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Abstract. This paper is a brief overview of recent results by the authors relating colored Jones

polynomials to geometric topology. The proofs of these results appear in the papers [18, 19],

while this survey focuses on the main ideas and examples.

Introduction. To every knot in S3 there corresponds a 3-manifold, namely the knot
complement. This 3-manifold decomposes along tori into geometric pieces, where the
most typical scenario is that all of S3 r K supports a complete hyperbolic metric [43].
Incompressible surfaces embedded in S3 r K play a crucial role in understanding its
classical geometric and topological invariants.

The quantum knot invariants, including the Jones polynomial and its relatives, the
colored Jones polynomials, have their roots in representation theory and physics [28, 46],

2010 Mathematics Subject Classification: 57M25, 57M50, 57N10.

D.F. is supported in part by NSF grant DMS–1007221.
E.K. is supported in part by NSF grants DMS–0805942 and DMS–1105843.
J.P. is supported in part by NSF grant DMS–1007437 and a Sloan Research Fellowship.

The paper is in final form and no version of it will be published elsewhere.

DOI: 10.4064/bc100-0-3 [47] c� Instytut Matematyczny PAN, 2013



48 D. FUTER, E. KALFAGIANNI AND J. PURCELL

and are well connected to topological quantum field theory [48]. While the constructions
of these invariants seem to be unrelated to the geometries of 3-manifolds, in fact topolog-
ical quantum field theory predicts that the Jones polynomial knot invariants are closely
related to the hyperbolic geometry of knot complements [47]. In particular, the volume

conjecture of R. Kashaev, H. Murakami, and J. Murakami [29, 37, 36, 12] asserts that
the volume of a hyperbolic knot is determined by certain asymptotics of colored Jones
polynomials. There is also growing evidence indicating direct relations between the coef-
ficients of the Jones and colored Jones polynomials and the volume of hyperbolic links.
For example, numerical computations show such relations [6], as do theorems proved for
several classes of links, including alternating links [10], closed 3-braids [16], highly twisted
links [14], and certain sums of alternating tangles [15].

In a recent monograph [19], the authors have initiated a new approach to studying
these relations, focusing on the topology of incompressible surfaces in knot complements.
The motivation behind studying surfaces is as follows. On the one hand, certain spanning
surfaces of knots have been shown to carry information on colored Jones polynomials [8].
On the other hand, incompressible surfaces also shed light on volumes of manifolds [2]
and additional geometry and topology (e.g. [1, 34, 35]). With these ideas in mind, we
developed a machine that allows us to establish relationships between colored Jones
polynomials and topological/geometric invariants.

The purpose of this paper is to give an overview of recent results, especially those
of [19], and some of their applications. The content is an expanded version of talks given
by the authors at the conferences Topology and Geometry in Dimension Three, in honor
of William Jaco, at Oklahoma State University in June 2010; Knots in Poland III at the
Banach Center in Warsaw, Poland, in July 2010; as well as in seminars and department
colloquia. This paper includes background and motivation, along with several examples
that did not appear in the original lectures. Many figures in this survey are drawn from
slides for those lectures, as well as from the papers [19, 14, 18].

This paper is organized as follows. In Sections 1, 2, and 3, we develop several connec-
tions between (colored) Jones polynomials and topological objects of the corresponding
dimension. That is, Section 1 describes the connection between these polynomial invari-
ants and certain state graphs associated to a link diagram. Section 2 describes the state

surfaces associated to these state graphs, and explains the connection of these surfaces
to the sequence of degrees of the colored Jones polynomial. Section 3 dives into the
3-dimensional topology of the complement of each state surface, and contains most of
our main theorems. In Section 4, we illustrate the main theorems with a detailed exam-
ple. Finally, in Section 5, we describe the polyhedral decomposition that plays a key role
in our proofs.

1. State graphs and the Jones polynomial. The first objects we consider are
1-dimensional: graphs built from the diagram of a knot or link. We will see that these
graphs have relationships to the coe�cients of the colored Jones polynomials, and that
a ribbon version of one of these graphs encodes the entire Jones polynomial. In later
sections, we will also see relationships between the graphs and quantities in geometric
topology.
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1.1. Graphs and state graphs. Associated to a diagram D and a crossing x of D are
two link diagrams, each with one fewer crossing than D. These are obtained by removing
the crossing x, and reconnecting the diagram in one of two ways, called the A-resolution

and B-resolution of the crossing, shown in Figure 1.

B-resolutionA-resolution

Fig. 1. A- and B-resolutions of a crossing

For each crossing of D, we may make a choice of A-resolution or B-resolution, and end
up with a crossing-free diagram. Such a choice of A- or B-resolutions is called a Kau↵man

state, denoted by �. The resulting crossing-free diagram is denoted by s�.
The first graph associated with our diagram will be trivalent. We start with the

crossing-free diagram given by a state. The components of this diagram are called state

circles. For each crossing x of D, attach an edge from the state circle on one side of
the crossing to the other, as in the dashed lines of Figure 1. Denote the resulting graph
by H�. Edges of H� come from state circles and crossings; there are two trivalent vertices
for each crossing.

To obtain the second graph, collapse each state circle of H� to a vertex. Denote the
result by G�. The vertices of G� correspond to state circles, and the edges correspond to
crossings of D. The graph G� is called the state graph associated to �.

In the special case where each state circle of � traces a region of the diagram D(K),
the state graph G� is called a checkerboard graph or Tait graph. These checkerboard
graphs record the adjacency pattern of regions of the diagram, and have been studied
since the work of Tait and Listing in the 19th century. See e.g. [39, p. 264].

Our primary focus from here on will be on the all-A state, which consists of choosing
the A-resolution at each crossing, and similarly the all-B state. Their corresponding state
graphs are denoted by GA and GB . An example of a diagram, as well as the graphs HA

and GA that result from the all-A state, is shown in Figure 2.
For the all-A and all-B states, we define graphs G0

A and G0
B by removing all duplicate

edges between pairs of vertices of GA and GB , respectively. Again see Figure 2.

Fig. 2. Left to right: A diagram, the graphs HA, GA, and G0
A
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The following definition, formulated by Lickorish and Thistlethwaite [32, 42], captures
the class of link diagrams whose Jones polynomial invariants are especially well-behaved.

Definition 1.1. A link diagram D(K) is called A-adequate (resp. B-adequate) if GA

(resp. GB) has no 1-edge loops. If D(K) is both A- and B-adequate, then D(K) and K

are called adequate.

