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Preface

Around 1980, W. Thurston proved that every knot complement satisfies the
geometrization conjecture: it decomposes into pieces that admit locally homo-
geneous geometric structures. In addition, he proved that the complement of
any non-torus, non-satellite knot admits a complete hyperbolic metric which, by
the Mostow–Prasad rigidity theorem, is necessarily unique up to isometry. As a
result, geometric information about a knot complement, such as its volume, gives
topological invariants of the knot.

In the mid-1980s ideas from quantum physics led to powerful and subtle
knot invariants, including the Jones polynomial and its relatives, the colored
Jones polynomials. Topological quantum field theory predicts that these quantum
invariants are very closely connected to geometric structures on knot complements
and particularly to hyperbolic geometry. The volume conjecture of R. Kashaev,
H. Murakami, and J. Murakami, which asserts that the volume of a hyperbolic
knot is determined by certain asymptotics of colored Jones polynomials, fits into
the context of these predictions. Despite compelling experimental evidence, these
conjectures are currently verified for only a few examples of hyperbolic knots.

This monograph initiates a systematic study of relations between quantum and
geometric knot invariants. Under mild diagrammatic hypotheses that arise naturally
in the study of knot polynomial invariants (A- or B-adequacy), we derive direct
and concrete relations between colored Jones polynomials and the topology of
incompressible spanning surfaces in knot and link complements. We prove that
the growth of the degree of the colored Jones polynomials is a boundary slope
of an essential surface in the knot complement and that certain coefficients of
the polynomial measure how far this surface is from being a fiber in the knot
complement. In particular, the surface is a fiber if and only if a certain coefficient
vanishes.

Our results also yield concrete relations between hyperbolic geometry and col-
ored Jones polynomials: for certain families of links, coefficients of the polynomials
determine the hyperbolic volume to within a factor of 4. In several instances, our
methods provide a more intrinsic explanation for similar connections that have been
previously observed.
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vi Preface

The approach we take in this monograph is to generalize the checkerboard
decompositions of alternating knots and links to links with A- or B-adequate
diagrams. The analogues of the checkerboard surfaces in this generalized setting are
the all-A or all-B state surfaces. For A- or B-adequate diagrams, we show that these
state surfaces are incompressible and obtain an ideal polyhedral decomposition of
their complement. This is done in Chaps. 2 and 3.

The main body of the monograph is Chaps. 4–6, where we study the
Jaco–Shalen–Johannson (JSJ) decomposition of the state surface complement.
Our results establish a dictionary between the pieces of the JSJ decomposition
of the surface complement and the combinatorial structure of certain spines of
the surface (state graphs). In particular, we give a combinatorial formula for the
complexity of the hyperbolic part of the JSJ decomposition (the guts) of the surface
complement in terms of the diagram of the knot and use this to give lower bounds
on the volume of the knot complement. Since state graphs have previously appeared
in the study of Jones polynomials, our setting and methods allow to derive relations
between quantum invariants and geometries of knot complements. These relations
are worked out in Chap. 9.

In Chaps. 7 and 8, we study the polyhedral decompositions for special classes of
A-adequate or B-adequate links in more detail and obtain stronger versions of the
main results.

In Chap. 10, we state several open questions and problems that have emerged
from this work and discuss potential applications of the methods that we have
developed.

Philadelphia, USA D. Futer
East Lansing, USA E. Kalfagianni
Provo, USA J. Purcell
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Chapter 1
Introduction

In the last 3 decades, there has been significant progress in 3-dimensional topology,
due in large part to the application of new techniques from other areas of mathemat-
ics and from physics. On the one hand, ideas from geometry have led to geometric
decompositions of 3-manifolds and to invariants such as the A-polynomial and
hyperbolic volume. On the other hand, ideas from quantum physics have led to
the development of invariants such as the Jones polynomial and colored Jones
polynomials. While ideas generated by these invariants have helped to resolve
several problems in knot theory, their relationships to each other, and to classical
knot topology, are still poorly understood. Topological quantum field theory predicts
that these invariants are in fact tightly related, as does mounting computer evidence.
However, at this writing, several outstanding conjectures and open problems have
been verified for only a handful of examples.

In this monograph, we initiate a systematic study of relations between quantum
knot invariants and geometries of knot complements. We develop the setting and
machinery that allows us to establish direct and concrete relations between colored
Jones knot polynomials and geometric knot invariants. In several instances, our
results provide deeper and more intrinsic explanations for the connections between
geometry and quantum topology that have been observed in special cases in the past.
In addition, this work leads to some surprising new relations between the two areas,
and offers a promising environment for further exploring such connections.

We begin with some history and background on the problems under considera-
tion, then give an overview of the work contained in this manuscript, including some
of the results mentioned above.

1.1 History and Motivation

W. Thurston’s ground-breaking work in the late 1970s established the ubiquity
and importance of hyperbolic geometry in three-dimensional topology. In fact,
hyperbolic 3-manifolds had been studied since the beginning of the twentieth

D. Futer et al., Guts of Surfaces and the Colored Jones Polynomial, Lecture Notes
in Mathematics 2069, DOI 10.1007/978-3-642-33302-6 1,
© Springer-Verlag Berlin Heidelberg 2013
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2 1 Introduction

century as a subfield of complex analysis. In the 1960s and 1970s, Andreev
[7, 8], Riley [86, 87], and Jørgensen [51] found several families of hyperbolic
3-manifolds with increasingly complex topology. In particular, Riley constructed
the first examples of hyperbolic structures on complements of knots in the 3-sphere.
In a different direction, Jaco and Shalen [47] and Johannson [48] found a canonical
way to decompose a 3-manifold along surfaces of small genus (this is now called
the JSJ decomposition or torus decomposition). In particular, they observed that
simple 3-manifolds, i.e. ones that do not contain homotopically essential spheres,
disks, tori or annuli, have fundamental groups that share similar properties with
the groups of hyperbolic 3-manifolds. Thurston’s major insight was that the pieces
of the JSJ decomposition should admit locally homogeneous geometric structures,
and furthermore that the simple pieces should admit complete hyperbolic structures.
This insight was formalized in the celebrated geometrization conjecture. Thurston
proved the conjecture for 3-manifolds with non-empty boundary [93], among others.
In 2003, Perelman proved the general conjecture [69, 79, 80].

A special case of Thurston’s theorem [93] is that link complements in the
3-sphere satisfy the geometrization conjecture. In particular, the complement of
any non-torus, non-satellite knot must admit a complete hyperbolic metric. By
Mostow–Prasad rigidity [71, 82], this hyperbolic structure is unique up to isometry.
As a result, geometric information about a hyperbolic knot complement, such as
its volume, gives topological knot invariants. For arbitrary knots, one can obtain
a similar invariant, called the simplicial volume, by considering the sum of the
volumes of the hyperbolic components in the JSJ decomposition. The simplicial
volume is a constant multiple of the Gromov norm of the knot complement [44].

Since the mid-1980s, low-dimensional topology has also been invigorated by
ideas from quantum physics, which have led to powerful and subtle invariants.
The first major invariant along these lines is the celebrated Jones polynomial, first
formulated by Jones in 1985 using operator algebras [49]. Soon after, Kauffman
described a direct construction of the polynomial using the combinatorics of link
projections [55], and several authors generalized it to links and trivalent graphs
[28, 50, 56, 84]. Witten showed that the Jones polynomial of links in the 3-sphere
has an interpretation in terms of a 2 C 1 dimensional topological quantum field
theory (TQFT). At the same time, he introduced new invariants for links in arbitrary
3-manifolds, as well as invariants of 3-manifolds [96, 97]. The resulting theory,
although defined only at the physical level of rigor, predicted that the Jones-type
invariants and their generalizations are intimately connected to geometric structures
of 3-manifolds, and particularly to hyperbolic geometry [96, p. 77]. As explained
by Atiyah [10], the TQFT proposed by Witten is completely characterized by
certain “gluing axioms.” In the late 1980s, Reshetikhin and Turaev gave the first
mathematically rigorous construction of a TQFT that fit this axiomatic description
[85]. Unlike that of [97], which is intrinsically 3-dimensional, the constructions of
[85], as well as those of [55,84], relied on combinatorial descriptions of 3-manifolds
and the representation theory of quantum groups. This approach makes it harder to
establish connections with the geometry of 3-manifolds.



1.1 History and Motivation 3

In the 1990s, Kashaev defined an infinite family of complex valued invariants of
links in 3-manifolds, using the combinatorics of triangulations and the quantum
dilogarithm function [52]. For links in the 3-sphere, these invariants can also
be formulated in terms of tangles and R-matrices [53]. Kashaev’s invariants
are parametrized by the positive integers; there is an invariant for each n 2N.
He conjectured that the large-n asymptotics of these invariants determine the
volume of hyperbolic knots [54]. Building on these works, H. Murakami and
J. Murakami were able to recover Kashaev’s invariants as special values of the
colored Jones polynomials: an infinite family of polynomials, closely related to the
Jones polynomial, also parametrized by n 2N [73]. As a result, Kashaev’s original
conjecture has been reformulated into the volume conjecture, which asserts that
the volume of a hyperbolic knot is determined by the large-n asymptotics of the
colored Jones polynomials. Furthermore, Murakami and Murakami generalized the
conjecture to all knots in S3 by replacing the hyperbolic volume with the simplicial
volume [73]. The volume conjecture fits into a more general, conjectural framework
relating hyperbolic geometry and quantum topology; for details, see the survey
papers [25, 72] and references therein. Despite compelling experimental evidence,
the aforementioned conjectures are currently known for only a few examples of
hyperbolic knots.

At the same time, a growing body of evidence points to strong relations between
the coefficients of the Jones and colored Jones polynomials and the volume of
hyperbolic links. One such form of evidence consists of numerical computations,
for example those by Champanerkar, Kofman, and Paterson [18]. A second form
of evidence consists of theorems proved for several classes of links, for example
alternating links by Dasbach and Lin [23]. The authors of this monograph have
extended those results to closed 3-braids [34], highly twisted links [32], and certain
sums of alternating tangles [33]. The approach in all of these results is somewhat
indirect, in that they relate hyperbolic volume to the Jones polynomial by estimating
both quantities in terms of the twist number of a link diagram. To mention two
examples, for alternating links the result follows from Lackenby’s volume estimate
in terms of the twist number in any alternating projections [58] and the relation of
the twist number to the colored Jones polynomial observed by Dasbach and Lin
[23]. For highly twisted links, our argument works as follows. First, we proved an
effective version of Gromov and Thurston’s 2�-theorem and applied it to estimate
the hyperbolic link volume in terms of the twist number of any highly twisted
projection. Second, we relied on the combinatorial properties of Turaev surfaces, as
studied in [21], to relate the twist numbers to the coefficients of Jones polynomials.
However, for general links, twist numbers have a highly imperfect relationship to
hyperbolic volume [35]. This limits the applicability of these methods to special
families of knots and links.

In this monograph, we modify our approach to these problems, focusing on
the topology of incompressible surfaces in knot complements and their relations
to the colored Jones knot polynomials. Our motivation for the project has been
twofold. On the one hand, certain spanning surfaces of knots have been shown to
carry information on colored Jones polynomials [21]. On the other hand, essential
surfaces also shed light on volumes of manifolds [6] and additional geometry



4 1 Introduction

B –resolutionA–resolution

Fig. 1.1 A- and B-resolutions at a crossing of D

and topology (e.g. [2, 65, 68]). With these ideas in mind, we develop a machine
that allows us to establish relationships between colored Jones polynomials and
topological/geometric invariants.

For example, under mild diagrammatic hypotheses that arise naturally in the
study of Jones-type polynomials, we show that the growth of the degree of the
colored Jones polynomials is a boundary slope of an essential surface in the knot
complement, as predicted by Garoufalidis [42]. Furthermore, certain coefficients
of the polynomials measure how far this surface is from being a fiber in the knot
complement. Our work leads to direct and detailed relations between hyperbolic
geometry and Jones-type polynomials: for certain families of links, coefficients of
the Jones and colored Jones polynomials determine the hyperbolic volume to within
a factor of 4. Compared to previous arguments, which were all somewhat indirect,
the way in which our machine produces volume inequalities gives a clearer and
deeper conceptual explanation for why the hyperbolic volume should be related to
particular coefficients of the Jones polynomial.

A survey of this monograph, in which the main theorems are illustrated by a
running example, is given in [37].

1.2 State Graphs, and State Surfaces Far from Fibers

We begin with some terminology and conventions. Throughout this manuscript,
D D D.K/ will denote a link diagram, in the equatorial 2-sphere of S3. It is worth
pointing out two conventions. First, we always assume (without explicit mention)
that link diagrams are connected. Second, we abuse notation by referring to the
projection 2-sphere using the common term projection plane. In particular, D.K/

cuts the projection “plane” into compact regions.
Let D.K/ be a (connected) diagram of a link K , as above, and let x be a crossing

of D. Associated to D and x are two link diagrams, each with one fewer crossing
than D, called the A-resolution and B-resolution of the crossing.

Definition 1.1. A state � is a choice of A- or B-resolution at each crossing of D.
Resolving every crossing, as in Fig. 1.1, gives rise to a crossing-free diagram s� .D/,
which is a collection of disjoint circles in the projection plane. Thus one obtains a
state graph G� , whose vertices correspond to circles of s� and whose edges corre-
spond to former crossings. For a given state � , the reduced state graph G

0
� is the

graph obtained from G� by removing all multiple edges between pairs of vertices.
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The notion of states on link diagrams was first considered by Kauffman [55]
during his construction of the bracket polynomial that provided a new construction
and interpretation of the Jones polynomial.

Our primary focus is on the all-A and all-B states. The crossing-free diagram
sA.D/ is obtained by applying the A-resolution to each crossing of D. Its state
graph is denotedGA or GA.D/, and its reduced state graphG0

A or G0
A.D/. Similarly,

for the all-B state sB.D/, the state graph is denoted GB , and the reduced state
graph G

0
B .

To a state � , we associate a state surface S� as follows. The state circles of �

bound disjoint disks in the 3-ball below the projection plane; these disks can be
connected to one another by half-twisted bands at the crossings. The surface S� will
have @S� D K . A special case of this construction is the Seifert surface constructed
from the diagram D.K/, where the state � is determined by an orientation on K .

When � is the all-A or all-B state, the surfaces S� hold significance for both
geometric topology and quantum topology. The graph GA canonically embeds as a
spine of the surface SA. On the quantum side, the combinatorics of this embedding
can be used to recover the colored Jones polynomials J n

K.t/ [21, 23]. On the
geometric side, as we will see below, the combinatorics of GA dictates a geometric
decomposition of the 3-manifold MA obtained by cutting the link complement along
the surface SA. Because every statement has a B-state counterpart (by taking a
mirror of the diagram), we will mainly discuss the all-A state for ease of exposition.

Definition 1.2. Let M D S3 n K denote the 3-manifold with torus boundary
component(s) obtained by removing a tubular neighborhood of K from S3. Let SA

be the all-A state surface, as above, and let M nnSA denote the path-metric closure
of M n SA. Note that .S3 n K/nnSA is homeomorphic to the 3-manifold S3nnSA

obtained by removing a regular neighborhood of SA from S3. We will usually write
S3nnSA for short, and denote this manifold with boundary by MA.

We will refer to P D @MA \ @M as the parabolic locus of MA. This parabolic
locus consists of annuli. The remaining, non-parabolic boundary @MA n @M is the
unit normal bundle of SA.

Definition 1.3. Let M be an orientable 3-manifold and S � M a properly
embedded surface. We say that S is essential in M if the boundary of a regular
neighborhood of S , denoted eS , is incompressible and boundary-incompressible. If
S is orientable, then eS consists of two copies of S , and the definition is equivalent
to the standard notion of “incompressible and boundary-incompressible.” If S is
non-orientable, this is equivalent to �1-injectivity of S , the stronger of two possible
senses of incompressibility.

In the setting of Definition 1.2, the surface SA is often non-orientable. In this
case, S3nnfSA is the disjoint union of MA D S3nnSA and a twisted I -bundle over
SA. Since we are interested in the topology of MA, it is appropriate to look at the
incompressibility of fSA.

Guided by the combinatorial structure of the state graph GA, we construct a
decomposition of MA into topological balls. The connectivity properties of GA

govern the behavior of this decomposition; in particular, if GA has no loop edges,
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we obtain a decomposition of MA into checkerboard ideal polyhedra with 4-valent
vertices (Theorem 3.12). This decomposition generalizes Menasco’s decomposition
of alternating link complements, which has been used frequently in the literature
[64]. As a first application of our machinery, we use normal surface theory with
respect to our polyhedral decomposition to give a new proof of the following
theorem of Ozawa [76].

Theorem 3.19 (Ozawa). Let D.K/ be a diagram of a link K . Then the all-A
state surface SA is essential in S3 n K if and only if GA contains no 1-edge loops.
Similarly, the surface SB is essential in S3 n K if and only if GB contains no 1-edge
loops.

Our polyhedral decomposition is designed to provide much more detailed
information about the topology and geometry of MA D S3nnSA. In particular, we
can characterize exactly when the surface SA is a fiber of the link complement.

Theorem 5.11. Let D.K/ be any link diagram, and let SA be the spanning surface
determined by the all-A state of this diagram. Then the following are equivalent:

(1) The reduced graph G
0
A is a tree.

(2) S3 n K fibers over S1, with fiber SA.
(3) MA D S3nnSA is an I -bundle over SA.

It is remarkable to note that the state graph connectivity conditions that ensure
incompressibility of the state surfaces first arose in the study of Jones-type knot
polynomials. The following definition, formulated by Lickorish and Thistlethwaite
[61,92], captures exactly the class of link diagrams whose polynomial invariants are
especially well-behaved.

Definition 1.4. A link diagram D.K/ is called A-adequate (resp. B-adequate) if
GA (resp. GB ) has no 1-edge loops. If both conditions hold for a diagram D.K/,
then D.K/ and K are called adequate. If D.K/ is either A- or B-adequate, then
D.K/ and K are called semi-adequate. As we will discuss in the next section, the
hypothesis of semi-adequacy is rather mild.

Building on Theorem 5.11, we start with an A-adequate diagram D and strive
to understand the geometric and topological complexity of S3nnSA. In Chap. 2,
we will see that the 3-manifold MA D S3nnSA is in fact a handlebody, and thus
atoroidal. The annulus version of the JSJ decomposition theory [47, 48] provides
a way to cut MA along annuli (disjoint from the parabolic locus) into three types
of pieces: I -bundles over sub-surfaces of SA, Seifert fibered spaces, and the guts,
which is the portion that admits a hyperbolic metric with totally geodesic boundary.
The Seifert fibered components are solid tori. Thus �.guts.MA// D 0 precisely
when guts.MA/ D ; and MA is a union of I -bundles and solid tori. In this case,
MA is called a book of I -bundles and SA is called a fibroid [20]. The guts are
the complex, interesting pieces of the geometric decomposition of MA. Because
hyperbolic surfaces, and guts, have negative Euler characteristic, it is convenient to
work with the following definition.
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Definition 1.5. Let Y be a compact cell complex, whose connected components are
Y1; : : : ; Yn. Then the Euler characteristic of Y can be split into positive and negative
parts:

�C.Y / D
n

X

iD1

maxf�.Yi/; 0g; ��.Y / D
n

X

iD1

maxf��.Yi /; 0g:

It follows immediately that �.Y / D �C.Y / � ��.Y /: This notation is borrowed
from the Thurston norm [94]. By convention, when Y D ;, the above sums have no
terms, hence �C.;/ D ��.;/ D 0.

The negative Euler characteristic ��.guts.MA// serves as a useful measurement
of how far SA is from being a fiber or a fibroid in S3 n K . In fact, ��.guts/ is
a key measurement of complexity in Agol’s virtual fibering criterion [5], which is
needed in the proof of the virtual fibering conjecture for hyperbolic 3-manifolds
[4]. The Euler characteristic of guts also has a direct connection to hyperbolic
geometry. Agol, Storm, and Thurston have shown that for any essential surface S

in a hyperbolic 3-manifold M, a constant times ��.guts.M // gives a lower bound
for vol.M / [6]. This is applied below, in Sect. 1.5. On the other hand, the Euler
characteristic �.G0

A/ of the reduced graph G
0
A first arose in the study of Jones-type

polynomials [23,90], and in fact expresses one of their coefficients. This is explored
in Sect. 1.4.

One of our main results is a diagrammatic formula for the guts of state surfaces
for all A-adequate diagrams. In relating guts to reduced state graphs, it provides a
bridge between hyperbolic geometry and quantum topology.

Theorem 5.14. Let D.K/ be an A-adequate diagram, and let SA be the essential
spanning surface determined by this diagram. Then

��.guts.S3nnSA// D ��.G0
A/ � jjEcjj;

where jjEcjj � 0 is a diagrammatic quantity defined in Definition 5.9.

In many cases, the correction term jjEcjj vanishes. For example, this happens for
alternating links [58], as well as for most Montesinos links. See Theorem 8.6, stated
on p. 15 and Corollary 5.19 on p. 88. In each of these cases, Theorem 5.14 says that
a geometric quantity, ��.guts.MA//, is equal to ��.G0

A/, which, as shown in [23],
expresses a coefficient of the Jones polynomial.

1.3 Which Links are Semi-adequate?

We will be considering semi-adequate links throughout this manuscript. (After
taking a mirror if necessary, such a link is A-adequate.) Before we continue with the
description of our results, it is worth making some remarks about the class of semi-
adequate links. It turns out that the class is very broad, and that the condition that
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a knot be semi-adequate seems to be rather mild. For example, with the exception
of two 11-crossing knots that we will discuss below, and a handful of 12-crossings
knots, all knots with at most 12 crossings are semi-adequate. Furthermore, every
minimal crossing diagram for each of these semi-adequate knots is semi-adequate
[90, 92]. Thus, apart from a few exceptions, our results in this monograph apply
directly to the diagrams in the knot tables up to 12 crossings. The situation is
similar with the larger tabulated knots: Stoimenow has computed that among the
253,293 prime knots with 15 crossings tabulated in [46], at least 249,649 are semi-
adequate [91].

Several well-studied families of links are semi-adequate. These include alter-
nating links, positive or negative closed braids, all closed 3-braids, all Montesinos
links, and planar cables of all of the above. We refer the reader to [61, 91, 92] for
more discussion and examples.

Nevertheless, there exist knots and links that are not semi-adequate. Before
discussing examples, we recall that the Jones polynomial can be used to detect
semi-adequacy. Indeed, the last coefficient of an A-adequate link must be ˙1.
Similarly, the first coefficient of an B-adequate link must be ˙1 [92]. With the
notation of Knotinfo [17], the knot K D 11n95 has Jones polynomial equal to
JK.t/ D 2t2 � 3t3 C 5t4 � 6t5 C 6t6 � 5t7 C 4t8 � 2t9. Hence, K is not
semi-adequate; this is the first such knot in the knot tables. An infinite family
of non semi-adequate knots, detected by the extreme coefficients of their Jones
polynomial, can be obtained by [63, Theorem 5]. However, as we discuss below,
the extreme coefficients of the Jones polynomial are not a complete obstruction to
semi-adequacy.

Thistlethwaite [92] showed that certain coefficients of the 2-variable Kauffman
polynomial [56] provide the obstruction to semi-adequacy. Building on Thistleth-
waite’s results, Stoimenow obtained a set of semi-adequacy criteria and applied
them to several knots whose adequacy could not be determined by the Jones
polynomial. For example, he showed that the knot K 0 D 11n118 is not semi-
adequate. Note that in this case, the last coefficient of the Jones polynomial,
JK0.t/ D 2t2 � 2t3 C 3t4 � 4t5 C 4t6 � 3t7 C 2t8 � t9, is �1.

Ozawa has considered link diagrams and Kauffman states � that are adequate
(meaning G� has no 1-edge loops) and homogeneous (meaning G� contains a set
of cut vertices that decompose it into a collection of all-A and all-B state graphs)
[76]. See Definition 2.22 for more details. Semi-adequate diagrams clearly have this
property, but the class of [76] is broader. As an example, consider the 12-crossing
knot K 00 D 12n0706. This is not semi-adequate since both the extreme coefficients
of the Jones polynomial are equal to 2. Indeed JK00.t/ D 2t�4 � 4t�3 C 6t�2 �
8t�1 C9 � 8t C6t2 � 4t3 C2t4. However K 00 can be written as a 5-string braid that
is homogeneous in the sense of Cromwell [19]. Thus the Seifert state of this closed
braid diagram is homogeneous and adequate.

Ozawa proved that the state surface S� corresponding to a �-adequate,
�-homogeneous diagram is always essential in S3 n K . In [29], Futer gave a
direct proof of a slightly weaker version of Theorem 5.11, and also generalized
it to �-adequate, �-homogeneous link diagrams. It turns out that many properties
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of the polyhedral decompositions that we develop below, as well as a number of
results proved using the polyhedral decomposition, also extend to all adequate,
homogeneous states. See Sects. 2.4, 3.4, 4.5, 5.6 where, in particular, we obtain
analogues of Theorems 3.19, 5.11 and 5.14 in this generalized setting. Our study of
the geometry of such links is continued in [31].

1.4 Essential Surfaces and Colored Jones Polynomials

The Jones and colored Jones polynomials have many known connections to the state
graphs of diagrams. To specify notation, let

J n
K.t/ D ˛ntmn C ˇntmn�1 C : : : C ˇ0

nt rnC1 C ˛0
nt rn ;

denote the n-th colored Jones polynomial of a link K . Recall that J 2
K.t/ is the usual

Jones polynomial. Consider the sequences

jsK WD
�

4mn

n2
W n > 0

�

and js�
K WD

�

4rn

n2
W n > 0

�

:

Garoufalidis’ slope conjecture predicts that for each knot K , every cluster point
(i.e., every limit of a subsequence) of jsK or js�

K is a boundary slope of K [42], i.e.
a fraction p=q such that the homology class p� C q� occurs as the boundary of an
essential surface in S3 n K .

For a given diagram D.K/, there is a lower bound for rn in terms of data about the
state graph GA.D/, and this bound is sharp when D.K/ is A-adequate. Similarly,
there is an upper bound on mn in terms of GB that is realized when D.K/ is
B-adequate [60]. In [36], building on these properties and using Theorem 3.19, we
relate the extreme degree of J n

K.t/ to the boundary slope of SA, as predicted by the
slope conjecture.

Theorem 1.6 ([36]). Let D.K/ be an A-adequate diagram of a knot K and let
b.SA/ 2 Z denote the boundary slope of the essential surface SA. Then

lim
n!1

4rn

n2
D b.SA/;

where rn is the lowest degree of J n
K.t/.

Similarly, if D.K/ is a B-adequate diagram of a knot K , let b.SB/ 2 Z denote
the boundary slope of the essential surface SB . Then

lim
n!1

4mn

n2
D b.SB/;

where mn is the highest degree of J n
K.t/.
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Work of Garoufalidis and Le [41, 43] implies that each coefficient of J n
K.t/

satisfies linear recursive relations in n. For adequate links, these relations manifest
themselves in a very strong form: Dasbach and Lin showed that if K is A-adequate,
then the absolute values jˇ0

nj and j˛0
nj are independent of n > 1 [23]. In fact,

j˛0
nj D 1 and jˇ0

nj D 1 � �.G0
A/, where G

0
A is the reduced graph. Similarly, if

D is B-adequate, then j˛nj D 1 and jˇnj D 1 � �.G0
B/. Thus we can define the

stable values

ˇ0
K WD ˇ

ˇˇ0
n

ˇ

ˇ D 1 � �.G0
A/; and ˇK WD jˇnj D 1 � �.G0

B/:

The main results of this monograph explore the idea that the stable coefficient
ˇ0

K does an excellent job of measuring the geometric and topological complexity
of the manifold MA D S3nnSA. (Similarly, ˇK measures the complexity of
MB D S3nnMB .) For instance, it follows from Theorem 5.11 that ˇ0

K is exactly
the obstruction to SA being a fiber.

Corollary 9.16. For an A-adequate link K , the following are equivalent:

(1) ˇ0
K D 0.

(2) For every A-adequate diagram of D.K/, S3 n K fibers over S1 with fiber the
corresponding state surface SA D SA.D/.

(3) For some A-adequate diagram D.K/, MA D S3nnSA is an I -bundle over
SA.D/.

Similarly,
ˇ

ˇˇ0
K

ˇ

ˇ D 1 precisely when SA is a fibroid of a particular type.

Theorem 9.18. For an A-adequate link K , the following are equivalent:

(1) ˇ0
K D 1.

(2) For every A-adequate diagram of K , the corresponding 3-manifold MA is a
book of I -bundles, with �.MA/ D �.GA/��.G0

A/, and is not a trivial I -bundle
over the state surface SA.

(3) For some A-adequate diagram of K , the corresponding 3-manifold MA is a
book of I -bundles, with �.MA/ D �.GA/ � �.G0

A/.

In general, the geometric decomposition of MA contains some non-trivial
hyperbolic pieces, namely guts. In this case,

ˇ

ˇˇ0
K

ˇ

ˇ measures the complexity of the
guts together with certain complicated parts of the maximal I -bundle of MA. To
state our result we need the following definition.

Definition 1.7. A link diagram D is called prime if any simple closed curve that
meets the diagram transversely in two points bounds a region of the projection plane
without any crossings.

Two crossings in D are defined to be twist equivalent if there is a simple closed
curve in the projection plane that meets D at exactly those two crossings. The
diagram is called twist reduced if every equivalence class of crossings is a twist
region (a chain of crossings between two strands of K). The number of equivalence
classes is denoted t.D/, the twist number of D.
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Theorem 9.20. Suppose K is an A-adequate link whose stable colored Jones
coefficient is ˇ0

K ¤ 0. Then, for every A-adequate diagram D.K/,

��.guts.MA// C jjEcjj D ˇ

ˇˇ0
K

ˇ

ˇ � 1;

where as above jjEcjj � 0 is the diagrammatic quantity of Definition 5.9.
Furthermore, if D is prime and every 2-edge loop in GA has edges belonging to
the same twist region, then jjEcjj D 0 and

��.guts.MA// D ˇ

ˇˇ0
K

ˇ

ˇ � 1:

To briefly discuss the meaning of the correction term jjEcjj, recall that the
non-hyperbolic components of the JSJ decomposition of MA are I -bundles and
solid tori. In Chap. 4, we show that the I -bundle components with negative Euler
characteristic are spanned by essential product disks (EPDs): properly embedded
essential disks in MA whose boundary meets the parabolic locus twice. These disks
come in two types: those corresponding to (strings of) complementary regions of
GA with just two sides, and certain “complicated” ones, which we call complex.
(See Definition 5.2 on p. 74.) The minimal number of complex EPDs in a spanning
set is denoted jjEcjj; this is exactly the correction term of Theorems 5.14 and 9.20.

It is an open question whether every A-adequate link admits a diagram for which
jjEcjj D 0: see Question 10.2 on p. 156. For instance, Lackenby showed that this is
the case for prime alternating links [58]. By Theorem 9.20, jjEcjj D 0 when every
2-edge loop of GA has edges belonging to the same twist region. This is also the case
for most Montesinos links (the reader is referred to Chap. 8 for the terminology).

Corollary 9.21. Suppose K is a Montesinos link with a reduced admissible
diagram D.K/ that contains at least three tangles of positive slope. Then

��.guts.MA// D ˇ

ˇˇ0
K

ˇ

ˇ � 1:

Similarly, if D.K/ contains at least three tangles of negative slope, then

��.guts.MB// D jˇK j � 1:

When jjEcjj D 0, Theorem 9.20 offers striking evidence that coefficients of
the colored Jones polynomials measure something quite geometric: when

ˇ

ˇˇ0
K

ˇ

ˇ

is large, the link complement S3 n K contains essential spanning surfaces that
are correspondingly far from being a fiber. Whereas the Alexander polynomial
and its generalization in Heegaard Floer homology are known to have many
connections to the geometric topology of spanning surfaces of a knot [75, 77, 78],
the geometric meaning of Jones-type polynomials has traditionally been a mystery.
Theorems 9.16, 9.18, and 9.20 establish some of the first detailed connections
between surface topology and the Jones polynomial.
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1.5 Volume Bounds from Topology and Combinatorics

Recall that by the work of Agol, Storm, and Thurston [6], any computation of, or
lower bound on, ��.guts/ of an essential surface S � S3 nK leads to a proportional
lower bound on vol.S3nK/. For instance, Lackenby’s diagrammatic lower bound on
the volumes of alternating knots and links came as a result of computing the guts of
checkerboard surfaces [58]. However, computing ��.guts/ has typically been quite
hard: apart from alternating knots and links, there are very few infinite families of
manifolds for which there are known computations of the guts of essential surface
[3, 57].

The results of this manuscript greatly expand the list of manifolds for which such
computations exist. In Chap. 9, we combine [6] with our results in Theorems 5.14
and 9.20, as well as some of their specializations, to give lower bounds on hyperbolic
volume for all A-adequate knots and links. See Theorem 9.3 on p. 140 for the most
general result along these lines.

We also focus on two well-studied families of links: namely, positive braids and
Montesinos links. For these families, we are able to compute or estimate the quantity
��.guts.MA// in terms of much simpler diagrammatic data. As a consequence, we
obtain tight, two-sided estimates on the volumes of knots and links in terms of the
twist number t.D/ (see Definition 1.7).

Theorem 9.7. Let D.K/ be a diagram of a hyperbolic link K , obtained as the
closure of a positive braid with at least three crossings in each twist region. Then

2v8

3
t.D/ � vol.S3 n K/ < 10v3.t.D/ � 1/;

where v3 D 1:0149 : : : is the volume of a regular ideal tetrahedron and v8 D
3:6638 : : : is the volume of a regular ideal octahedron.

Observe that the multiplicative constants in the upper and lower bounds differ by
a rather small factor of about 4:155. For Montesinos links, we obtain similarly tight
two-sided volume bounds.

Theorem 9.12. Let K � S3 be a Montesinos link with a reduced Montesinos
diagram D.K/. Suppose that D.K/ contains at least three positive tangles and
at least three negative tangles. Then K is a hyperbolic link, satisfying

v8

4
.t.D/ � #K/ � vol.S3 n K/ < 2v8 t.D/;

where v8 D 3:6638 : : : is the volume of a regular ideal octahedron and #K is the
number of link components of K . The upper bound on volume is sharp.

We also relate the volumes of these links to quantum invariants. Recall that the
volume conjecture of Kashaev and Murakami–Murakami [54, 73] states that all
hyperbolic knots satisfy
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2� lim
n!1

log
ˇ

ˇJ n
K.e2�i=n/

ˇ

ˇ

n
D vol.S3 n K/:

If this volume conjecture is true, it would imply for large n a relation between the
volume of a knot K and coefficients of J n

K.t/. For example, for n � 0 one would
have vol.S3 n K/ < C jjJ n

K jj, where jjJ n
K jj denotes the L1-norm of the coefficients

of J n
K.t/, and C is an appropriate constant. In recent years, a series of articles by

Dasbach and Lin, as well as the authors, has established such relations for several
classes of knots [24, 32–34]. In fact, in all known cases, the upper bounds on
volume are paired with similar lower bounds. However, in all of the past results,
showing that coefficients of J n

K.t/ bound volume below required two steps:
first, showing that Jones coefficients give a lower bound on twist number t.D/, and
then showing that twist number gives a lower bound on volume. Each of these two
steps is known to fail outside special families of knots [34,35], and their combination
produces an indirect argument in which the constants are far from sharp.

