is known for 2–bridge knots [49, Appendix] and for classes of
closed alternating braids [83].

Computer experiments performed by Thistlethwaite and Tsvietkova [79] also
support the following conjecture, which would give more information on the lengths
of crossing arcs, hence more information on cusp areas.

Conjecture 5.12 Crossingarcs in alternating knots have lengthuniversally bounded
above by log 8.
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