We will devote most of our attention to A-adequate knots and links. Because the
mirror image of a B-adequate knot is A-adequate, this includes the B-adequate knots
up to reflection. We remark that the class of A- or B-adequate links is large. It includes
all prime knots with up to 10 crossings, alternating links, positive and negative closed
braids, closed 3-braids, Montesinos links, and planar cables of all the above [32, 41, 42].
In fact, Stoimenow has computed that there are only two knots of 11 crossings and a
handful of 12 crossing knots that are not A- or B-adequate. Furthermore, among the
253,293 prime knots with 15 crossings tabulated in Knotscape [25], at least 249,649 are
either A-adequate or B-adequate [41].

Recall that a link diagram D is called prime if any simple closed curve that meets
the diagram transversely in two points bounds a region of the projection plane without
any crossings. A prime knot or link admits a prime diagram.

1.2. The Jones polynomial from the state graph viewpoint. Here, we recall a
topological construction that allows us to recover the Jones polynomial of any knot or
link from a certain 2-dimensional embedding of GA.

A connected link diagram D leads to the construction of a Turaev surface [45], as
follows. Let � ⇢ S2 be the planar, 4-valent graph of the link diagram. Thicken the
(compactified) projection plane to a slab S2 ⇥ [�1, 1], so that � lies in S2 ⇥ {0}. Outside
a neighborhood of the vertices (crossings), our surface will intersect this slab in �⇥[�1, 1].
In the neighborhood of each vertex, we insert a saddle, positioned so that the boundary
circles on S2 ⇥ {1} are the components of the A-resolution sA(D), and the boundary
circles on S2⇥ {�1} are the components of sB(D). (See Figure 3.) Then, we cap o↵ each
circle with a disk, obtaining an unknotted closed surface F (D).

sA sA

sB

sB

�

Fig. 3. Near each crossing of the diagram, a saddle surface interpolates between circles of sA(D)
and circles of sB(D). The edges of GA and GB can be seen as gradient lines at the saddle

In the special case when D is an alternating diagram, each circle of sA(D) or sB(D)
follows the boundary of a region in the projection plane. Thus, for alternating diagrams,
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the surface F (D) is exactly the projection sphere S2. For general diagrams, it is still the
case that the knot or link has an alternating projection to F (D) [8, Lemma 4.4].

The construction of the Turaev surface F (D) endows it with a natural cellulation,
whose 1-skeleton is the graph � and whose 2-cells correspond to circles of sA(D) or sB(D),
hence to vertices of GA or GB . These 2-cells admit a natural checkerboard coloring, in
which the regions corresponding to the vertices of GA are white and the regions corre-
sponding to GB are shaded. The graph GA (resp. GB) can be embedded in F (D) as
the adjacency graph of white (resp. shaded) regions. Note that the faces of GA (that is,
regions in the complement of GA) correspond to vertices of GB , and vice versa. In other
words, the graphs are dual to one another on F (D).

A graph, together with an embedding into an orientable surface, is often called a
ribbon graph. Ribbon graphs and their polynomial invariants have been studied by many
authors, including Bollobas and Riordan [4, 5]. Building on this point of view, Dasbach,
Futer, Kalfagianni, Lin and Stoltzfus [8] showed that the ribbon graph embedding of GA

into the Turaev surface F (D) carries at least as much information as the Jones polynomial
JK(t). To state the relevant result from [8], we need the following definition.

Definition 1.2. A spanning subgraph of GA is a subgraph that contains all the vertices
of GA. Given a spanning subgraph G of GA we will use v(G), e(G) and f(G) to denote
the number of vertices, edges and faces of G respectively.

Theorem 1.3 ([8]). Let D be a connected link diagram. Then the Kau↵man bracket

hDi 2 Z[A,A�1] can be expressed as

hDi =
X

G⇢GA

Ae(GA)�2e(G)(�A2 �A�2)f(G)�1,

where G ranges over all the spanning subgraphs of GA.

Recall that given a diagram D, the Jones polynomial JK(t) is obtained from the
Kau↵man bracket as follows. Multiply hDi by with (�A)�3w(D), where w(D) is the
writhe of D, and then substitute A = t�1/4.

Remark 1.4. Theorem 1.3 leads to formulae for the coe�cients of the Jones polynomial
of a link in terms of topological quantities of the graph GA corresponding to any diagram
of the link [8, 9]. These formulae become particularly e↵ective if GA corresponds to
an A-adequate diagram; in particular, Theorem 1.5 below can be recovered from these
formulae.

The polynomial JK(t) fits within a family of knot polynomials known as the colored

Jones polynomials. A convenient way to express this family is in terms of Chebyshev

polynomials. For n � 0, the polynomial Sn(x) is defined recursively as follows:

(1) Sn+1 = xSn � Sn�1, S1(x) = x, S0(x) = 1.

Let D be a diagram of a link K. For an integer m > 0, let Dm denote the diagram
obtained from D by taking m parallel copies of K. This is the m-cable of D using the
blackboard framing; if m = 1 then D1 = D. Let hDmi denote the Kau↵man bracket
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of Dm and let w = w(D) denote the writhe of D. Then we may define the function

G(n+ 1, A) :=
�

(�1)nAn2+2n
��w

(�1)n�1
⇣ A4 �A�4

A2n �A�2n

⌘

hSn(D)i,

where Sn(D) is a linear combination of blackboard cablings of D, obtained via equa-
tion (1), and the notation hSn(D)i means extend the Kaufmann bracket linearly. That
is, for diagrams D1 and D2 and scalars a1 and b1, ha1D1 + a2D2i = a1hD1i + a2hD2i.
Finally, the reduced n-th colored Jones polynomial of K, denoted by

Jn
K(t) = ↵nt

j(n) + �nt
j(n)�1 + . . .+ �0

nt
j0(n)+1 + ↵0

nt
j0(n),

is obtained from G(n,A) by substituting t := A�4.

For a given a diagram D of K, there is a lower bound for j0(n) in terms of data about
the state graph GA, and this bound is sharp when D is A-adequate. Similarly, there is
an upper bound on j(n) in terms of GB that is realized when D is B-adequate [31]. See
Theorem 2.5 for a related statement. In addition, Dasbach and Lin showed that for A-
and B-adequate diagrams, the extreme coe�cients of Jn

K(t) have a particularly nice form.

Theorem 1.5 ([10]). If D is an A-adequate diagram, then ↵0
n and �0

n are independent

of n > 1. In particular, |↵0
n| = 1 and |�0

n| = 1� �(G0
A), where G0

A is the reduced graph.

Similarly, if D is B-adequate, then |↵n| = 1 and |�n| = 1� �(G0
B).

Now the following definition makes sense in the light of Theorem 1.5.

Definition 1.6. For an A-adequate link K, we define the stable penultimate coe�cient

of Jn
K(t) to be �0

K := |�0
n|, for n > 1.

Similarly, for a B-adequate link K, we define the stable second coe�cient of Jn
K(t) to

be �K := |�n|, for n > 1.

For example, in Figure 2, G0
A is a tree. Thus, for the link in the figure, �0

K = 0.