By contrast, our results in this manuscript bound volume below in terms of a
topological quantity, ��.guts/, that is directly related to colored Jones coefficients.
As a consequence, we obtain much sharper lower bounds on volume, along with an
intrinsic and satisfactory conceptual explanation for why these lower bounds exist.
See Sect. 9.4 in Chap. 9 for more discussion.

Our techniques also imply similar results for additional classes of knots. For
instance, Theorems 9.7 and 9.12 have the following corollaries.

Corollary 9.22. Suppose that a hyperbolic link K is the closure of a positive braid
with at least three crossings in each twist region. Then

v8 .
ˇ

ˇˇ0
K

ˇ

ˇ � 1/ � vol.S3 n K/ < 15v3 .
ˇ

ˇˇ0
K

ˇ

ˇ � 1/ � 10v3;

where v3 D 1:0149 : : : is the volume of a regular ideal tetrahedron and v8 D
3:6638 : : : is the volume of a regular ideal octahedron.

Corollary 9.23. Let K � S3 be a Montesinos link with a reduced Montesinos
diagram D.K/. Suppose that D.K/ contains at least three positive tangles and at
least three negative tangles. Then K is a hyperbolic link, satisfying

v8

�

maxfjˇK j; ˇ

ˇˇ0
K

ˇ

ˇg � 1
� � vol.S3 n K/ < 4v8

�jˇK j C ˇ

ˇˇ0
K

ˇ

ˇ � 2
� C 2v8 .#K/;

where #K is the number of link components of K .

1.6 Organization

We now give a brief guide to the organization of this monograph.
In Chap. 2, we begin with a connected link diagram D.K/, and explain how

to construct the state graph GA and the state surface SA. Guided by the structure
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of GA, we will cut the 3-manifold MA D S3nnSA along a collection of disks into
several topological balls. We obtain a collection of lower balls that are in one-to-one
correspondence with the alternating tangles in D.K/ and a single upper 3-ball. The
boundary of each ball admits a checkerboard coloring into white and shaded regions
that we call faces. In the last section of the chapter we discuss the generalization of
the decomposition to �-homogeneous and �-adequate diagrams.

In Chap. 3, we show that if D.K/ is A-adequate, each of these balls is a checker-
board colored ideal polyhedron with 4-valent vertices. This amounts to showing
that the shaded faces on each of the 3-balls are simply-connected (Theorem 3.12).
Furthermore, we show that the ideal polyhedra do not contain normal bigons
(Proposition 3.18), which quickly implies Theorem 3.19. In the last section of the
chapter, we generalize these results to homogeneous and adequate states.

In Chap. 4, we prove a structural result about the geometric decomposition of
MA. As already mentioned, the JSJ decomposition yields three kinds of pieces:
I -bundles, solid tori, and the guts, which admit a hyperbolic metric with totally
geodesic boundary. Let B be an I -bundle in the characteristic submanifold of
MA. We say that a finite collection of disjoint essential product disks (EPDs)
fD1; : : : ; Dng spans B if B n .D1 [ � � � [ Dn/ is a finite collection of prisms (which
are I -bundles over a polygon) and solid tori (which are I -bundles over an annulus
or Möbius band). We prove the following.

Theorem 4.4. Let B be a component of the characteristic submanifold of MA

which is not a solid torus. Then B is spanned by a collection of essential product
disks (EPDs) D1; : : : ; Dn, with the property that each Di is embedded in a single
polyhedron in the polyhedral decomposition of MA.

Like all results from the early chapters, Theorem 4.4 generalizes to �-adequate
and �-homogeneous diagrams. See Sect. 4.5 for details.

In Chap. 5, we calculate the number of EPDs required to span the I -bundle
of MA. We do this by explicitly constructing a suitable spanning set of disks
(Lemmas 5.6 and 5.8). The EPDs in the spanning set that lie in the lower polyhedra
of the decompositions are well understood; they are in one-to-one correspondence
with 2-edge loops in the state graph GA. The EPDs in the spanning set that lie in
the upper polyhedron are complex; they are not parabolically compressible to EPDs
in the lower polyhedra. The construction of this spanning set leads to a proof of
Theorem 5.14. The spanning set of Chap. 5 also makes it straightforward to detect
when the manifold MA is an I -bundle, leading to a proof of Theorem 5.11.

The main tool used in Chaps. 3–5 is normal surface theory. In fact, our results
about normal surfaces in the polyhedral decomposition of MA can likely be used to
attack other topological problems about A-adequate links: see Sect. 10.2 in Chap. 10
for variations on this theme.

The results of Chap. 5 reduce the problem of computing the Euler characteristic
of the guts of MA to counting how many complex EPDs are required to span the
I -bundle of the upper polyhedron. In Chap. 6, we restrict attention to prime
diagrams and address the problem of how to recognize such EPDs from the structure
of the all-A state graph GA. Our main result there is Theorem 6.4, which describes
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the basic building blocks for such EPDs. Roughly speaking, each of these building
blocks maps onto to a 2-edge loop of GA.

In Chap. 7, we restrict attention to A-adequate diagrams D.K/ for which
the polyhedral decomposition includes no non-prime arcs or switches (see
Definition 2.18 on p. 27). In this case, one can simplify the statement of
Theorem 5.14 and give an easier combinatorial estimate for the guts of MA. To
state our result, let bA denote the number of bigons in twist regions of the diagram
such that a loop tracing the boundary of this bigon belongs to the B-resolution of
D. (The A-resolution of these twist regions is short in Fig. 5.4 on p. 86.) Then,
define mA D �.GA/ � �.G0

A/ � bA. We prove the following estimate.

Theorem 7.2. Let D.K/ be a prime, A-adequate diagram, and let SA be the
essential spanning surface determined by this diagram. Suppose that the polyhedral
decomposition of MA D S3nnSA includes no non-prime arcs. Then

��.G0
A/ � 8mA � ��.guts.MA// � ��.G0

A/;

where the lower bound is an equality if and only if mA D 0.
In Chap. 8, we study the polyhedral decompositions of Montesinos links. The

main result is the following.

Theorem 8.6. Suppose K is a Montesinos link with a reduced admissible diagram
D.K/ that contains at least three tangles of positive slope. Then

��.guts.MA// D ��.G0
A/:

Similarly, if D.K/ contains at least three tangles of negative slope, then

��.guts.MB// D ��.G0
B/:

The arguments in Chaps. 6–8 require a detailed and fairly technical analysis of
the combinatorial structure of the polyhedral decomposition; we call this analysis
tentacle chasing. In addition, Chaps. 7 and 8 depend heavily on Theorem 6.4 in
Chap. 6.

In Chap. 9, we give the applications to volume estimates and relations with the
colored Jones polynomials that were discussed earlier in this introduction. The
results in this chapter do not use Chap. 7 at all, and do not directly reference Chap. 6
or the arguments of Chap. 8. Thus, having the statement of Theorem 8.6 at hand, a
reader who is eager to see the aforementioned applications may proceed to Chap. 9
immediately after Chap. 5.

In Chap. 10, we state several open questions and problems that have emerged
from this work, and discuss potential applications of the methods that we have
developed.



Chapter 2
Decomposition into 3-Balls

In this chapter, we start with a connected link diagram and explain how to construct
state graphs and state surfaces. We cut the link complement in S3 along the state
surface, and then describe how to decompose the result into a collection of topo-
logical balls whose boundaries have a checkerboard coloring. There are two steps
to this decomposition; the first is explained in Sect. 2.2, and the second in Sect. 2.3.
Finally, in Sect. 2.4, we briefly describe how to generalize the decomposition to a
broader class of links considered by Ozawa in [76].

The combinatorics of the decomposition will be used heavily in later chapters to
prove our results. Consequently, in this chapter we will define terminology that will
allow us to refer to these combinatorial properties efficiently. Thus the terminology
and results of this chapter are important for all the following chapters.

2.1 State Circles and State Surfaces

Let D be a connected link diagram, and x a crossing of D. Recall that associated
to D and x are two link diagrams, each with one fewer crossing than D, called the
A-resolution and B-resolution of the crossing. See Fig. 1.1 on p. 4.

A state of D is a choice of A- or B-resolution for each crossing. Applying a state
to the diagram, we obtain a crossing free diagram consisting of a disjoint collection
of simple closed curves on the projection plane. We call these curves state circles.
The all-A state of the diagram D chooses the A-resolution at each crossing. We
denote the union of corresponding state circles by sA.D/, or simply sA. Similarly,
one can define an all-B state and state circles sB D sB.D/.

Start with the all-A state of a diagram. From this, we may form a connected graph
in the plane.

Definition 2.1. Let sA be the union of state circles in the all-A state of a diagram
D. To this union of circles, we attach one edge for each crossing, which records the
location of the crossing. (These edges are dashed in Fig. 1.1 on p. 4.) The resulting
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Fig. 2.1 Left to right: A diagram. The graph HA. The state surface SA

graph is trivalent, with edges coming from crossings of the original diagram and
from state circles. To distinguish between these two, we will refer to edges coming
from state circles just as state circles, and edges from crossings as segments. This
graph will be important in the arguments below. We will call it the graph of the
A-resolution, and denote it by HA.

In the introduction, we introduced the A-state graph GA. This will factor into
our calculations in later chapters. For now, note that GA is obtained from HA by
collapsing state circles to single vertices.

We may similarly define the graph of the B-resolution, HB , and the B-state graph
GB . Indeed, every construction that follows will work with only minor modifications
(involving handedness) if we replace A-resolutions with B-resolutions. For ease of
exposition, we will mostly consider A-resolutions.

We now construct a surface related to a state � . First, draw the circles of the
�-resolution, s� . These state circles bound disjoint disks in the 3-ball below the
projection plane. Form the state surface S� by taking this disjoint collection of disks
bounded by state circles, and attaching a twisted band for each crossing. The result
is a surface whose boundary is the link. A well-known example of a state surface is
the Seifert surface constructed from a diagram, where the state � is chosen following
an orientation on K .

See Fig. 2.1 for a state surface SA corresponding to the all-A state.

Lemma 2.2. The graph G� is a spine for the surface S� .

Proof. By construction,G� has one vertex for every circle of s� (hence every disk in
S� ), and one edge for every half-twisted band in S� . This gives a natural embedding
of G� into the surface, where every vertex is embedded into the corresponding disk,
and every edge runs through the corresponding half-twisted band. This gives a spine
for S� . ut
Lemma 2.3. The surface S� is orientable if and only if G� is bipartite.

Proof. It is well-known that a graph is bipartite if and only if all loops have even
length.
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For the “if” direction, assume that G� is bipartite. Then, we may construct a
(transverse) orientation on S� , as follows. First, pick a normal direction to one
disk (corresponding to one vertex of G� ). Then, extend over half-twisted bands to
orient every adjacent disk, and continue inductively. This inductive construction of
a transverse orientation on S� will never run into a contradiction, precisely because
every loop in G� has even length. Thus S� is a two-sided surface in S3, hence
orientable.

For the “only if” direction, suppose G� is not bipartite, hence contains a loop of
odd length. By embedding G� as a spine of S� , as in Lemma 2.2, we see that this
loop of odd length is orientation-reversing on S� . ut

In the special case where each state circle of � traces a region of the diagram
D.K/, the state graph G� is called a checkerboard graph or Tait graph and the
surface ˙� is called a checkerboard surface. These checkerboard graphs record the
adjacency pattern of regions of the diagram, and have been studied since the work
of Tait. See e.g. [83, Page 264] for more discussion on the history of the subject.

Our primary focus will be on the all A-state and the A-state surface SA. It will
be helpful to isotope the state surface SA into a topologically convenient position.
Recall that by construction, the disks used to construct SA lie in the 3-ball below
the projection plane. Each of these disks can be thought of as consisting of a thin
annulus with outside boundary attached to the state circle, and then a soup can
attached to the inside boundary of the annulus. That is, a long cylinder runs deep
under the projection plane, with a disk at the bottom. These soup cans will be nested,
with outer state circles bounding deeper, wider soup cans. Finally, isotope the state
circles and bands of the diagram onto the projection plane, except at crossings of the
diagram in which the rectangular band runs through a small crossing ball coming
out of the projection plane. When we have finished, aside from crossing balls, the
link diagram sits on the plane of projection, and the surface SA lies below.

Consider the manifold created by cutting S3 cut along (a regular neighborhood
of) SA. We will refer to this manifold as S3nnSA, or MA for short. With SA

isotoped into the position above, it now is a straightforward matter to prove various
topological conditions on MA.

Lemma 2.4. The manifold MA D S3nnSA is homeomorphic to a handlebody.

Proof. By definition, the manifold MA is the complement of a regular neighborhood
of SA in S3. A regular neighborhood of SA consists of the union of a regular
neighborhood of the link and a regular neighborhood of the twisted rectangles, as
well as regular neighborhoods of each of the soup cans. Note first that the union
of the regular neighborhood of the link and the rectangular bands deformation
retracts to the projection graph of the diagram, which is a planar graph, and so its
complement is a handlebody. Next, when we attach to this a regular neighborhood
of a soup can, we are cutting the complement along a 2-handle. Since the result
of cutting a handlebody along a finite number of non-separating 2-handles is still a
handlebody, the lemma follows. ut



20 2 Decomposition into 3-Balls

2.2 Decomposition into Topological Balls

We will cut MA along a collection of disks, to obtain a decomposition of the
manifold into a collection of topological balls. In fact, we will eventually show this
decomposition is actually a decomposition of MA into ideal polyhedra, in the sense
of the following definition.

Definition 2.5. An ideal polyhedron is a 3-ball with a graph on its boundary, such
that complementary regions of the graph on the boundary are simply connected, and
the vertices have been removed (i.e. lie at infinity).

Remark 2.6. Menasco’s work [64] gives a decomposition of any link complement
into ideal polyhedra. When the link is alternating, the resulting polyhedra have
several nice properties. In particular, they are checkerboard colored, with 4-valent
vertices. However, when the link is not alternating, these properties no longer hold.
For alternating diagrams, our polyhedra will be exactly the same as Menasco’s.
More generally, we will see that our polyhedral decomposition of MA also has a
checkerboard coloring and 4-valent vertices.

There are two stages of the cutting. For the first stage, we will take one disk
for each complementary region in the complement of the projection graph in S2,
with the boundary of the disk lying on SA and the link. (Here we are using the
assumption that our diagram is connected when we assert that the complementary
regions of its projection graph are disks.) Note that each region of the projection
graph corresponds to exactly one region of HA, the graph of the A-resolution. Thus
we may also refer to these disks as corresponding to regions of the complement of
HA in the projection plane.

To form the disk that we cut along, we isotope the disk of the given region by
pushing it under the projection plane slightly, keeping its boundary on the state
surface SA, so that it meets the link a minimal number of times. Since SA itself
lies on or below the projection plane, except in the crossing balls, we know we can
push the disk below the projection plane everywhere except possibly along the half-
twisted rectangles at the crossings. At each crossing met by the particular region of
HA, the boundary of the region either runs past the twisted rectangular band without
entering it, in which case it can be isotoped out of the crossing ball, or the boundary
of the region runs along the attached band. In the latter case, the boundary comes
into the crossing from below the projection plane. The crossing twists it such that
if it continued to follow the band through the state surface, it would come out lying
above the projection plane. To avoid this, isotope such that the boundary of the disk
runs over the link inside the crossing ball, and so exits the crossing ball with the
disk still under the projection plane.

After this isotopy, the result is one of the disks we cut along. We call such a
disk a white disk, or white face, indicative of a checkerboard coloring we will give
our polyhedral decomposition. Notice the above construction immediately gives the
following lemma.
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Fig. 2.2 A white disk lying
just below the projection
plane, with boundary (dashed
line) on underside of shaded
surface. Note this disk meets
the link in exactly two points

Lemma 2.7. White disks meet the link only in crossing balls, and then only at
under-crossings. Additionally, white disks lie slightly under the projection plane
everywhere. ut

See Fig. 2.2 for an example.
Now, some of the white disks will not meet the link at all. These disks are

those corresponding to regions of the projection graph whose boundaries never run
through a crossing band. Therefore, the boundaries of such disks are isotopic to a
state circle of sA. Hence they are isotopic to soup cans attached to form the state
surface. We call these particular soup cans innermost disks, since they will not have
any additional soup cans nested inside them. Remove all white disks isotopic to
innermost disks from consideration, since they are isotopic into the boundary of MA.

We are left with a collection of disks W , each lying in S3 with boundary on the
state surface SA and on the link K . Cut along these disks.

Lemma 2.8. Each component of MAnnW is homeomorphic to a 3-ball.

Proof. Notice there will be a single component above the projection plane. Since
we have cut along each region of the projection graph, either by cutting along a
soup can or along one of the disks in W , this component must be homeomorphic to
a ball.

Next, consider components which lie below the projection plane. These lie
between soup can disks. Since any disk cuts the 3-ball below the projection plane
into 3-balls, these components must also each be homeomorphic to 3-balls. ut
Definition 2.9. The single 3-ball of the decomposition which lies above the plane
of projection we call the upper 3-ball. All 3-balls below the plane of projection will
be called lower 3-balls.

We now build up a combinatorial description of the upper and lower 3-balls. The
boundary of any 3-ball will be marked by 2-dimensional regions separated by edges
and ideal vertices. The regions (faces) come from white disks and portions of the
surface SA, which we shade.

Notation 2.10. In the sequel, we will use a variety of colors to label and distinguish
the different shaded regions on the boundary of the 3-balls. All of these colored
regions come from the surface SA, and all of them are considered shaded. See, for
example, Fig. 2.3 on p. 23.
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Continuing the combinatorial description of the upper and lower 3-balls, edges
on a 3-ball are components of intersection of white disks in W with (the boundary
of a regular neighborhood of) SA. Each edge runs between strands of the link. As
usual, each ideal vertex lies on the torus boundary of the tubular neighborhood of a
link component (see e.g. [64]).

Note each edge bounds a white disk in W on one side, and a portion of the
shaded surface SA on the other side. Thus, by construction, we have a checkerboard
coloring of the 2-dimensional regions of our decomposition. Since the white regions
are known to be disks, showing that our 3-balls are actually polyhedra amounts to
showing that the shaded regions are also simply connected.

In the process of showing these regions are simply connected, we will build up a
combinatorial description of how the white and shaded faces are super-imposed on
the projection plane, and how these faces interact with the planar graph HA. This
combinatorial description will be useful in proving the main results.

Notation 2.11. From here on, we will refer to both white and shaded regions of
our decomposition as faces. We do not assume that the shaded faces are simply
connected until we prove they are, in Theorem 3.12.

Consider first the lower 3-balls.

Lemma 2.12. Let R be a non-trivial component of the complement of sA in the
projection plane. Then there is exactly one lower 3-ball corresponding to R. The
white faces of this 3-ball correspond to the regions in the complement of HA that
are contained in R.

Here, by a non-trivial component of the complement of sA, we mean a component
which is not itself an innermost disk.

Proof. The soup cans attached to the circles sA when forming SA cut the 3-ball
under the projection plane into the lower 3-balls of the decomposition. We will have
exactly one such component for each non-trivial region of sA. Faces are as claimed,
by construction. ut
Lemma 2.13. Each lower 3-ball is an ideal polyhedron, identical to the checker-
board polyhedron obtained by restricting to the alternating diagram given by the
subgraph of HA contained in a non-trivial region of sA.

Proof. Ideal edges of a lower 3-ball stretch from the link, across the state surface
SA, to the link again, and bound a disk of W on one side. The disks in W , along
which we cut, block portions of the link from view from inside the lower 3-ball.
In particular, because each disk of W lies below the projection plane except at
crossings, and the link lies on the projection plane except at crossings, the only parts
of the link visible from inside a lower 3-ball correspond to crossings of the diagram.
That is, only small segments of under-crossings of the link are visible from inside a
lower 3-ball. Since edges meet at the same ideal vertex if and only if they meet the
same strand of the link visible from below, edges of the lower 3-ball will meet other
edges at under-crossings of the link. Notice that the only relevant under-crossings
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Fig. 2.3 Left to right: An
example graph HA. A
subgraph corresponding to a
region of the complement of
sA. White and shaded faces of
the corresponding lower
polyhedron

will be those which correspond to segments of HA which lie inside the region R in
the complement of sA, as in Lemma 2.12. All other crossings are contained outside
our 3-ball.

For each such under-crossing, note two disks of W meet at the under-crossing.
These disks correspond to the two regions of HA adjacent to the segment of HA at
that crossing, and they both meet in two edges. Thus each vertex is 4-valent. Finally,
the graph formed by edges and ideal vertices must be connected, since the region
of the complement of sA is connected. Hence we have a 4-valent, connected graph
on the plane, corresponding to a non-trivial subgraph of HA contained in a single
component of the complement of sA.

Any connected, 4-valent graph on the plane corresponds to an alternating link,
and gives the checkerboard decomposition of such a link. Thus it is an honest
polyhedron. The vertices of the 4-valent graph correspond to crossings of the
alternating diagram. Notice the vertices of the 4-valent graph also came from
crossings of our link diagram. Thus we have a correspondence between a lower
polyhedron and an alternating link with exactly the same crossings as in our
subgraph of HA. ut

By Lemma 2.13, we think of the lower polyhedra as corresponding to the largest
alternating pieces of our knot or link diagram.

Schematically, to sketch a lower polyhedron, start by drawing a portion of HA

which lies inside a non-trivial region of the complement of sA. Mark an ideal vertex
at the center of each segment of HA. Connect these dots by edges bounding white
disks, as in Fig. 2.3.

Now we consider the upper 3-ball, or the single 3-ball lying above the plane of
projection. Again, ideal edges on this 3-ball will meet at ideal vertices corresponding
to strands of the link visible from inside the 3-ball. However, the identification no
longer occurs only at single crossings. Still, we obtain the following.

Lemma 2.14. The upper 3-ball admits a checkerboard coloring, and all ideal
vertices are 4-valent.

Proof. By shading the surface SA gray and disks of W white, we obtain the
checkerboard coloring.

Ideal vertices are strands of the link visible from inside the 3-ball. Each strand
of the link is cut off as it enters an under-crossing. Thus visible portions of the
link from above will lie between two under-crossings. At each under-crossing, two
edges bounding a single disk meet the link on each side, as illustrated in Fig. 2.4.
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e2

v2
v1

e1 e3

e4

Fig. 2.4 Shown are portions of four ideal edges, terminating at under-crossings on a single
crossing. Ideal edges e1 and e2 bound the same white disk and terminate at the ideal vertex v1.
Ideal edges e3 and e4 bound the same white disk and terminate at the ideal vertex v2

Fig. 2.5 Left: A tentacle
continues a shaded face in the
upper 3-ball. Right:
visualization of the tentacle
on the graph HA

Thus these two edges will share an ideal vertex with the two edges bounding a disk
at the next under-crossing. Since no other edges meet the link strand between under-
crossings, the vertex must be 4-valent. ut

We give a description of the upper 3-ball by drawing the faces, ideal edges, and
ideal vertices of its boundary superimposed upon HA, the graph of the A-resolution.
We will see that the combinatorics of HA determine the combinatorics of this upper
3-ball. We will continue referring to it as the “upper 3-ball” until we prove in
Theorem 3.12 that it is indeed a polyhedron.

Notation 2.15. The combinatorial picture of the upper 3-ball superimposed on the
graph of HA will be described by putting together local moves that occur at each
segment. In order to describe a particular move at a particular segment s, we will
assume that the diagram has been rotated so that s is vertical. Now there are two
state circles meeting s, one at the top of s and one at the bottom of s. Note the
choice of top and bottom is not well-defined, but depends on how we rotated s to be
vertical. However, the pair of edges of HA, coming from state circles, which meet
the segment at the top-right and at the bottom-left, is a well-defined pair.

Moreover, note that each crossing of the link diagram meets two shaded faces,
one on the top and one on the bottom of the crossing, when the crossing is rotated
to be as in Fig. 1.1. See also Fig. 2.4. Given a choice of shaded face, and a choice
of crossing which that shaded face meets, this shaded face will determine a well-
defined state circle meeting the segment s of HA corresponding to that crossing. We
may rotate HA so that the segment s is vertical, and the state circle corresponding
to our chosen shaded face is on the top, as in Fig. 2.5. Once we have performed this
rotation, the state circle on top of s, as well as that on the bottom, and the four edges
top-left, top-right, bottom-left, and bottom-right, are now completely well-defined.

The following description of the upper 3-ball, superimposed on the graph HA, is
illustrated in Figs. 2.5–2.7.
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Fig. 2.6 The shaded faces around the crossing of Fig. 2.4 (Note: For grayscale versions of this
monograph, green faces will appear as dark gray, orange faces as lighter gray)

e0

e1 e2 e3

e1 e2 e3
e0

Fig. 2.7 Left: part of a shaded face in an upper 3-ball. Right: the corresponding picture,
superimposed on HA. The tentacle next to the ideal edge e0 terminates at a segment on the same
side of the state circle on HA. It runs past segments on the opposite side of the state circle, spawning
new tentacles associated to ideal edges e1, e2, e3

First, we discuss ideal vertices of the upper 3-ball and how these appear on the
graph HA. Each ideal vertex corresponds to a strand of the diagram between two
under-crossings, running over a (possibly empty) sequence of over-crossings. In
terms of the graph HA, for any given segment s, rotate HA so that s is vertical, as
in Notation 2.15. Now, draw two dots on the graph HA on the edges at the top-right
and bottom-left of s, near s. Erase a tiny bit of state circle between the segment s

and each dot. After this erasure is performed at all segments of HA, the connected
components that remain (which are piecewise linear arcs between a pair of dots),
correspond to ideal vertices. This erasing has been done on the top-right of Fig. 2.5,
and for all edges shown in the right side of Fig. 2.7. It has also been done on the
top-right and bottom-left of Fig. 2.6.

Every ideal edge of the upper 3-ball bounds a white disk on one side, and a
shaded face on the other, and starts and ends at under-crossings. This ideal edge
runs through a crossing, for which we may assume the orientation is as in Fig. 1.1,
with the shaded face at the top of the crossing. Then, following Notation 2.15,
this ideal edge will run from the top-right of a crossing, through the crossing, and
continues parallel to the link strand on the bottom-right. Superimposed on HA, the
ideal edge will start at the top-right of a segment s, run adjacent to s, and then
continue horizontally parallel to the state circle at the bottom of s. This is shown
for a single edge in Fig. 2.5. Thus the white face adjacent to this ideal edge of the
decomposition corresponds to the region of the complement of HA to the right of
this particular segment of HA.

Note the shaded face adjacent to this ideal edge is the same shaded face on top
of the segment of HA, or from the top of the crossing. It runs between the link and
the ideal edge, adjacent to the white face, until the ideal edge terminates at another
under-crossing. We draw it on the graph HA as shown in the right panel of Fig. 2.5.
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Figure 2.7 shows multiple ideal edges. Figure 2.6 shows a single segment with the
two ideal edges that are adjacent to it. Notice in that figure that when the green1

shaded face is rotated to be on top, the green ideal edge runs from the top-right to
the bottom-right of the segment. However, rotated as shown, the green runs from
the bottom-left to the top-left. These are symmetric.

Definition 2.16. A tentacle is defined to be the strip of shaded face running from
the top right of a segment of HA, adjacent to the link, along the bottom right state
circle of the edge of HA, as illustrated in Fig. 2.5. Notice that a tentacle is bounded
on one side by a portion of the graph HA, and on the other side by exactly one
ideal edge.

Note that a tentacle will continue past segments of HA on the opposite side of
the state circle without terminating, spawning new tentacles, but will terminate at a
segment on the same side of the state surface. This is shown in Fig. 2.7.

Definition 2.17. A given tentacle is adjacent to a segment of HA. Rotate the seg-
ment to be vertical, so that the tentacle lies to the right of this segment. The head
of a tentacle is the portion attached to the top right of the segment of HA. The tail
is the part adjacent to the lower right of the state circle. We think of the tentacle as
directed from head to tail.

Alternately, if we think of ideal edges of the decomposition as beginning at the
top-right of a crossing, rotated as in Notation 2.15, and ending at the bottom-left,
this orients each ideal edge. Since each tentacle is bounded by an ideal edge on one
side, this in turn orients the tentacle. See Fig. 2.7.

Notice that for any segment, we will see the head of some tentacle at the top right
of the segment, and the head of another tentacle at the bottom left of the segment. In
Fig. 2.6, we see the heads of two tentacles. The orange one is on the top-right, the
green one on the bottom-left. In addition, the tails of two other tentacles are shown
in gray in that figure.

2.3 Primeness

Near the beginning of the last section, we stated that there were two stages to our
polyhedral decomposition. The first stage is that explained above, given by cutting
along white disks corresponding to complementary regions of HA in the projection
plane. This may not cut MA into sufficiently simple pieces. In many cases, we may
have to do some additional cutting to obtain polyhedra with the correct properties.
This additional cutting is described in this section.

1Note: For grayscale versions of this monograph, green will refer to the darker gray shaded face,
orange to the lighter gray.
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α4

α1

α2
α3

Fig. 2.8 Arcs ˛1, ˛2, and ˛3

are all non-prime arcs.
However, ˛4 is not non-prime
in HA [ .˛1 [ ˛2 [ ˛3/,
since there is a region in the
complement of
HA [ .˛1 [ � � � [ ˛4/ which
contains no state circles

Recall from Definition 1.7 that a link diagram is prime if any simple closed curve
that meets the diagram transversely in two points bounds a region of the projection
plane with no crossings. By Lemma 2.13, the polyhedra in our decomposition that
lie below the projection plane correspond to alternating link diagrams. At this
stage, these diagrams may not all be prime. We need to modify the polyhedral
decomposition so that polyhedra below the projection plane do, in fact, correspond
to prime alternating diagrams.

Definition 2.18. The graph HA is non-prime if there exists a state circle C of sA

and an arc ˛ with both endpoints on C such that the interior of ˛ is disjoint from
HA and ˛ cuts off two non-trivial subgraphs when restricted to the subgraph of
HA corresponding to the region of sA containing ˛. The arc ˛ is defined to be a
non-prime arc.

More generally, define a non-prime arc inductively as follows. Suppose
˛1; : : : ; ˛n are non-prime arcs with endpoints on the same state circle C . Suppose
there is a region R of the complement of HA [ .[n

iD1˛i / and an arc ˇ embedded in
that region with both endpoints on C such that ˇ splits R into two new regions, both
containing state circles of sA. Then HA [ .[n

iD1˛i / is non-prime, and ˇ is defined
to be a non-prime arc.

Figure 2.8 gives an example of a collection of non-prime arcs.
We call this non-prime because the corresponding alternating diagram of the

polyhedron below the projection plane will no longer be a prime alternating diagram
in the presence of such an arc.

The arc ˛ meets two ideal edges of a polyhedron below the projection plane,
and two ideal edges of the 3-ball above the projection plane. Modify the polyhedral
decomposition as follows: we take our finger and push the arc ˛ down against the
soup can corresponding to the state circle C . That is, we surger along the disk
bounded by ˛ and an arc parallel to ˛ running along the soup can. Topologically,
this divides the corresponding lower polyhedron into two, replacing two shaded
faces by one, and one white face by two. No new ideal vertices are added, but the
two ideal edges met by the non-prime arc are modified so that each runs from its
original head to a neighborhood of the non-prime arc, then parallel to the non-prime
arc, then along the tail of the other original ideal edge to where that ideal edge
terminates.

Combinatorially, this does the following. In the lower polyhedron, under the
projection plane, cut the polyhedron into two polyhedra by joining the ideal edges
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Fig. 2.9 Splitting a lower polyhedron into two along a non-prime arc. These give two polyhedral
regions, defined in Definition 3.13 on p. 43

Fig. 2.10 Splitting the upper 3-ball along a non-prime arc

attached by the non-prime arc. See Fig. 2.9. The lower polyhedra now correspond
to alternating links whose state circles contain ˛.

On the boundary of the upper 3-ball, connect tentacles at both endpoints of the
non-prime arc ˛ by attaching a small regular neighborhood of ˛, for example as in
Fig. 2.10. We call this neighborhood of ˛ connecting tentacles a non-prime switch.
A priori, a non-prime switch might join two shaded faces into one, or else connect
a shaded face to itself. (In fact, we will show in the next chapter that it does the
former.) A non-prime switch also reroutes ideal edges adjacent to the connected
tentacles to run adjacent to the non-prime arc. Notice that these two edges still have
well defined orientations, although unlike the case of tentacles, this does not give a
direction to the non-prime switch.

Definition 2.19. Let D be a diagram of a link, with HA the corresponding graph
of its A-resolution. Let ˛1; : : : ; ˛n be a collection of non-prime arcs for HA that is
maximal, in the sense that each ˛i is a non-prime arc in HA [ .[i�1

j D1˛j / and there
are no non-prime arcs in HA [ .[n

j D1˛j /. Cut MA into upper and lower 3-balls
along disks W , as in Lemma 2.8. Then modify the decomposition by cutting lower
polyhedra along each non-prime arc ˛i , i D 1; : : : ; n, as described above. This
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decomposes MA into 3-balls, which we continue to call upper and lower 3-balls.
We refer to the decomposition as a prime decomposition of MA.

Notice that the choice of a maximal collection of non-prime arcs may not be
unique. In fact, by appealing to certain results about orbifolds, one can show that
the pieces of the prime decomposition are unique. While we do not need this for our
applications, the argument is outlined in Remark 3.17 on p. 45.

Definition 2.20. We say a polyhedron is prime if every pair of faces meet along at
most one edge.

Equivalently, we will see that any prime polyhedron admits no normal bigons, as
in Definition 3.16.

In our situation, we also have the following equivalent notion of prime. Recall
that, by Lemma 2.13, each lower polyhedron corresponds to an alternating link
diagram (which can be recovered from a sub-graph of HA). The 4-valent graph
of the polyhedron is identical to the 4-valent graph of the alternating diagram. Then
the polyhedron will be prime if and only if the corresponding alternating diagram is
prime, in the sense of Definition 1.7. This is one motivation for the notion of prime
polyhedra.

The effect of the prime decomposition of MA is summarized in the following
lemma.

Lemma 2.21. A prime decomposition of MA, along a maximal collection of non-
prime arcs ˛1; : : : ; ˛n, has the following properties:

.1/ It decomposes MA into one upper and at least one lower 3-ball.

.2/ Each 3-ball is checkerboard colored with 4-valent vertices.

.3/ Lower 3-balls are in one to one correspondence with non-trivial complemen-
tary regions of sA [ .[n

iD1˛i /.
.4/ All lower 3-balls are ideal polyhedra identical to the checkerboard polyhedra

of an alternating link, where the alternating link is obtained by taking the
restriction of HA [ .[n

iD1˛i / to the corresponding region of sA [ .[n
iD1˛i /,

and replacing segments of HA with crossings (using the A-resolution).
.5/ The alternating diagram corresponding to each lower polyhedron is prime.

Consequently, each lower polyhedron is itself prime.
.6/ White faces of the 3-balls correspond to regions of the complement of HA [

.[n
iD1˛i /.

Proof. Cutting along non-prime arcs may slice lower 3-balls into multiple pieces,
but it will not subdivide the upper 3-ball. Hence we still have one upper and at least
one lower 3-ball after a prime decomposition, giving item (1).

Note that ideal edges are modified by the prime decomposition, but each ideal
edge still bounds a white face on one side and a shaded face on the other. Hence the
3-balls are still checkerboard colored. Moreover, the prime decomposition does not
affect any ideal vertices, and so these remain 4-valent, as in Lemmas 2.13 and 2.14.
This gives item (2).
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For item (3), recall that before cutting along non-prime arcs, lower 3-balls
corresponded to non-trivial regions of the complement of the state circles sA. Now
we cut these along non-prime arcs, splitting them into regions corresponding to
components of the complement of sA [ .[n

iD1˛i /, as in Fig. 2.9.
Item (4) follows from Lemma 2.13 and from the fact that we cut along a maximal

collection of non-prime arcs. Lower 3-balls were known to be ideal polyhedra
corresponding to alternating links. When we cut along non-prime arcs, we modify
the diagrams of these links by splitting into two along the non-prime arc. Because
the collection of non-prime arcs is maximal, in the final result all such diagrams will
be prime, proving (5).