Remark 1.7. It is known that in general, the colored Jones polynomials Jn
K(t) satisfy

linear recursive relations in n [22]. In this setting, the properties stated in Theorem 1.5
can be thought of as strong manifestations of the general recursive phenomena, under the
hypothesis of adequacy. For arbitrary knots the coe�cients |�n|, |�0

n| do not, in general,
stabilize. For example, for q > p > 2, the coe�cients |�n|, |�0

n| of the (p, q) torus link are
periodic with period 2 (see [3]):

|�n| = |�n+2k| and |�0
n| =

�

��0
n+2k

�

�, for n � 2, k 2 N.

See of [19, Chapter 10] for more discussion and questions on these periodicity phenomena.

2. State surfaces. In this section, we consider 2-dimensional objects: namely, certain
surfaces associated to Kau↵man states. This surface is constructed as follows. Recall
that a Kau↵man state � gives rise to a collection of circles embedded in the projection
plane S2. Each of these circles bounds a disk in the ball below the projection plane, where
the collection of disks is unique up to isotopy in the ball. Now, at each crossing of D, we
connect the pair of neighboring disks by a half-twisted band to construct a state surface

S� ⇢ S3 whose boundary is K. See Figure 4 for an example where � is the all-A state.
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Fig. 4. Left to right: A diagram. The graphs HA and GA. The state surface SA

Well-known examples of state surfaces include Seifert surfaces (where the correspond-
ing state � is defined by following an orientation on K) and checkerboard surfaces for
alternating links (where the corresponding state � is either the all-A or all-B state). In
this paper, we focus on the all-A and all-B states of a diagram, but we do not require
our diagrams to be alternating.

Our surfaces also generalize checkerboard surfaces in the following sense. For an al-
ternating diagram D, the white and shaded checkerboard surfaces are SA and SB of the
all-A and all-B states. These surfaces can be simultaneously embedded in S3 so that
their intersection consists of disjoint segments, one at each crossing. Collapsing each of
these segments to a point will map SA[SB to the projection sphere, which is the Turaev
surface F (D) associated to an alternating diagram.

In our more general setting, suppose that we modify the surfaces SA and SB so
that SA is constructed out of disks in the 3-ball above the projection plane, while SB is
constructed out of disks in the 3-ball below the projection plane. (See Figure 3 for the
boundaries of these disks.) Then, once again, SA \ SB will consist of disjoint segments
at the crossings, and collapsing each segment to a point will map SA [ SB to the Turaev
surface F (D). Informally, each of SA and SB forms “half” of the Turaev surface, just as
each checkerboard surface of an alternating diagram forms “half” of the projection plane.

In general, the graph G� has the following relationship to the state surface S�.

Lemma 2.1. The graph G� is a spine for the surface S�.

Proof. By construction, G� has one vertex for every circle of s� (hence every disk in S�),
and one edge for every half-twisted band in S�. This gives a natural embedding of G�

into the surface, where every vertex is embedded into the corresponding disk, and every
edge runs through the corresponding half-twisted band. This gives a spine for S�.

The surfaces S� are, in general, non-orientable (checkerboard surfaces already exhibit
this phenomenon). The state graph G� encodes orientability via the following criterion,
whose proof we leave as a pleasant exercise.

Lemma 2.2. The surface S� is orientable if and only if G� is bipartite.

We need the following definition.
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Definition 2.3. Let M be an orientable 3-manifold and S ⇢ M a properly embedded
surface. We say that S is essential in M if the boundary of a regular neighborhood of S,
denoted by eS, is incompressible and boundary-incompressible. If S is orientable, then
eS consists of two copies of S, and the definition is equivalent to the standard notion of
“incompressible and boundary-incompressible.” If S is non-orientable, this is equivalent
to ⇡1-injectivity of S, the stronger of two possible senses of incompressibility.

Again, we are especially interested in the state surfaces of the all-A and all-B states.
For these states, there is a particularly nice relationship between the state surface S� and
the state graph G�.

Theorem 2.4 (Ozawa [38]). Let D(K) be a diagram of a link K, and let � be the all-A

or all-B state. Then the state surface S� is essential in S3rK if and only if G� contains

no 1-edge loops.

In fact, Ozawa’s theorem also applies to a number of other states, which he calls
�-homogeneous [38].

Ozawa proves Theorem 2.4 by decomposing the diagram into tangles so that S� is a
Murasugi sum. We have an alternate proof of this result in [19] that uses a decomposition
of the complement of S� into topological balls. We will discuss this more in Section 5.

2.1. Colored Jones polynomials and slopes of state surfaces. Garoufalidis has
conjectured that for a knot K, the growth of the degree of the colored Jones polynomial
is related to essential surfaces in the manifold S3rK [21]. In [18], we show that this holds
for A-adequate diagrams of a knot K and the essential surface SA. In this subsection, we
review these results.

Given K ⇢ S3, let M = MK denote the compact 3-manifold created when a tubular
neighborhood of K is removed from S3. There is a canonical meridian-longitude basis of
H1(@M), which we denote by hµ,�i. Any properly embedded surface (S, @S) ⇢ (M, @M)
has S \ @M a union of simple closed curves on @M . The homology class of each curve
of @S in H1(@M) is determined by an element p/q 2 Q [ {1/0}: the slope of S. An
element p/q 2 Q [ {1/0} is called a boundary slope of K if there is a properly em-
bedded essential surface (S, @S) ⇢ (M, @M), such that each curve of @S is homologous
to pµ+ q� 2 H1(@M). Hatcher has shown that every knot K ⇢ S3 has finitely many
boundary slopes [24].

Let j(n) denote the highest degree of JK(n, t) in t, and let j0(n) denote the lowest
degree. Consider the sequences

jsK :=
n4j(n)

n2
: n > 0

o

and js0K :=
n4j0(n)

n2
: n > 0

o

.

Garoufalidis has conjectured [21] that for each knot K, every cluster point (i.e., every
limit of a subsequence) of jsK or js⇤K is a boundary slope ofK. In [18], the authors proved
this is true for A-adequate knots, and the boundary slope comes from the incompressible
surface SA. This is the content of the following theorem.
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Fig. 5. Left: a positive crossing, and a piece of SB near the crossing. Locally, this crossing
contributes +2 to the slope of SB , and makes no contribution to the slope of SA. Right: a
negative crossing contributes �2 to the slope of SA, and makes no contribution to the slope
of SB

Theorem 2.5 ([18]). Let D be an A-adequate diagram of a knot K and let b(SA) 2 Z
denote the boundary slope of the essential surface SA. Then

lim
n!1

4j0(n)

n2
= b(SA) = �2c�,

where c� is the number of negative crossings in D. (See Figure 5, right.)