Finally, before cutting along non-prime arcs, white faces corresponded to non-
trivial regions in the complement of HA. A non-prime arc will run through such a
region, with its endpoints on the same state circle in the boundary of such a region.
Hence after cutting along a non-prime arc, we have separated such a region into two.
Item (6) follows. ut

At this stage, we have quite a bit of information about the lower 3-balls: we know
that each lower ball is an ideal polyhedron, and that it is prime. The same statements
are true for the upper 3-ball as well, although they are harder to prove. Proving these
results for the upper 3-ball is one of the main goals of the next chapter.

2.4 Generalizations to Other States

So far, we have described how to decompose the surface complement MA D
S3nnSA into 3-balls. By reflecting a B-adequate diagram to make it A-adequate,
one could apply the same decomposition to S3nnSB . In this section, we briefly
describe how to generalize the decomposition into 3-balls to the much broader class
of �-homogeneous states considered by Ozawa in [76].

Given a state � of a link diagram D.K/, recall that s� is a collection of disjointly
embedded circles on the projection plane. We obtain a trivalent graph H� by
attaching edges, one for each crossing of the original diagram D.K/. The edges
of H� that come from crossings of the diagram are referred to as segments, and the
other edges are portions of state circles.

Definition 2.22. Given a state � of a link diagram D.K/, the circles of s� divide
the projection plane into components. Within each such component, we have a
collection of segments coming from crossings of the diagram. Label each segment
A or B , depending on whether the corresponding crossing is given an A or
B-resolution in the state � . If all edges within each component have the same A or B

label, we say that � is a homogeneous state, and the diagram D is �-homogeneous.
See Fig. 2.11 for an example.

Let G� be the graph obtained by collapsing the circles of H� into vertices. If G�

contains no loop edges, we say that � is an adequate state, and the diagram that
gave rise to this state is �-adequate.
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Fig. 2.11 An example of a � -homogeneous diagram (on the right) and its graph H� (left). Blue
segments represent the B-resolution, red segments the A-resolution. Note � -homogeneity means
each component in the complement of the state circles (black circles on left) has all segments of
the same color

Let � be a homogeneous state of a link diagram D.K/, and let S� denote the
corresponding state surface. We let M D S3 n K denote the link complement, and
let M� WD M nnS� denote the path-metric closure of M nS� . Note that M� D .S3 n
K/nnS� is homeomorphic to S3nnS� , obtained by removing a regular neighborhood
of S� from S3. As above, we will refer to P D @M� \ @M as the parabolic locus
of M� ; it consists of annuli.

We cut M� D S3nnS� along disks, one for each region of the complement of
H� , excepting innermost circles of s� . We refer to these disks as white disks, and
we denote the collection of such disks by W . This cuts M� into 3-balls: one upper
3-ball lying above the plane of projection, and multiple lower 3-balls, one for each
component of s� . On the surface of each 3-ball is a graph, with edges coming from
intersections of white disks and the surface S� , dividing the surface of the 3-ball
into regions: white faces, coming from the white disks, and shaded regions, coming
from portions of the state surface S� .

Because the diagram D.K/ is �-homogeneous, each lower 3-ball comes from a
sub-diagram of D that consists of only A- or only B-resolutions. Because this sub-
diagram is contained in a single non-trivial component of the complement of the
state circles s� , it is alternating. The proofs of Lemmas 2.12 and 2.13 go through
in the �-homogeneous setting, and we immediately obtain analogous results for the
lower 3-balls in this case.

Lemma 2.23. Let � be a homogeneous state of a diagram D.K/. Let R be a non-
trivial component of the complement of s� in the projection plane. Then:

(1) There is exactly one lower 3-ball corresponding to R. Its white faces corre-
spond to the regions in the complement of H� that are contained in R.

(2) Each lower 3-ball is an ideal polyhedron, identical to the checkerboard
polyhedron obtained by restricting to the alternating diagram given by the
subgraph of H� contained in a non-trivial region of s� . ut

As above, we call R a polyhedral region.
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Fig. 2.12 Analogue of Fig. 2.7. When resolutions switch from all-A to all-B across a separating
state circle of s� , we attach left-down tentacles rather than right-down

The ideal edges of the upper 3-ball are given by the intersection of white disks
with the surface S� . Since each white disk is contained in a single polyhedral region
R in the complement of the state circles s� , each crossing that the white disk borders
has been assigned the same resolution, A or B , by � . Thus the local description of
these ideal edges is identical to that in the all-A or all-B case. In particular, obtain
the analogue of Lemma 2.14: the upper 3-ball is checkerboard colored, and all ideal
vertices are 4-valent. In the �-homogeneous setting, the definitions of tentacles and
their head and tail directions in the �-homogeneous case, are completely analogous
to Definitions 2.16 and 2.17.

Definition 2.24. For any segment of H� , rotate H� so that the segment is vertical.
A tentacle is defined to be the strip of shaded face running from the top of the
segment, adjacent to the link, along the bottom state circle adjacent to this segment.
When the segment comes from a crossing with the A-resolution, the tentacle runs
from the top to the right. When the segment comes from a crossing with the
B-resolution, the tentacle runs from the top and to the left. A tentacle is bounded
on one side by a portion of the graph H� , and on the other side by exactly one ideal
edge.

The head of the tentacle is the portion attached to the top of the segment. The tail
is adjacent to the state circle. We think of a tentacle as directed from head to tail.

In the �-homogeneous setting, some tentacles run in the right-down direction
(corresponding to the A-resolution) and some in the left-down direction (corre-
sponding to the B-resolution). However, within any component of the complement
of s� , all tentacles run in the same direction. Thus the only way to switch from
right-down to left-down, or vice versa, is to cross over a circle of s� .

In the upper 3-ball, we attach tentacles to tentacles across state circles as shown
in Fig. 2.7. However, if the state circle separates A-resolutions from B-resolutions,
we attach left-down tentacles to right-down tentacles, or vice-versa. See Fig. 2.12.

Finally, to complete the decomposition, just as in the all-A or all-B case we need
to ensure primeness of the polyhedra. To do so, we add a maximal collection of
non-prime arcs, defined exactly as in Sect. 2.3, and then surger our polyhedra along
disks bounded by these arcs. Because non-prime arcs connect a state circle to itself,
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and therefore separate only all-A or all-B resolutions (by �-homogeneity), all the
discussion in Sect. 2.3 goes through without modification in the �-homogeneous
case (except to replace all A’s with all B’s if necessary, which does not affect the
argument).



Chapter 3
Ideal Polyhedra

Recall that MA D S3nnSA is S3 cut along the surface SA. In the last chapter,
starting with a link diagram D.K/, we obtained a prime decomposition of MA into
3-balls. One of our goals in this chapter is to show that, if D.K/ is A-adequate
(see Definition 1.1 on p. 4), each of these balls is a checkerboard colored ideal
polyhedron with 4-valent vertices. This amounts to showing that the shaded faces
on each of the 3-balls are simply-connected, and is carried out in Theorem 3.12.

Once we have established the fact that our decomposition is into ideal polyhedra,
as well as a collection of other lemmas concerning the combinatorial properties of
these polyhedra, two important results follow quickly. The first is Proposition 3.18,
which states that all of the ideal polyhedra in our decomposition are prime. The
second is a new proof of Theorem 3.19, originally due to Ozawa [76], that the
surface SA is essential in the link complement if and only if the diagram of our
link is A-adequate.

All the results of this chapter generalize to �-adequate, �-homogeneous dia-
grams. We discuss this generalization in Sect. 3.4.

The results of this chapter will be assumed in the sequel. To prove many of these
results, we will use the combinatorial structure of the polyhedral decomposition of
the previous chapter, in a method of proof we call tentacle chasing. This method
of proof, as well as many lemmas established here using this method, will be used
again quite heavily in parts of Chaps. 4, 6–8. Therefore, the reader interested in
those chapters should read the tentacle chasing arguments carefully, to be prepared
to use such proof techniques later. In particular, tentacle chasing methods form a
crucial component in the proofs of our main results, which reside in Chaps. 5 and 9
respectively.

However, a reader who is eager to get to the main theorems and their applications,
and who seeks only a top-level outline of the proofs, may opt to survey the results
of this chapter while taking the proofs on faith. The top-level proofs of the main
results in Chap. 5 and the applications in Chap. 9 will not make any direct reference
to tentacle chasing.

D. Futer et al., Guts of Surfaces and the Colored Jones Polynomial, Lecture Notes
in Mathematics 2069, DOI 10.1007/978-3-642-33302-6 3,
© Springer-Verlag Berlin Heidelberg 2013
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Fig. 3.1 Building blocks of a shaded face: an innermost disk, a tentacle, and a non-prime switch

Fig. 3.2 Far left: A directed spine of a tentacle. Left to right: Shown is how directed tentacles
connect to an innermost disk, to another tentacle, across a non-prime switch

3.1 Building Blocks of Shaded Faces

To prove the main results of this chapter, first we need to revisit our construction
of shaded faces for the upper 3-ball. Shaded faces in the upper 3-ball are built
of one of three pieces: innermost disks, tentacles, and non-prime switches. See
Fig. 3.1. Recall that a tentacle is directed, starting at the portion adjacent to the
segment of HA (the head) and ending where the tentacle terminates adjacent to the
state circle (the tail). This direction leads naturally to the definition of a directed
spine for any shaded face on the upper 3-ball, as follows. For each tentacle, take
a directed edge running through the core of the tentacle, with initial vertex on the
state circle to which the segment of the tentacle is attached, and final vertex where
the tentacle terminates, adjacent to the state circle. For each innermost disk, take a
vertex. Notice that innermost disks are sources of directed edges of the spine, with
one edge running out for each segment adjacent to the disk, but no directed edges
running in. A non-prime arc is also represented as a vertex of the spine, with two
incoming edges and two outgoing edges. This motivates the term non-prime switch.
See Fig. 3.2.

In the language of directed spines, the statement that shaded faces are simply
connected (Theorem 3.12) can be rephrased to say that the directed spine of each
shaded face is, in fact, a directed tree.

Definition 3.1. When an oriented arc running through a tentacle in a shaded face
is running in the same direction as that of the orientation above, or in the same
direction as the edge of the directed spine, we say the path is running downstream.
When the oriented path is running opposite the direction on the tentacle, we say the
path is running upstream.
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Figure 3.2, far left, shows an arc running through a single tentacle in the
downstream direction. All the arrows in the remainder of that figure point in the
downstream direction.

Definition 3.2. Suppose a directed arc � , running through a shaded face of the
upper 3-ball, has been homotoped to run monotonically through each innermost
disk, tentacle, and non-prime switch it meets. Suppose further that � meets any
innermost disk, tentacle, and non-prime switch at most once. Then we say that � is
simple with respect to the shaded face.

Note that paths through the spine of a shaded face are simple if and only if they
are embedded on the spine.

We say that � is trivial if it does not cross any state circles.

3.2 Stairs and Arcs in Shaded Faces

The directions given to portions of shaded faces above lead to natural directions
on subgraphs of HA. One subgraph of HA that we will see repeatedly is called a
right-down staircase.

Definition 3.3. A right-down staircase is a connected subgraph of HA determined
by an alternating sequence of state circles and segments of HA, oriented so that
every turn from a state circle to a segment is to the right, and every turn from a
segment to a state circle is to the left. (So the portions of state circles and edges
form a staircase moving down and to the right.)

In fact, right-down staircases could be named left-up, except that the down and
right follows the convention of Notation 2.15.

In this section, we present a series of highly useful lemmas that will allow us to
find particular right-down staircases in the graph HA associated with shaded faces.
These lemmas lead to the proof of Theorem 3.12, and will be referred to frequently
in Chaps. 4, 6–8.

Lemma 3.4 (Escher stairs). In the graph HA for an A-adequate diagram, the
following are true:

.1/ No right-down staircase forms a loop, and

.2/ No right-down staircase has its top and bottom on the same state circle.

Cases (1) and (2) of Lemma 3.4 are illustrated in Fig. 3.3.

Proof. Suppose there exists a right-down staircase forming a loop. Notice that the
staircase forms a simple closed curve in the projection plane. Each state circle of
the staircase intersects that loop. Because state circles are also simple closed curves,
they must intersect the loop an even number of times. Because state circles cannot
intersect segments, each state circle within the loop must be connected to another
state circle within the loop. There must be an outermost such connection. These
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(1) (2)

. . .
. . .

Fig. 3.3 Left: A right-down staircase forming a loop. Right: A single right-down staircase with its
top and bottom connected to the same state circle

two state circles will form adjacent stairs, and connect within the loop. But then the
segment between them gives a segment with both endpoints on the same state circle,
contradicting A-adequacy of the diagram, Definition 1.4 (p. 6).

Similarly, suppose a right-down staircase has its top and bottom on the same
state circle. Then the staircase and this state circle forms a loop, as above, and state
circles that enter the loop must connect to each other. Again there must be some
outermost connected pair. This pair will be two adjacent stairs. Again the segment
between them will then give a segment with both endpoints on the same state circle,
contradicting A-adequacy. ut

Lemma 3.4 is the first place where we have used A-adequacy. In fact, as the
following example demonstrates, this hypothesis (or a suitable replacement, such as
�-adequacy) is crucial for both the lemma and for future results.

Example 3.5. Consider the unique connected, two-crossing diagram of a two-com-
ponent unlink. This diagram is not A-adequate. Its graph HA features both a loop
staircase (with two steps), and a one-step staircase with its top and bottom on the
same state circle, violating both conclusions of Lemma 3.4.

The loop staircase also gives rise to a non-trivial loop in the directed spine of
the (unique) shaded face. Thus the upper 3-ball of this diagram is not a polyhedron.
Therefore, all the proof techniques requiring a polyhedral decomposition will fail
for this inadequate diagram.

Definition 3.6. Every non-prime arc ˛i has its endpoints on some state circle C ,
and cuts a disk in the complement of C into two regions, called non-prime half-
disks.

The following lemma will help us deal with combinatorial behavior when we
encounter non-prime arcs.

Lemma 3.7 (Shortcut lemma). Let ˛ be a non-prime arc with endpoints on a state
circle C . Suppose a directed arc � lies entirely on a single shaded face, and is simple
with respect to that shaded face, in the sense of Definition 3.2. Suppose � runs across
˛ into the interior of the non-prime half-disk bounded by ˛ and C , and then runs
upstream. Finally, suppose that � exits the interior of that half-disk across the state
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circle C . Then � must exit by following a tentacle downstream (that is, it cannot exit
running upstream).

Proof. Consider an innermost counterexample. That is, if there exists a counterex-
ample, then there exists one for which � does not cross any other non-prime arc
and then run upstream when exiting the non-prime half-disk bounded by C and ˛.
Consider the subarc of � which runs from the point where it crosses ˛ to the point
where it crosses C . We will abuse notation slightly and call this arc � .

After crossing ˛, the arc � is running upstream in a tentacle adjacent to C . Note
that since we are assuming this is a counterexample, it will not cross C immediately,
for to do so it would follow a tentacle running downstream. Additionally, it cannot
cross some other non-prime arc ˛1 with endpoints on C , for because we are
assuming this counterexample is innermost, it would then exit the region bounded
by ˛1 and C running downstream, contradicting our assumption that it crosses C

running upstream. Finally, it may reach a non-prime arc ˛1 and run around it without
crossing, but then we are still running upstream on a tentacle adjacent to C , so we
may ignore this case.

Hence the only possibility is that � crosses ˛ and then runs up the head of a
tentacle with tail on C . The head of this tentacle is adjacent to a single step of a
right-down stair. Consider what � may do at the top of this stair.

(1) It may continue upstream, following another tentacle.
(2) It may change direction, following a tentacle downstream, or crossing a non-

prime arc ˛1 with endpoints on C1 and then (eventually) running downstream
across C1.

(3) It may run over a non-prime switch without crossing the non-prime arc.

By assumption (counterexample is innermost), it cannot run over a non-prime arc
˛1 with endpoints on C1 and (eventually) cross C1 running upstream. Notice that
if � enters an innermost disk, it must leave the disk running downstream, case (2),
since an innermost disk is a source for edges of the directed spine. Also, in case (3),
� remains adjacent to the same state circle before and after, and so we ignore this
case.

In case (1), we follow � upstream to a new stair, and the same options are again
available for � , so we may repeat the argument.

We claim that � is eventually in case (2). For, suppose not. Then since � crosses
C , and the graph HA is finite, by following tentacles upstream we form a finite
right-down staircase whose bottom is on C , and whose top is on C as well. This
contradicts Lemma 3.4 (Escher stairs).

So eventually � must change direction, following a tentacle downstream. After
following the tentacle downstream, � will be adjacent to another state circle. At this
point, it may do one of two things:

(1) It may continue downstream through another tentacle, or by running through a
non-prime arc first and then continuing downstream.

(2) It may run over a non-prime switch without crossing the non-prime arc.
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Notice that these are the only options because first, no arc running downstream can
enter an innermost disk (because such a disk is a source). Second, by assumption
(innermost) � cannot cross a non-prime arc and then cross the corresponding state
circle running upstream. Third, tentacles only connect to tentacles in a downstream
direction (Fig. 3.2 center). Again we ignore case (2), as � will be adjacent to the
same state circle before and after running over the non-prime switch.

But since these are the only possibilities, � must continue running downstream,
and cannot change direction again to run upstream. Thus � must exit C by running
over a tentacle in the downstream direction. ut
Definition 3.8. The proof of the previous lemma involved following arcs through
oriented tentacles, keeping track of local possibilities. We call this proof technique
tentacle chasing. We will use it repeatedly in the sequel.

Lemma 3.9 (Staircase extension). Let � be a directed arc lying entirely in a single
shaded face, such that � is simple with respect to the shaded face (Definition 3.2).
Suppose also that � begins by crossing a state circle running downstream. Suppose
that every time � crosses a non-prime arc ˛ with endpoints on C and enters the
non-prime half-disk bounded by ˛ and C , that it exits that half-disk. Then � defines
a right-down staircase such that every segment of the staircase is adjacent to � ,
with � running downstream. Moreover, the endpoints of � lie on tentacles that are
adjacent to the first and last stairs of the staircase.

Proof. The arc � runs through a tentacle downstream. The tentacle is attached to a
state circle at its head, is adjacent to a segment of HA, and then adjacent to a second
state circle at its tail. Form the first steps of the right-down staircase by including
the state circle at the head, the segment, and the state circle at the tail.

Now we consider where � may run from here. Note it cannot run into an
innermost disk, since each of these is a source (and so is entered only running
upstream). Thus it must do one of the following:

(1) It runs through another tentacle downstream.
(2) It runs through a non-prime switch, without changing direction.
(3) It runs through a non-prime switch, changing direction.

In case (1), we extend the right-down staircase by attaching the segment and
state circle of the additional tentacle. If � continues, we repeat the argument with �

adjacent to this new state circle.
We ignore case (2), because � will remain adjacent to the same state circle in this

case, still running in the downstream direction.
In case (3), � is adjacent to a state circle C , then enters a non-prime half-disk

bounded by a non-prime arc and C . By hypothesis, � also exits that half-disk. Since
it cannot exit along the non-prime switch, by hypothesis that � runs monotonically
through non-prime switches and meets each at most once, � must exit by crossing
C . Then Lemma 3.7 implies that � exits by following a tentacle downstream. This
tentacle will be adjacent to some segment attached to C and a new state circle
attached to the other endpoint of this segment. Extend the right-down staircase by
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...

→

Fig. 3.4 Extend a right-down
staircase over a non-prime
switch

attaching this segment and state circle to C . See Fig. 3.4. If � continues, we may
repeat the argument.

After a finite number of repetitions, � must terminate, and we have our extended
right-down staircase as claimed in the lemma. ut

The following is an immediate, highly useful consequence.

Lemma 3.10 (Downstream continues down, or Downstream lemma). Let � be
as in Lemma 3.9. Then � crosses the last state circle of the staircase by running
downstream. ut

We can now prove a result, which is called the Utility lemma because we will
use it repeatedly in the upcoming arguments.

Lemma 3.11 (Utility lemma). Let � be a simple, directed arc in a shaded face,
which starts and ends on the same state circle C . Then � starts by running upstream
from C , and then terminates at C while running downstream.

Furthermore, � cannot intersect C more than two times.

Proof. First, suppose that � runs downstream from its first intersection with C . This
will lead to a contradiction.

We begin by applying Lemma 3.9 (Staircase extension) to find a right-down
staircase starting on C , such that � runs downstream, adjacent to each segment of
the staircase. This staircase will continue either until the terminal end of � , or until
� crosses a non-prime arc ˛ and enters (but does not exit) a half-disk R bounded
by ˛ and some state circle C 0. But any such non-prime half-disk R will not contain
the initial endpoint of � (else � would have crossed C 0 running downstream earlier,
and we would have created a right-down staircase from C 0 to C 0, contradicting
Lemma 3.4), hence R will not contain C unless C 0 D C . Because the final endpoint
of � is on C , either no such region R exists, or ˛ has both endpoints on C . In either
case, we will have constructed a right-down staircase that starts and ends on C ,
contradicting Lemma 3.4 (Escher stairs). So � cannot run downstream from C .

Next, suppose that the terminal end of � meets C running upstream. Then we
simply reverse the orientation on � , and repeat the above argument to obtain a
contradiction. Therefore, � first runs upstream from C , then terminates on C while
running downstream.

Finally, suppose that � meets C more than twice. Let x1; : : : ; xn be its points of
intersection with C . Applying the above argument to the sub-arc of � from x1 to x2,
we conclude that � must arrive at x2 while running downstream. But then the sub-
arc of � from x2 to x3 departs C running downstream, which is a contradiction. ut
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............ ... ...

Fig. 3.5 If � runs over a sequence of non-prime arcs, then � bounds a region (shown shaded
above) containing no state circles, giving a contradiction. Compare with Fig. 2.8

Given the above tools, we are now ready to show that our decomposition is into
ideal polyhedra. The following is one of the main results of this chapter.

Theorem 3.12. Let D.K/ be an A-adequate link diagram. Then, in the prime
decomposition of MA, shaded faces on the 3-balls are all simply connected. This
gives a decomposition of MA into checkerboard colored ideal polyhedra with
4-valent vertices.

Proof. By Lemma 2.21, part (4), the lower 3-balls are ideal polyhedra, with simply
connected faces. Hence, we need only consider the shaded faces on the upper 3-ball.

We have constructed a spine for each shaded face on the upper 3-ball. The shaded
face will be simply connected if and only if the spine is a tree. Hence, we show the
spine is a tree.

If the spine is not a tree, then there is a non-trivial embedded loop � in the spine
for the shaded face. Since � is embedded in the spine, any sub-arc is simple in the
sense of Definition 3.2.

Now, suppose � crosses a state circle C . Since � is a simple closed curve, as
is the state circle, � must actually cross C at least twice. Then we can express
� as the union of two directed arcs �1; �2, with endpoints at C , such that �1; �2

meet only at their endpoints. Suppose that both arcs are directed along a consistent
orientation of � . Then Lemma 3.11 (Utility lemma) says that �1 terminates at C

running downstream. This means that �2 starts at C by running downstream, which
contradicts the Utility lemma.

So � never crosses a state circle. Since � is non-trivial, contained in a single
shaded face, it must run over a sequence of non-prime switches, all with endpoints
on the same state circle C . When � runs from one non-prime switch into another,
it cannot meet any segments of HA coming out of C , else the tentacle that � runs
through would terminate (� would have to exit the shaded face). But then � bounds
a region in the projection plane which contains no state circles, since our diagram is
assumed to be connected. This contradicts the definition of a collection of non-prime
arcs, Definition 2.18 on page 27: the last such arc added to our collection divides a
region of the complement of HA and the other non-prime arcs into two pieces, one
of which does not contain any state circles. See Fig. 3.5.

So shaded faces are simply connected. Since white faces are disks by definition,
a prime decomposition of MA D S3nnSA is a decomposition into ideal polyhedra.
The fact that it is 4-valent and checkerboard colored follows from Lemma 2.21. ut
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Recall that lower 3-balls are ideal polyhedra corresponding to non-trivial comple-
mentary regions of sA[.[˛i /, where the ˛i form a maximal collection of non-prime
arcs.

Definition 3.13. A polyhedral region is a complementary region of sA [ .
S

˛i / on
the projection plane. With the convention that the “projection plane” is a 2-sphere,
it follows that each polyhedral region is compact.

Lemma 3.14 (Parallel stairs). Let �1 and �2 be simple, disjoint, directed arcs
through the spines of shaded faces F1 and F2. (These shaded faces are allowed to
coincide, so long as the �i are disjoint.) Suppose that both �1 and �2 begin at the
same state circle C , running downstream, and terminate in the same polyhedral
region R. Then the following hold.

.1/ There are disjoint right-down staircases for the �i , such that �1 runs downstream
along each segment of the first staircase and �2 runs downstream along each
segment of the second staircase.

.2/ The terminal endpoint of each �i is adjacent to the last step (state circle) of its
staircase.

.3/ The j -th step of the first staircase is on the same state circle as the j -th step of
the second staircase, except possibly the very last step.

.4/ The arcs �1 and �2 cannot terminate on the same white face.

Proof. Conclusions (1) and (2) will follow from Lemma 3.9 (Staircase extension),
as soon as we verify that this lemma applies to the entire length of �1 and �2. That is,
we need to check that each time �i enters a non-prime half-disk through a non-prime
arc, it leaves that half-disk.

Suppose, for a contradiction, that �1 enters some non-prime half-disk through a
non-prime arc, and does not leave it. All such half-disks are ordered by inclusion.
Let R1 be the largest such non-prime half-disk. Let ˛1 be the non-prime arc through
which �1 enters R1, and let C1 be the state circle to which it is attached. Since �2

also terminates inside R � R1, and is disjoint from �1, it must cross into R1 by
crossing C1.

Let � denote the portion of �1 from C to ˛1. By Lemma 3.9 (Staircase extension),
there is a right-down staircase corresponding to � . Thus C is connected to C1 by a
sequence of segments, and adjacent to the last such segment is a tentacle that meets
the non-prime switch corresponding to ˛1. Since the arc ˛1 is next to the last stair, it
is on the same side of C1 as the stair. It follows that C and ˛1 are on the same side
of C1. Thus �2 must actually cross C1 twice, and by Lemma 3.11 (Utility lemma),
it does so first running upstream, then running downstream.

But �2 left C running downstream. By Lemma 3.9 (Staircase extension), the only
way �2 can later cross C1 running upstream is if �2 crossed over a non-prime arc
˛2 with endpoints on C2, where ˛2 separates C1 from C . Let R2 be the non-prime
half-disk bounded by ˛2 and C2 and containing R1. Since R1 � R2, �1 must also
enter R2, and it must do so by crossing C2. Since �1 enters R1 through non-prime
arc ˛1 (and not through a state circle), we conclude that R1 ¤ R2.
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Fig. 3.6 There exists a
closed curve in HA of the
form of the dotted line above,
where the arc with wider dots
lies entirely in a region of the
complement of HA [ .

S

˛i /

By applying to �1 the argument we used for �2 above, we conclude that �1 must
cross C2 twice, first running upstream and then downstream. Again, �1 cannot run
upstream after leaving C in the downstream direction, unless R2 is contained in a
non-prime half-disk that �1 enters through a non-prime arc. But by construction, R1

is the largest such half-disk, contradicting the strict inclusion R1 ¨ R2. This proves
(1) and (2).

To prove (3), let C D C0; C1; : : : ; Cm be the steps of the staircase of �1. Note that
�1 runs downstream across each Ci (for i D 0; : : : ; m � 1). Thus, by Lemma 3.11
(Utility lemma), once �1 crosses a circle Ci , it may not cross it again. In other words,
C0; C1; : : : ; Cm are nested, and �1 runs deeper into this chain of nested circles.

Similarly, let C D D0; D1; : : : ; Dn be the steps of the staircase of �2. Again, �2

runs downstream along D0; : : : ; Dn�1, and cannot cross these circles a second time.
Thus D0; : : : ; Dn are also nested.

By hypothesis, the terminal ends of �1 and �2 are in the same polyhedral region
R. By the above work, each �i enters this region R by crossing a state circle running
downstream. (Otherwise, �i would enter a non-prime half-disk across a non-prime
arc without exiting, and we have ruled out this possibility.) Thus �1 enters R by
crossing Cm�1, while �2 enters R by crossing Dn�1. Since the Ci are nested, as are
the Dj , the only way this can happen is if m D n, and the stairs Cj D Dj coincide
for j D 0; : : : ; n � 1.

For (4), suppose that �1 and �2 terminate at the same white face W . Then we
can draw an arc ˇ entirely contained in W which meets the ends of both �1 and �2.
Recall that a white face corresponds to a region of the complement of HA [ .

S

˛i /.
Thus the arc ˇ corresponds to an arc, which we still denote ˇ, in the complement
of HA [ .

S

˛i / which meets the final segment of each right-down staircase on the
right side of that segment, when the staircases are in right-down position. The two
staircases, the state circle at the top, and the arc ˇ form a loop in the sphere on which
the graph HA lies. See Fig. 3.6.

By conclusion (3), all steps of the staircases, except for the last, are on the same
state circles. Note that the bottom stair Cn on the left is not inside the shown bounded
region enclosed by the dotted curve ˇ, but both ends of the bottom stair Dn on the
right are inside the region enclosed by ˇ. Since Cj D Dj for j D 0; : : : ; n � 1, i.e.
all stairs but the last connect from left to right, the two ends of the bottom right stair
Dn must connect to each other only (and to none of the other state circles within the
dotted curve), to form a state circle that does not intersect the dotted line at all, but
lies entirely within it.



3.3 Bigons and Compression Disks 45

But then the arc ˇ can be pushed to have both endpoints lying on the state circle
Cn�1 just above the bottom segment. It then gives a non-prime arc. By maximality
of our polyhedral decomposition, Definition 2.19, there must be a collection of non-
prime arcs ˛j1 ; : : : ; ˛jk

from our maximal decomposition so that the collection ˇ [
.[˛ji / bounds no state circles in its interior. But then one of these ˛ji must separate
the bottom stair on the left from the bottom stair on the right. This non-prime arc
would separate the bottom stairs into two distinct regions of the complement of
HA [ .[˛i /, contradicting our assumption that ˇ lies in a single such region. ut

3.3 Bigons and Compression Disks

In an ideal polyhedral decomposition, any properly embedded essential surface
(with or without boundary) can be placed into normal form. See, for example,
Lackenby [58] or Futer and Guéritaud [30].

Definition 3.15. A surface in normal form satisfies five conditions:

(i) Its intersection with ideal polyhedra is a collection of disks;
(ii) Each disk intersects a boundary edge of a polyhedron at most once;

(iii) The boundary of such a disk cannot enter and leave an ideal vertex through
the same face of the polyhedron;

(iv) The surface intersects any face of the polyhedra in arcs, rather than simple
closed curves;

(v) No such arc can have endpoints in the same ideal vertex of a polyhedron, nor
in a vertex and an adjacent edge.

Definition 3.16. A disk of intersection between a polyhedron and a normal surface
is called a normal disk. For example, a normal bigon is a normal disk with two
sides, which meets two distinct edges of its ambient polyhedron. Note that in a
checkerboard colored polyhedron, one face met by a normal bigon must be white,
and the other shaded.

Recall that, in Definition 2.20, we said that a polyhedron is prime if each pair
of faces meet along at most one edge. This is equivalent to the absence of normal
bigons.

Recall as well that our choice of a maximal collection of non-prime arcs may not
have been unique, as pointed out just after Definition 2.19. However, using the idea
of normal bigons, one can show that the prime polyhedral decomposition, obtained
in Theorem 3.12, is unique. Because the result is not needed for our applications,
we only outline the argument in the remark below. We point the reader to Atkinson
[11] for more details.

Remark 3.17. One can see that the pieces of the prime decomposition are unique,
as follows. We know, from Lemma 2.13, that the lower 3-balls are ideal polyhedra
with 4-valent ideal vertices. For each lower polyhedron P , we may place a dihedral
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angle of �=2 on each edge, and construct an orbifold OP by doubling P along its
boundary. OP is topologically the 3-sphere, with singular locus the planar 1-skeleton
of P . Because we have doubled a dihedral angle of �=2, every edge in the singular
locus has cone angle � .

There is a version of the prime decomposition for orbifolds, which involves
cutting OP along orbifold spheres, namely 2-dimensional orbifolds with positive
Euler characteristic. Let S be one such orbifold sphere. In our setting, because the
singular locus is a 4-valent graph, S must have an even number of cone points.
Since the 1-skeleton of P is connected, the orbifold sphere S must intersect the
singular locus, hence must have at least two cone points, with angle � . Therefore,
since each singular edge has angle � , and S has positive Euler characteristic, it must
have exactly two cone points.

Recall (e.g. from [11, 81]) that the prime decomposition of the orbifold OP is
equivariant with respect to the reflection along @P . Thus any orbifold sphere S is
constructed by doubling a normal bigon in P . Since the prime decomposition of
OP is unique, and corresponds to cutting P along normal bigons, it follows that the
decomposition of P along normal bigons is also unique.

The following proposition shows that our earlier definition of prime decomposi-
tion along non-prime arcs actually results in prime polyhedra. This, in turn, will be
important in proving that the state surface SA is essential in the link complement
(Theorem 3.19).

Proposition 3.18 (No normal bigons). Let D.K/ be an A-adequate link diagram,
and let SA be the all-A state surface of D. A prime decomposition of S3nnSA into
3-balls, as in Definition 2.19, gives polyhedra which contain no normal bigons. In
other words, every polyhedron is prime.

Proof. Recall that by Lemma 2.21, part (5), the lower polyhedra are prime. Since
a normal bigon is the obstruction to primeness, the lower polyhedra do not contain
any normal bigons.

Suppose, by way of contradiction, that there exists a normal bigon in the upper
polyhedron. Then its boundary consists of two arcs, one, �s embedded in a shaded
face, and one, �w embedded on a single white disk W . Consider the arc �s in the
shaded face. We may homotope this arc to lie on the spine of the shaded face. Since
the spine is a tree, by Theorem 3.12, there is a unique embedded path between any
pair of points on the tree. Hence �s is simple with respect to the shaded face.

First, note that �s must cross some state circle, for if not, �s remains on tentacles
and non-prime switches adjacent to the same state circle C0, and so �w contradicts
part (ii) of the definition of normal, Definition 3.15.

So �s crosses a state circle C . The endpoints of �s are both on W , which means
�s crosses C twice. If we cut out the middle part of �s (from C back to C ), we
obtain two disjoint sub-arcs from C to W . If we orient these sub-arcs away from
C toward W , Lemma 3.11 (Utility lemma) implies they run downstream from C .
Now, part (4) of Lemma 3.14 (Parallel stairs) says that the ends of �s cannot both be
on W , which is a contradiction. ut



3.3 Bigons and Compression Disks 47

Recall that the state surface SA may not be orientable. In this case, Definition 1.3
on p. 5 says that SA is essential if the boundary fSA of its regular neighborhood is
incompressible and boundary-incompressible. Since S3nnfSA is the disjoint union of
MA D S3nnSA and an I -bundle over SA, the computation of the guts is not affected
by replacing SA with fSA.

Theorem 3.19 (Ozawa). Let D be a (connected) diagram of a link K . The surface
SA is essential in S3 n K if and only if D is A-adequate.