Similarly, if D is a B-adequate diagram of a knot K, let b(SB) 2 Z denote the

boundary slope of the essential surface SB. Then

lim
n!1

4j(n)

n2
= b(SB) = �2c+,

where c+ is the number of positive crossings in D. (See Figure 5, left.)

Additional families of knots for which the conjecture is true are given by Garoufalidis
[21] and more recently by Dunfield and Garoufalidis [13].

3. Cutting along the state surface. In this section, we focus on the 3-manifold formed
by cutting along the state surface SA. Using its 3-dimensional structure, we will relate
the hyperbolic geometry of S3 rK to the Jones and colored Jones polynomials of K.

3.1. Geometry and topology of the state surface complement

Definition 3.1. Let K ⇢ S3 be a link, and SA the all-A state surface. We let M denote
the link complement, M = S3 r K, and we let MA := M\\SA denote the path-metric
closure of MrSA. Note that MA = (S3rK)\\SA is homeomorphic to S3\\SA, obtained
by removing a regular neighborhood of SA from S3.

We will refer to P = @MA \ @M as the parabolic locus of MA; it consists of annuli.
The remaining, non-parabolic boundary @MA r @M is the unit normal bundle of SA.

Our goal is to use the state graph GA to understand the topological structure of MA.
One result along these lines is a straightforward characterization of when SA is a fiber
surface for S3 rK, or equivalently when MA is an I-bundle over SA.

Theorem 3.2. Let D(K) be any link diagram, and let SA be the spanning surface deter-

mined by the all-A state of this diagram. Then the following are equivalent :
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(1) The reduced graph G0
A is a tree.

(2) S3 rK fibers over S1, with fiber SA.

(3) MA = S3\\SA is an I-bundle over SA.

For example, in the link diagram depicted in Figure 4, the graph G0
A is a tree with two

edges. Thus the state surface SA shown in Figure 4 is a fiber in S3 rK. The geometric
types of state surfaces are further studied in [20].

In general, one may apply the annulus version of the JSJ decomposition theory [26, 27]
to cut MA into three types of pieces: I-bundles over sub-surfaces of SA, Seifert fibered
spaces that are solid tori, and guts, i.e. the portion that admits a hyperbolic metric.

The pieces of the JSJ decomposition give significant information about the mani-
fold MA. For example, if guts(MA) = ;, then MA is a union of I-bundles and solid tori.
Such an MA is called a book of I-bundles, and the surface SA is called a fibroid [7].

The guts of MA are a good measurement of topological complexity. To express this
more precisely, we need the following definition.

Definition 3.3. Let Y be a compact cell complex with connected components Y1, . . . , Yn.
Let �(·) denote the Euler characteristic. This can be split into positive and negative parts,
with notation borrowed from the Thurston norm [44]:

�+(Y ) =
n
X

i=1

max{�(Yi), 0}, ��(Y ) =
n
X

i=1

max{��(Yi), 0}.

Note that �(Y ) = �+(Y )� ��(Y ). In the case that Y = ;, we have �+(;) = ��(;) = 0.

The negative Euler characteristic ��(guts(MA)) serves as a useful measurement of
how far SA is from being a fiber or a fibroid in S3 r K. In addition, it relates to the
volume of MA. The following theorem was proved by Agol, Storm, and Thurston.

Theorem 3.4 (Theorem 9.1 of [2]). Let M be finite-volume hyperbolic 3-manifold, and

let S ⇢ M be a properly embedded essential surface. Then

vol(M) � v8 ��(guts(M\\S)),

where v8 = 3.6638 . . . is the volume of a regular ideal octahedron.

We apply Theorem 3.4 to the essential surface SA for a prime, A-adequate diagram
of a hyperbolic link. In order to do so, we develop techniques for determining the Euler
characteristic of the guts of SA. We find that it can be read o↵ of a diagram of the link.

Theorem 3.5. Let D(K) be an A-adequate diagram, and let SA be the essential spanning

surface determined by this diagram. Then

��(guts(S
3\\SA)) = ��(G0

A)� kEck,

where kEck � 0 is a diagrammatic quantity.

The quantity kEck is the number of complex essential product disks (EPDs). We will
give its definition and examples in the next subsection. For now, we point out that in
many cases, the quantity kEck vanishes. For example, this happens for alternating links
[30], as well as for most Montesinos links [19, Corollary 9.21].
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When we combine Theorems 3.4 and 3.5, and recall that S3\\SA is homeomorphic to
(S3 rK)\\SA, we obtain

vol(S3 rK) � v8 ��(guts(S
3\\SA)) = ��(G0

A)� kEck,
where the equality comes from Theorem 3.5. This leads to the following.

Theorem 3.6. Let D = D(K) be a prime A-adequate diagram of a hyperbolic link K.

Then

vol(S3 rK) � v8 (��(G0
A)� kEck),

where kEck is the same diagrammatic quantity as in the statement of Theorem 3.5, and
v8 = 3.6638 . . . is the volume of a regular ideal octahedron.

There is a symmetric result for B-adequate diagrams.

3.2. Essential product disks. We now describe the quantity kEck more carefully, and
discuss how it relates to the graph GA. To begin, we review some terminology.

Definition 3.7. Let M be a 3-manifold with boundary, and with prescribed parabolic
locus consisting of annuli. An essential product disk in M , or EPD for short, is a properly
embedded disk whose boundary has geometric intersection number 2 with the parabolic
locus. Note that an EPD is an I-bundle over an interval. See Figure 6 for an example of
such a disk in MA = S3\\SA.

SA

SA

Fig. 6. An EPD in MA containing a single 2-edge loop in GA, with edges in di↵erent twist
regions in the link diagram

If B is an I-bundle in M , we say that a collection {D1, . . . , Dn} of disjoint EPDs
spans B if their complement in B is a disjoint union of solid tori and 3-balls.

Essential product disks are integral to understanding the size of guts(MA). In par-
ticular, the proof of Theorem 3.5 requires calculating the Euler characteristic of all the
I-bundle components in the JSJ decomposition of MA = S3\\SA. To do this, we show
that each component of the I-bundle is spanned by EPDs, and find a particular spanning
set. (See Theorem 5.6 in Section 5.)

Definition 3.8. Two crossings in D are defined to be twist equivalent if there is a simple
closed curve in the projection plane that meets D at exactly those two crossings. The
diagram is called twist reduced if every equivalence class of crossings is a twist region

(a chain of crossings between two strands of K). The number of equivalence classes is
denoted by t(D), the twist number of D.
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Fig. 7. Shown are three EPDs in a twist region

Fig. 8. An EPD in MA containing two 2-edge loops of GA

Every twist region inD(K) with at least two crossings gives rise to EPDs. For instance,
in Figure 7, there are three crossings in the twist region. The boundary of each EPD shown
lies on the state surface SA, and crosses the knot diagram exactly twice. Note there are
two EPDs that encircle one bigon each, and one EPD that encircles two bigons. Any two
of these will su�ce in a spanning set.