Proof. If D is not A-adequate, then there is an edge of HA meeting the same state
circle at each of its endpoints. To form SA, we attach a twisted rectangle with
opposite sides on a disk bounded by that same state circle. Note in this case, SA

will be non-orientable. The boundary of a disk E runs along SA, over the twisted
rectangle, meets the knot at the crossing of the rectangle, then continues along SA

through the disk bounded by that state circle. This disk E will give a boundary
compression disk for fSA, as follows. A regular neighborhood of SA will meet E

in a regular neighborhood of @E \ SA. Hence E n N.@E \ SA/ is a compression
disk for fSA.

Now, suppose D is A-adequate, and let fSA be the boundary of a regular
neighborhood of SA. This orientable surface is the non-parabolic part of the
boundary of MA. If fSA is compressible, a compressing disk E has boundary on
fSA. Since S3nnfSA is the disjoint union of an I -bundle over SA and MA, the disk E

must be contained either in the I -bundle or in MA. It cannot be in the I -bundle, or
in a neighborhood of fSA it would lift to a horizontal or vertical disk, contradicting
the fact that it is a compression disk. Hence E lies in MA.

Put the compressing disk E into normal form with respect to the polyhedral
decomposition of MA. The intersection of E with white faces contains no simple
closed curves, so all intersections of E and the white faces are arcs. Consider an
outermost arc. This has boundary a single arc on a white face, and a single arc
on a shaded face. Hence it cuts off a normal bigon, which is a contradiction of
Proposition 3.18 (No normal bigons). So the surface fSA is incompressible.

If fSA is boundary compressible, then a boundary compression disk E again lies
in MA rather than the I -bundle. Its boundary consists of two arcs, one on fSA, which
we denote ˇ, and one which lies on the boundary of S3 n K (the parabolic locus),
which we denote ˛. Put E in normal form. First, we claim the arc ˛ on @.S3 n K/

lies in a single polyhedron on a single ideal vertex. If not, it must meet one of the
white faces of the polyhedron. Take an outermost arc of intersection of the white
faces with E which cuts off a disk E 0 whose boundary contains a portion of the arc
˛. Either E 0 has an edge on a white face and an edge on ˛, in which case the surface
E contradicts the first part of condition (v) of the definition of normal, or else E 0 has
an edge on a white face, an edge on ˛, and an edge on SA. In this case, E contradicts
the second part of condition (v). Hence ˛ lies entirely within one polyhedron.

Consider arcs of intersection of E with white faces. An outermost such arc must
contain an ideal vertex, or we get a normal bigon as above, which is a contradiction.
But if E 0 is outermost and E 0 contains an ideal vertex, then E n E 0 is a disk
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which does not contain an ideal vertex. Again we get a contradiction looking at
the outermost arc of intersection of E n E 0 with white faces. ut
Lemma 3.20. Every white face of the polyhedral decomposition is boundary
incompressible in MA.

Proof. If E is a boundary compression disk for a white face, it can be placed in
normal form. Then, as above, E must contain an outermost normal bigon, which
contradicts Proposition 3.18 (No normal bigons). ut

Recall that a link diagram D is prime if any simple closed curve which meets
the diagram transversely exactly twice does not bound crossings on each side.
Theorem 3.19 has the following corollary that shows that for prime, non-split links,
working with prime diagrams is not a restriction. Starting in Chap. 6, we will restrict
to prime adequate diagrams.

Corollary 3.21. Suppose that K is an A-adequate, non-split, prime link. Then
every A-adequate diagram D.K/ without nugatory crossings is prime.

Proof. Suppose D.K/ is an A-adequate diagram of K and let � denote a simple
closed curve on the projection plane that intersects D.K/ at exactly two points.
Now � splits D.K/ into a connect sum of diagrams D1#D2. Since K is prime,
one of them, say D1, must be an A-adequate diagram of K , and D2 must be an
A-adequate diagram of the unknot. The state surface SA splits along an arc of �

into surfaces S1 and S2, where Si is the all-A state surface of Di , i D 1; 2. By
Theorem 3.19, S2 is incompressible, and thus it must be a disk. The graph GA.D2/

is a spine for S2. Since S2 is a disk, GA.D2/ is a tree. But then each edge of GA.D2/

is separating, hence each crossing is nugatory. Since we assumed that D contains
no nugatory crossings, D2 must be embedded on the projection plane. Thus D.K/

is prime, as desired. ut
The converse to Corollary 3.21 is open. See Problem 10.6 in Chap. 10.

3.4 Ideal Polyhedra for � -Homogeneous Diagrams

In this section, we show that the decomposition for �-homogeneous diagrams dis-
cussed in Sect. 2.4 becomes an ideal polyhedral decomposition under the additional
hypothesis of �-adequacy. The arguments are almost identical to the already-
discussed case of A-adequate links. Thus our exposition here will be brief,
indicating only the cases where the argument calls for slight modifications.

In the �-homogeneous setting, shaded faces decompose into portions associated
with a directed spine. An edge of the directed spine lies in each tentacle, and runs
adjacent to a segment and then along a state circle. The only difference now is that
when we are in a polyhedral region for which each resolution is the B-resolution,
these directed edges run left-down rather than right-down. Innermost disks are
still sources, and non-prime arcs give rise to switches (non-prime switches). The
resulting pieces are illustrated in Fig. 3.7, which should be compared to Fig. 3.2.
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Fig. 3.7 Building blocks of the directed spine of a shaded face, in a � -homogeneous diagram

As before, when an oriented arc in a shaded face runs in the direction of the
directed spine, we say it is running downstream. Otherwise, it is running upstream.
When such an arc has been homotoped to run monotonically through each tentacle,
innermost disk, and non-prime switch, and to meet each at most once, we say it is
simple with respect to the shaded face.

These definitions agree with Definitions 3.1 and 3.2, modified to accommodate
left-down edges. Similarly, we have the following definition.

Definition 3.22. A staircase is an alternating sequence of state circles and seg-
ments. The direction of the staircase is determined by the directions of tentacles
running along those staircases, which are determined by the resolution. Those of
the A-resolution run “right-down”. Those of the B-resolution run “left-down”. All
stairs in the same component of the complement of s� run in the same direction, by
�-homogeneity.

It turns out that the existence of a directed staircase is all that is needed for our
main results. “Right-down-ness” and “left-down-ness” are only peripheral, and the
theory developed so far in this chapter so far goes through without a problem. Hence
we may prove the following analogue of Theorem 3.12.

Theorem 3.23. Let � be an adequate, homogeneous state of a diagram D. Then
the decomposition described above gives a polyhedral decomposition of the surface
complement M� into 4-valent ideal polyhedra.

Proof. By �-homogeneity, each lower polyhedron is identical to a polyhedron in
Menasco’s decomposition of an alternating link, which corresponds to the subgraph
of H� coming from a polyhedral region. As for the upper polyhedron, ideal
vertices are 4-valent, and white faces are simply connected. We need to show that
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shaded faces are simply connected in the �-homogeneous case. Each shaded face
deformation retracts to a directed spine, and we need to show this spine is a tree.
The result follows from a sequence of lemmas established in the previous sections
concerning how these directed graphs may be super-imposed on H� . The proofs
of these lemmas work equally well when staircases run “right-down” and “left-
down,” as they will when A and B resolutions are mixed. What is key in all the
proofs of these lemmas is that edges of the graph corresponding to the shaded faces
have a direction, and the direction only changes in non-prime switches. In addition,
the proofs repeatedly use the hypothesis that the state � defining the graph H� is
adequate (recall Example 3.5). Hence the following technical lemmas generalize
without any modification of the proofs, except to remove the words “right-down”
and replace “A-adequate” with “�-adequate.”

Lemma 3.4 (Escher stairs): No staircase forms a loop, and no staircase has its top
and bottom on the same state circle.

Lemma 3.7 (Shortcut lemma): If a directed arc � in a shaded face runs across
a non-prime arc ˛ with endpoints on a state circle C , and then upstream, the arc
� must exit the non-prime half-disk bounded by ˛ and C by running downstream
across C .

Lemma 3.9 (Staircase extension): If � runs downstream across a state circle, and
every time � crosses a non-prime arc with endpoints on a state circle C , the arc �

exits the non-prime half-disk bounded by ˛ and C , then � defines a staircase such
that � is adjacent to each segment of the staircase, running downstream.

Lemma 3.10 (Downstream): For � as above, it must cross the last state circle of
the staircase running downstream.

Lemma 3.11 (Utility lemma): Let � be a simple, directed arc in a shaded face,
which starts and ends on the same state circle C . Then � starts by running upstream
from C , and then terminates at C while running downstream. Furthermore, � cannot
intersect C more than two times.

Now the proof of Theorem 3.12 goes through verbatim, only replacing HA with
H� . Hence the upper polyhedron is also a 4-valent ideal polyhedron. ut

Once we have a polyhedral decomposition of M� for a �-adequate, �-homoge-
neous diagram, we may use this to generalize Proposition 3.18 and Theorem 3.19
in the setting of �-adequate and �-homogeneous diagrams.

In order to do so, we need Lemma 3.14 (Parallel stairs). More specifically, we
need part (4) of that lemma, but we state the entire lemma for completeness.

Lemma 3.14 (Parallel stairs): Let �1 and �2 be simple, disjoint, directed arcs
through the spines of shaded faces F1 and F2. (These shaded faces are allowed
to coincide, so long as the �i are disjoint.) Suppose that both �1 and �2 begin at
the same state circle C , running downstream, and terminate in the same polyhedral
region R. Then

(1) There are disjoint staircases for the �i , such that �1 runs downstream along each
segment of the first staircase and �2 runs downstream along each segment of the
second staircase.
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(2) The terminal endpoint of each �i is adjacent to the last step (state circle) of its
staircase.

(3) The j -th step of the first staircase is on the same state circle as the j -th step of
the second staircase, except possibly the very last step.

(4) The arcs �1 and �2 cannot terminate on the same white face.

As in the case of the A-adequate links, the proof constructs staircases for
�1 and �2, using Lemma 3.9 (Staircase extension). Furthermore, the proof of
the (generalized) lemma requires �-homogeneity, in that if both arcs running
downstream along the staircases end in tentacles meeting the same white face, then
at the bottom the arcs are both either running in the right-down or the left-down
direction, and we obtain a diagram as in Fig. 3.6 or its reflection. That is, we obtain
a sequence of stairs on the right and the left, with bottom segments of the stairs
connected by an arc ˇ in the complement of H� [ .

S

˛i / which runs from the right
side of one last segment to the right side of the other, or from the left side of one
last segment to the left side of the other. In either case, the argument of the proof of
that lemma will still imply that stairs connect left to right, excepting the two bottom
stairs, and that the arc ˇ can have its endpoints pushed to the state circle just above
both bottom stairs to give a non-prime arc, contradicting maximality of our choice
of a system of non-prime arcs. Then the proof of Proposition 3.18 goes through
verbatim to give the following.

Proposition 3.24 (No Normal Bigons). Let D.K/ be a link diagram with an
adequate, homogeneous state � , and let S� be the state surface of � . Then the
decomposition of S3nnS� as above gives polyhedra without normal bigons. In other
words, every polyhedron is prime. ut

Finally, given these pieces, we obtain Theorem 3.19 in this setting, without
modification to the proof. The theorem is originally due to Ozawa [76].

Theorem 3.25 (Ozawa). Let D be a (connected) diagram of a link K , such that D

is �-homogeneous for some state � . The surface S� is essential in S3 n K if and
only if D is �-adequate. ut



Chapter 4
I-Bundles and Essential Product Disks

Recall that we are trying to relate geometric and topological aspects of the knot
complement S3 n K to quantum invariants and diagrammatic properties. So far,
we have identified an essential state surface SA, and we have found a polyhedral
decomposition of MA D S3nnSA. On the one hand, the surface SA is known to
have relations to the Jones and colored Jones polynomials [21, 23, 36]. On the
other hand, the Euler characteristic of the guts of MA, whose definition is recalled
immediately below, is known to have relations to the volume [6]. As mentioned in
the introduction, we will see in Chap. 9 that the Euler characteristic of the guts of
MA forms a bridge between geometric and quantum invariants. In this chapter, we
take a first step toward computing this Euler characteristic, using the polyhedral
decomposition from Chap. 3.

By the annulus version of the JSJ decomposition, there is a canonical way to
decompose MA D S3nnSA along a collection of essential annuli that are disjoint
from the parabolic locus. (In our case, recall from Definition 1.2 that the parabolic
locus of MA will be the remnant of the boundary of a regular neighborhood of
K in MA.) The JSJ decomposition yields two kinds of pieces: the characteristic
submanifold, consisting of I -bundles and Seifert fibered pieces, and the guts,
which admit a hyperbolic metric with totally geodesic boundary. We consider
the components of the characteristic submanifold of MA which affect Euler
characteristic. In this chapter, we show that such components decompose into well-
behaved pieces. In particular, we show that they are spanned by essential product
disks (Definition 4.2) which are each embedded in a single polyhedron of the
polyhedral decomposition of MA from Chap. 3. This is the content of Theorem 4.4,
which is the main result of the chapter.

4.1 Maximal I-Bundles

Let B be a component of the characteristic submanifold of MA; so B is either a
Seifert fibered component or an I -bundle. Our first observation implies that only
I -bundles can have non-trivial Euler characteristic.

D. Futer et al., Guts of Surfaces and the Colored Jones Polynomial, Lecture Notes
in Mathematics 2069, DOI 10.1007/978-3-642-33302-6 4,
© Springer-Verlag Berlin Heidelberg 2013

53



54 4 I-Bundles and Essential Product Disks

SA

SA

P

P

Fig. 4.1 Left: an EPD in MA. Center: the product structure of the EPD. Right: the corresponding
subgraph of HA contains a 2-edge loop. In this example, the two segments come from different
twist regions in the link diagram

Lemma 4.1. Let B be a component of the characteristic submanifold of MA. Then
�.B/ � 0, and B can come in one of two flavors:

.1/ If �.B/ < 0, then B is an I -bundle. We call such components non-trivial.

.2/ If �.B/ D 0, then B is a solid torus. We call these solid tori trivial.

The reason for this terminology is that removing a solid torus B does not
affect the Euler characteristic of what remains. Thus, for computing the Euler
characteristic of the guts, one only needs to worry non-trivial I -bundles.

Proof. Recall that by Lemma 2.4, MA is topologically a handlebody, with non-
positive Euler characteristic. To find the characteristic submanifold, we cut MA

along essential annuli. Thus every component of the complement of these annuli
will again have non-positive Euler characteristic.

The component B is either an I -bundle or a Seifert fibered piece. If B is an
I -bundle, then �.B/ will vanish if and only if B is a solid torus (viewed as an
I -bundle over an annulus or Möbius band).

Next, suppose B is a Seifert fibered component. Since MA is a handlebody, its
fundamental group is free, and cannot contain a Z	Z subgroup. On the other hand,
B is a Seifert fibered 3-manifold with boundary. Its base orbifold O must be an
orbifold with boundary. But B cannot contain any essential tori, hence the orbifold
O cannot contain any essential loops. This is possible only if O a disk with at most
one cone point, and B is a solid torus, with zero Euler characteristic. ut

The main result of this chapter is that all the non-trivial components of I -bundle
can be found by studying essential product disks.

Definition 4.2. An essential product disk (EPD for short) is a properly embedded
essential disk in MA, whose boundary meets the parabolic locus of MA twice. See
Fig. 4.1.

Essential product disks play an important role in computing guts in Lackenby’s
volume estimates for alternating links [58]. They will play an important role in our
setting as well.
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Recall that MA is a handlebody, so certainly it admits a number of compression
disks. However, a compression disk for MA that is disjoint from the parabolic locus
would be a compression disk for SA; by Theorem 3.19, such disks cannot exist.
Similarly, a compression disk for MA that meets the parabolic locus only once would
be a boundary compression disk for SA; by Theorem 3.19, such disks also cannot
exist. Thus essential product disks can be seen as the simplest compression disks
for MA.

Notice that a regular neighborhood of an essential product disk is an I -bundle,
and is thus contained in the characteristic submanifold of MA.

Definition 4.3. Let B be an I -bundle in the characteristic submanifold of MA. We
say that a finite collection of disjoint essential product disks fD1; : : : ; Dng spans B

if B n .D1 [ � � � [ Dn/ is a finite collection of prisms (which are I -bundles over a
polygon) and solid tori (which are I -bundles over an annulus or Möbius band).

Our main result in this chapter is the following theorem, which reduces the
problem of understanding the I -bundle in the characteristic submanifold of MA

to the problem of understanding and counting EPDs in individual polyhedra. For
instance, the EPD of Fig. 4.1 is embedded in a lower polyhedron. In the following
chapters we will study such EPDs.

Theorem 4.4. Let B be a non-trivial component of the characteristic submanifold
of MA. Then B is spanned by a collection of essential product disks D1; : : : ; Dn,
with the property that each Di is embedded in a single polyhedron in the polyhedral
decomposition of MA.

The proof of the theorem will occupy the remainder of this chapter. Before we
give an outline of the proof, we need the following definition.

Definition 4.5. A surface S in MA is parabolically compressible if there is an
embedded disk E in MA such that:

(i) E \ S is a single arc in @E;
(ii) The rest of @E is an arc in @MA that has endpoints disjoint from the parabolic

locus P of MA and that intersects P in at most one transverse arc;
(iii) E is not parallel into S under an isotopy that keeps E \ S fixed and keeps

E \ P on the parabolic locus.

We say E is a parabolic compression disk. (See [58, Fig. 5].)

Definition 4.5 differs slightly from the corresponding definition in Lackenby’s
work [58, Page 209]. Conditions (i) and (ii) are exactly the same, while our condition
(iii) is slightly less restrictive.

If D is an essential product disk and E is a parabolic compression for D, then
compressing D to the parabolic locus along E will produce a pair of new essential
product disks, D0 and D00. See Fig. 4.2. Observe that if D; D1; : : : ; Dn span an
I -bundle B , then D0; D00; D1; : : : ; Dn will span B as well. Thus we may perform
parabolic compressions at will, without losing the property that the disks in question
span B .
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Fig. 4.2 The EPD shown in the left panel parabolically compresses to the EPDs shown in the right
panel

Proof (Top-level proof of Theorem 4.4). The argument has three main steps:

1. Given a non-trivial component B of the characteristic submanifold of MA we
show B meets the parabolic locus (Proposition 4.18).

2. We show that if a component B as above meets the parabolic locus, it is spanned
by essential product disks (Proposition 4.19).

3. We show that every essential product disk in MA parabolically compresses to
a collection of essential product disks, each of which is embedded in a single
polyhedron (Proposition 4.21).

Step 2 will be completed by straightforward topological argument. On the other
hand, Steps 1 and 3 require a number of technical tools that we will develop in the
next sections. Thus we postpone the proofs of all three propositions until the end of
the chapter. Modulo these propositions, the proof of Theorem 4.4 is complete. ut

Here is the outline of the rest of the chapter. Section 4.2 uses normal surface
theory to examine pieces of the boundaries of I -bundles. Section 4.3 uses tentacle
chasing arguments to force parabolic compressions. In Sect. 4.4, we put it all
together to finish the proof of Steps 1–3. In Sect. 4.5, we discuss the (straightfor-
ward) extension to �-adequate, �-homogeneous diagrams.

4.2 Normal Squares and Gluings

In this section, we will consider properties of normal squares (i.e. normal disks
with four sides; see Definitions 3.15 and 3.16). In Lemma 4.6, we will see that
normal squares arise naturally as intersections of annuli, boundary components of
our characteristic submanifold, and our ideal polyhedra. With this in mind, we need
to examine how normal squares glue across white faces of the ideal polyhedra. The
results of this section, which are of a somewhat technical nature, will be used to
examine this gluing.

Lemma 4.6. Let B0 be a component of the maximal I -bundle for MA with negative
Euler characteristic. Then B0 contains a product bundle Y D Q 	 I , where Q is a
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pair of pants. Moreover, when put into normal form in a prime decomposition of
MA, the three annuli of @Y are composed of disjointly embedded normal squares.

The proof of Lemma 4.6 should be compared to that of [3, Lemma 7.1].

Proof. Since B0 is a 3-dimensional submanifold of S3, it must be orientable. Thus
B0 is either the product I -bundle over an orientable surface F , or the twisted I -
bundle over a non-orientable surface F . In either case, since �.B0/ D �.F / < 0,
F contains a pair of pants Q. (In a non-orientable surface, cutting a once-punctured
Möbius band along an orientation-reversing closed curve produces a pair of pants.)
The I -bundle over the pair of pants Q must be trivial, so B0 contains a product
bundle Y D Q 	 I .

Consider the three annuli of @Y . We view the union of these three annuli as
a single embedded surface. Move this surface into normal form in the polyhedral
decomposition of MA, keeping the surface embedded. The annuli of @Y stay
disjoint. The intersection of the annuli with the faces of the polyhedra cuts the
annuli into polygons, each of which must have an even number of edges due to
the checkerboard coloring of the polyhedra.

Consider an arc of intersection between the white faces and an annulus A �
@Y . If this arc ˛ starts and ends on the same boundary circle of A, then A cuts
off a bigon disk. An outermost such arc would cut off a normal bigon in a single
polyhedron—but by Proposition 3.18, there are no normal bigons. Thus the arc ˛

must run from one boundary circle of A to the other boundary circle. Because every
arc of intersection between @Y and the white faces is of this form, every normal disk
must be a square. ut

While studying the checkerboard surfaces of alternating links, Lackenby has
obtained useful results by super-imposing normal squares in the upper polyhedron
onto normal squares in the lower polyhedron [58]. For alternating knots and links,
the 1-skeleton of each polyhedron is the 4-valent graph of the link projection; thus
there is a natural “identity map” from one polyhedron to the other. Lackenby’s
method will also be useful for our results, although we need to take some care
defining maps between the upper and lower polyhedra.

For each white face W , the disk W appears as a face of the upper polyhedron and
exactly one lower polyhedron. These two faces are glued via the gluing map, which
is just the reverse of the cutting moves we did in Chap. 2 to form the polyhedra.

Definition 4.7. Let W be a white face of the upper polyhedron P , and suppose that
W has n sides. For the purpose of defining continuous functions, picture W as a
regular n-gon in R

2. Let W 0 be the face of a lower polyhedron that is glued to W in
the polyhedral decomposition. Then we define a clockwise map �W W ! W 0 to be
the composition of the gluing map with a 2�=n clockwise rotation. In other words,
both the gluing map and the clockwise map send W to W 0, but the two maps differ
by one side of the polygon.

Combinatorially, in the upper polyhedron, white faces are sketched with edges on
tentacles and non-prime switches, and with vertices adjacent to a state circle at the
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Fig. 4.3 An example showing the image of an arc ˇ under (a) the gluing map, and (b) the
clockwise map

top-right (bottom-left) at a crossing, or segment of HA, as in the right of Fig. 2.10
on p. 28. However in the lower polyhedron, white faces are drawn with vertices in
the center of segments of HA, as in Fig. 2.9 on p. 28. The gluing map gives the
white faces on the upper polyhedron a slight rotation counterclockwise, moving a
vertex adjacent to a segment of HA to lie at the center of that same segment, and
then maps the region on the upper polyhedron to the corresponding region on the
lower polyhedron by the identity. See Fig. 4.3. On the other hand, instead of rotating
counterclockwise in the upper polyhedron to put vertices at the centers of segments
of HA, � rotates clockwise to the nearest adjacent edge in the clockwise direction.

It is instructive to compare our setting with Menasco’s polyhedral decomposition
of alternating links [64]. In an alternating diagram D.K/, the state surface SA is a
(shaded) checkerboard surface for K , and the union of all the white faces of the
polyhedra is the other (white) checkerboard surface SB . If the 1-skeleta of both the
top polyhedron and the bottom polyhedron are identified with the 4-valent graph of
D.K/, then the gluing map rotates all white faces counterclockwise and all shaded
faces clockwise. In other words, on all the white faces, the identity map differs from
the gluing map by a clockwise rotation. Furthermore, the identity map is of course
defined on the entire polyhedron, not just on the white faces.
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In our case, the clockwise map � is an analogue of the identity map, and also
differs from the gluing map by a 2�=n clockwise rotation. In keeping with the
analogy, the domain of definition of � can be extended beyond the white faces
(although not all the way to the entire top polyhedron).

Lemma 4.8. Let U be a polyhedral region of the projection plane, that is, a region
of the complement of sA [ .[i ˛i /. Let W1; : : : ; Wn be the white faces in U , and let
P 0 be the lower polyhedron associated to U . Then the clockwise map � W W1 [ : : :[
Wn ! P 0 has the following properties:

.1/ If x and y are points on the boundary of white faces in U that belong to the
same shaded face of the upper polyhedron P , then �.x/ and �.y/ belong to
the same shaded face of P 0.

.2/ Let S � P be a normal square in the upper polyhedron, such that the white
faces V , W intersected by S belong to U . Let ˇV D S \ V and ˇW D S \ W .
Then the arcs �.ˇV / and �.ˇW / can be joined along shaded faces to give
a normal square S 0 � P 0, defined uniquely up to normal isotopy. We write
S 0 D �.S/.

.3/ If S1 and S2 are disjoint normal squares in P , all of whose white faces belong
to U , then S 0

1 and S 0
2 are disjoint normal squares in P 0.

Proof. For conclusion (1), let F be a shaded face of the upper polyhedron P , and
let x and y be points on .@F / \ U . Then x and y can be connected by an arc �

running through F , and we can make � simple with respect to F (Definition 3.2).
If the arc � is parallel to an ideal edge e of the upper polyhedron, then x; y 2 e,
hence �.x/; �.y/ 2 �.e/, and the conclusion holds. Otherwise, the arc � must
cross some state circle C , hence is non-trivial. Because both of its endpoints are in
the same polyhedral region, in fact � must cross C twice, first running upstream
and then downstream by Lemma 3.11. Thus we can split � into two disjoint arcs
beginning at C , running downstream, and terminating in the same polyhedral region.
By Lemma 3.14 (Parallel stairs), � must run up and down a pair of right-down
staircases, and by part (3) of that lemma, the first state circle C1 that � crosses when
running from x to y must be the same as the last state circle C1. Now C1 � @U

corresponds to a shaded face F 0 of the lower polyhedron P 0 (see Fig. 2.9 on page
28). Thus both �.x/ and �.y/ must lie on the boundary of F 0.

For (2), let S � P be a normal square, such that the white faces V , W intersected
by S belong to U . Let u; x; y; z be the four points of intersection between S and the
edges of P , such that u; x 2 @V and y; z 2 @W . Then x; y lie on the boundary of
the same shaded face F . By conclusion (1), �.x/; �.y/ belong to the same shaded
face F 0 � P 0. Since F 0 is simply connected by Theorem 3.12, �.x/ and �.y/ can
be connected by a unique isotopy class of arc in F 0. Similarly, �.z/ and �.u/ can
be connected by a unique isotopy class of arc in a shaded face of P 0. These normal
arcs in shaded faces combine with the arcs �.ˇV / � �.V / and �.ˇW / � �.W / to
form a normal square S 0 � P 0, which is unique up to normal isotopy.

For conclusion (3), let S1 and S2 be disjoint normal squares in P , all of whose
white faces belong to U . The arcs of S1 and S2 that lie in white faces of U are
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mapped homeomorphically (hence disjointly) to white faces in P 0. Thus it remains
to check that the arcs of S 0

1 and S 0
2 are also disjoint in the shaded faces. Suppose that

both S1 and S2 pass through a shaded face F , disjointly. Then we can label points
w; x; y; z, in clockwise order around @F , such that S1 intersects @F at points w; x

and S2 intersects F at points y; z. Then the four points �.w/; �.x/; �.y/; �.z/ are
also arranged in clockwise order around a shaded face F 0 of P 0. Thus S 0

1 and S 0
2 are

disjoint in F 0. ut
One part of proving the main result in this chapter is to show that certain

normal squares in the upper polyhedron are parabolically compressible. For that,
we will map them to squares in the lower polyhedra, using the clockwise map and
Lemma 4.8, and consider their intersections with certain normal squares in the lower
polyhedra. We use the following lemma, which is due to Lackenby [58, Lemma 7].
We include the proof for completeness.

Lemma 4.9. Let P be a prime, checkerboard-colored polyhedron with 4-valent
vertices. Let S and T be normal squares in P , which have been moved by normal
isotopy into a position that minimizes their intersection number. Then S and T are
either disjoint, or they have an essential intersection in two faces of the same color.

Recall, from Definition 2.20 on p. 29, that a polyhedron P is prime if it contains
no normal bigons. By Proposition 3.18 on p. 46, our polyhedra are all prime.

Proof. The four sides of S run through four distinct faces of the polyhedron, as do
the four sides of T . A side of S intersects a side of T at most once. If all four sides
of S intersect sides of T , then S and T are isotopic and can be isotoped off each
other. So S and T intersect at most three times. However, @S and @T form closed
curves on the boundary of the polyhedron, hence S intersects T an even number of
times, so 0 or 2 times. If twice, suppose S and T intersect in faces of opposite color.
Then each arc of S n T and T n S intersects the edges of the polyhedron an odd
number of times. Hence one of the four complementary regions of S [ T has two
points of intersection with the edges of the polyhedron in its boundary. Because the
polyhedron is prime, this gives a bigon which cannot be normal, hence S and T can
be isotoped off each other. ut

This lemma has the following useful consequence, illustrated in Fig. 4.4.

Lemma 4.10. Let P be a prime, checkerboard-colored polyhedron with 4-valent
vertices. Let S and T be normal squares in P , moved by normal isotopy to minimize
their intersection number. Suppose that S and T pass through the same white face
W , and that the edges S \W and T \W differ by a single rotation of W (clockwise
or counterclockwise). Then exactly one of the following two conclusions holds:

.1/ Each of S and T cuts off a single ideal vertex in W , and S and T are disjoint.

.2/ Neither S nor T cuts off a single vertex in W . The two normal squares intersect
in W and in another white face W 0.
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T

Fig. 4.4 Cases (1) and (2) of Lemma 4.10 are illustrated for an example. Note if (2) happens,
S and T intersect in two white faces

Proof. First, suppose that S cuts off a single ideal vertex in W . Then so does T .
Hence S and T do not intersect in W . By Lemma 4.9, we can conclude that if S

and T intersect at all, they intersect in two shaded faces, F and G. Since W meets
each shaded face at only one edge, S \ W and T \ W must run in parallel through
W . Thus their intersections in F and G can be isotoped away, and S and T are
disjoint. This proves (1).

Next, suppose that S does not cut off a single ideal vertex in W . Then neither
does T . Thus, since S \ W and T \ W differ by a clockwise or counterclockwise
rotation of W , they must have an essential intersection. By Lemma 4.9, they must
also intersect in another white face W 0. This proves (2). ut

When case (1) of Lemma 4.10 holds, note that there is a parabolic compression
of S , through W , to the single ideal vertex of W that it cuts off. Similarly for T .

Definition 4.11. Let P be a truncated, checkerboard-colored ideal polyhedron.
Then a normal trapezoid in P is a normal disk that passes through two shaded
faces, one white face, and one truncated ideal vertex.

Trapezoids give the following analogue of Lemma 4.10.

Lemma 4.12. Let P be a prime, checkerboard-colored polyhedron with 4-valent
vertices. Let S be a normal square in P , and T a normal trapezoid. Suppose that
S and T pass through the same white face W , and that their arcs of intersections
with W differ by a single rotation (clockwise or counterclockwise). Then S and T

are disjoint, and each of S and T is parabolically compressible to an ideal vertex
of W .

Proof. Let T 0 be a normal square obtained by pulling T off an ideal vertex, into
a white face W 0. Then S and T 0 are normal squares that satisfy the hypotheses of
Lemma 4.10. Because T 0 cuts off a single ideal vertex of W 0, S and T 0 cannot
intersect in that white face. Thus conclusion (1) of Lemma 4.10 holds: S and T 0 are
disjoint, and each one cuts off a single ideal vertex in W . Thus S and T are also
disjoint, and each one is parabolically compressible to an ideal vertex of W . ut

By applying Lemmas 4.10 and 4.12, we will show that many normal squares are
also parabolically compressible. See e.g. the proof of Lemma 4.20 for a preview of
the argument.
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4.3 Parabolically Compressing Normal Squares

Results of Sect. 4.2 are enough to handle normal squares with sides in the same
polyhedral region. Note this is all that occurs for alternating knots, as in [58]. In this
section, we will use tentacle chasing arguments to extend our tools, so that we can
deal with normal squares with their sides in different polyhedral regions. This is the
content of the next proposition, which is the main result in this section.

Proposition 4.13. Let S be a normal square in the upper polyhedron, with
boundary consisting of arcs ˇV , ˇW on white faces V and W , and arcs �1, �2 on
shaded faces. Suppose that V and W are in different polyhedral regions. Finally,
suppose that S is glued to a normal square T at W . Then S cuts off a single ideal
vertex in W , hence is parabolically compressible at W .

Proposition 4.13 is a crucial ingredient for the proof of the main result of the
chapter, Theorem 4.4, which is given in the next section. Before we give the proof
of the proposition, we need to establish some technical lemmas. We advise the
reader that only the statement of Proposition 4.13, and not those of the intermediate
technical lemmas, are required for the proof of Theorem 4.4. Thus readers eager
to get to the proof of the main result of the chapter may, at this point, move to the
next section, on p. 67, without loss of continuity. However, several of the technical
lemmas in the remainder of this section are repeatedly used in Chap. 6.

Lemma 4.14 (Opposite sides). Let S be a normal square with boundary arcs ˇV

and ˇW on white faces V and W , and arcs �1 and �2 on distinct shaded faces.
Suppose �1 and �2 intersect the same state circle C . Then the intersections are in
tentacles attached to edges on opposite sides of C , and C must separate V and W .

Recall again that arcs in a shaded face can only intersect state circles at the heads
of tentacles, adjacent to segments of HA. (See Definitions 2.16 and 2.17, as well
as Fig. 2.7, on p. 25.) Lemma 4.14 (Opposite sides) asserts that under the given
hypotheses, �1 and �2 run adjacent to heads of tentacles attached to C , but adjacent
to segments on opposite sides of C .

Proof. We will first show that C must separate W and V , and then that when we
direct �1 and �2 to run across C away from V and toward W , one of �1, �2 runs
upstream and one runs downstream. This will imply the result.

Suppose, by way of contradiction, that C does not separate V and W , but that
both lie on the same side of C . Then both �1 and �2 must intersect C twice.
Direct �1 and �2 away from V . We may assume each is simple with respect to
its shaded face. Now Lemma 3.11 (Utility lemma) implies that both arcs cross C

first running upstream, then running downstream. Consider the portion of the arcs
running downstream. These are both running downstream from C , connected at
their ends by ˇW . This contradicts part (4) of Lemma 3.14 (Parallel stairs).

Now, suppose C separates V and W , but �1 and �2 run in the same direction
across C . Then, switching V and W if necessary, we may assume that both �1 and
�2 run away from V across C in the downstream direction. Again we have arcs
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�1 and �2 running downstream from C , connected at their ends by ˇW . Again this
contradicts Lemma 3.14 (Parallel stairs).

Lemma 4.15 (Entering polyhedral region). Let S be a normal square with
boundary consisting of arcs ˇV and ˇW on white faces V and W , and arcs �1 and
�2 on shaded faces. Suppose also that V and W are in distinct polyhedral regions
RV and RW . Then (up to relabeling), when �1 and �2 are directed away from V

towards W , we have the following:

.1/ The arc �1 first enters RW through a state circle C running in the downstream
direction, and immediately connects to ˇW (i.e., without intersecting any
additional state circles or non-prime arcs).

.2/ The arc �2 first enters RW either through C running upstream, or through a
non-prime arc with both endpoints on C . In any case, if �2 crosses C , then it
must do so only once, running upstream.

Proof. Since V and W are in distinct polyhedral regions, they are either on opposite
sides of some state circle, or if they are not on opposite sides of any state circle, they
are separated by a non-prime arc ˛ with both endpoints on a state circle C . In the
latter case, C does not separate V and W , nor does any state circle contained inside
the non-prime half-disk bounded by ˛ and C separate V and W . We distinguish two
cases.

Case 1: Suppose that V and W are separated by a non-prime arc ˛ with both
endpoints on some state circle C , but that C does not separate V and W . Suppose
also that within the non-prime half-disk bounded by ˛ and C that contains W , no
other state circle separates V and W . Without loss of generality, we may suppose
that ˛ is innermost with this property with respect to W , that is, that ˛ is the non-
prime arc with this property closest to W .

Notice that one of �1, �2 must cross C , since the arcs are on distinct shaded faces.
After relabeling, we may assume �1 crosses C . Since V and W are on the same side
of C , �1 must actually cross C twice. But then Lemma 3.11 (Utility lemma) implies
that it crosses C first running upstream, then running downstream. So �1 crosses C

running downstream when it enters RW .
Since �1 is running downstream, it will be adjacent to some state circle C4

attached to C by a segment of the graph HA. By assumption, C4 does not separate
V and W .

Since �1 is going downstream, Lemma 3.10 (Downstream continues down)
implies that it can only continue downstream next, or cross a non-prime arc with
W inside, or exit the shaded face immediately to ˇW . The first of these three
possibilities cannot happen: �1 cannot continue downstream, else it crosses into
C4, and must cross back out, which is impossible by Lemma 3.11 (Utility lemma).
The second possibility also cannot hold by assumption: ˛ was assumed to be
innermost with respect to W . Thus the only possibility is that �1 exits the shaded
face immediately to ˇW .

If �2 also crosses C , then it must do so twice, since its endpoints are not separated
by C . Lemma 3.11 (Utility lemma) implies that �2 first crosses C running upstream,
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then crosses running downstream. But now �1 and �2 both cross C running
downstream, then have endpoints attached at ˇW . This contradicts Lemma 3.14
(Parallel stairs). So �2 does not cross C , which implies it enters W across a non-
prime arc, as desired.

Case 2: Suppose that V and W are on opposite sides of some state circle. Then
there is some such state circle which is closest to W . Call this state circle CW .
The arcs �1 and �2 must both intersect CW . By Lemma 4.14 (Opposite sides), the
intersections are in opposite directions, when �1 and �2 are both directed toward W .
Relabel, if necessary, so that �1 is the arc running downstream toward W across CW .

Since �1 is running downstream, it will be adjacent to some state circle C4

attached to CW by a segment of the graph HA. Again since �1 is running
downstream, Lemma 3.10 (Downstream continues down) implies that it can only
go downstream next, or cross a non-prime arc with W inside, or exit the shaded face
to ˇW . The first possibility cannot happen: �1 cannot continue downstream, else
it crosses into C4, and must cross back out, which is impossible by Lemma 3.11
(Utility lemma). Suppose the second possibility holds, that is that �1 crosses a non-
prime arc ˛ with W inside. This non-prime arc ˛ has both endpoints on C4, and
C4 does not separate V and W by choice of CW . Moreover, within the non-prime
half-disk bounded by ˛ and C4 which contains W , no state circle can separate V

and W , again by choice of CW . Thus if this second possibility holds, we are in Case
1, with C4 playing the role of C , and the lemma is true (after relabeling �1 and �2

again).
The only remaining possibility is that �1 exits the shaded face immediately to

ˇW after crossing CW . This proves statement (1) of the Lemma, with C D CW .
Finally, the fact that �2 must cross C running upstream, if it crosses C at all,

follows immediately from the fact that �1 crosses C running downstream, and
Lemma 4.14 (Opposite sides). ut
Lemma 4.16. Let S be a normal square with boundary arcs ˇV and ˇW on white
faces V and W , and arcs �1 and �2 on shaded faces. Suppose V and W are in
distinct polyhedral regions RV and RW . Let CW be the state circle in the conclusion
of Lemma 4.15 (Entering polyhedral region), and relabel if necessary so that �1 and
�2 are as in the conclusion of that Lemma, when directed away from V towards
W . Suppose, moreover, that arc �2 does not immediately connect to ˇW after it first
enters RW . Then, �2 runs across a state circle C2 running upstream, then eventually
crosses C2 again into RW running downstream, at which point it immediately
connects to ˇW (i.e. without crossing any other state circles).

Note that Lemmas 4.15 and 4.16 imply that if �2 does not immediately connect
to ˇW , the region RW is of the form shown in Fig. 4.5.

Essentially, what these two lemmas say is that �1 only enters the region RW

once, to connect to ˇW . The arc �2, on the other hand, may enter RW , then leave and
travel elsewhere, but when it returns it will not leave again, but connect immediately
to ˇW .
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Fig. 4.5 The region RW in the case that �2 does not immediately connect to ˇW . Left: Initially
�2 enters RW by running upstream. Right: Initially �2 enters RW along a non-prime arc. In both
cases, �2 runs across a state circle C2 and eventually re-enters RW

Proof. If after entering RW , �2 does not immediately meet ˇW , then it must cross a
state circle or non-prime arc first. It does not cross a non-prime arc, for if so, it would
enter a non-prime half-disk bounded by the non-prime arc and some state circle C ,
so must exit this non-prime half-disk along C , and by Lemma 3.7 (Shortcut lemma),
must do so running downstream. Then �2 must cross C again, to re-enter RW , but
then Lemma 3.11 (Utility lemma) implies it must first cross running upstream. This
is impossible. So �2 does not cross a non-prime arc on the boundary of RW between
entering RW and connecting to ˇW .

Similarly, �2 cannot follow a tentacle downstream after crossing into RW , or
as above it would not be able to re-enter RW . The only other possibility is that
�2 follows a tentacle upstream, crossing into a state circle C2. Then �2 must exit
out of C2. Lemma 3.11 (Utility lemma) implies that �2 exits C2 in the downstream
direction.

Now �2 is running downstream, so will be on the tail of a tentacle adjacent to
a state circle C3, attached to C2 by a segment of HA. Since �2 is running down-
stream, Lemma 3.10 (Downstream) implies it either continues running downstream,
crossing into C3, or crosses a non-prime arc ˛ with W on the opposite side, or
exits the shaded face to ˇW . The first possibility cannot hold: �2 cannot cross C3

running downstream, since it must cross out again to meet ˇW , and this contradicts
Lemma 3.11 (Utility lemma).

The second possibility will also lead to a contradiction. If �2 crosses a non-prime
arc ˛ with W on the opposite side, then ˛ would have both endpoints on the state
circle C3. The non-prime half-disk containing W bounded by ˛ and C3 is therefore
separated from the region containing CW . But this is impossible: CW meets the
boundary of RW . So the second possibility cannot hold either.
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Fig. 4.6 Regions RW in the
case where �2 connects
immediately to ˇW

The only remaining possibility is that �2 immediately connects to ˇW , as desired.
ut

We are now ready to give the proof of Proposition 4.13: a normal square S whose
white faces are in different polyhedral regions, which is glued to a normal square in
a lower polyhedron, must parabolically compress.

Proof (of Proposition 4.13). As usual, let �1 and �2 be the arcs of the square S on
the shaded faces. By Lemma 4.15 (Entering polyhedral region), we may assume
that �1 enters RW , the polyhedral region containing W , by crossing a state circle
CW in the downstream direction, and then immediately connects to ˇW . We may
also assume that �2 enters either in the upstream direction or across a non-prime
arc.

Case 1: Suppose first that �2 also meets ˇW immediately, without meeting any
other boundary components of RW . Then the region RW and the arc ˇW will have
the form of one of the two graphs shown in Fig. 4.6, corresponding to the two
possibilities for �2.

If the region marked X in the diagrams of Fig. 4.6 contains state circles, then
if we push the endpoints of the arc ˇW to the state circle on the outside in each
diagram, we form a non-prime arc ˛, bounding state circles on either side. This
contradicts the maximality of our prime decomposition, Definition 2.19. Thus the
diagrams in Fig. 4.6 must contain no state circles in the regions marked X . Then in
both cases, the tentacle running through X around the interior of the outermost state
circle will terminate at the top of the tentacle where ˇW has its other endpoint, as
illustrated. Thus ˇW cuts off a single ideal vertex of the white face W . But then the
portion of the white disk bounded by these two shaded faces and the arc ˇW forms
a parabolic compression disk for S , as desired.

Case 2: Now suppose that �2 does not immediately connect to W after crossing
CW . Then Lemma 4.16 implies that the region RW is as shown in Fig. 4.5. Recall
that by assumption, S is glued to a square T in the lower polyhedron at W . Apply
the clockwise map to ˇW , sending it to an arc which differs from the arc of T lying
in W by a clockwise rotation. The image of ˇW is shown in Fig. 4.7.

Notice in the lower polyhedron that there exists an arc through two innermost
disks (boundary components of RW ) adjacent to a single segment of HA which
connects the endpoints of the image of ˇW under the clockwise map; see Fig. 4.7.
In fact, this gives a normal trapezoid S 0 contained in the lower polyhedron with
one of its sides on W , two sides on the two shaded faces corresponding to the
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two innermost disks, and a side running over the ideal vertex of the polyhedron
corresponding to the center of this edge of HA.

Recall that we have the normal square T in the lower polyhedron with one side
on the white face W , differing from the side of S 0 on W by a single clockwise
rotation. Lemma 4.12 implies that S 0 and T are parabolically compressible to an
ideal vertex of W . Thus, S is parabolically compressible at W . ut

4.4 I-Bundles are Spanned by Essential Product Disks

We can now complete the proof of Theorem 4.4. Recall from the beginning of the
chapter that the proof of Theorem 4.4 required three steps, whose proofs we have
postponed until now. The first step, Proposition 4.18, relies on the following general
lemma, which will also be needed in Chap. 5.

Lemma 4.17 (Product rectangle in white face). Let B be an I -bundle in MA,
whose vertical boundary is essential. Suppose that B has been moved by isotopy
to minimize its intersections with the white faces. Then, for any white face W , the
intersection B \ W is a union of product rectangles whose product structure comes
from the I -bundle structure of B . In other words, each component of B \ W has
the form

D D ˛ 	 I;

where ˛ 	 f0g and ˛ 	 f1g are sub-arcs of ideal edges of W .

Proof. Suppose, first, that B D Q 	I is a product I -bundle over an orientable base
Q. At the end of the proof, we will consider the case of a non-orientable base.

Let D be a component of B \ W . Notice that @D cannot contain any simple
closed curves in the interior of W , because an innermost such curve would bound
a compression disk for @B , and can be removed by isotopy. Similarly, @D cannot
contain an arc from an ideal edge of W to the same ideal edge, since an outermost
such arc can be removed by isotopy.
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Truncate the ideal vertices of W , so that every ideal vertex becomes an arc
(parallel to the parabolic locus). Abusing notation slightly, the portion of D in
this truncated face is still denoted D. Then, by the above paragraph, D must be a
2n-gon, with sides ˛1; ˇ1; : : : ; ˛n; ˇn. Here, every ˛i is a sub-arc of an ideal edge
of W (and comes from the horizontal boundary of B), while every ˇi is a normal
arc that connects distinct ideal edges of W (and comes from the vertical boundary
of B).

We claim that every ˇi spans the product bundle B D Q 	 I top to bottom. For,
suppose for concreteness that both endpoints of ˇ1 are on Q 	 f1g. Then ˇ1 � W

is parallel to Q 	 f1g through Q 	 I , which gives a boundary compression disk for
the white face W . This contradicts Lemma 3.20 on p. 48, proving the claim. Note
that this implies n is even.

Next, we claim that n D 2. For, suppose for a contradiction that n > 2. Then the
sides ˛1 and ˛3 belong to the same (top or bottom) boundary of B , say Q 	 f1g.
There is an arc � through the polygon D � W that connects ˛1 to ˛3. This arc is
parallel to Q 	 f1g through Q 	 I , which again gives a boundary compression disk,
contradicting Lemma 3.20. We conclude that D is a rectangle, with ˛1; ˛2 horizontal
and ˇ1; ˇ2 vertical. Thus, after an appropriate isotopy, D is a vertical rectangle in
the product structure on B .

Now, suppose that B D Qe	I , where Q is non-orientable. Let �1; : : : ; �n be a
maximal collection of disjoint, embedded, orientation-reversing loops in Q. Then
the I -bundle over each �i is a Möbius band Ai . Furthermore, Q n .[�i / is an
orientable surface Q0, such that B0 D B n .[Ai / is a product I -bundle over Q0.
Let W be a white face, and let D be a component of B \ W . By the orientable case
already considered, every component of B0 \ W is a product rectangle ˛ 	 I . Also,
Ai \ W is a union of arcs, hence the regular neighborhood of each vertical Möbius
band Ai intersects W in rectangular product strips. Each of these strips respects the
I -bundle structure of B . Thus D is constructed by joining together several product
rectangles of B0 \ W , along product rectangles in the neighborhood of Ai \ W .
Therefore, all of D is a product rectangle, as desired. ut
Proposition 4.18 (Step 1). Let B be a non-trivial I -bundle of the characteristic
submanifold of MA. Then B meets the parabolic locus of MA.

Proof. Recall that since B is non-trivial we have �.B/ < 0. By Lemma 4.6, B

contains a product bundle Y D Q 	 I , where Q is a pair of pants. Moreover, when
put into normal form in a prime decomposition of MA, the three annuli of @Y are
composed of disjointly embedded normal squares. Label the squares S1; : : : ; Sn.
Observe each has the form of a product Si D �i 	 I , where �i is a sub-arc of @Q.

If some Si is parabolically compressible, observe that the parabolic compression
disk E that connects Si to the parabolic locus is itself a product I -bundle, which
can be homotoped to have product structure matching that of Si . Hence E � B , and
B borders the parabolic locus, as desired.

If Y passes through more than one lower polyhedron, some square Si must pass
through white faces in different polyhedral regions. Thus, by Proposition 4.13, Si is
parabolically compressible. Hence, as above, B borders the parabolic locus.
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Fig. 4.8 Left: the product bundle Q � I for a pair of pants Q. Right: the prism Q0 � I

For the rest of the proof, assume that every Si is parabolically incompressible,
and so Y is entirely contained in the upper polyhedron and exactly one lower
polyhedron P . This assumption will lead to a contradiction.

Consider the intersections between Y D Q 	 I and the white faces. By
Lemma 4.17, each component of intersection is a product rectangle ˛ 	 I , where
˛ is an arc through the interior of Q. Thus Y intersects the individual polyhedra
in a finite number of prisms, each of which is the product of a polygon with an
interval. Vertical faces of the prism alternate between product rectangles on white
faces and normal squares Si . Let Y0 D Q0 	 I be the prism whose base polygon
has the greatest number of sides. Since Q is a pair of pants, and has negative Euler
characteristic, Q0 must have at least six sides, half of which lie on normal squares
Si . See Fig. 4.8.

Let T1; : : : ; Tk denote the normal squares that bound Y0, listed in order. By the
above, k � 3. Let V be the white face containing the rectangle of Y0 between T1 and
T2, and let W be the white face containing the rectangle between T2 and T3. Finally,
let T0 denote the normal square of @Y glued to T2 at the white face V . Thus each Tj

is one of the Si , relabeled. Note that if Y0 is contained in the upper polyhedron, then
so are T1; : : : ; Tk, but T0 is contained in the lower polyhedron. Similarly, if Y0 is in
the lower polyhedron, then so are T1; : : : ; Tk , but T0 is in the upper polyhedron.

Using Lemma 4.8, map all the Tj to the lower polyhedron, by the clockwise
map. If T0 is in the upper polyhedron, let T 0

0 be its image under the clockwise map.
Otherwise, if T0 is in the lower polyhedron, let T 0

0 D T0. Similarly, if Ti , 1 � i � k

is in the upper polyhedron, let T 0
i be its image under the clockwise map. Otherwise,

let T 0
i D Ti . Notice that because T1; : : : ; Tk are pairwise disjoint, Lemma 4.8(3)

implies that T 0
1; : : : ; T 0

k must also be disjointly embedded in the lower polyhedron P .
Now, since T0 is glued to T2 across the white face V , T 0

0 must differ from T 0
2 by a

single rotation of V . Since we are assuming that T 0
0 and T 0

2 cannot be parabolically
compressible at V , Lemma 4.10 implies T 0

0 and T 0
2 must intersect, both in V and in

the other white face met by T 0
2 , which recall is the face W .

Now, T 0
1 runs parallel to T 0

2 through V . Thus T 0
0 must also intersect T 0

1 , and again
Lemma 4.10 implies that T 0

0 and T 0
1 intersect in W . Similarly, T 0

3 runs parallel to T 0
2

through W , so Lemma 4.10 implies that T 0
0 intersects T 0

3 in W and in V . But now,
T 0

1 , T 0
2 , and T 0

3 are disjoint normal squares through V and W , so must be parallel,
and in particular, T 0

2 must separate T 0
1 and T 0

3 . See Fig. 4.9. On the other hand, T 0
1 ,
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T 0
2 and T 0

3 are all lateral faces of the same contractible prismatic block Y0. This is a
contradiction. ut

The following proposition supplies Step 2 of the proof. We note that the proof of
the proposition is a straightforward topological argument that doesn’t use any of the
machinery we have built.

Proposition 4.19 (Step 2). Suppose B is a non-trivial connected component of the
maximal I -bundle of MA, which meets the parabolic locus. Then B is spanned by
essential product disks.

Proof. Since B is a 3-dimensional submanifold of S3, it is orientable. Hence B is
either the product I -bundle over an orientable surface F , or the twisted I -bundle
over a non-orientable surface F . In either case, �.F / < 0. Since B meets the
parabolic locus of MA, so does F .

We may fill F with disjoint edges with endpoints on the parabolic locus of F ,
subdividing F into disjoint triangles. Now consider the set of points lying over any
such edge of the triangulation. This will be an essential product disk, meeting the
parabolic locus of MA at those points that lie over the endpoints of the edge, and
meeting SA elsewhere. Remove all such essential product disks from B .

In F , removing such arcs gives a finite collection of open disks. The I -bundle
over such a disk is a prism over a triangle, so we have satisfied the definition of
spanning, Definition 4.3. ut

To complete the third and final step of the proof of Theorem 4.4, we need the
following lemma.

Lemma 4.20. Suppose S is a normal disk in the upper polyhedron, glued to a
normal disk T in the lower polyhedron along a white face W . If one of S or T is
a normal trapezoid and the other is either a normal trapezoid or a normal square,
then both S and T parabolically compress at W .

Proof. For each of S and T , define normal squares S 0 and T 0 in the following way.
If S is a normal square, then let S 0 D S . If S is a trapezoid, then let S 0 be the
normal square obtained by pulling S off the parabolic locus, and into a white face
V . Similarly, if T is a normal square, we let T 0 D T ; otherwise, if T is a trapezoid,
we define T 0 to be the normal square obtained by pulling T off the parabolic locus.



4.5 The � -Adequate, � -Homogeneous Setting 71

Notice that the resulting squares S 0 and T 0 are glued to each other at W . By
Proposition 4.13, if V and W do not belong to the same region of sA [ .[i ˛i /, S 0 is
parabolically compressible at W . If S 0 parabolically compresses at W , then so does
T 0 (because it is glued to S 0 at W ).

Thus, we may assume that V and W belong to the same region of the complement
of sA [ .[i ˛i /. Then the entire boundary of S 0 can be mapped to the boundary
of a square S 00 in the lower polyhedron containing T 0, via the clockwise map of
Definition 4.7 and Lemma 4.8.

By hypothesis, either S or T (or both) is a trapezoid. Thus either S 00 or T 0 cuts
off a single ideal vertex in a white face other than W , hence S 00 and T do not
intersect in any white face other than W . This means we must have conclusion (1)
of Lemma 4.10: S 00 and T 0 do not intersect at all, and each of them cuts off an ideal
vertex of W . Therefore, both S and T are parabolically compressible at W . ut
Proposition 4.21 (Step 3). Let D be an essential product disk in MA. Then D

parabolically compresses to a collection of essential product disks, each of which is
embedded in a single polyhedron.

Proof. Let D be an essential product disk in MA. If D is disjoint from all white
faces, then we are done: D is contained in a single polyhedron.

If D meets white faces, then they split it into disks S1; : : : ; Sn. Because our
polyhedra cannot contain any normal bigons (Lemma 3.18), every arc of intersection
between D and a white face must run from one side of D to the opposite side. Thus
S1 and Sn are normal trapezoids, and S2; : : : ; Sn�1 are normal squares. Consider S1

and S2. One of these is in the upper polyhedron, and one in the lower. They meet at a
white face W . Lemma 4.20 implies that both S1 and S2 must parabolically compress
at W . So D compresses to essential product disks D1 and D2, where D1 is the
compressed image of S1 and D2 is the compressed image of S2[� � �[Sn. Repeat this
argument for the essential product disk D2. Continuing in this manner, we see that D

parabolically compresses to essential product disks, each in a single polyhedron. ut

4.5 The � -Adequate, � -Homogeneous Setting

All the results of this chapter also hold in the setting of the ideal polyhedral
decomposition for �-adequate, �-homogeneous diagrams. Here, we briefly discuss
this generalized setting.

Lemma 4.6 holds, and the proof requires no changes. Hence in the characteristic
I -bundle, we may find a product bundle Y D Q 	 I , where Q is a pair of pants and
the annuli of @Y are composed of embedded normal squares.

In Definition 4.7, the clockwise map was defined to map faces of the upper
polyhedron to faces of the lower. Each of our white faces in the �-homogeneous case
is contained in an all-B or all-A polyhedral region. In the latter case, we use the same
clockwise map as before. As the map is identical, all the results in that section hold.
In the all-B case, rather than mapping by one rotation in the clockwise direction,
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we need to map by one rotation in the counter-clockwise direction. However, the
properties in Lemma 4.8 will still hold in the all-B case, and the proof goes through
without change.

We then have Lemma 4.9, which discusses the intersections of normal squares
in a checkerboard polyhedron. This lemma is due to Lackenby [58, Lemma 7], and
holds in complete generality. This immediately implies Lemma 4.10: two normal
squares with arcs in the same white face which differ by a single rotation, will either
each cut off a single ideal vertex in that face and not intersect at all, or intersect
nontrivially in both of their corresponding white faces. We also obtain Lemma 4.12.

The results of Sect. 4.3 will hold as well. A check through their proofs indicates
that they require the named lemmas from Chap. 3, which we have shown to hold
in the �-adequate, �-homogeneous case. In particular, Proposition 4.13 holds:
A normal square whose white faces are in different polyhedral regions, glued
to a normal square in a lower polyhedron, must parabolically compress. More
particularly, it will cut off a single ideal vertex in the white face. The proof of the
proposition uses Lemmas 4.15 and 4.16, as well as Lemma 4.12, which continue
to hold. There are two cases of the proof. The second uses the clockwise map. In
the case that the polyhedral region is all-B , we must use the “counter-clockwise
map” instead. This requires reflecting the figures that illustrate the proof, but the
combinatorics of the situation will remain unchanged.

Finally, we step through the results of Sect. 4.4. Lemma 4.17 (Product rectangle
in white face) requires only Lemma 3.20, which follows immediately from Propo-
sition 3.24 (No normal bigons) in the �-adequate, �-homogeneous case. Hence it
continues to hold in this setting. Similarly, Proposition 4.18 holds. The proof applies
verbatim, with the sole modification that the “clockwise map” must be replaced by
the “counter-clockwise map” in an all-B polyhedral region.

Proposition 4.19 holds without change. Lemma 4.20 holds after replacing “clock-
wise” with “clockwise or counter-clockwise” in the proof. Finally, Proposition 4.21
holds without change.

Thus all the results of this chapter hold for �-adequate, �-homogeneous
diagrams. In particular, the following generalization of Theorem 4.4 reduces
the problem of understanding the I -bundle of the characteristic submanifold of
M� D S3nnS� to the problem of understanding and counting EPDs in individual
polyhedra.

Theorem 4.22. Let D be a (connected) diagram of a link K , and let � be an
adequate, homogeneous state of D. Let B be a non-trivial component of the
characteristic submanifold of M� D S3nnS� . Then B is spanned by a collection
of essential product disks D1; : : : ; Dn, with the property that each Di is embedded
in a single polyhedron in the polyhedral decomposition of M� . ut



Chapter 5
Guts and Fibers

This chapter contains one of the main results of the manuscript, namely a calculation
of the Euler characteristic of the guts of MA in Theorem 5.14. The calculation will
be in terms of the number of essential product disks (EPDs) for MA which are
complex, as in Definition 5.2, below. In subsequent chapters, we will find bounds on
the number of such EPDs in terms of a diagram, for general and particular types of
diagrams (Chaps. 6–8), and use this information to bound volumes, and relate other
topological information to coefficients of the colored Jones polynomial (Chap. 9).

Recall that we have shown in Theorem 4.4 that the I -bundle of MA is spanned
by EPDs, each of which is embedded in a single polyhedron of the polyhedral
decomposition. (See Definitions 4.2 and 4.3 on p. 55 to recall the terminology.)
Thus to calculate the Euler characteristic of the guts, we calculate the minimal
number of such a collection of spanning EPDs. We will do this by explicitly
constructing a spanning set of EPDs with desirable properties (Lemmas 5.6 and 5.8).
In Proposition 5.13, we will compute exactly how redundant the spanning set is. This
leads to the Euler characteristic computation in Theorem 5.14. Along the way, we
also give a characterization of when the link complement fibers over S1 with fiber
the state surface SA, in terms of the reduced state graph G

0
A, in Theorem 5.11.

5.1 Simple and Non-simple Disks

By Theorem 4.4, every non-trivial component in the characteristic submanifold of
MA is spanned by essential product disks in individual polyhedra. Our goal is to find
and count these disks, starting with the lower polyhedra.

Lemma 5.1. Let D be an A-adequate diagram of a link in S3. Consider a prime
polyhedral decomposition of MA D S3nnSA. The essential product disks embedded
in the lower polyhedra are in one-to-one correspondence with the 2-edge loops in
the graph GA.

D. Futer et al., Guts of Surfaces and the Colored Jones Polynomial, Lecture Notes
in Mathematics 2069, DOI 10.1007/978-3-642-33302-6 5,
© Springer-Verlag Berlin Heidelberg 2013
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Proof. By definition, an EPD in a lower polyhedron must run over a pair of shaded
faces F and F 0. By Lemma 2.21 on p. 29, these shaded faces correspond to state
circles C and C 0. Furthermore, every ideal vertex shared by F and F 0 corresponds
to a segment of HA between C and C 0, or equivalently, to an edge of GA between
C and C 0. Since an EPD must run over two ideal vertices between F and F 0, it
naturally defines a 2-edge loop in GA, whose vertices are the state circles C and C 0.
In the other direction, the two edges of a 2-edge loop in GA define a pair of ideal
vertices shared by F and F 0, hence an EPD. Thus we have a bijection. ut

Typically, we do not need all the disks in the lower polyhedra to span the
I -bundle. We will focus on choosing disks that are as simple as possible.

Definition 5.2. Let P be a checkerboard-colored ideal polyhedron. An essential
product disk D � P is called

.1/ Simple if D is the boundary of a regular neighborhood of a white bigon face
of P ,

.2/ Semi-simple if D parabolically compresses to a union of simple disks (but is
not itself simple),

.3/ Complex if D is neither simple nor semi-simple.

For example, in Fig. 4.2 on p. 56, the disk on the left is semi-simple, and the disks
on the right are simple.

In certain special situations (for example, alternating diagrams studied by
Lackenby [58] and Montesinos diagrams studied in Chap. 8), simple disks suffice to
span the I -bundle of MA. In general, however, we may need to use complex disks.

Example 5.3. Consider the A-adequate link diagram shown in Fig. 5.1, left. The
graph HA for the diagram is shown in the center of the figure. Note that there are
exactly 3 polyhedral regions, hence exactly 3 lower polyhedra. In each polyhedral
region, there is exactly one 2-edge loop of GA. Thus, by Lemma 5.1, there are
exactly 3 EPDs in the lower polyhedra. Two of these (in the innermost and outermost
polyhedral regions) are simple by Definition 5.2, and may be isotoped through bigon
faces into the upper polyhedron. However, the green and orange1 shaded faces of
the upper polyhedron shown in the right panel of Fig. 5.1 meet in a total of six ideal
vertices. Since an EPD connects two ideal vertices, and a set of EPDs that spans the
part of the I–bundle contained in the upper polyhedron must connect all six vertices,
a minimum of five EPDs are required to span the part of the I -bundle contained in
the upper polyhedron. This requires using complex EPDs, for example the ones
shown in Fig. 5.1.

One feature of this example is that modifying the link diagram fixes the problem.
The modified link diagram in Fig. 5.2 is still A-adequate. This time, all the EPDs in
the lower polyhedra are simple or semi-simple. Furthermore, simple EPDs (isotoped
across bigon faces from the lower polyhedra into the upper) account for all the ideal

1Note: For grayscale versions of this monograph, green will refer to the darker gray shaded face,
orange to the lighter one.
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Fig. 5.1 Left: an A-adequate link diagram. Center: its graph HA. Right: shaded faces in the upper
polyhedron, with (normal squares corresponding to) two if an essential disk D complex EPDs
shown in red

Fig. 5.2 Left: an alternate
A-adequate diagram of the
link in Fig. 5.1. Right: the
graph HA for this diagram

vertices in the upper polyhedron where an EPD may cross from one shaded face into
another. Thus, in the modified diagram, simple EPDs suffice to span the I -bundle.
This phenomenon of modifying a diagram to remove complex EPDs is discussed
again in Chap. 10.

Definition 5.4. Let D be an essential product disk in a polyhedron P . Since P is a
ball, D separates P into two sides. We say that D is parabolically incompressible
to one side (or PITOS for short) if all parabolic compression disks for D lie on the
same side of D.

Note that simple disks, which have a bigon face to one side, are automatically
PITOS.

A convenient way to characterize PITOS disks is via the following lemma.

Lemma 5.5. Let P be a checkerboard-colored ideal polyhedron, and let F and G

be shaded faces of P . Let v1; : : : ; vn be the ideal vertices at which F meets G. Then

.1/ If we label v1; : : : ; vn such that the vertices are ordered consecutively around
the boundary of F , for example according to a clockwise orientation on
@F D S1, then v1; : : : ; vn will also be ordered consecutively on @G, but with
the reverse orientation (counterclockwise).

.2/ With the consecutive ordering of (1), an essential product disk, running through
faces F and G and ideal vertices vi and vj , is PITOS if and only if j D i ˙ 1

.mod n/.



76 5 Guts and Fibers

.3/ If n � 3 and every PITOS disk through faces F and G is simple, then F and
G are the only shaded faces of P .

Proof. We may identify @P with S2 Š R
2 [ f1g, in such a way that 1 falls in the

interior of a white face. Then the orientation on R
2 induces a (clockwise) orientation

on the boundary of every shaded face of P .
Let n be the number of ideal vertices at which F meets G. If n < 2, then there

are no EPDs through the pair of faces F; G, and the claims of the lemma are trivial.
Thus we may assume n � 2.

Order these vertices v1; : : : ; vn, clockwise around the boundary of F . For con-
clusion (1), we claim that the ideal vertices v1; : : : ; vn are ordered counterclockwise
around the boundary of G.

Let vi and viC1 be vertices that are consecutive on @F . Then there is an essential
product disk that runs through F and G, and meets exactly these ideal vertices. Let
� be the boundary of this disk. By the Jordan curve theorem, � cuts R2 into an inside
and an outside region. Let ˛F be the oriented (clockwise) arc of @F from vi to viC1.
Without loss of generality, ˛F lies inside � .

Now, consider the portion of G that lies inside � . If this portion of G has any
ideal vertices meeting F , they would have to meet F inside � . But, by construction,
the portion of @F inside � is a single arc ˛F , without any additional ideal vertices.
Therefore, inside � , G has no vertices meeting F . Hence, vi and viC1 must be
consecutive from the point of view of G. The orientation on the plane means that
the clockwise arc ˛G � @G that lies inside � must run from viC1 to vi . Thus the
vertices v1; : : : ; vn are in counterclockwise order around @G, proving (1).

For (2), observe that if an essential disk D runs through consecutive vertices vi

and viC1, then all other vertices shared by F and G are on the same side. Thus all
parabolic compressions of D are on the same side, and D is PITOS. Conversely, if
vi and vj are not consecutive, then there are parabolic compressions on both sides,
and D is not PITOS.

It remains to show (3). By Definition 5.2, any simple disk D through F and G is
parallel to a white bigon face of P . When n � 3, one component of P n@D contains
an extra ideal vertex, hence cannot be a bigon. The bigon face must be on the other
side, which we call the inside of D. Thus, when n � 3 and all PITOS disks through
F and G are simple, the insides of these disks are disjoint.

Under these hypotheses, we have mapped out the entire polyhedron P . Inside
each of the n essential product disks is a white bigon face, with no extra vertices.
Each essential product disk meets F in an arc and G in an arc. Thus outside all these
disks, there is an n-gon in F containing no additional ideal vertices, meeting an n-
gon in G containing no additional ideal vertices, where the n-gons meet at their
vertices. Since there are no additional vertices, there can be no additional faces,
white or shaded. Thus F and G are the only shaded faces in the polyhedron P . ut



5.2 Choosing a Spanning Set 77

5.2 Choosing a Spanning Set

Next, we will construct a spanning set for the part of the I -bundle that is contained
in each individual polyhedron. By Definition 4.3, a collection of EPDs span the
I -bundle of MA if the complement of these disks in the I -bundle is a union of prisms
and solid tori. Because our goal is to count the Euler characteristic of the I -bundle,
prisms and solid tori are counted differently. As we construct the spanning set, we
will keep track of the number of prisms created.

Recall that a lower polyhedron P corresponds to a polyhedral region of the
diagram. Let eA.P / be the number of segments of HA (equivalently, the number
of edges of GA) in this polyhedral region, and e0

A.P / be the number of reduced
edges (after duplicates are removed). We may now choose a spanning set of EPDs
for the polyhedron P .

Lemma 5.6. Let P be a lower polyhedron in the polyhedral decomposition of MA.
Then all the essential product disks in P are spanned by a particular spanning set
El.P /, with the following properties:

.1/ Every simple disk in P belongs to the spanning set El.P /.

.2/ No disks in El .P / are semi-simple. (Recall semi-simple disks are not simple by
definition.)

.3/ The cardinality of El.P / is jjEl.P /jj D eA.P / � e0
A.P / C "P , where "P is

either 0 or 1.
.4/ The following are equivalent:

(a) P has exactly two shaded faces.
(b) All white faces of P are bigons.
(c) P nnEl.P / contains a prism over an ideal n-gon.
(d) e0

A.P / D 1, and this single edge separates the graph G
0
A.

(e) "P D 1.

Proof. We construct the spanning set as follows. For every pair of shaded faces F; G

of the polyhedron P , let EF;G be the set of all PITOS essential product disks that
run through F and G. If the number of ideal vertices shared by F and G is n, then
EF;G will be non-empty precisely when n � 2. By Lemma 5.5, these disks are in
1–1 correspondence with consecutive pairs of vertices vi ; viC1 shared by F and G.