The essential product disk in Figure 6 does not lie in a single twist region. For another
example that does not lie in a single twist region, see Figure 8. Note that in each of Figures
6, 7, and 8, the EPD can be naturally associated to one or more 2-edge loops in the state
graph GA.

In Figure 8, the EPD exhibits more complicated behavior than in the other examples,
in that it bounds nontrivial portions of the graph HA. We call an EPD that bounds
nontrivial portions of HA on both sides a complex EPD. The minimal number of complex
EPDs in the spanning set of the maximal I-bundle of MA is denoted by kEck, and is
exactly the correction term in Theorem 3.5. By analyzing EPDs, we show the following.

Proposition 3.9. If D is prime and A-adequate, such that every 2-edge loop in GA has

edges belonging to the same twist region, then kEck = 0. Hence

vol(S3 rK) � v8 (��(G0
A)).

3.3. Volume estimates. One family of knots and links that satisfies Proposition 3.9
is that of alternating links [30]. If D = D(K) is a prime, twist-reduced alternating link
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diagram, then it is both A- and B-adequate, and for each 2-edge loop in GA or GB , both
edges belong to the same twist region. Theorem 3.6 gives lower bounds on volume in
terms of both ��(G0

A) and ��(G0
B). By averaging these two lower bounds, one recovers

Lackenby’s lower bound on the volume of hyperbolic alternating links, in terms of the
twist number t(D).

Theorem 3.10 (Theorem 2.2 of [2]). Let D be a reduced alternating diagram of a hyper-

bolic link K. Then
v8
2

(t(D)� 2)  vol(S3 rK) < 10v3 (t(D)� 1),

where v3 = 1.0149 . . . is the volume of a regular ideal tetrahedron and v8 = 3.6638 . . . is

the volume of a regular ideal octahedron.

Theorem 3.6 greatly expands the list of manifolds for which we can compute explic-
itly the Euler characteristic of the guts, and can be used to derive results analogous to
Theorem 3.10. As a sample, we state the following.

Theorem 3.11. Let D(K) be a diagram of a hyperbolic link K, obtained as the closure

of a positive braid with at least three crossings in each twist region. Then

2v8
3

t(D)  vol(S3 rK) < 10v3(t(D)� 1),

where v3 = 1.0149 . . . is the volume of a regular ideal tetrahedron and v8 = 3.6638 . . . is

the volume of a regular ideal octahedron.

Observe that the multiplicative constants in the upper and lower bounds di↵er by a
rather small factor of about 4.155.

We obtain similarly tight two-sided volume bounds for Montesinos links, using these
guts techniques [19].

Theorem 3.12. Let K ⇢ S3 be a Montesinos link with a reduced Montesinos diagram

D(K). Suppose that D(K) contains at least three positive tangles and at least three neg-

ative tangles. Then K is a hyperbolic link, satisfying

v8
4

(t(D)�#K)  vol(S3 rK) < 2v8 t(D),

where v8 = 3.6638 . . . is the volume of a regular ideal octahedron and #K is the number

of link components of K. The upper bound on volume is sharp.

Similar results using di↵erent techniques have been obtained by the authors in [14,
15, 16], and by Purcell in [40].

3.4. Relations with the colored Jones polynomial. The main results of [19] explore
the idea that the stable coe�cient �0

K does an excellent job of measuring the geometric
and topological complexity of the manifold MA = S3\\SA. (Similarly, �K measures the
complexity of MB = S3\\MB .)

For instance, note that we have |�0
K | = 1 � �(G0

A) = 0 exactly when �(G0
A) = 1,

or equivalently G0
A is a tree. Thus it follows from Theorem 3.2 that �0

K is exactly the
obstruction to SA being a fiber.
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Corollary 3.13. For an A-adequate link K, the following are equivalent :

(1) �0
K = 0.

(2) For every A-adequate diagram of D(K), S3 rK fibers over S1 with fiber the cor-

responding state surface SA = SA(D).
(3) For some A-adequate diagram D(K), MA = S3\\SA is an I-bundle over SA(D).

Similarly, |�0
K | = 1 precisely when SA is a fibroid of a particular type [19, Theorem

9.18]. In general, the JSJ decomposition of MA contains guts: the non-trivial hyperbolic
pieces. In this case, |�0

K | measures the complexity of the guts together with certain
complicated parts of the maximal I-bundle of MA.

Theorem 3.14. Suppose K is an A-adequate link whose stable colored Jones coe�cient

is �0
K 6= 0. Then, for every A-adequate diagram D(K),

��(guts(MA)) + kEck = |�0
K |� 1.

Furthermore, if D is prime and every 2-edge loop in GA has edges belonging to the same

twist region, then kEck = 0 and

��(guts(MA)) = |�0
K |� 1.

The volume conjecture of Kashaev and Murakami–Murakami [29, 37] states that all
hyperbolic knots satisfy

2⇡ lim
n!1

log
�

�Jn
K(e2⇡i/n)

�

�

n
= vol(S3 rK).

If the volume conjecture is true, then for large n, there would be a relation between
the coe�cients of Jn

K(t) and the volume of the knot complement. In recent years, articles
by Dasbach and Lin and the authors have established relations for several classes of knots
[11, 14, 15, 16]. However, in all these results, the lower bound involved first showing that
the Jones coe�cients give a lower bound on twist number, then showing twist number
gives a lower bound on volume. Each of these steps is known to fail outside special families
of knots [16, 17]. Moreover, the two-step argument is indirect, and the constants produced
are not sharp. By contrast, in [19], we bound volume below in terms of ��(guts), which is
directly related to colored Jones coe�cients. This yields sharper lower bounds on volumes,
along with a more intrinsic explanation for why these lower bounds exist. For instance,
Theorems 3.11 and 3.12 have the following corollaries.

Corollary 3.15. Suppose that a hyperbolic link K is the closure of a positive braid with

at least three crossings in each twist region. Then

v8 (|�0
K |� 1)  vol(S3 rK) < 15v3 (|�0

K |� 1)� 10v3,

where v3 = 1.0149 . . . is the volume of a regular ideal tetrahedron and v8 = 3.6638 . . . is

the volume of a regular ideal octahedron.

Corollary 3.16. Let K ⇢ S3 be a Montesinos link with a reduced Montesinos dia-

gram D(K). Suppose that D(K) contains at least three positive tangles and at least three

negative tangles. Then K is a hyperbolic link, satisfying

v8(max{|�K |, |�0
K |}� 1)  vol(S3 rK) < 4v8(|�K |+ |�0

K |� 2) + 2v8 (#K),

where #K is the number of link components of K.
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4. A worked example. In this section, we illustrate several of the above theorems on
the two-component link of Figure 9. The figure also shows the graphs HA, GA, and G0

A

for this link diagram.