Now, we consider two cases.
Case 1: F and G are the only shaded faces in P . In this case, we let El .P / D

EF;G .
Let us check the conclusions of the lemma. Note that every simple disk is PITOS,

hence must belong to El .P / D EF;G . Conversely, every disk in EF;G is PITOS,
hence contains no vertices between F and G on one side, hence contains no vertices
at all on that side, and thus can only be simple.

Recall that the shaded faces F and G correspond to state circles CF and CG .
Since these are the only shaded faces of P , then CF and CG are the only state
circles in the polyhedral region of P . All the edges of GA in the polyhedral region
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must connect CF and CG ; there are n D eA.P / such edges total. In the reduced
graph G

0
A, these n edges are identified to one, hence e0

A.P / D 1. Thus

jjEl.P /jj D n D eA.P / � e0
A.P / C "P ; where "P D 1:

In Case 1, all the conditions of (4) will be true. The polyhedron P has exactly
two shaded faces F and G, and all the white faces are bigons parallel to the simple
disks. Cutting P along the disks of El.P / produces a prism over an ideal n-gon. We
have already seen that "P D e0

A.P / D 1. Finally, because every state circle in S2 is
separating, any path in HA between state circles CF and CG must pass through the
polyhedral region of P , hence must use one of the n edges that are identified to one
in G

0
A.

Case 2: F and G are not the only shaded faces in P .
When F and G share n vertices with n � 2, we will see that we may remove one

of the n disks in EF;G to obtain a set E 0
F;G of .n � 1/ disks, which still span all the

EPDs through faces F and G. We make the choices as follows. If n D 2, then the
two disks EF;G both run through vertices v1 and v2, and are parallel. So we may omit
one. If n � 3, then Lemma 5.5 implies that one of the disks in EF;G is non-simple.
Thus we omit a non-simple disk. Note that by construction, one copy of each simple
disk through faces F and G remains in E 0

F;G . Note further that there is a prism
between all disks of E 0

F;G , so the removed disk is spanned by the remaining ones.
Since all EPDs through faces F and G are spanned by PITOS ones, the remaining
set of .n � 1/ disks spans all EPDs through F and G, as claimed.

When F and G share fewer than 2 ideal vertices, EF;G is empty, and for
notational convenience we set E 0

F;G to be empty.
Let us check that in the non-trivial cases, all disks in E 0

F;G satisfy conclusion (2):
that is, none of them is semi-simple. If n D 2, there is nothing to check, because
no parabolic compressions are possible. Thus, suppose that n � 3, and we obtained
E 0

F;G by omitting a non-simple disk in EF;G .
Suppose for a contradiction that D 2 E 0

F;G is not simple, but parabolically
compresses to simple disks. Because the ideal vertices vi ; viC1 met by D are
consecutive, the parabolic compression must be to the outside of D—that is, away
from the arc of @F that runs from vi to viC1. Any simple disks to which D

compresses must be PITOS, hence belong to EF;G . But one of the disks to the
outside of D is not simple, contradicting the hypothesis that D compresses to simple
disks to its outside.

Now, let El.P / be the union of all the sets E 0
F;G , as .F; G/ ranges over all

unordered pairs of shaded faces in P . We have already checked that this spanning
set satisfies conclusions (1) and (2).

Observe that the shaded faces F and G correspond to state circles CF and CG . If
there are two or more edges of GA connecting CF to CG (i.e., if n � 2), then some
of these edges will be removed as we pass to the reduced graph G

0
A. The number of
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edges removed is exactly n � 1, which is equal to the cardinality of E 0
F;G . Thus

jjEl.P /jj D
X

.F;G/

jjE 0
F;G jj D eA.P / � e0

A.P / C "P ; where "P D 0:

The sum is over unordered pairs of shaded faces .F; G/.
In Case 2, all the conditions of (4) will be false. By hypothesis, the polyhedron

P has more than two shaded faces, hence some white face is not a bigon. Since the
polyhedral region of P has more than two state circles and is connected, this region
must contain more than one edge of G0

A. The one non-trivial statement in (4) is that
P nnEl.P / cannot contain a prism.

Suppose, for a contradiction, that P nnEl.P / contains a prism over an n-gon.
Then the top and bottom faces of this prism are on shaded faces F and G of P ,
and the lateral faces are EPDs in El.P /. By construction, these lateral faces must
belong to E 0

F;G . But then one of these lateral EPDs must parabolically compress
to the remaining .n � 1/ EPDs—which is impossible, since we removed the one
redundancy in EF;G when constructing the set E 0

F;G . ut
Lemma 5.6 has the following immediate consequence.

Lemma 5.7. Let El be the union of all the spanning sets El.P /, as P ranges
over all the lower polyhedra. Then every essential product disk in one of the lower
polyhedra is spanned by the disks in El . The set El contains all simple disks in the
lower polyhedra. Furthermore,

jjEl jj D eA � e0
A C nsep;

where nsep is the number of separating edges in G
0
A, and nsep is also equal to the

number of prisms in the lower polyhedra in the complement of El .

Proof. The properties that El contains all simple disks and spans all the EPDs in
the lower polyhedra follow immediately from the same properties of the constituent
sets El.P /. To compute the cardinality of El , it suffices to observe that the total
number of edges removed as we pass from GA to G

0
A is

eA � e0
A D

X

P

eA.P / � e0
A.P /;

and the total contribution of the terms "P in Lemma 5.6 is exactly nsep. By
Lemma 5.6, these nsep edges are in one-to-one correspondence with prisms in the
lower polyhedra in the complement of El . ut

Finally, we choose a spanning set of EPDs for the upper polyhedron.
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Lemma 5.8. Let P denote the upper polyhedron in the decomposition of MA. Then
there exists a set Es [ Ec of essential products disks embedded in P , such that the
following hold:

.1/ Es is the set of all simple disks in P .

.2/ Ec consists of complex disks. Furthermore, Ec is minimal, in the sense that no
disk in Ec parabolically compresses to a subcollection of Es [ Ec .

.3/ The set Es [ Ec spans the essential product disks in P .

.4/ The following are equivalent:

.a/ G
0
A is a tree.

.b/ Every white face is a bigon.

.c/ P nn.Es [ Ec/ contains exactly one prism.
.d/ Every (upper or lower) polyhedron is a prism, with horizontal faces

shaded and lateral faces white.

Proof. The construction is identical to the construction in Lemma 5.6. For every
pair of shaded faces F and G, we let EF;G be the set of all PITOS disks that run
through F and G. If F and G are the only shaded faces of the upper polyhedron
P , we let Es D EF;G . In this case, all white faces of P are bigons, and all disks in
EF;G are simple. Hence, Ec D ;.

Alternately, if F and G are not the only shaded faces of P , we proceed as in
Case 2 of Lemma 5.6. We prune the set EF;G by one disk, while keeping all simple
disks, to obtain E 0

F;G . As in the proof of Lemma 5.6, no disk in E 0
F;G is semi-simple.

Then, we let Es [ Ec be the union of all sets E 0
F;G as F; G range over the shaded

faces of the polyhedron P . This combined set is composed of simple disks in Es

and complex disks in Ec .
In either case, we have constructed a set Es [ Ec that satisfies conclusions (1)

and (3).
To prove (2), observe that by construction, each disk in Ec is complex and

PITOS. Suppose, for a contradiction, that some disk D 2 Ec parabolically
compresses to other disks in Es [ Ec . Then, D would need to compress to the
remaining .n � 1/ PITOS disks that share the same shaded faces F and G (where
n is the number of vertices at which F and G meet). But by construction, the only
scenario in which all n disks of EF;G remain in Es [ Ec is when all of these disks
are simple, hence Ec D ;, which is a contradiction.

It remains to prove the equivalent conditions of (4).
(4a) , (4b): The connected graphG0

A is a tree if and only if every edge separates.
Hence, this equivalence is immediate from Lemma 5.6(4).

(4b) ) (4d): Let P0 be any polyhedron in the decomposition, and suppose that
every white face of P0 is a bigon. Then the white faces of P0 must line up cyclically
end to end, and there are exactly two shaded faces. Since a bigon white face is
the product of an ideal edge with I , this product structure extends over the entire
polyhedron. Thus P0 is a prism whose horizontal faces are shaded and whose lateral
faces are white bigons.
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(4d) ) (4c): Suppose the top polyhedron P is a prism, whose lateral faces are
white bigons. Parallel to every bigon face of P is a simple essential product disk,
and by property (1), each of these simple EPDs is in the spanning set Es . Thus
P nnEs consists of a product region parallel to each white face, as well as a prism
component separated from all white faces.

(4c) ) (4b): Suppose that P nn.Es [ Ec/ contains a prism over an n-gon. Then
the top and bottom faces of this prism are on shaded faces F and G of P , and
the lateral faces are EPDs in EF;G . Notice that one of these lateral EPDs must
parabolically compress to the remaining .n � 1/ EPDs. This would be impossible
if we removed one of the n disks in EF;G while passing to the reduced set E 0

F;G .
Thus every disk of EF;G must belong to Es [ Ec , which means that F and G are
the only shaded faces in polyhedron P . Therefore, every white face of P is a bigon.
But since every white face of a lower polyhedron is glued to P , all white faces must
be bigons. ut
Definition 5.9. The spanning set Ec is defined in the statement of Lemma 5.8. Note
that by Lemma 5.8(2), the cardinality jjEcjj is the smallest number of complex disks
required to span the I -bundle of the upper polyhedron. We may take this property
to be a definition of jjEcjj.

Since the polyhedral decomposition is uniquely specified by the diagram D.K/

(see Chap. 2 and Remark 3.17), jjEcjj is a diagrammatic quantity, albeit one that is
not easy to eyeball. In Chap. 7, we will bound the quantity jjEcjj in terms of simpler
diagrammatic quantities, and in Chap. 8, we will prove that for most Montesinos
links, jjEcjj D 0.

We also record the following property of the spanning set Es [ Ec , which will
be needed in Chap. 7.

Lemma 5.10. Let F and G be shaded faces of the upper polyhedron P , and let
Es [ Ec be the spanning set of Lemma 5.8. Then, for every tentacle of F , at most
two disks of Es [ Ec run through F and G and intersect this tentacle.

Proof. Let ˛ be an arc that cuts across a tentacle of F . Thus, from the point of view
of P , ˛ is an arc from an ideal vertex w to a point x in the interior of a side of P .

Let v1; : : : ; vn be the ideal vertices shared by F and G, labeled in order, as in
Lemma 5.5(1). The point x 2 @F \ ˛ falls between a consecutive pair of vertices
vi that connect F to G. Then no generality is lost in assuming that x lies on the
oriented arc from vn to v1.

Recall that all disks in Es [ Ec are PITOS, and that by Lemma 5.5, PITOS disks
through F and G must meet consecutive ideal vertices. The proof will be complete
once we show that ˛ can only meet at most two such disks (up to isotopy).

If w is not one of the vertices at which F meets G, then it lies between vertices vi

and viC1. In this case, ˛ partitions fv1; : : : ; vng into two subsets: namely, fv1; : : : ; vi g
and fviC1; : : : ; vng. Any disk through F and G whose vertices belong to the same
subset will be disjoint from ˛ (up to isotopy). Thus ˛ can only intersect the two
disks that run from vi to viC1 and from vn to v1.
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If w is one of the vertices vi , then the argument is the same. In this case, ˛ can
only intersect the disk that runs from vn to v1. ut

5.3 Detecting Fibers

In this section, we prove that the Euler characteristic �.G0
A/ detects whether SA is a

fiber. See also Corollary 9.16 on p. 149.

Theorem 5.11. Let D.K/ be any link diagram, and let SA be the spanning surface
determined by the all-A state of this diagram. Then the following are equivalent:

.1/ The reduced graph G
0
A is a tree.

.2/ S3 n K fibers over S1, with fiber SA.

.3/ MA D S3nnSA is an I -bundle over SA.

We would like to emphasize that the theorem applies to all diagrams. It turns out
that each of (1), (2), and (3) implies that D is connected and A-adequate. The point
of including condition (3) is that SA is never a semi-fiber: that is, SA cannot be a
non-orientable surface that lifts to a fiber in a double cover of S3 n K .

Proof. For (1) ) (2), suppose that G0
A is a tree. Then D must be connected because

G
0
A is connected. Also, since G

0
A contains no loops, GA must contain no 1-edge

loops, hence D is A-adequate. In particular, we have a polyhedral decomposition of
MA D S3nnSA, and all the results of the previous chapters apply to this polyhedral
decomposition.

Since G0
A is a tree, Lemma 5.8(4) implies that every polyhedron of the polyhedral

decomposition is a prism, and every white face is a bigon. Observe that a prism is
an I -bundle over its base polygon, and a white bigon face is also an I -bundle with
the same product structure. Thus the I -bundle structures of the individual polyhedra
can be glued along the bigon faces to obtain an I -bundle structure on all of MA.

Finally, since G
0
A is a tree, it is bipartite, hence GA is also bipartite. Thus, by

Lemma 2.3 on p. 18, SA is orientable. Since SA is an orientable surface whose
complement is an I -bundle, it must be a fiber in a fibration over S1.

The implication (2) ) (3) is trivial.
For (3) ) (1), suppose that MA is an I -bundle over SA. Thus, in particular, SA

is connected, hence D is connected. Also, SA must be essential in S3 n K . Thus, by
Theorem 3.19, D is A-adequate, and all of our polyhedral techniques apply.

All white faces of the polyhedral decomposition are contained in MA. Thus, by
Lemma 4.17 (Product rectangle in white face), each white face is a product ˛ 	 I ,
where ˛ 	 f0; 1g are ideal edges. In other words, every white face is a bigon. Thus,
by Lemma 5.8, G0

A is a tree. ut
Remark 5.12. We have seen in Lemma 2.21 that each polyhedral region corre-
sponds to an alternating link diagram, whose all-A surface is a checkerboard surface.
Ozawa has observed that the state surface SA is a Murasugi sum of these individual
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checkerboard surfaces [76]; this was the basis of his proof that SA is essential
(Theorem 3.19). Now, a theorem of Gabai [39, 40] states that the Murasugi sum
of several surfaces is a fiber if and only if the individual summands are fibers. Thus
an alternate proof of Theorem 5.11 would argue by induction: here, the base case is
that of prime, alternating diagrams, and Gabai’s result gives the inductive step.

Restricted to prime, alternating diagrams, Theorem 5.11 says that the checker-
board surface SA is a fiber if and only if D.K/ is a negative 2-braid. (We are
using the convention that positive braid generators are as depicted in Fig. 9.1 on
p. 141.) This special case follows quickly from a theorem of Adams [2, Theorem
1.9], and can also be proved by applying Lemma 4.17 to Menasco’s polyhedral
decomposition of alternating link complements [64].

In fact, this line of argument extends to give a version of Theorem 5.11 for state
surfaces of �-homogeneous states (i.e., Theorem 5.21 below). See the recent paper
by Futer [29] for a proof from this point of view.

5.4 Computing the Guts

To compute the guts of MA D S3nnSA, it suffices to take the spanning sets of the
previous section, count the EPDs in the spanning sets, and also count how many
prisms will occur in the complement of these disks. The counts work as follows.

Proposition 5.13. Every non-trivial component of the characteristic submanifold
of MA is spanned by a collection El [ Ec of essential product disks, such that

.1/ The disks of El are embedded in lower polyhedra, and jjEl jj D eA � e0
A C nsep,

where nsep is the number of separating edges in G
0
A.

.2/ The disks of Ec are embedded in the upper polyhedron. All these disks are
complex. Furthermore, no disk in Ec parabolically compresses to bigon faces
and other disks in Ec .

.3/ After the characteristic submanifold is cut along El [ Ec , the total number of
prism pieces will be nsep C �C.G0

A/, where nsep is the number of separating
edges in G

0
A and �C.G0

A/ D maxf0; �.G0
A/g equals 1 if G0

A is a tree and 0

otherwise.

Proof. By Theorem 4.4, every non-trivial component of the characteristic submani-
fold is spanned by EPDs in individual polyhedra. We have constructed spanning sets
for the individual polyhedra in Lemmas 5.6 and 5.8; these sets are denoted El in the
lower polyhedra and Es [ Ec in the upper polyhedron. Note that by construction,
every white bigon face in the polyhedral decomposition has a disk in El parallel to
it, as well as a disk in Es parallel to it. We do not need both of these parallel disks
to span the characteristic submanifold. Thus we may discard Es , and conclude that
El [ Ec spans the characteristic submanifold.

Conclusion (1), which counts the cardinality of El , is a restatement of
Lemma 5.7. Conclusion (2) is a restatement of Lemma 5.8(2).
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W

∂MA

EPD

Fig. 5.3 A prism R, whose
lateral faces are EPDs in the
spanning set. The parabolic
locus is in bold. Any white
face W that intersects R must
respect the product structure
of R, hence is a bigon face

It remains to count the prism components cut off by El [ Ec . Recall that every
white bigon face in the polyhedral decomposition has a disk in El parallel to it, as
well as a disk in Es parallel to it. Thus every prism cut off by El [ Ec is isotopic
(through white bigon faces) to a prism cut off by El [.Ec [Es/. By Lemma 5.7, the
number of these prisms in the lower polyhedra is equal to nsep. By Lemma 5.8(4), the
number of these prisms in the upper polyhedron is 0 or 1, and is equal to �C.G0

A/.
Thus the proof will be complete once we show that every prism cut off by El [ Ec

is isotopic into a single polyhedron.
Let R be a prism over an n-gon, cut off by El [ Ec . Suppose that there is a white

face W of the polyhedral decomposition that intersects R (otherwise we are done).
By Lemma 4.17 (Product rectangle in white face), each component of R \ W is
a product rectangle ˛ 	 I , whose top and bottom sides ˛ 	 f0; 1g are sub-arcs of
edges of W . But by construction, each lateral face of R is an EPD belonging to
El [ Ec , hence lies in a single polyhedron and is disjoint from W . Thus ˛ 	 f0; 1g
must be disjoint from the lateral EPDs, and must run from the parabolic locus to
the parabolic locus. In other words, ˛ 	 I fills up the entirety of the white face W ,
hence W is a bigon. See Fig. 5.3.

Recall that by Lemma 5.7, every simple disk in the lower polyhedra belongs to
El . Thus W is parallel to a disk of El , hence to a lateral face of the prism R. By
isotoping R through this white face W , we move a lateral face of R from a disk of
El to a parallel disk of Es, while removing a component of intersection with the
white faces. Continuing inductively in this fashion, we conclude that if R was not
already in a single polyhedron, it can be isotoped into the top polyhedron. Thus R

was already accounted for in the count of nsep C �C.G0
A/ prisms, and the proof is

complete. ut
We can now prove the main theorem.

Theorem 5.14. Let D.K/ be an A-adequate diagram, and let SA be the essential
spanning surface determined by this diagram. Then

��.guts.S3nnSA// D ��.G0
A/ � jjEcjj;
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where ��.�/ is the negative Euler characteristic as in Definition 1.5, and where
jjEcjj is the smallest number of complex disks required to span the I -bundle of the
upper polyhedron, as in Definition 5.9.

In particular, if every essential product disk in the upper polyhedron is simple or
semi-simple, then

��.guts.S3nnSA// D ��.G0
A/:

Proof. Recall that the graph GA embeds as a spine for the surface SA. Thus, by
Alexander duality, MA D S3nnSA has Euler characteristic

�.MA/ D �.SA/ D �.GA/: (5.1)

Recall that MA D guts.MA/ [ CS.MA/, where CS.MA/ is the characteristic
submanifold of MA, and the intersection guts.MA/ \ CS.MA/ consists of annuli.
Thus their Euler characteristics sum to the Euler characteristic of MA. Furthermore,
by Lemma 4.1, all the trivial components of the I -bundle are solid tori glued along
annuli, which do not contribute to the Euler characteristic count. Therefore, if B

denotes the maximal I -bundle in the characteristic submanifold,

�.GA/ D �.MA/ D �.guts.MA// C �.B/: (5.2)

By Proposition 5.13, the maximal I -bundle B is spanned by a collection El [Ec

of essential product disks. Notice that cutting B along a disk increases its Euler
characteristic by 1. By Definition 4.3, we know that Bnn.El [ Ec/ consists of
solid tori (Euler characteristic 0) and prisms (Euler characteristic 1). Thus, by
Proposition 5.13,

�.B/ D �jjEl [ Ec jj C .number of prisms/
D �.eA � e0

A/ � nsep � jjEcjj C .nsep C �C.G0
A//

D �.GA/ � �.G0
A/ � jjEcjj C �C.G0

A/

D �.GA/ C ��.G0
A/ � jjEcjj:

(5.3)

Since every component of guts.MA/ is bounded by a hyperbolic surface, we have
��.guts.MA// D ��.guts.MA//. Thus plugging the conclusion of (5.3) into (5.2)
gives

��.guts.MA// D ��.guts.MA// D ��.G0
A/ � jjEcjj;

which completes the proof. ut
Remark 5.15. The reliance on the notation ��.�/ in Theorem 5.14 is only neces-
sary in the special case when G

0
A is a tree and guts.MA/ is empty. On the other hand,

when guts.MA/ ¤ ;, every component of it will have negative Euler characteristic.
Thus, when guts.MA/ ¤ ;, the conclusion of the theorem can be rephrased as

�.guts.MA// D �.G0
A/ � jjEcjj < 0:
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R

shortlong

Fig. 5.4 Resolutions of a twist region R. This twist region is an A-region, because the all-A
resolution is short

5.5 Modifications of the Diagram

In this section we use Theorem 5.14 to study the effect on the guts of two well known
link diagrammatic moves: adding/removing crossings to a twist region, and taking
planar cables. Lemma 5.17 characterizes the effect on the guts of adding/removing
crossings to a twist region. Planar cables, which are of particular significance to us
since they are used in the calculation of the colored Jones polynomials [60], are
discussed in Corollary 5.20.

Definition 5.16. Let R be a twist region of the diagram D, and suppose that R

contains cR > 1 crossings. Consider the all-A and all-B resolutions of R. One of
the graphs associated to D, say GB , will inherit cR � 1 vertices from the cR � 1

bigons contained in R. We say that this is the long resolution of the twist region R.
The other graph, say GA, contains cR parallel edges (only one of which survives in
G

0
A). This is the short resolution of R. See Fig. 5.4.
We say that the twist region R is an A-region if the all-A resolution is the short

resolution of R. In other words, R is an A-region if it contributes exactly one edge
to G

0
A.

Lemma 5.17. Let D be an A-adequate link diagram, with spanning surface SA.D/

and the associated prime polyhedral decomposition of S3nnSA.D/. Let bD be the
A-adequate diagram obtained by removing one crossing in an A-region of D. (Note
that this operation very likely changes the link type.)

Then the effect of removing one crossing from an A-region is as follows:

.1/ The reduced graphs G0
A.D/ and G

0
A.bD/ are isomorphic.

.2/ In the upper polyhedra of the respective diagrams, the spanning sets Ec.D/

and Ec.bD/ have the same cardinality.
.3/ The complements of the spanning surfaces SA.D/ and SA.bD/ have the same

guts:
�� guts.S3nnSA.D// D �� guts.S3nnSA.bD//:

Proof. Following Definition 5.16, let R be a twist region of the diagram D which
has at least two crossings, and in which the all-A resolution is short. Then, removing
one crossing from twist region R amounts to removing one segment from the graph
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B

Fig. 5.5 The effect of removing a crossing from an A-region of D on the graph HA and the
polyhedral decomposition. In the upper polyhedron, a bigon face B between two shaded faces
becomes collapsed to a single ideal vertex

HA.D/. All the state circles are unaffected, and the other segments of HA are also
unaffected. See Fig. 5.5.

Recall that the vertices of GA are the state circles of HA, and the edges of GA

are the segments of HA. Thus the graphs GA.D/ and GA.bD/ have exactly the same
vertex set, with GA.D/ having one more edge in the short resolution of the twist
region R. Because duplicate edges of GA are identified together in G

0
A, the two

reduced graphs G0
A.D/ and G

0
A.bD/ are isomorphic, proving (1).

Now, consider the effect of removing a crossing from R on the polyhedral
decomposition. A bigon in the twist region R corresponds to a white bigon face
of the upper polyhedron in the polyhedral decomposition of D. Let F and G be the
two shaded faces that are adjacent to this bigon B . As Fig. 5.5 shows, removing one
crossing from R amounts to collapsing the bigon face B to a single ideal vertex.

Next, consider the essential product disks through faces F and G that form part
of the spanning set Es.D/ [ Ec.D/. By Lemma 5.8(1), the simple disk parallel to
bigon B is part of the spanning set Es.D/. Furthermore, by Lemma 5.5, all other
PITOS disks through faces F and G remain PITOS if we collapse B to a single
ideal vertex.

Recall that in the proof of Lemma 5.8, we considered two cases. If F and G are
the only shaded faces in the upper polyhedron, then Ec D ;. This will remain true
after we remove one bigon face. Alternately, if F and G are not the only shaded
faces, then the contribution of these shaded faces to Es.D/ [ Ec.D/ consists of all
PITOS disks through F and G. The property that a PITOS disk is complex will not
change as we collapse the bigon B . Thus jjEc.D/jj D jjEc.bD/jj, proving (2).

Finally, (3) follows immediately from (1), (2), and Theorem 5.14. ut
Remark 5.18. For alternating diagrams, Lackenby observed that there is actually
a homeomorphism from guts.S3nnSA.D// to guts.S3nnSA.bD//, which carries
parabolic locus to parabolic locus. See [58, P. 215]. This statement holds in complete
generality, including in our setting. However, we will only need the equality of Euler
characteristics in Lemma 5.17(3).

By combining Theorem 5.14 and Lemma 5.17 with Theorem 6.4 on p. 93 (which
will be proved in the next chapter), we obtain the following corollary.
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Corollary 5.19. Suppose that D.K/ is a prime, A-adequate diagram, such that for
each 2-edge loop in GA the edges belong to the same twist region of D.K/. Then

��.guts.MA// D ��.G0
A/:

Proof. Let D be as in the statement of the corollary, and let bD be the diagram
that results from removing all bigons in the A-regions of the diagram D. Applying
Lemma 5.17 inductively, we conclude that this removal of bigons does not affect
either the reduced graph G

0
A or spanning set Ec . Also, since every 2-edge loop of

GA.D/ belongs to a single twist region, the removal of bigons also removes all
2-edge loops. Thus G0

A.D/ D G
0
A.bD/ D GA.bD/.

By Theorem 6.4, every essential product disk in the upper polyhedron of bD

must run over tentacles adjacent to the segments of a 2-edge loop of GA.bD/.
But by construction, there are no 2-edge loops in GA.bD/. Thus, by Lemma 5.17,
Ec.D/ D Ec.bD/ D ;. Therefore, according to the formula of Theorem 5.14,
��.guts.MA// D ��.G0

A/: ut
Given a diagram D D D.K/ of a link K , and a number n 2 N, let Dn denote

the n-cabling of D using the blackboard framing. If D is A-adequate then Dn is
A-adequate for all n 2 N. Furthermore, the Euler characteristic of the reduced
all-A graph corresponding to Dn, is the same as that of the reduced all-A graph
corresponding to D. That is,

�.G0
A.Dn// D �.G0

A.D//;

for all n � 1 [60, Chap. 5]. We have the following:

Corollary 5.20. Let D WD D.K/ be an A-adequate diagram, of a link K . Let Dn

denote the n-cabling of D using the blackboard framing, and let Sn
A be the all-A

state surface determined by Dn. Then

��.guts.S3nnSn
A// C jjEc.D

n/jj D ��.G0
A.D//;

for every n � 1. Here ��.�/, jj � jj and Ec.D
n/ are the quantities of the statement of

Theorem 5.14 corresponding to Dn.

Proof. By Theorem 5.14, we have

��.guts.S3nnSn
A// C jjEc.D

n/jj D ��.G0
A.Dn//:

Since �.G0
A.Dn// D �.G0

A.D//, for all n � 1, the result follows. ut
It is worth observing that by Corollary 5.20 and Theorem 5.14,

��.guts.S3nnSn
A// C jjEc.D

n/jj D ��.guts.S3nnSA// C jjEc.D/jj
D ��.G0

A.D//;
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for every n � 1. Thus the left-hand side is independent of n. It is worth asking
whether the summands ��.guts.S3nnSn

A// and jjEc.D
n/jj are also independent of

n; see Question 10.5 in Chap. 10.
In fact, by Lemma 9.14 on p. 149, the quantity ��.G0

A.D// is actually an
invariant of the link K; it is independent of the A-adequate diagram. However,
Example 5.3 on p. 74 demonstrates that jjEc.D/jj (and thus ��.guts.S3nnSA//)
does, in general, depend on the diagram used: Fig. 5.1 shows a diagram D with
jjEc.D/jj ¤ 0, while Fig. 5.2 shows a different diagram D0 of the same link with
jjEc.D

0/jj D 0. We will revisit this discussion in Chap. 10.

5.6 The � -Adequate, � -Homogeneous Setting

The results of this chapter extend immediately to �-adequate, �-homogeneous
states, using only the fact that the polyhedral decomposition in this case cuts M� into
checkerboard polyhedra (Theorem 3.23). This is because the proofs in this section
use only normal surface theory specific to checkerboard polyhedra, and nothing
dependent on tentacles or choice of resolution.

In particular, Lemma 5.1 holds, and its proof needs no change, using the fact
that lower polyhedra still correspond to checkerboard polyhedra of alternating links.
Definitions 5.2 and 5.4, as well as Lemma 5.5, are all stated (and proved) for
any checkerboard colored ideal polyhedron. Lemmas 5.6 and 5.7 concern only
lower polyhedra, which we know correspond to ideal polyhedra of alternating
links in the �-homogeneous case. Hence their proofs will hold in this general
setting. Lemmas 5.8 and 5.10, concerning upper polyhedra, use only properties
of checkerboard ideal polyhedra, hence these lemmas still hold if we replace G

0
A

with G0
� . Similarly, Theorem 5.11 will immediately generalize to the �-adequate,

�-homogeneous setting. The proof uses Lemma 5.8 and Proposition 4.17 (Product
rectangle in white face), and we have seen that these results hold in the �-adequate,
�-homogeneous case. Thus the proof of Theorem 5.11 applies verbatim to give the
following general result.

Theorem 5.21. Let D.K/ be a link diagram, and let S� be the state surface of a
homogeneous state � . Then the following are equivalent.

.1/ The reduced graph G0
� is a tree.

.2/ S3 n K fibers over S1 with fiber S� .

.3/ M� D S3nnS� is an I -bundle over S� . ut
In particular, Theorem 5.21 implies the classical result, due to Stallings [89], that

homogeneous closed braids are fibered, with fiber the Seifert surface S� associated
to the Seifert state � .

The results of Sect. 5.4 will also extend immediately to the �-adequate,
�-homogeneous setting. In particular, every non-trivial component of the
characteristic submanifold of M� is spanned by a collection El [ Ec of EPDs,



90 5 Guts and Fibers

with the properties of Proposition 5.13, with � replacing A in the appropriate
places. In the proof of Proposition 5.13, one would need to use Theorem 4.22 in
place of Theorem 4.4. Theorem 5.14 also generalizes to this setting, and we obtain

��.guts.S3nnS� // D ��.G0
� / � jjEcjj:

As for Sect. 5.5, in the case of a �-adequate, �-homogeneous diagram, analogous
to an A-region, we define a twist region R to be a �-region if its �-resolution gives
the short resolution of R. In other words, R contributes exactly one edge to G

0
� . With

this modification, Lemma 5.17 will hold, with the same proof, replacing A-adequate
with �-adequate, �-homogeneous in the statement, as well as SA with S� , A-region
with �-region, and G

0
A with G

0
� .

However, this is where we stop. Corollary 5.19 requires results from Chap. 6,
which we have not analyzed in the �-adequate, �-homogeneous case. It is entirely
possible that the results of Chap. 6 will generalize, but we leave this analysis for a
future time.



Chapter 6
Recognizing Essential Product Disks

Theorem 5.14 reduces the problem of computing the Euler characteristic of the guts
of MA to counting how many complex EPDs are required to span the I -bundle of
the upper polyhedron. Our purpose in this chapter is to recognize such EPDs from
the structure of the all-A state graph GA. The main result is Theorem 6.4, which
describes the basic building blocks for such EPDs. Each corresponds to a 2-edge
loop of the graph GA.

The proofs of this chapter require detailed tentacle chasing arguments, and some
are quite technical. To assist the reader, we break the proof of Theorem 6.4 into
four steps, and keep a running outline of what has been accomplished, and what
still needs to be accomplished. The tentacle chasing does pay off, for by the end
of the chapter we obtain a mapping from any EPD to one of only seven possible
sub-graphs of HA. By investigating the occurrence of such subgraphs, we are able
to count complex EPDs in large classes of link complements. Two such classes are
studied in detail in Chaps. 7 (links with diagrams without non-prime arcs) and 8
(Montesinos links). Together with the results of Chap. 5, these give applications to
guts, volumes, and coefficients of the colored Jones polynomials.

6.1 2-Edge Loops and Essential Product Disks

To find essential product disks in the upper polyhedron, we will convert any EPD
into a normal square and use machinery developed in Chap. 4.

Lemma 6.1 (EPD to oriented square). Let D be a prime, A-adequate diagram of
a link in S3, with prime polyhedral decomposition of MA D S3nnSA. Suppose there
is an EPD embedded in MA in the upper polyhedron. Then the boundary of the EPD
can be pulled off the ideal vertices to give a normal square in the polyhedron with
the following properties.

D. Futer et al., Guts of Surfaces and the Colored Jones Polynomial, Lecture Notes
in Mathematics 2069, DOI 10.1007/978-3-642-33302-6 6,
© Springer-Verlag Berlin Heidelberg 2013
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.1/ Two opposite edges of the square run through shaded faces, which we label
green and orange.1

.2/ The other two opposite edges run through white faces, each cutting off a single
vertex of the white face.

.3/ The single vertex of the white face, cut off by the white edge, is a triangle,
oriented such that in counter-clockwise order, the edges of the triangle are
colored orange–green–white.

With this convention, the two white edges of the normal square cannot lie on the
same white face of the polyhedron.

Proof. The EPD runs through two shaded faces, green and orange, and two ideal
vertices. Any ideal vertex meets two white faces. Thus we may push an arc running
over an ideal vertex slightly off the vertex to run through one of the adjacent white
faces instead. Note that there are two choices of white face into which we may push
the arc, giving oppositely oriented triangles. For each vertex, we choose to push in
the direction that gives the triangle oriented as in the statement of the lemma.

Finally, to see that the two white edges of the normal square do not lie on the
same white face, we argue by contradiction. Suppose the two white edges do lie
on the same white face. The white faces are simply connected, so we may run an
arc from one to the other through the white face. Since the shaded faces are simply
connected, we may run an arc through the green face meeting the white edges of
the square at their boundaries. Then the union of these two arcs gives a closed curve
which separates the two ideal vertices. This contradicts Proposition 3.18 (No normal
bigons). ut

As in Chap. 4, call the arcs of the normal square which lie on white faces ˇW and
ˇV .

We will use Lemma 6.1 (EPD to oriented square) to prove Theorem 6.4, which is
the main result of this chapter. Before we state the theorem we need two definitions.
For the first, note that the portion of a tentacle adjacent to a segment has a natural
product structure, homeomorphic to the product of the segment and an interval. In
particular, the center point p of the segment defines a line p 	 I running across the
tentacle.

Definition 6.2. We say that an arc through the tentacle runs adjacent to a segment s

if it runs transversely exactly once through the line p	I , where p is the center of the
segment, and the portion of the tentacle adjacent to the segment is homeomorphic
to s 	 I .