Fig. 9. Diagram D(K) of a two-component link, and graphs HA, GA, and G0
A. All of the dis-

cussion in Section 4 pertains to this link

In this example, it turns out that the manifold MA = S3 r SA contains a single
essential product disk. This disk D is shown in Figure 10. Observe that this lone EPD
corresponds to the single 2-edge loop in GA. Note as well that collapsing two edges of
GA to a single edge of G0

A changes the Euler characteristic by 1, while cutting MA along
disk D also changes the Euler characteristic by 1. Thus

��(GA) = ��(GA) = 3, ��(G0
A) = ��(G0

A) = 2.

Fig. 10. Left: the state surface SA of the link of Figure 9. Right: the single EPD in MA lies
below the surface SA, and its boundary intersects K at two points in the center of the figure

On the 3-manifold side, recall that GA is a spine of SA. Thus Alexander duality gives

��(MA) = ��(S
3\\SA) = ��(SA) = ��(GA) = 3.

Because the maximal I-bundle of MA is spanned by the single disk D, we have

��(guts(MA)) = ��(MA)� 1 = 2 = ��(G0
A),

exactly as predicted by Theorem 3.5 with kEck = 0.
By Theorem 3.4, ��(guts(MA)) also gives a lower bound on the hyperbolic volume

of S3 rK. In this example,

��(guts(MA)) = ��(G0
A) = |�0

K |� 1 = 2,

so the lower bound is 2v8 ⇡ 7.3276. Meanwhile, the actual hyperbolic volume of the link
in Figure 9 is vol(S3 rK) ⇡ 11.3407.
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Fig. 11. The graphs HB , GB , and G0
B for the link of Figure 9, and the corresponding surface SB

Turning to the all-B resolution, Figure 11 shows the graphs HB , GB , and G0
B , as well

as the state surface SB . This time, G0
B is a tree, thus Theorem 3.2 (applied to a reflected

diagram) implies SB is a fiber.

One important point to note is that even though S3 r K is fibered, it does contain
surfaces (such as SA) with quite a lot of guts. Conversely, having |�0

K | > 0, as we do here,
only means that the surface SA is not a fiber—it does not rule out S3 rK being fibered
in another way, as indeed it is.

5. A closer look at the polyhedral decomposition. To prove all the results that
were surveyed in Section 3, we cut MA along a collection of disks, to obtain a decom-
position of MA into ideal polyhedra. Here, a (combinatorial) ideal polyhedron is a 3-ball
with a graph on its boundary, such that complementary regions of the graph are simply
connected, and the vertices have been removed (i.e. lie at infinity).

Our decomposition is a generalization of Menasco’s well-known polyhedral decomposi-
tion [33]. Menasco’s work uses a link diagram to decompose any link complement into ideal
polyhedra. When the diagram is alternating, the resulting polyhedra have several nice
properties: they are checkerboard colored, with 4-valent vertices, and a well-understood
gluing. For alternating diagrams, our polyhedra will be exactly the same as Menasco’s.
More generally, we will see that our polyhedral decomposition of MA also has a checker-
board coloring and 4-valent vertices.

5.1. Cutting along disks. To begin, we need to visualize the state surface SA more
carefully. We constructed SA by first taking a collection of disks bounded by state circles,
and then attaching bands at crossings. Recall we ensured the disks were below the pro-
jection plane. We visualize the disks as soup cans. That is, for each, a long cylinder runs
deep under the projection plane with a disk at the bottom. Soup cans will be nested,
with outer state circles bounding deeper, wider soup cans. Isotope the diagram so that it
lies on the projection plane, except at crossings which run through a crossing ball. When
we are finished, the surface SA lies below the projection plane, except for bands that run
through a small crossing ball.

In Figure 12, the state surface for this example is shown lying below the projection
plane (although soup cans have been smoothed o↵ at their sharp edges in this figure).

We cut MA = S3\\SA along disks. These disks come from complementary regions
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Fig. 12. The surface SA is hanging below the projection plane

Fig. 13. A region of HA together with the corresponding white disk lying just below the projec-
tion plane, with boundary (dashed line) on underside of shaded surface

of the graph of the link diagram on the projection plane. Notice that each such region
corresponds to a complementary region of the graph HA, the graph of the A-resolution.
To form the disk that we cut along, we isotope the disk by pushing it under the projection
plane slightly, keeping its boundary on the state surface SA, so that it meets the link a
minimal number of times. Indeed, because SA itself lies on or below the projection plane
except in the crossing balls, we can push the disk below the projection plane everywhere
except possibly along half-twisted rectangles at the crossings. By further isotopy we can
arrange each disk so that its boundary runs meets the link only inside the crossing ball.
These isotoped disks are called white disks.

For each region of the complement of HA, we have a white disk that meets the link
only in crossing balls, and then only at under-crossings. The disk lies slightly below the
projection plane everywhere. Figure 13 gives an example.

Some of the white disks will not meet the link at all. These disks are isotopic to soup
cans on SA; that is, they are innermost disks. We will remove all such white disks from
consideration. When we do so, the collection of all remaining white disks, denoted by W,
consists of those with boundary on the state surface SA and on the link K.

It is actually straightforward to see that the components of MA\\W are 3-balls, as
follows. There will be a single component above the projection plane. Since we cut along
each region of the projection graph, either along a disk of W or an innermost soup can,
this component above the projection plane must be homeomorphic to a ball. As for
components which lie below the projection plane, these lie between soup can disks. Since
any such disk cuts the 3-ball below the projection plane into 3-balls, these components
must also each be homeomorphic to 3-balls. In fact, we know more:
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Theorem 5.1 (Theorem 3.12 of [19]). Each component of MA\\W is an ideal polyhedron

with 4-valent ideal vertices and faces colored in a checkerboard fashion: the white faces
are the disks of W, and the shaded faces contain, but are not restricted to, the innermost

disks.

The edges of the ideal polyhedron are given by the intersection of white disks in W
with (the boundary of a regular neighborhood of) SA. Each edge runs between strands
of the link. The ideal vertices lie on the torus boundary of the tubular neighborhood of
a link component. The regions (faces) come from white disks (white faces) and portions
of the surface SA, which we shade.

Note that each edge bounds a white disk in W on one side, and a portion of the
shaded surface SA on the other side. Thus, by construction, we have a checkerboard
coloring of the 2-dimensional regions of our decomposition. Since the white regions are
known to be disks, showing that our 3-balls are actually polyhedra amounts to showing
that the shaded regions are also simply connected. Showing this requires some work, and
the hypothesis of A-adequacy is heavily used. The interested reader is referred to [19,
Chapter 3] for the details.