Definition 6.3. Recall that an ideal vertex in the upper polyhedron is described on
the graph HA by a connected component of the knot, between two undercrossings.
Such vertices will be right-down staircases, containing zero or more segments of
HA. A zig-zag is defined to be one of these ideal vertices.

1Note: For grayscale versions of this chapter, the figures will show green faces as darker gray,
orange faces as lighter gray.
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Theorem 6.4. Let D.K/ be a prime, A-adequate diagram of a link K in S3, with
prime polyhedral decomposition of MA D S3nnSA. Suppose there is an essential
product disk embedded in MA in the upper polyhedron, with associated normal
square of Lemma 6.1 (EPD to oriented square). Then there is a 2-edge loop in GA

so that the normal square runs over tentacles adjacent to segments of the 2-edge
loop.

Moreover, the normal square has one of the types A –G shown in Fig. 6.1.

Before we proceed with the proof of Theorem 6.4, which will occupy the
remainder of this chapter, we describe the properties and features of the types A
through G in some detail. We want to emphasize that the colors have been selected
so that colors and orientations at vertices must be exactly as described, or exactly as
shown in Fig. 6.1. This is a consequence of the choice of orientation in Lemma 6.1
(EPD to oriented square).

A . The square runs through distinct shaded faces adjacent to the two segments.
One vertex of the EPD is a zig-zag (possibly without segments) with one end
on one of the state circles met by the two segments of the loop, and the arcs of
the normal square both run adjacent to this zig-zag along its length, meeting at
a white face at its end.

B. The square runs through the same (orange) shaded face adjacent to the two
segments. One vertex of the EPD is a zig-zag with one end on one of the state
circles met by the two segments as before, with the arcs of the normal square
running adjacent to this zig-zag along its length, meeting at a white face at its
end.

C . The boundary of the EPD runs through distinct shaded faces adjacent to two
segments, as in type A above, and as in that case the vertex has an end on one
of the two state circles met by the two segments. However, in this case the vertex
is on the opposite side of the 2-edge loop, and so the boundary of the EPD at
the vertex does not run adjacent to the zig-zag of the vertex, but immediately
runs into a white face.

D . The boundary of the EPD runs through the same shaded face adjacent to the
two segments, as in type B above, and meets a vertex on one of the two state
circles, but the vertex is on the opposite side as that in type B. With colors and
orientations chosen, this forces the square to run through two green tentacles,
whereas in type B it must run through two orange tentacles.

E . The boundary of the EPD runs through distinct shaded faces adjacent to two
segments, which are separated from one of the vertices by a non-prime arc.
After running downstream adjacent to one of the segments (inside non-prime
arc in figure shown), the boundary of the EPD immediately crosses at least one
non-prime arc with endpoints on the same state circle as the segment. On the
other side of these separating non-prime arcs, the boundary of the EPD runs
directly to one of the vertices.

F . Identical to type E , only the 2-edge loop runs through two green faces rather
than distinct colors.
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Fig. 6.1 Building blocks of EPDs in top polyhedron (Note: For grayscale versions of this
monograph, green faces will appear as dark gray, orange faces as lighter gray)
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Fig. 6.2 Left: The connect sum of two left-handed trefoils. Middle: The all-A state. Note there are
no 2-edge loops. Right: The state surface SA with EPD shown in red

G . Similar to type F , only the 2-edge loop runs through two orange faces. Because
the faces are orange, the zig-zag vertex (which still may contain no segments),
is adjacent to the opposite side of a state circle meeting both segments of the
2-edge loop.

Remark 6.5. In the statement of Theorem 6.4, we require the diagram to be prime,
as in Definition 1.7. We have not used the hypothesis of prime diagrams until now,
but it will be crucial going forward. In fact, Theorem 6.4 does not hold for diagrams
that are not prime. For example, the connected sum of two left-handed trefoils is
not prime, and its all-A state graph GA has no 2-edge loops. See Fig. 6.2. But, if
˙ is the sphere along which we performed the connect sum, then ˙nnSA is an
essential product disk in S3nnSA. One may check that this EPD is isotopic into the
upper polyhedron (indeed, by Lemma 5.1 on p. 73, there are no EPDs in the lower
polyhedra).

Before embarking on the proof of Theorem 6.4, we record the following corollary
of the theorem, which removes the dependence on the pulling-off procedure of
Lemma 6.1.

Corollary 6.6. Let D.K/ be a prime, A-adequate diagram of a link K in S3,
with prime polyhedral decomposition of MA D S3nnSA. Let E be an essential
product disk embedded in the upper polyhedron of MA. Then @E runs over tentacles
adjacent to segments of a 2-edge loop, of one of the types A through G shown in
Fig. 6.1.

Proof. The essential product disk E may be pulled off the ideal vertices of the
upper polyhedron P , as in Lemma 6.1 (EPD to oriented square). By Theorem 6.4,
the resulting normal square S must run over a 2-edge loop, as in Fig. 6.1. We may
recover E from S by pulling the segments of @S in the white faces back onto the
ideal vertices of the polyhedron P .

Recall, from Definition 6.3, that an ideal vertex of P is seen as a zig-zag (right-
down staircase) on the graph HA. Thus, after we pull @S back onto the ideal vertices,
the disk E will cross from one shaded face into the other at some point of the zigzag.
Performing this operation in panels A through G in Fig. 6.1, we see that @E still
runs over tentacles adjacent to segments of a 2-edge loop. ut



96 6 Recognizing Essential Product Disks

6.2 Outline and First Step of Proof

As mentioned above, the proof of Theorem 6.4 requires a significant amount of
tentacle chasing, which is done in the remainder of this chapter. The reader who
wishes to avoid tentacle chasing for now may move on to Chap. 8 and continue
reading from there. Chapter 7, which is independent from Chaps. 8–10, will also
involve tentacle chasing, and requires results from Sect. 6.3 below.

In addition to tentacle chasing, the proof of Theorem 6.4 requires the analysis
of several cases. In each case, we show either there is a 2-edge loop of the proper
form, or that we can further restrict the diagram. Thus as the proof progresses, we
are left with more and more restrictions on the diagram, until we analyze a handful
of special cases to finish the proof of the theorem. The proof follows four basic
steps, which we summarize as follows.

1. Prove Theorem 6.4 holds if ˇV and ˇW lie in the same polyhedral region, where
recall ˇV and ˇW denote the sides of the normal square which lie on white faces.

2. If ˇV and ˇW are not in the same polyhedral region, then prove the theorem
holds, or ˇV and ˇW run through a portion of the diagram of one of two particular
forms near ˇV , ˇW . These are illustrated in Fig. 6.5 on p. 99.

3. Prove the theorem holds, or the normal square runs along both sides of a zig-
zag—one of the vertices of the EPD—and then into a non-prime arc separating
ˇV and ˇW .

4. Analyze behavior inside a first separating non-prime arc.

Step 1 of the proof is treated in the next lemma, which shows that Theorem 6.4
holds if ˇV and ˇW lie in the same polyhedral region.

Lemma 6.7 (Step 1). Suppose we have a prime, A-adequate diagram with prime
polyhedral decomposition, and an EPD intersecting white faces V and W in arcs
ˇV and ˇW , respectively. If V and W are in the same polyhedral region, then there
is a 2-edge loop of type B. In particular, Theorem 6.4 holds in this case.

Proof. Apply the clockwise map. Lemma 4.8 implies that we may join the images
of ˇV and ˇW into a square S 0 in the lower polyhedron. Because each of ˇV , ˇW

cuts off a single ideal vertex in the upper polyhedron, each will cut off a single
ideal vertex in the lower polyhedron, with the same orientation as in the upper
polyhedron, and thus this new square S 0 either is inessential, or can be isotoped
to an essential product disk. We will treat the two cases separately.

Case 1: S 0 is isotoped to an essential product disk in a lower polyhedron. Then
Lemma 5.1 implies that the disk runs over two segments of HA corresponding to a
2-edge loop in the lower polyhedron. This loop must come from a 2-edge loop in
the upper polyhedron. In the lower polyhedron, the image of the arc ˇW must be the
arc on the left of Fig. 6.3, adjacent to the segment on the left. Similarly, the image
of ˇV must be adjacent to the segment on the right. The preimages of these arcs
are shown on the right of Fig. 6.3. Note that the dashed lines on the portion of the
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...... ... ... ...
... ...
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Fig. 6.3 Left: Red (dotted and dashed) arcs show images of ˇW under the clockwise map. Right:
preimages of arcs on left

graph of HA on the right are to indicate that the ideal edge may run over non-prime
switches between its head and tail, which will not affect the argument.

For both vertices, there is an (orange) tentacle shown whose tail meets the
vertex, which runs upstream adjacent to a segment. We will show that �1 and
�2 run upstream through these tentacles, and so the 2-edge loop is of type B of
Theorem 6.4.

Suppose first that �1 or �2 crosses a state circle running downstream. Because its
other endpoint is on the opposite side of that state circle, it must cross the state circle
again. But this contradicts Lemma 3.11 (Utility lemma), as it first crossed running
downstream.

Next suppose that �1 (or �2) crosses a non-prime arc. Again since its other
endpoint is on the opposite side of the half-disk bounded by the non-prime arc and
the segment of state circle between its endpoints, �1 (or �2) must cross back out of
this non-prime half-disk. Since �1 (�2) is assumed to be simple, it may only exit the
region by running downstream across the state circle. As in the previous paragraph,
this leads to a contradiction to the Utility lemma.

Thus the arcs �1 and �2 must run adjacent to the segment of the 2-edge loop, as
desired. This finishes the proof Case 1.

Case 2: S 0 is inessential in the lower polyhedron. By choice of orientation on
our vertices, the only way S 0 can be inessential is if both of its white arcs cut off
the same vertex with opposite orientation. Thus one of the arcs, say ˇV , cuts off
vertices to both sides, and thus lies in a bigon face. Hence there is a 2-edge loop
in the upper polyhedron, and tracing back through the clockwise map as above, we
conclude that the boundary of the EPD encircles the bigon, and the 2-edge loop is
of type B again. ut

6.3 Step 2: Analysis Near Vertices

In this section, we will complete Step 2 of the outline given earlier. The main
result here is Proposition 6.10, which shows that either Theorem 6.4 holds, or the
polyhedral region near the arcs ˇW and ˇV have a very particular form. Before
we can state this result, we need two auxiliary lemmas concerning directed arcs in
shaded faces.
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and � runs adjacent to both segments of the loop

Lemma 6.8 (Adjacent loop). Let � be a directed simple arc contained in a single
shaded face, adjacent to a state circle C at a point p on C . Suppose � runs upstream
across a state circle C 0 after leaving p, but then eventually continues on to be
adjacent to C again at a new point p0. Then � must run adjacent to two distinct
segments of HA connecting C to C 0.

Lemma 6.8 is illustrated in Fig. 6.4.

Proof. Since � runs from C , through C 0, and eventually back to C , it must cross
C 0 twice. Lemma 3.11 (Utility lemma) implies it first crosses C 0 running upstream,
adjacent to some segment connecting C and C 0, then runs downstream. When it runs
downstream, it must run adjacent to a segment connecting C 0 to some state circle
C 00. We show C 00 must be C . Then, since � is simple, the two segments connecting
C to C 0 must be distinct, and we have the result.

Suppose C 00 is not C . Because � must run adjacent to C further down the
directed arc, � must leave C 00. Recall that the only possibilities are that � runs over
a non-prime switch or runs downstream across C 00. If downstream across C 00, then it
must cross C 00 again. Lemma 3.11 (Utility lemma) implies this is impossible, as it is
running downstream for the first crossing. If � runs over a non-prime switch without
crossing into the half-disk bounded by the non-prime arc, then on the opposite side
it is adjacent to C 00 again, and we have no change. If it crosses into the non-prime
half-disk bounded by C 00 and the non-prime arc and exits out again, then Lemma 3.7
(Shortcut) implies that it exits running downstream across C 00, which again gives a
contradiction.

So the only remaining possibility is that � crosses into the non-prime half-disk
and does not exit out again. This means C must be contained in this half-disk. But
C 0 is on the opposite side, since � leaves the region containing C 0 when crossing
the non-prime arc. This is impossible: A segment connects C to C 0, hence C and
C 0 must be on the same side of the non-prime arc. So C 00 must equal C . ut
Lemma 6.9. Suppose there are arcs �1 and �2 in distinct shaded faces in the upper
polyhedron, but that each runs adjacent to points (in a neighborhood of points) p1

and p2 on the same state circle C . Then either

.1/ At least one of �1 or �2 runs upstream across some other state circle and
Lemma 6.8 applies; or

.2/ Both arcs remain adjacent to the same portion of C between p1 and p2.
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Fig. 6.5 Conclusion of step 2 in the proof of Theorem 6.4: Either there is a 2-edge loop, or each
polyhedral region containing ˇV , ˇW is one of these two forms, with the specified colors

In other words, Lemma 6.9 says that if neither �1 nor �2 cross a state circle
between p1 and p2, then they cannot run over non-prime switches, either. They can,
in fact, intersect a single endpoint of a non-prime arc. But they cannot run adjacent
to both endpoints of a non-prime arc.

Proof. If one of �1, �2 crosses another state circle between points p1 and p2 there is
nothing to prove. Suppose that neither �1 nor �2 cross another state circle between
points p1 and p2; then each is embedded in the complement of the graph HA. Form
a simple closed curve meeting HA exactly twice by connecting the portions of �1

and �2 between p1 and p2 with small arcs crossing C at p1 and p2. Replacing
segments of HA with crossings, this gives a simple closed curve in the diagram of
the link meeting the link transversely exactly twice. Because the diagram is assumed
to be prime, the curve must contain no crossings on one of its sides. Since each
side contains a portion of C between p1 and p2 in HA, one of those portions must
not be connected to any segments of HA. Because non-prime arcs are required to
bound segments on both sides, this means there are no non-prime arcs attached to
this portion of C as well. Then a single tentacle runs adjacent to each side of this
portion of C , and because shaded faces are simply connected, �1 must run through
one, and �2 must run through the other. ut

We are now ready to state and prove the main result of this section.

Proposition 6.10. With the hypotheses of Theorem 6.4, either

.1/ The conclusion of the theorem is true and we have a 2-edge loop of type A , B,
C , or D , or

.2/ The polyhedral regions containing ˇV and ˇW are of one of two forms, shown
in Fig. 6.5.

In both cases in the figure, �2 immediately leaves the polyhedral region, either
through a non-prime arc, or by crossing some state circle.

Proof. By Lemma 6.7, we may assume that ˇV and ˇW , in white faces V and
W respectively, are in distinct polyhedral regions. Then Lemma 4.15 (Entering
polyhedral region) implies that if we direct �1 toward ˇW , it first enters the region
containing W running downstream across a state circle, which we denote CW , while
�2 enters the region of W either running upstream across CW , or across a non-prime
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arc. In either case, �1 connects immediately to ˇW , that is, without crossing any
additional state circles or non-prime arcs.

Let E1 be the ideal edge of the polyhedral decomposition on which �1 meets ˇW .
Note E1 is a directed edge, with its head on CW and tail on some other state circle
connected to CW by a segment. Let E2 denote the ideal edge on which �2 meets
ˇW . Since ˇW cuts off a single ideal vertex, either the head of E2 meets the tail of
E1, or vice versa. We must consider both cases.

Case 1: Suppose �2 connects immediately to ˇW upon entering the polyhedral
region of W , that is, without crossing any additional state circles. As noted above,
the ideal edge E1 has its head on CW , runs adjacent to a segment which we denote
s1 connecting CW to a state circle C1, then has its tail on C1. The arc �1 runs across
CW and adjacent to s1. There are two subcases to consider.

Subcase 1a: The head of E2 meets the tail of E1. Then the head of E2 must also
lie on the state circle C1. Since �2 connects immediately to ˇW by assumption, and
since �2 is adjacent to CW when it enters the region of W (by Lemma 4.15 (Entering
polyhedral region)), E2 has its tail on CW and thus E2 runs adjacent to a segment
s2 connecting C1 and CW . We may isotope ˇW to cut off a very small portion of the
white face W , forcing �2 to run adjacent to s2. See Fig. 6.6, left.

Now, provided s1 ¤ s2, we have found two segments connecting CW and C1 with
the boundary of the EPD running adjacent to both, through distinct shaded faces on
the segments. Note that in this case, the boundary of the EPD is of type A of the
statement of the theorem. Thus option (1) in the statement of the proposition holds.

So suppose s1 D s2, so that we don’t pick up this 2-edge loop. We will now
show this leads to a contradiction to the fact that the diagram is prime. See Fig. 6.6,
right. Form a loop in HA by following �1 from the point where it is adjacent to the
segment s1 to ˇW , then following ˇW to �2, then following �2 to the point where it is
adjacent to the segment s2. Since s1 D s2, connect these into a loop by drawing a line
through this segment connecting the endpoints. Call the loop � . Because �1 connects
immediately to ˇW without running through additional state circles, � is embedded
in the complement of HA, except where it crosses the segment s1 D s2. Replace all
segments of HA with crossings of the diagram, and push � slightly off the crossing
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of the segment. The result is a loop meeting the diagram twice transversely with
crossings on both sides, contradicting the fact that the diagram is prime.

Subcase 1b: The head of E1 meets the tail of E2. The head of E1 lies on CW .
Hence the tail of E2 must also lie on CW . The general form of ˇW and the ends of
the arcs �1 and �2 where they connect to ˇW is on the right of Fig. 6.5. Thus option
(2) in the statement of the proposition holds for W .

Case 2: Suppose that �2 does not immediately connect to ˇW . Lemma 4.16
implies that �2 crosses upstream into some state circle C2, hence adjacent to some
segment s2 connecting CW and C2, then out of C2 again running downstream, hence
adjacent to some segment s3 connecting C2 and some state circle C3, as in Fig. 4.5,
on p. 65. At this point, �2 immediately meets ˇW , without crossing any additional
state circles or non-prime arcs. Hence the edge E2 has its head on C2 and its tail on
C3.

Subcase 2a: The head of E1 meets the tail of E2. Recall that the head of E1 is
on CW , and the tail of E2 is on C3. In order for these edges to meet in this way,
we must have CW D C3. But now, we have a segment s2 connecting CW to C2,
and �2 runs adjacent to this segment as it runs upstream into C2. We also have a
segment s3 connecting C2 to C3 D CW , and �2 runs adjacent to this segment as it
runs downstream out of C2 to meet ˇW . In this case, s2 cannot equal s3, since �2 is
assumed to be simple. So s2 and s3 form the two segments giving the desired 2-edge
loop. This case is shown on the left of Fig. 6.7, where again the dashed line on the
state circle C3 D CW indicates that there may be non-prime switches. Note this is
of type B in Theorem 6.4. Thus option (1) in the statement of the proposition holds
for W .

Subcase 2b: The head of E2 meets the tail of E1. The tail of E1 is on some state
circle C4 connected to CW by a segment s1, which �1 runs adjacent to. Since the
head of E2 is on C2, C2 must equal C4. Then we have a segment s1 connecting C

to C4 D C2, with �1 adjacent to s1, and a segment s2 connecting CW to C2 D C4,
with �2 adjacent to s2. Provided s1 ¤ s2, this gives the desired result. This is shown
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on the right in Fig. 6.7. Note in this case our loop is of type A in the statement of
Theorem 6.4.

Suppose s1 D s2. In this case, we will find a 2-edge loop of type D stacked on
the opposite side of C2 D C4 from the arc ˇW , or show that our diagram is as on the
right of Fig. 6.5.

Now, we are assuming s1 D s2. Consider the circle C2 D C4. Both �1 and �2

are adjacent to this state circle at the point where the segment s1 D s2 meets it.
Additionally, by shrinking ˇW , we see that both �1 and �2 are adjacent again to it
at the point where E1 meets E2. So Lemmas 6.9 and 6.8 imply either that �2 runs
adjacent to distinct segments forming a 2-edge loop in GA—note such a loop will
be of type D , since the arc ˇW is on the opposite side of a state circle meeting both
segments of the loop—or there are no segments attached to C2 D C4 between these
points of adjacency, and �1 and �2 run through tentacles adjacent to the state circle.
In this latter case, we are on the left in Fig. 6.5.

In all cases we have shown that either (1) or (2) of the statement of the proposition
is true for W . Since the argument is symmetric with respect to the two faces V and
W , the proposition follows. ut

6.4 Step 3: Building Staircases

By Proposition 6.10, we may assume the polyhedral regions containing V and
W each look like one of the diagrams of Fig. 6.5. We have two vertices, with
corresponding arcs ˇV and ˇW , and two corresponding state circles CV and CW ,
respectively, with C playing the role of CV , CW , in Fig. 6.5. (Note that we may
have CV D CW .) Consider first ˇW . In Fig. 6.5, the arc �1 crosses CW running
downstream toward ˇW . The arc �2, if it crosses CW at all, must do so running
upstream toward ˇW .

Now direct �2 away from ˇW . If it crosses CW , it does so running downstream.
We will use Lemma 3.10 (Downstream) to build a staircase of �2 away from ˇW .

Lemma 6.11 (Building the first stair of a zig-zag). Suppose CW ¤ CV , and that
�2, directed away from CW , crosses CW running downstream. Then either

.1/ The conclusion of Theorem 6.4 holds and we have a 2-edge loop, or

.2/ ˇW is as on the left of Fig. 6.5, and �1 and �2 run parallel to the same two
segments on either side of CW , both of which are part of the same vertex, cut off
by ˇW .

Proof. The arc �2 runs downstream across CW , through a tentacle which is then
adjacent to some state circle C . Say the tentacle has its head adjacent to a segment
s2 connecting CW and C . Note that C might equal CV .
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Claim. The arc �1 must cross C running upstream, when running from ˇW to ˇV .

Proof of Claim: If C separates ˇW and ˇV , then �2 and �1 must cross C .
Lemma 3.10 (Downstream) implies that �2 crosses in the downstream direction.
Lemma 4.14 (Opposite sides) implies that �1 must cross C in the upstream direction,
as claimed.

Now suppose C does not separate ˇW and ˇV . Because �2 is running down-
stream, if it crosses C it does so running downstream, and Lemma 3.11 (Utility)
implies it cannot cross back, contradicting the fact that C does not separate. So in
this case, �2 does not cross C .

Hence, either �2 terminates in the arc ˇV , without crossing any non-prime arcs,
or �2 must cross into a non-prime half-disk through a non-prime arc with endpoints
on C , without exiting the half-disk. In the first case, the region of V is as on the right
of Fig. 6.5, with �2 matching the labels in that figure, since CV ¤ CW . Then notice
�1 crosses C . Similarly, in the case that �2 enters a non-prime half-disk without
exiting, ˇV is inside the half-disk bounded by C and the non-prime arc, and so �1

must cross into this half-disk as well, and because the non-prime tentacle belongs to
the shaded face of �2, �1 must cross through a tentacle running through C . In either
case, �1 crosses C . Since C does not separate ˇV and ˇW , in fact �1 must cross C

twice, first running upstream, then running downstream, by Lemma 3.11 (Utility).
This finishes the proof of the claim.

To continue with the proof of the lemma, we change the direction of �1, so it is
running across C in the downstream direction, when oriented from ˇV to ˇW . We
may then apply Lemma 3.10 (Downstream) to �1, directed toward ˇW , for note it
will run downstream across C , and eventually downstream across CW , exiting out
of every non-prime half-disk along the way. Hence Lemma 3.9 (Staircase extension)
implies that �1 defines a right-down staircase between C and CW , with �1 running
adjacent to each connecting staircase in the segment.

Arguing by A-adequacy of the diagram, similar to the proof of Lemma 3.14, the
staircase of �1 consists of a single segment s1, connecting C and CW . Recall that �2

runs adjacent to a segment s2, also connecting C and CW . We will argue that either
s1 ¤ s2 and option (1) holds, or s1 D s2 and we are in option (2).

Case 1: Suppose that ˇW is as on the right of Fig. 6.5. Direct �2 away from ˇW .
If �2 runs upstream across any other state circle before running downstream across
CW , then Lemma 6.8 will imply that there is a 2-edge loop of type B. Hence we
assume �2 does not run upstream across another state circle from the point where it
leaves ˇW to the point where it crosses CW .

Similarly, consider �1 running (downstream) towards ˇW from s1 to cross CW : If
it runs upstream between s1 and CW , then Lemma 6.8 implies that there is a 2-edge
loop of type D .

So suppose �2 does not run upstream between ˇW and crossing CW , and suppose
that �1 does not run upstream between leaving s1 and crossing CW . Then �1 and �2

are both adjacent to CW at ˇW . We claim that s1 cannot equal s2. In this case, s1

and s2 and the portions of the boundary of the EPD adjacent to them form a 2-edge
loop of type C and we are in option (1) of the statement of the lemma. Suppose, on
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the contrary, that s1 D s2. Then s1; s2 are also adjacent to CW where this segment
attaches to CW . Lemma 6.9 implies that both �1 and �2 must run along CW between
these two points. But note that �1 and �2 must run in opposite directions. Hence the
loop following �2 on one side of CW , following �1 on the other side, connecting
where these are adjacent into a loop, becomes a loop in the diagram meeting the
diagram twice, bounding crossings on either side. This contradicts the fact that the
diagram is prime. Thus s1 ¤ s2 as desired.

Case 2: Suppose that ˇW is as on the left of Fig. 6.5. If �2, directed from W to
V , runs upstream before crossing CW , then Lemma 6.8 implies there is a 2-edge
loop of type F . If �1, directed from V to W , runs upstream between leaving s1 and
crossing CW , then there is a 2-edge loop of type D . If s1 ¤ s2, then there is a 2-edge
loop of type A . If none of these three things happen, then s1 D s2, and as before,
Lemma 6.9 implies that �1 and �2 both run adjacent to CW between the point where
s1 D s2 and the segment on the opposite side of CW where the two arcs run adjacent
on opposite sides. In this case, the segment s1 D s2 is part of the same vertex as ˇW ,
as claimed in the statement of the lemma. ut

The previous lemma is the first step in creating a maximal right-down staircase
for the vertex corresponding to ˇW . The next lemma gives the full staircase of a
zig-zag.

Lemma 6.12 (Full staircase). Suppose CW ¤ CV , and �1 and �2 are directed from
ˇW to ˇV , and that �2 crosses CW running downstream. Then, either

.1/ The conclusion of Theorem 6.4 holds; or

.2/ ˇW is as on the left of Fig. 6.5, and the vertex of ˇW forms a right-down
staircase, with �1 and �2 adjacent on either side.

In case (2) the staircase is maximal, in the sense that at the bottom of the right-down
staircase, �2 either crosses CV , or crosses over a non-prime arc ˛ with endpoints
on some state circle C , and does not exit the corresponding half-disk. In the latter
case, the arc �1 also crosses into this half-disk, first running upstream across C then
running downstream into the half-disk bounded by ˛ and C . Additionally, �1 does
not cross any other state circles between its two crossings of C .

The form of the graph HA in case (2) of Lemma 6.12 is illustrated in Fig. 6.8.
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Proof. By Lemma 6.11, we may assume that ˇW is as on the left of Fig. 6.5, and �1

and �2 run parallel to the same segments on either side of ˇW , which are both part
of the vertex at ˇW .

Claim. For i D 1; 2, �i defines a right-down staircase, with �i running adjacent to
each segment of the staircase.

Proof of Claim: We may apply Lemma 3.10 (Downstream) to the arc �2,
directed away from ˇW . This lemma implies that �2 defines a right-down staircase,
with �2 running adjacent to each segment of the staircase in a downstream direction,
either until �2 crosses a non-prime arc without exiting the half-disk it bounds with
a state circle C , or crosses CV and runs to ˇV .

If �2 crosses CV , then CV separates V and W , so �1 must also cross CV , running
upstream when directed to V . If �2 crosses a non-prime arc without exiting the half-
disk it bounds with C , then note V must lie inside this half-disk, so �1 must cross
into this half-disk. Moreover, C cannot separate V and W , so �1 actually must cross
C twice, by Lemma 3.11 (Utility), first running upstream, then downstream when
directed toward V .

In either case, �1 crosses the last state circle C of the staircase of �2 running
upstream, directed toward V . Change the direction on �1. It runs downstream across
C , and downstream across CW , and must cross out of any non-prime half-disks
between these. So Lemma 3.10 (Downstream) implies that �1 defines a right-down
staircase, with �1 running adjacent to each segment of the staircase. This finishes
the proof of the claim.

To continue with the proof of the lemma we note that adequacy implies that the
segments of the staircases defined by �1 and by �2 must actually run between the
same sequence of state circles.

Recall that we know that the first segment of the staircase, on the other side of
CW from ˇW , is shared by both �1 and �2. Suppose we have shown that �1 and �2

run adjacent to the first k stairs of a right-down staircase forming the vertex of ˇW ,
and that �2 runs to a .k C 1/-st step. We will show the theorem holds at this step.

The arc �2 runs from the top of the .k C1/-st step, somewhere, then downstream
adjacent to the segment of the step. If �2 runs upstream first, before running
downstream, then Lemma 6.8 implies that a 2-edge loop of type F occurs.
Similarly, when directed downstream, the arc �1 runs adjacent to the segment of
the .k C 1/-st step, somewhere, and then downstream adjacent to the k-th step. If
it runs upstream between the two segments, then Lemma 6.8 will imply there is a
2-edge loop, this time of type G . In both cases option (1) holds.

Now assume neither �1 nor �2 runs upstream between the segments of these
steps. If the segments of �1 and �2 at this .k C 1/-st step are distinct, then we have
a 2-edge loop of type A ; again option (1) holds.

If the segments are not distinct, then Lemma 6.9 implies that �1 and �2 both run
adjacent to the state circle of this step between the two segments of the step. Thus
this step is a continuation of the same vertex corresponding to ˇW .

By induction, either (1) holds or �1, �2 share every segment of the staircase.
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Finally, suppose the staircase ends with �2 entering into the non-prime half-disk
bounded by a non-prime arc and the state circle C , without exiting. We have already
seen that �1 must also cross C in this case, first upstream and then downstream.
Suppose �1 crosses additional state circles between these two crossings of C . Then
Lemma 6.8 implies that there is a 2-edge loop of type B on the underside of the
state circle C . ut
Lemma 6.13. Suppose �2 runs across CW in the downstream direction, out of every
non-prime half-disk that it enters, and terminates with �2 crossing CV . Then the
conclusion of Theorem 6.4 holds.

Proof. By Proposition 6.10 we reduce to the case that ˇW and ˇV are as in Fig. 6.5.
The colors on these figures are fixed, given our choice of direction in which to pull
ˇW and ˇV off their corresponding vertices (Lemma 6.1, EPD to oriented square).

This means that both vertices cannot be of the same form in that figure, or a
green2 shaded face would lie adjacent to both sides of the same state circle, which
is impossible by Lemma 3.4 (Escher stairs).

Thus one vertex, ˇW say, is as on the left of Fig. 6.5, and the other vertex, ˇV , is
as on the right. Relabel so �1 runs through the orange face and �2 runs through the
green.

By Lemma 6.12, we reduce to the case that either CW D CV , or both �1 and
�2 run adjacent to either side of a maximal right-down staircase from CW to CV ,
corresponding to the vertex of ˇW . In both cases, when �1 and �2 are directed toward
CV , they run adjacent to the same segment which meets CV on the opposite side of
that containing ˇV : if CW D CV , then �1 and �2 are adjacent to the segment shown
on the left in Fig. 6.5; otherwise they are adjacent to the last segment of the staircase
from CW to CV .

After leaving this segment, �1 and �2 split up and run to ˇV . Thus the two are
adjacent to each other and to CV in two distinct points: at a segment on one side of
CV , and at ˇV on the other side.

If �1 crosses CV (running upstream) then runs upstream again before meeting
ˇV , Lemma 6.8 implies there will be a 2-edge loop of type B. Similarly, if �2 runs
upstream before crossing CV , then there will be a 2-edge loop, and this must be
of type F , as �2 is running downstream to CV , so must pass through a non-prime
switch to run upstream.

If neither �1 nor �2 run upstream between the point where they leave the segment
of the zig-zag of ˇW and the point where they meet again at ˇV , then a simple closed
curve crosses the knot diagram at the base of the zig-zag and at ˇV , and nowhere
else, following �1 on one side and �2 on the other, and encircles crossings on both
sides. This contradicts the hypothesis that the diagram is prime. ut

2In grayscale versions of this monograph, green will appear darker gray, orange lighter gray.
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6.5 Step 4: Inside Non-prime Arcs

At this point in the proof of Theorem 6.4, we either have the conclusion of the
theorem, or we have specialized to cases where the form of the graph HA is very
restricted. In particular,

• ˇV and ˇW must be in distinct polyhedral regions (Step 1);
• The graph near ˇW and ˇV must be of one of the two forms shown in Fig. 6.5

(Step 2);
• �2 runs down a (possibly empty) maximal right-down staircase and across a non-

prime arc, as in Fig. 6.8 (Step 3).

To finish the proof, we need to analyze what happens to the EPD when ˇV and
ˇW are separated by a non-prime arc ˛.

Lemma 6.14. Suppose ˇV and ˇW are separated by a non-prime arc ˛, with the
arc �2, say, crossing ˛. Suppose ˛ is outermost among all such arcs, with respect to
ˇW . That is, ˛ is the first such non-prime arc crossed by �2 when directed toward
ˇV . Then we have the conclusion of Theorem 6.4.

Proof. We break the proof into two cases: first, that �2 does not run upstream after
crossing ˛, and second, that it does run upstream.

Case 1: Suppose �2 does not run upstream after crossing ˛. Now suppose, by
way of contradiction, that the conclusion of Theorem 6.4 is not true. We will find a
contradiction to primeness of the diagram.

Since �2 does not run upstream after crossing ˛, it will not run downstream either,
for to run downstream would be to cross the state circle C out of the non-prime
half-disk bounded by ˛, contradicting the hypotheses. Therefore, after crossing ˛,
�2 must run directly to ˇV without crossing any additional state circles. We know
the graph HA must have one of the forms of Fig. 6.5, and that �2 cannot cross an
additional state circle after entering the region of ˇV , hence ˇV must be as on the
right of that figure, so ˛ is an arc in an orange face.

Next, Lemma 6.12 (full staircase) implies that on the opposite side of ˛, in
the region containing ˇW , �1 and �2 run adjacent to the same (possibly empty)
right-down staircase corresponding to the vertex of ˇW . However, notice that if the
staircase is non-empty, then ˇW must have the form of the left of Fig. 6.5, and the
colors must be as in Fig. 6.8. That is, ˛ is an arc in a green face. But in the previous
paragraph, we argued that ˛ is in an orange face. This is a contradiction. So the
zig-zag of ˇW must be empty, and ˇW must have the form of the right of Fig. 6.5.
Note that this implies that �2 meets no state circles on either side of the non-prime
arc ˛. See Fig. 6.9.

By Lemma 6.12, �1 crosses C twice, but meets no state circles between these
crossings. Then the boundary of the EPD gives a simple closed curve in the
diagram which meets the diagram exactly twice, once each time �1 crosses C . This
contradicts the fact that the diagram is prime.
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Fig. 6.9 The contradiction in
Lemma 6.14, Case 1: ˇW and
ˇV both have the form of the
right of Fig. 6.5, and �2 meets
no state circles

Case 2: The arc �2 does run upstream after crossing ˛, say across some state
circle C1.

If �2 runs back to C from C1, then Lemma 6.8 (Adjacent loop) implies there is a
2-edge loop of type F .