5.2. Combinatorial descriptions of the polyhedra. We need a simpler description
of our polyhedra than that a↵orded by the 3-dimensional pictures of the last subsec-
tion. We obtain 2-dimensional descriptions in terms of how the white and shaded faces
are super-imposed on the projection plane, and how these faces interact with the pla-
nar graph HA. These descriptions are the starting point for our proofs in [19]. In this
subsection we briefly highlight the main characteristics of these descriptions.

Note that in the figures, we often use di↵erent colors to indicate di↵erent shaded faces.
All these colored regions come from the surface SA.

5.2.1. Lower polyhedra. The lower polyhedra come from regions bounded between soup
cans. Recall that sA denotes the union of state circles of the all-A resolution (i.e. without
the added edges of HA corresponding to crossings). As a result, the regions bounded
by soup cans will be in one-to-one correspondence with non-trivial components of the
complement of sA.

Given a lower polyhedron, let R denote the corresponding non-trivial component
of the complement of sA. The white faces of the polyhedron will correspond to the non-
trivial regions of HA in R. Since these white faces lie below the projection plane, except in
crossing balls, the only portion of the knot that is visible from inside a lower polyhedron is
a small segment of a crossing ball. This results in the following combinatorial description.

• Ideal edges of the lower polyhedra run from crossing to crossing.
• Ideal vertices correspond to crossings. At each crossing, two ideal edges bounding a

disk from one non-trivial region of HA meet two ideal edges bounding a disk from
another non-trivial region (on the opposite side of the crossing). Thus the vertices
are 4-valent.

• Shaded faces correspond exactly to soup cans.

As a result, each lower polyhedron is combinatorially identical to the checkerboard
polyhedron of an alternating sub-diagram of D(K), where the sub-diagram corresponds
to region R. This is illustrated in Figure 14, for the knot diagram of Figure 4.
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Fig. 14. Top row: The two non-trivial regions of the graph HA of Figure 4. Second row: The
corresponding lower polyhedra

Fig. 15. Left to right: An example graph HA. A subgraph corresponding to a region of the
complement of sA. White and shaded faces of the corresponding lower polyhedron

Schematically, to sketch a lower polyhedron, start by drawing a portion of HA which
lies inside a nontrivial region of the complement of sA. Mark an ideal vertex at the center
of each segment ofHA. Connect these dots by edges bounding white disks, as in Figure 15.

5.2.2. The upper polyhedron. On the upper polyhedron, ideal vertices correspond to
strands of the link visible from inside the upper 3-ball. Since we cut along white faces
and the surface SA, both of which lie below the projection plane except at crossings, the
upper polyhedron can “see” the entire link diagram except for small portions cut o↵ at
each undercrossing.

Thus, ideal vertices of the upper polyhedron correspond to strands of the link between
undercrossings. In Figure 16, the surface SA is shown in green (darker shading) and gold
(lighter shading). There are four ideal edges meeting a crossing, labeled e1 through e4
in this figure. There are actually three ideal vertices in the figure: one is unlabeled,
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e2

v2
v1

e1 e3

e4

Fig. 16. Shown are portions of four ideal edges, terminating at undercrossings on a single cross-
ing. Ideal edges e1 and e2 bound the same white disk and terminate at the ideal vertex v1. Ideal
edges e3 and e4 bound the same white disk and terminate at the ideal vertex v2. Figure first
appeared in [19]

Fig. 17. Left: A tentacle continues a shaded face in the upper 3-ball. Right: visualization of the
tentacle on the graph HA

corresponding to the strand running over the crossing, and two are labeled v1 and v2,
corresponding to the strands running into the undercrossing.

The surface SA runs through the crossing in a twisted rectangle. Looking again at
Figure 16, note that the gold (lighter) portion of SA at the top of that figure is not cut
o↵ at the crossing by an ideal edge terminating at v2. Instead, it follows e4 through the
crossing and along the underside of the figure, between e4 and the link. Similarly for the
green (darker) portion of SA: it follows the edge e1 through the crossing and continues
between the edge and the link.

We visualize these thin portions of shaded face between an edge and the link as
tentacles, and sketch them onto HA running from the top-right of a segment to the base
of the segment, and then along an edge of HA (Figure 17). Similarly for the bottom-left.

In Figure 17, we have drawn the tentacle by removing a bit of edge of HA. When we
do this for each segment, top-right and bottom-left, the remaining connected components
of HA correspond exactly to ideal vertices.

Each ideal vertex of the upper polyhedron begins at the top-right (bottom-left) of a
segment, and continues along a state circle of sA until it meets another segment. In the
diagram, this will correspond to an undercrossing. As we observed above, edges terminate
at undercrossings. Figure 18 shows the portions of ideal edges sketched schematically
onto HA.

As for the shaded faces, we have seen that they extend in tentacles through segments.
Where do they begin? In fact, each shaded face originates from an innermost disk.

To complete our combinatorial description of the upper polyhedron, we color each
innermost disk a unique color. Starting with the segments leading out of innermost disks,
we sketch in tentacles, removing portions of HA. Note that a tentacle will continue past



JONES POLYNOMIALS, VOLUME, ESSENTIAL KNOT SURFACES 67

e3

v1

e1 e3

e4e2

e2 e4

e1v2

Fig. 18. The ideal edges and shaded faces around the crossing of Figure 16

e0

e1 e2 e3

e1 e2 e3

e0

Fig. 19. Left: part of a shaded face in an upper 3-ball. Right: the corresponding picture, super-
imposed on HA. The tentacle next to the ideal edge e0 terminates at a segment on the same side
of the state circle on HA. It runs past segments on the opposite side of the state circle, spawning
new tentacles associated to ideal edges e1, e2, e3

Fig. 20. An example of the combinatorics of the upper polyhedron. In this example, the poly-
hedron is combinatorially a prism over an ideal heptagon. This prism is an I-bundle over a
subsurface of SA

segments of HA on the opposite side of the state circle without terminating, spawning
new tentacles, but will terminate at a segment on the same side of the state surface. This
is shown in Figure 19. Since HA is a finite graph, the process terminates.

An example is shown in Figure 20. For this example, there are two innermost disks.
Corresponding tentacles are shown.

5.3. Prime polyhedra detect fibers. In the last subsection, we saw that the lower
polyhedra correspond to alternating link diagrams. It may happen that one of these
alternating diagrams is not prime. In other words, the alternating link diagram contains
a pair of regions that meet along more than one edge. The polyhedral analogue of this
notion is the following.

Definition 5.2. A combinatorial polyhedron P is called prime if every pair of faces of P
meet along at most one edge.
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Primeness is an extremely desirable property in a polyhedral decomposition, for the
following reason. The theory of normal surfaces, developed by Haken [23], states that
given a polyhedral decomposition of a manifold M , every essential surface S ⇢ M can be
moved into a form where it intersects each polyhedron in standard disks, called normal

disks. If this essential surface is (say) a compression disk D ⇢ MA, then we may inter-
sect D with the union of white faces W to form a collection of arcs in D. An outermost
arc must cut o↵ a bigon. But, by Definition 5.2, a prime polyhedron cannot contain a
bigon. Thus, once we obtain a decomposition of MA into prime polyhedra, Theorem 2.4
will immediately follow.

In practice, the polyhedra described in the last subsection may sometimes fail to be
prime. Whenever this occurs, we need to cut them into smaller, prime pieces. Before
we describe this cutting process, we record another powerful feature of the polyhedral
decomposition.

Notice that the polyhedron in Figure 20 is combinatorially a prism over an ideal
heptagon: here, the two shaded faces are the horizontal faces of the prism, while the
seven white faces are lateral, vertical essential product disks. In other words, the entire
polyhedron is an I-bundle over an ideal polygon. It turns out that under the hypothesis
of primeness, when the upper polyhedron has this product structure, then so do all of
the lower polyhedra, and so does the manifold MA = S3\\SA.

Proposition 5.3 (Lemma 5.8 of [19]). Suppose that in the polyhedral decomposition

of MA corresponding to an A-adequate diagram, every ideal polyhedron is prime. Then,

the following are equivalent :

(1) Every white face is an ideal bigon, i.e. an essential product disk.

(2) The upper polyhedron is a prism over an ideal polygon.

(3) Every polyhedron is a prism over an ideal polygon.

(4) Every region in R that corresponds to a lower polyhedron is bounded by two state

circles, connected by edges of GA that are identified to a single edge of G0
A.

(5) Every edge of G0
A is separating, i.e. G0

A is a tree.

Remark 5.4. In the decomposition process of MA that we have described so far, the
polyhedra may not be prime. However, we will see in the next subsection that primeness
can always be achieved after additional cutting.

The proof of equivalence of the conditions in Proposition 5.3 is not hard. For example,
if every white face is a bigon, then in every polyhedron, those bigons must be strung end
to end, forming a cycle of lateral faces in a prism. Note as well that if every polyhedron is
a prism, i.e. a product, then this product structure extends over the bigon faces to imply
that MA

⇠= SA ⇥ I. This immediately gives one implication in Theorem 3.2: if G0
A is a

tree, then SA is a fiber.

The converse implication (if SA is a fiber, then G0
A is a tree) requires knowing that

our polyhedra detect the JSJ decomposition of MA. In other words: if part (or all) of MA

is an I-bundle, then this I-bundle structure must be visible in the individual polyhedra.
This property also follows from primeness.
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5.4. Ensuring primeness. We have seen that primeness is a desirable property of the
polyhedral decomposition. Here, we describe a way to detect when a lower polyhedron is
not prime, and a way to fix this situation.

Definition 5.5. The graph HA is non-prime if there exists a state circle C of sA and
an arc ↵ with both endpoints on C, such that the interior of ↵ is disjoint from HA, and
↵ is not isotopic into C in the complement of HA. The arc ↵ is called a non-prime arc.

Each non-prime arc lies in a single white face of W, while its shadow on the soup
can below lies in a single shaded face. Thus every non-prime arc indicates that a lower
polyhedron violates Definition 5.2. See Figure 21.

Fig. 21. Split lower polyhedron along a non-prime arc

Whenever we find a non-prime arc, we modify the polyhedral decomposition as fol-
lows: push the arc ↵ down against the soup can of the state circle C. This divides the
corresponding lower polyhedron into two. Figure 21 shows a 3-dimensional view of this
cutting process.

Fig. 22. Splitting a lower polyhedron into two along a non-prime arc

Combinatorially, we cut a lower polyhedron along the non-prime arc, as in Figure 22.
The lower polyhedra now correspond to alternating links whose state circles contain ↵.
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Fig. 23. Splitting the upper polyhedron along a non-prime arc

On the boundary of the upper polyhedron, ↵ meets two tentacles. These will be joined
into the same shaded face, by attaching both tentacles to a regular neighborhood of ↵.
See Figure 23.

Repeat this process of splitting along non-prime arcs until there are no more non-prime
arcs. This ensures that all the lower polyhedra are prime. Then, one can show that the
upper polyhedron is prime as well.

A decomposition along a maximal collection of non-prime arcs A is called a prime

decomposition. Its main features are summarized as follows:

• It decomposes MA into one upper and at least one lower polyhedron.
• Every polyhedron is prime.
• Every polyhedron is checkerboard colored, with 4-valent vertices.
• White faces of the polyhedra correspond to regions of the complement of HA [ A.
• Lower polyhedra are in one-to-one correspondence with nontrivial complementary

regions of sA [ A.
• Each lower polyhedron is identical to the checkerboard polyhedron of an alternating

link, where the alternating link is obtained by taking the restriction of HA [ A to
the corresponding region of sA [ A, and replacing segments of HA with crossings
(using the A-resolution).

Another important feature is that Proposition 5.3 holds for the prime polyhedral
decomposition that we have just described. It is worth noting that since the lower poly-
hedra are in one-to-one correspondence with nontrivial complementary regions of sA[A,
part (4) of the proposition will refer to these regions of the diagram.

Having obtained a prime polyhedral decomposition, we may apply normal surface
theory to study various pieces in the JSJ decomposition of MA. Recall that the JSJ
decomposition yields three kinds of pieces: I-bundles, solid tori, and the guts. To compute
��(guts(MA)), we need to understand the I-bundle components that have nonzero Euler
characteristic. We prove the following.

Theorem 5.6 (Theorem 4.4 of [19]). Let B be an I-bundle component of the JSJ decom-

position of MA, such that �(B) < 0. Then B is spanned by a collection of essential product

disks {D1, . . . , Dn}, with the property that each Di is embedded in a single polyhedron in

the polyhedral decomposition of MA.
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The EPDs in the spanning set that lie in the lower polyhedra of the decompositions
are well understood; they are in one-to-one correspondence with 2-edge loops in the
state graph GA. The EPDs in the spanning set that lie in the upper polyhedron are
complex ; they are not obtainable in terms in the lower polyhedra. These are exactly
the EPDs counted by the quantity kEck of Theorems 3.5, 3.6 and 3.14. The EPDs in
the upper polyhedron also correspond to 2-edge loops in GA, but the correspondence is
not one-to-one. In special cases of link diagrams, we can understand the combinatorial
structure of the polyhedral decomposition well enough to show that kEck = 0. This gives,
for instance, Corollaries 3.15 and 3.16.

Our results about normal surfaces in the polyhedral decomposition of MA can likely
be used to attack other topological problems about A-adequate links. We refer the reader
to [19, Chapter 10] for a detailed discussion of some of these open questions.
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