If not, then we claim that the theorem holds or �1 must also run adjacent to a
segment connecting C and C1. This can be seen as follows. First, if C1 separates
ˇV and ˇW , then �1 must also cross C1. Since �1 is running downstream (by
Lemma 4.14 (Opposite sides)), Lemma 3.10 (Downstream) implies that it must run
adjacent to a segment from C to C1, as desired. If C1 does not separate, then �2 must
cross it twice, the second time running downstream to some C 00. If C 00 D C , then
we must have a 2-edge loop of type F . If C 00 ¤ C , consider �1. It runs downstream
across C , along a segment connecting C to some C 0. If C 0 ¤ C1, then C 0 D C 00,
else we could not connect ends of �1 and �2 at ˇV . But now, �1 and �2 cannot cross
C 0 D C 00, or we would build two staircases from C 0 contradicting Lemma 3.14
(Parallel stairs). On the other hand, ˇV cannot lie on C 0 D C 00, since it would lie
at the tails of two tentacles, which do not meet at a vertex. The only possibility is
C1 D C 0, as desired.

Thus �1 and �2 both run adjacent to segments from C to C1 inside ˛. If these
segments are distinct, we have a 2-edge loop of type E .

If not, we will show we have a contradiction to the fact that the diagram is prime.
By assumption, �1 and �2 are adjacent to the vertex corresponding to ˇW just outside
˛ on C , and they meet no additional state circles outside ˛. If they are also adjacent
to the same segment inside ˛, then we may form a loop in the diagram meeting
C twice, meeting no other state circles, by following �1 on one side and �2 on the
other. This will descend to a loop in the diagram enclosing curves on both sides,
meeting the diagram just twice, contradicting the fact that the diagram is prime. ut
Completion of the proof of Theorem 6.4. As discussed in the beginning of this
section, Steps 1 through 3 imply the theorem in all cases where ˇW , ˇV are not
separated by a non-prime arc. Recall that by Step 3, either �2 runs directly from
ˇW across a non-prime arc separating V and W , or we have �1 and �2 adjacent to a
maximal right-down staircase of the vertex of ˇW , as in Fig. 6.8. By Lemma 6.12, in
the latter case �2 must also cross a non-prime arc separating the ˇW and ˇV . Hence,
in all cases, there is a non-prime arc that separates ˇW , ˇV . Now we pass to an
outermost such non-prime arc, and apply Lemma 6.14 to obtain the conclusion. ut



Chapter 7
Diagrams Without Non-prime Arcs

In this chapter, which is independent from the remaining chapters, we will restrict
ourselves to A-adequate diagrams D.K/ for which the polyhedral decomposition
includes no non-prime arcs or switches. In this case, one can simplify the statement
of Theorem 5.14 and give an easier combinatorial estimate for the guts of MA. This
is done in Theorem 7.2, whose proof takes up the bulk of the chapter.

Definition 7.1. In the A-adequate diagram D.K/, let bA denote the number of
bigons in the A-regions of the diagram. (Recall Definition 5.16 on p. 86 for the
notion of an A-region.) In other words, in Fig. 5.4, bA is the number of bigons in
twist regions where the A-resolution is short. Define

mA D eA � .e0
A C bA/:

Since each bigon of bA corresponds to a redundant edge of the graph GA, the
quantity mA is always non-negative.

Note that the quantity mA counts the number of distinct segments of HA that
connect the same state circles, excepting those segments that come from twist
regions and bound simple rectangles in HA. In other words, mA D 0 precisely
when every 2-edge loop in GA has edges belonging to the same twist region, as
in Corollary 5.19 on p. 88.

The main result of this chapter extends the simple diagrammatic statement of
Corollary 5.19 to a context where the corollary does not directly apply.

Theorem 7.2. Let D.K/ be a prime, A-adequate diagram, and let SA be the
essential spanning surface determined by this diagram. Suppose that the polyhedral
decomposition of MA D S3nnSA includes no non-prime arcs; that is, no further
cutting was required in Sect. 2.3. Then

��.G0
A/ � 8mA � ��.guts.MA// � ��.G0

A/;

where the lower bound is an equality if and only if mA D 0.

D. Futer et al., Guts of Surfaces and the Colored Jones Polynomial, Lecture Notes
in Mathematics 2069, DOI 10.1007/978-3-642-33302-6 7,
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To derive Theorem 7.2 from Theorem 5.14 on p. 84, it suffices to bound
the number jjEcjj of complex disks required to span the I -bundle of the upper
polyhedron. (See Definition 5.9 on p. 81.) Note that by Theorem 6.4 on p. 93, each
disk D 2 Ec must run along a 2-edge loop of GA. If this loop corresponds to a
single twist region, as in Corollary 5.19 on p. 88, then a disk corresponding to this
loop cannot be complex. In the following argument, we will bound jjEcjj in terms
of mA, where mA accounts for the loops that do not correspond to twist regions.

Before diving into the proof of Theorem 7.2, we give a sample application.

Example 7.3. Lickorish and Thistlethwaite introduced the notion of a strongly
alternating tangle [61]. This is an alternating tangle T , such that both its numerator
and denominator closures are alternating, prime, reduced diagrams. (See Defini-
tion 8.1 on p. 120 for the notions of numerator, denominator, and tangle sum.) A
semi-alternating diagram D is the numerator closure of the tangle sum T1 C T2,
where each Ti is strongly alternating but their sum T1 C T2 is non-alternating. Lick-
orish and Thistlethwaite observed that these diagrams are both A- and B-adequate.

If D is a twist-reduced, strongly alternating diagram, there is exactly one state
circle C of sA.D/ that runs through both tangles T1 and T2. In the all-A resolution
of T1 (resp. T2), this state circle appears as a pair of arcs along the north and south
(resp. east and west) of the tangle. Then, a 2-edge loop in GA.D/ can take one of
two forms. The two edges of this loop either belong to a single twist region (in which
case they do not contribute to mA), or else they form a bridge of two edges that spans
the tangle north to south, or east to west. (See Fig. 8.6 on p. 129 for an example.)
The quantity mA is then exactly equal to the number of bridges in the tangles. Thus,
applied to a semi-alternating diagram, Theorem 7.2 has the simpler formulation

��.G0
A/ � 8 .number of bridges in GA/ � ��.guts.MA// � ��.G0

A/:

7.1 Mapping EPDs to 2-Edge Loops

Recall that Theorem 6.4 shows that every EPD in the upper polyhedron determines
a normal square of one of seven types (A through G ), as shown in Fig. 6.1. Under
the hypothesis that the polyhedral decomposition includes no non-prime arcs or
switches, we will simplify these seven cases to three (see Fig. 7.1).

Definition 7.4. A brick is a pair of segments s; s0 of the graph HA that connect the
same state circles C0 and C1.

Note that a closed curve in the projection plane consisting of segments s and
s0, as well as parallel arcs of C0 and C1 from s to s0, is topologically a rectangle.
This is the origin of the term brick. We will always depict bricks with state circles
horizontal and segments of HA vertical, as in Fig. 7.1.

Note as well that the segments s and s0 split the annular region between C0 and
C1 into two rectangular components. We will say that tentacles adjacent to s and
s0 are on the same side of the brick if these tentacles lie in the same rectangular
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Type (1), inside or outside Type (2)

C1

C0

Type (3)

Fig. 7.1 When there are no nonprime arcs, each EPD can be associated with a 2-edge loop of
type (1), (2), or (3), illustrated

component, and that these tentacles are on opposite sides of the brick if they belong
to different components.

Definition 7.5. Any EPD meets exactly two distinct shaded faces. We assign each
shaded face a unique color. A color pair of an EPD is a choice of two distinct shaded
faces met by a single EPD.

By Lemma 5.8 on p. 80, any tentacle caries at most two EPDs with the same
color pair.

Proposition 7.6. Let D.K/ be a prime, A-adequate diagram of a link in S3 with
prime polyhedral decomposition of S3nnSA such that the polyhedral decomposition
contains no non-prime arcs. Let E be an EPD embedded in the upper polyhedron,
with associated normal square of Lemma 6.1 (EPD to oriented square), and denote
the color pair of E by orange–green,1 with the orientation convention of Lemma 6.1
(EPD to oriented square). Then we may associate E with a brick in HA of one of
the following forms.

.1/ The normal square of E runs through distinctly colored tentacles adjacent to
the segments of the brick (hence one orange, one green tentacle), with these
tentacles lying on the same side of the brick.

.2/ The normal square of E runs through two orange colored tentacles adjacent
to the segments of the brick, necessarily on opposite sides of the brick, and in
addition, a green tentacle is adjacent to one of the two segments.

.3/ The normal square of E runs through two orange colored tentacles adjacent to
the segments of the brick, necessarily on opposite sides of the brick. Moreover,
the arcs of @E in these orange tentacles run to the tail of the orange tentacles
on the state circle C0 of the brick, there meet a vertex, and then run into green
tentacles and across the state circle C0.

1Note: For grayscale versions of this monograph, orange faces in the figures will appear light gray,
and green ones will appear darker gray.
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The three possibilities are illustrated in Fig. 7.1.

Proof. This follows from an analysis of the normal squares of types A through G
in the conclusion of Theorem 6.4. Notice that the normal squares in types E , F ,
and G include non-prime arcs as essential portions of the diagram, so none of these
can occur in the setting at hand.

Consider first the normal squares of types A and C , illustrated in Fig. 6.1 on
p. 94. Note that the boundary of the EPD in these cases runs in tentacles of distinct
colors adjacent to the 2-edge loop. Moreover, note that when we close off the 2-edge
loop to form a brick, these two distinguished tentacles are on the same side of the
brick. Hence we have type (1) in these cases.

Next consider type B. The zig-zag at the top left of the figure showing type B
in Fig. 6.1 is schematic, to represent the fact that there may be 0 or more segments
in that zig-zag. If there are 0 segments in the zig-zag, the arc of the EPD in the
green face may run either upstream or downstream from the top left. To prove
this proposition, when we have a 2-edge loop of type B, we need to condition
on whether the arc of the EPD in the green, top left, runs upstream or downstream
from this point.

Suppose first that it runs downstream. Then by Lemma 3.10 (Downstream), it
must run downstream until it terminates. Notice that by our orientation convention
(Lemma 6.1, EPD to oriented square), the arc cannot terminate in the tail of a green
tentacle. Hence the arc �1 in the green must cross the top state circle C0 in the
brick of the 2-edge loop before it terminates. However, notice �1 cannot cross C0 to
the left of the left-most segment of our 2-edge loop, else it would force the orange
segment to terminate, cutting off the arc in the orange. Thus the green terminates to
the right of that left-most segment. This means that the tentacle adjacent to the right
of that left-most segment must be green, and our brick is of type (2) in the statement
of the proposition.

Next suppose that we have a 2-edge loop of type B, but our arc in the top left in
the green runs upstream rather than down, adjacent to a segment s1. Then we have
zero segments in the zig-zag vertex at the top left of type B, and the state circle
at the top of the brick, call it C0, is connected by s1 to some other state circle C 0.
Now, consider the arc �2 of the EPD in the orange tentacle on the right, oriented so
that it is running downstream toward C0. Either �2 must run downstream across C0,
adjacent to a segment s2 connecting C0 and C 0, or the arc �1 in the green tentacle
must eventually run downstream to meet C0. In the first case, we obtain a brick
between C0 and C 0, with the EPD running over distinctly colored tentacles on the
same side of the brick, and we have a brick of type (1) in the statement of the
proposition. In the second case, the arc �2 terminates at a vertex on C0, and we have
a brick of type (3). This finishes the proof in the case that our 2-edge loop coming
from Theorem 6.4 is of type B.

It remains to show that the proposition holds when our 2-edge loop is of type D ,
shown in Fig. 6.1 on p. 94. The argument in this case requires three steps, illustrated
in Fig. 7.2.
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...

C1

s1

C0 σ

......

... ... σ
2

1

Fig. 7.2 Tentacles of an EPD
of type D , in the absence of
non-prime arcs

Step 1: Consider the arc �2 that lies in an orange tentacle at the bottom of Fig. 7.2.
We claim that �2 runs upstream. To prove this claim, we need to show that �2 cannot
run downstream, or terminate.

Suppose �2 runs downstream, across the state circle C0 in the bottom of
Fig. 7.2. Then, observe that the arc �1 in the green tentacle on the right of the
figure is running downstream, on the opposite sides of C0. Since �1 can only
continue downstream until it terminates (by Lemma 3.10 (Downstream)), it must
terminate immediately and connect to �2 at an ideal vertex. But such a vertex would
be oriented green–orange–white (counter-clockwise), contradicting the orientation
convention of Lemma 6.1 (EPD to oriented square).

Next, suppose that �2 terminates immediately, rather than running upstream. In
that case, the arc �1 must run downstream across C0 and immediately connect to
meet the tail of �2 at a vertex. But this is impossible: the orange tentacle has only
one tail, and this tail already forms a portion of the other vertex of the EPD, as
illustrated in the figure. This proves the claim: �2 must run upstream, adjacent to
some segment s1 connecting C0 to a state circle C1.

Step 2: Now, consider the arc �1 lying in the green tentacle on the right of
Fig. 7.2. This arc must run downstream across C0 by orientation reasons, but it might
either terminate immediately on the opposite side of C0, or continue adjacent to a
segment running to C1.

If �1 terminates, then it meets an orange arc just on the opposite side of C1.
Lemma 6.8 (Adjacent loop) implies that �2 runs adjacent to some segment s2

connecting C0 to C1, and s1 and s2 form a 2-edge loop of type (3) of the proposition.
Next, suppose that the arc �1 runs downstream. Then Lemma 3.11 (Utility)

implies that it runs adjacent to a segment s2 connecting C0 to C1. If s1 and s2 are
distinct segments, then they form a 2-edge loop of type (1) as in the statement of the
proposition, with arcs of the normal square running on the same side of the brick,
in tentacles of distinct color. This proves the proposition in the case where s1 and s2

are distinct segments.
Step 3: Suppose that s1 and s2 are the same segment. Then we will repeat the

argument as above and eventually end up with a brick of type (1) or (2), using
induction and finiteness of the graph HA, as well as primeness.

First, we claim the arc in the orange must again run upstream, for if it runs
downstream we pick up a vertex of the wrong orientation, and if it terminates, then
we get a contradiction to primeness: the arc in the orange connects across the bottom
state circle to the arc in the green, and they form a loop meeting that state circle just
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once more, which gives a loop meeting the diagram twice with crossings on each
side. Hence the orange arc runs upstream, say adjacent to a segment s.

The green arc either runs downstream, or terminates. If it terminates, it meets
the tail of another orange tentacle, and Lemma 6.8 (Adjacent loop) implies that the
orange runs down this tentacle, adjacent to some other segment s0. The segments s

and s0 form a 2-edge loop. Notice in this case that the green must terminate to the
right of the segment s, else would cut off the orange tentacle. Thus the segment s

must have a green tentacle adjacent to it on its right, and we have type (2).
Suppose the green arc runs downstream rather than terminating. Then it does so

by running adjacent to a segment s0. Again s and s0 form the desired brick of the
proposition, of type (1) if they are distinct. If not, repeat verbatim the argument
above, starting from the beginning of Step 3. By induction, we eventually get the
brick given by the proposition. ut

7.2 A Four-to-One Mapping

For each essential product disk E in the upper polyhedron, Proposition 7.6 gives a
mapping from E to some brick of HA, with the E running through tentacles as in
type (1), (2), or (3). Thus, when the EPDs are selected from the spanning set Ec of
Lemma 5.8 on p. 80, Proposition 7.6 gives a function

f W Ec ! fbricks of type (1), (2), or (3)g:

The goal of this section is to show that the function f is at most four-to-one.

Definition 7.7. We say that a brick (a pair of segments between the same state
circles of HA) supports an essential product disk E 2 Ec if the function f above
maps E to the given brick.

Lemma 7.8. A single brick of HA cannot support both an EPD of type (1) in one
color pair and an EPD of type (3) in a different color pair.

Proof. Let s, s0 be the segments of the brick. Let E3 be the EPD of type (3). For
ease of exposition, we will assume that the shaded faces of E3 are colored green and
orange, with the orientation given by Lemma 6.1 (EPD to oriented square). Hence,
the tentacles of E3 look identical to those in Fig. 7.1, type (3).

Let E1 be the EPD of type (1), also supported by the brick of s and s0. Note
that since each of s and s0 is adjacent to an orange tentacle, one of the shaded faces
through which E1 runs must be orange. Say that the color pair of E1 is orange–blue,
with the blue tentacle adjacent to segment s0.

Now, the orange tentacles adjacent to s; s0 terminate with their tails on the heads
of green tentacles on the state circle C0. Since E1 does not meet a green face, the
arc �1 of E1 running through the orange tentacle adjacent to s must run downstream
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s

C1

C0

s

τ11σ

Fig. 7.3 When a single brick supports both a disk E1 of type (1) and a disk E3 of type (3), their
intersections with a state circle C0 must interleave. This will imply that E1 must cut across the
green (darker shaded) face containing E3, which is a contradiction

across C0 at a segment attached to C0, to the right of the point where the orange
tentacle terminates in a tail. Since the EPD E3 runs through the tail of this tentacle,
the arc of E1 running through the same tentacle as the arc of E3 must cross C0 to
the right of the point where that arc of E3 crosses it.

On the other hand, the blue tentacle that E1 runs through, adjacent to a segment
s0, must be on the right of s0. Hence the arc 	1 of E1 running through the blue tentacle
crosses C0 to the right of the arc of E3 running adjacent to that same segment s0.
See Fig. 7.3.

We conclude that E1 and E3 intersect state circle C0 at interleaving points. We
will see that this interleaving implies that the orange–blue disk E1 must intersect
the green shaded face, which will give a contradiction.

Let 
 be the arc of E3 in the green face. We know, from Fig. 7.1 (3), that 
 crosses
C0 at two places, adjacent to segments s and s0. If we orient 
 from s to s0, then it
crosses C0 first going upstream, then going downstream. By the Utility Lemma 3.11,
these are the only intersections of 
 with C0. Thus the green face separates the two
tentacles of E1 adjacent to segments s and s0.

Now, consider the intersections between state circle C0 and arcs �1; 	1 of E1. As
we have seen, the arc �1 of E1 crosses C0 running downstream. By Lemma 3.10
(Downstream), �1 keeps running downstream until it meets a white face W . Now,
orient 	1 toward face W , and consider the last time that it crosses C0 before reaching
face W . By Lemma 3.14 (Different streams), 	1 must cross C0 running upstream.
But we already know a place where 	1 crosses C0, namely in the tentacle to the
right of segment s0. By the Utility Lemma 3.11, 	1 cannot cross C0 twice running
upstream. Thus 	1 must cross C0 to the right of s0 and continue to white face W .
This is a contradiction, since W lies on the other side of the green face from s0. ut
Lemma 7.9. Suppose that a brick formed by segments s and s0 supports an EPD
E2 of type (2), as well as an EPD E3 of type (3) in a different color pair than that
of E2. Then E2 and E3 must run through all four tentacles adjacent to the brick. In
particular, this will happen only if the two segments are adjacent to tentacles of the
same two colors.

Proof. As in the proof of Lemma 7.8, we will assume that the color pair of E3

is green–orange, and that the brick of E3 is positioned exactly like the brick of
Fig. 7.1 (3), with identical colors.
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Suppose for a contradiction that E2 also runs through orange tentacles in that
brick, but the color pair of E2 is blue–orange. Consider the state circle C0. Each
orange tentacle of the brick terminates with its tail at a green tentacle on C0. Because
E2 does not meet the green face, each of the arcs of @E2 in the orange tentacles
must run downstream across C0, to the right of the point where the orange tentacle
terminates. Thus, as in the proof of Lemma 7.8, we conclude that the intersection
points of @E2 \ C0 must interleave with the points of @E3 \ C0.

Let � be the arc of E3 in the orange face. The interleaving intersections with
C0 mean that two points of E1 \ C0 lie on opposite sides of � . Thus the arc of E1

in the orange face must intersect � � E3. By Lemma 4.9 on p. 60, it follows that
(the normal square of) E1 must also intersect (the normal square of) E3 in another
shaded face. This contradicts the hypothesis that E1 is orange–blue while E3 is
orange–green. ut
Lemma 7.10. Let D.K/ be a prime, A-adequate diagram with polyhedral decom-
position with no non-prime arcs. Then any 2-edge loop in HA supports at most four
EPDs in the spanning set Ec , from at most two color pairs.

Proof. Any EPD involves a color pair. Recall that Lemma 5.10 on p. 81 implies that
for a fixed color pair, at most two EPDs in Ec between those colors run over a given
segment. We will show that any brick of HA can support EPDs in at most two color
pairs. Then, the result will follow from Lemma 5.10.

Denote the segments of the 2-edge loop by s1; s2. Note that if s1; s2 support EPDs
of types (1) or (2), then the color pairs of these EPDs are determined by the colors
of the tentacles adjacent to s1 and s2. For type (3), the colors of adjacent tentacles
determine one of the two colors in the pair, and the other is determined by the color
of the tentacles meeting the tails of the tentacles of the first color.

Consider the tentacles adjacent to s1; s2. There are four such tentacles—one on
each side of each segment. There may be two, three, or four distinct colors for these
tentacles.

Suppose first there are four distinct colors. Then the 2-edge loop may only
support EPDs of type (1) (not (2), not (3)). Since a normal square of type (1) lies on
one side of a brick of s1 and s2, and since any such brick separates the tentacles into
the same pairs inside/outside, there are at most two color pairs in this case.

Now suppose there are three distinctly colored tentacles adjacent to s1 and s2.
We may have an EPD of type (2) or (3), but not both in distinct color pairs, by
Lemma 7.9. If there is an EPD of type (3), then Lemma 7.8 implies there are none
of type (1) of distinct color pairs, hence the only EPDs possible are of the same
color pair of the EPD of type (3).

If there are three distinctly colored tentacles adjacent to s1 and s2, and we have
an EPD of type (2), then all color pairs must come from the colors adjacent to the
two segments. Label these colors orange, green, and blue, with the colors of the
pair of tentacles of the same color labeled orange. Potentially, we might have three
color pairs: green–orange, blue–orange, and green–blue. However, note that green
and blue tentacles must be on opposite sides of the brick of s1 and s2. Since they are
distinct colors, only and EPD of type (1) could run through them, but since they are
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not on the same side of the brick, that is impossible. Thus there are only two color
pairs in this case.

Finally, suppose there are only two distinct colors of tentacles adjacent to s1 and
s2, say green and orange.

If there is an EPD of type (3), then it determines a color pair and there can be no
EPD of type (1) with a distinct color pair by Lemma 7.8, nor of type (2) through the
same tentacles adjacent to s1 and s2 but with a distinct color pair, by Lemma 7.9.
There might be an EPD of type (2) and a distinct color pair which uses the other
tentacles, but in that case, Lemma 7.9 implies there cannot be another of type (3),
hence there are only two possible color pairs.

Similarly, if we have two EPDs of type (3) and distinct color pairs, then they
must use distinct tentacles of the brick, and there can be no other types of EPDs
with distinct color pairs.

If there is no EPD of type (3), then all EPDs must be of types (1) and (2), for
which the colors in the color pair are the colors adjacent to the segments s1 and s2.
Hence in this case, there is just one color pair. ut

7.3 Estimating the Size of Ec

Now we complete the proof of Theorem 7.2. Lemma 7.10 has the following
immediate consequence.

Lemma 7.11. Let e1; : : : ; en and f1; : : : fm be edges of GA (equivalently, segments
of the graph HA), all of which connect the same pair of state circles C and C 0.
Suppose that the ei belong to the same twist region, and that the fj belong to
the same twist region. Then the collection of all 2-edge loops of the form fei ; fj g
supports a total of at most four EPDs in the spanning set Ec .

Proof. Let bD be the diagram obtained from D by removing all but one crossing
from every A-region of D. Under this operation, e1; : : : ; en become the same edge
e of GA.bD/, and f1; : : : fm become the same edge f of GA.bD/. Furthermore, by
Lemma 5.17 on p. 86, there is a one-to-one correspondence between complex disks
of Ec.D/ and the complex disks of Ec.bD/. In particular, a complex EPD in Ec.bD/

that runs through a tentacle adjacent to the single edge e corresponds to a complex
EPD in Ec.bD/ that runs through a tentacle adjacent to one of the ei , and similarly
for the fj .

Thus, applying Lemma 7.10 to the diagram bD gives the desired result for Ec.D/.
ut

Now Theorem 7.2 will follow immediately from Theorem 5.14 on p. 84 and the
following lemma.

Lemma 7.12. Let Ec be the spanning set of Lemma 5.8 on p. 80, and let mA be the
diagrammatic quantity defined in Definition 7.1 on p. 109. Then, in the absence of
non-prime arcs,
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0 � jjEcjj � 8 mA;

with equality if and only if mA D 0.

Proof. Consider a pair of state circles C; C 0 of GA, which are connected by at least
one edge. There are e.C; C 0/ edges of GA connecting these circles, which belong to
m.C; C 0/ twist regions. Then the number of bigons between C and C 0 is bA.C; C 0/,
where

bA.C; C 0/ D e.C; C 0/ � m.C; C 0/: (7.1)

Associated to the pair of circles C and C 0, we construct a planar surface
S.C; C 0/, contained in the projection sphere S2. Take the disjoint disks in D2

whose boundaries are C and C 0, and connect these disks by m.C; C 0/ rectangular
bands—with each band containing the segments of the corresponding twist region.
Topologically, S.C; C 0/ is a sphere with m.C; C 0/ holes.

Let D 2 Ec be an essential product disk that runs through tentacles between
C and C 0. Then @D is a simple closed curve in S.C; C 0/. Now, the conclusion
of Lemma 7.11 can be rephrased to say that at most four distinct EPDs of Ec

running through tentacles between C and C 0 can have boundaries that are isotopic
in S.C; C 0/. This is because isotopy in S.C; C 0/ is exactly the same equivalence
relation as running through tentacles in the same pair of twist regions.

Recall that a sphere with m.C; C 0/ holes contains at most 2m.C; C 0/�3 isotopy
classes of disjoint essential simple closed curves. Since the disks in Ec are disjoint,
and since at most four of these disks can have boundaries that are isotopic in
S.C; C 0/, we conclude that there are at most

4.2m.C; C 0/ � 3/ < 8.m.C; C 0/ � 1/ (7.2)

disks in Ec that run through tentacles between C and C 0. (Note that if m.C; C 0/ D 1,
i.e. all segments between C and C 0 belong to the same twist region, then the left side
of (7.2) is negative. But in this case, all EPDs running through tentacles between
C and C 0 must be simple or semi-simple, and cannot belong to Ec . Thus the
estimate is meaningful precisely when a 2-edge loop between C and C 0 contributes
to Ec . Meanwhile, the right side of (7.2) is always non-negative when C and C 0 are
connected in GA.)

Summing over all pairs of state circles C; C 0 that are connected by at least one
edge of GA, we obtain

jjEcjj � 8
P

C;C 0.m.C; C 0/ � 1/ by (7.2)
D 8

P

C;C 0.e.C; C 0/ � bA.C; C 0/ � 1/ by (7.1)
D 8

�P

C;C 0 e.C; C 0/ � P

C;C 0 bA.C; C 0/ � P

C;C 0 1
�

D 8
�

eA � bA � e0
A

�

D 8 mA by Def (7.1):

Notice that the inequality is sharp precisely when the estimate of (7.2) applies at
least once in a non-trivial way, i.e. when mA > 0. ut



Chapter 8
Montesinos Links

In this chapter, we study state surfaces of Montesinos links, and calculate their guts.
Our main result is Theorem 8.6. In that theorem, we show that for every sufficiently
complicated Montesinos link K , either K or its mirror image admits an A-adequate
diagram D such that the quantity jjEcjj of Definition 5.9 vanishes. Then, it will
follow that ��.guts.MA// D ��.G0

A/.

8.1 Preliminaries

We begin by reviewing some classically known facts. A reference for this material
is, for example, Burde–Zieschang [15, Chap. 12]. A rational tangle is a pair .B; L/

where B is a 3-ball and L is a pair of arcs in B that are isotopic to @B , with
the isotopies following disjoint disks in B . Note that a rational tangle is unique
up to homeomorphism of pairs. Also, a rational tangle .B; L/ contains a unique
compression disk that separates the two arcs of L.

A marked rational tangle is an embedding of .B; L/ into R
3, with B being

embedded into the regular neighborhood of a unit square in R
2 (called a pillowcase)

and the four endpoints of L sent to the four corners of the pillow. For concreteness,
we label these four corners NW, NE, SE, and SW. A marked rational tangle specifies
a planar projection of K to the unit square, uniquely up to Reidemeister moves in
the square.

Marked rational tangles are in 1–1 correspondence with slopes in Q[ f1g. This
can be seen in several ways. First, it is well-known that isotopy classes of essential
simple closed curves in a 4-punctured sphere are parametrized by Q [ f1g. Thus
a rational number determines the slope of a compression disk in the tangle, and
this disk determines an embedding of the tangle up to isotopy. A more concrete
way to specify the correspondence is to picture the pillowcase boundary of B as
constructed from the union of two Euclidean squares. Then, a rational slope q

D. Futer et al., Guts of Surfaces and the Colored Jones Polynomial, Lecture Notes
in Mathematics 2069, DOI 10.1007/978-3-642-33302-6 8,
© Springer-Verlag Berlin Heidelberg 2013
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10 ∞

Fig. 8.1 Marked rational tangles of slope 0, 1, and 1

Fig. 8.2 A Montesinos knot constructed from rational tangles of slope 4=3, 1=2, 4=7, �1=3. This
diagram is not reduced, according to Definition 8.3

specifies a Euclidean geodesic that starts from a corner and travels with Euclidean
slope q. There are exactly two disjoint arcs with this slope; their union is L.

We adopt the standard convention that rational tangles of slope 0 and 1 have
crossing-free diagrams, and a rational tangle of slope 1 projects to a single positive
crossing. See Fig. 8.1.

Given marked rational tangles T1; T2 of slope q1; q2, one may form a new tangle,
called the sum of T1 and T2, by joining the NE corner of T1 to the NW corner of T2

and the SE corner of T1 to the SW corner of T2. One may check that if qi 2 Z for
either i D 1 or i D 2, the result is again a rational tangle of slope q1 C q2. This is
called a trivial sum. Otherwise, if qi … Z, the sum tangle will not be rational.

Definition 8.1. For any tangle diagram T with corners labeled NW, NE, SE, and
SW, the numerator closure of T is defined to be the link diagram obtained by
connecting NW to NE and SW to SE by simple arcs with no crossings. The
denominator closure of T is defined to be the diagram obtained by connecting NW
to SW, and NE to SE by simple arcs with no crossings.

Given marked rational tangles T1; : : : ; Tr , a Montesinos link is constructed by
taking the numerator closure of the sum T1 C : : : C Tr . We also call this the cyclic
sum of T1; : : : ; Tr . See Fig. 8.2. In particular, if r is the number of rational tangles
used, then the Montesinos link K is determined by an r-tuple of slopes q1; : : : ; qr 2
Q [ f1g. To avoid trivial sums, we always assume qi … Z for all i .

A cyclic sum of two rational tangles is a two-bridge link. Since two-bridge links
are alternating, the guts of the checkerboard surfaces in this case are known by
Lackenby’s work [58], or equivalently by Corollary 5.19. Thus we assume that r �
3. In addition, since summing with a tangle of slope 1 produces a composite or
split link, and we are interested in prime links, we also prohibit tangles of slope 1.
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Fig. 8.3 Performing the Euclidean algorithm on p=q produces a continued fraction expansion and
an alternating tangle diagram. Here, 3=5 D Œ0; 1; 1; 2�

Note, in Fig. 8.2, that a cyclic permutation of the tangles T1; : : : ; Tr produces
the same diagram, up to isotopy in S2. Furthermore, because every rational tangle
admits a rotationally symmetric diagram (Fig. 8.3, left), reversing the order of
T1; : : : ; Tr also does not affect the link. The following theorem of Bonahon and
Siebenmann [15, Theorem 12.28] implies that the converse is also true: dihedral
permutations of the tangles are essentially the only moves that will produce the
same link.

Theorem 8.2 (Theorem 12.28 of [15]). Let K be a Montesinos link obtained as a
cyclic sum of r � 3 rational tangles whose slopes are q1; : : : ; qr 2 QnZ. Then K is
determined up to isomorphism by the rational number

Pr
iD1 qi and the vector ..q1

mod 1/; : : : ; .qr mod 1//, up to dihedral permutation.

One consequence of Theorem 8.2 is that r , the number of rational tangles used
to construct K , is a link invariant. This number is called the length of K . In this
framework, two-bridge links are Montesinos links of length 2.

For a rational number q, the integer vector Œa0; a1; : : : ; an� is called a continued
fraction expansion of q if

q D a0 C 1

a1 C 1

a2 C 1

: : : C 1

an

:

This continued fraction expansion specifies a tangle diagram, as follows. Moving
from the outside of the unit square toward the inside, place a0 positive crossings in
a horizontal band, followed by a1 crossings in a vertical band, etc., until the final an

crossings in a (vertical or horizontal) band connect all four strands of the braid. The
convention is that positive integers correspond to positive crossings and negative
integers to negative crossings. The integer a0 will be 0 if jqj < 1, but all subsequent
ai are required to be nonzero. A continued fraction expansion where all nonzero aj

have the same sign as q determines an alternating diagram of the tangle. See Fig. 8.3,
where both the alternating diagram and the continued fraction are constructed via a
Euclidean algorithm.
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Definition 8.3. Let K be a Montesinos link of length r � 3, obtained as the cyclic
sum of tangles T1; : : : ; Tr of slope q1; : : : ; qr . A diagram D.K/ is called a reduced
Montesinos diagram if it is a cyclic sum of diagrams of the Ti , and both of the
following hold:

.1/ Either all qi have the same sign, or 0 < jqi j < 1 for all i .

.2/ The diagram of Ti comes from a constant-sign continued fraction expansion
of qi . If the sign is positive, we say Ti is a positive tangle. Otherwise, Ti is a
negative tangle.

Note that D.K/ will be an alternating diagram iff all qi have the same sign.

It is an easy consequence of Theorem 8.2 that every (prime, non-split,
non-2-bridge) Montesinos link has a reduced diagram. For example, if qi < 0

while qj > 1, one may add 1 to qi while subtracting 1 from qj . By Theorem 8.2,
this does not change the link type. Continuing in this fashion will eventually satisfy
condition .1/ of the definition.

The significance of reduced diagrams lies in the result, due to Lickorish and
Thistlethwaite, that for prime, non-split Montesinos links of length r � 3 the
crossing number of K is realized by a reduced diagram [61]. The proof of this result
makes extensive use of adequacy. In particular, they make the following observation.

Lemma 8.4 (Lickorish–Thistlethwaite [61]). Let D.K/ be a reduced Montesinos
diagram with r > 0 positive tangles and s > 0 negative tangles. Then D.K/ is
A-adequate iff r � 2 and B-adequate iff s � 2. Since r C s � 3 in a reduced
diagram, D must be either A-adequate or B-adequate.

Note that if r D 0 or s D 0, then D.K/ is an alternating diagram, which is both
A- and B-adequate. Thus it follows from Lemma 8.4 that every Montesinos link is
A- or B-adequate. This turns out to be enough to determine the crossing number
of K .

In constructing an alternating tangle diagram from a continued fraction, we had
a number of choices, as follows. The integer a1 corresponds to a1 positive crossings
in a vertical band—which can be at the top or bottom of the band. Similarly, the
second integer a2 corresponds to crossings in a horizontal band—which can be at
the left or right of the band. For example, in Fig. 8.3, the first crossing was chosen
to go on the top of the tangle, and the second crossing was chosen on the left side
of the horizontal band. Reversing these choices still produces a reduced diagram.
However, for our analysis of I -bundles and guts, we will prefer a particular choice.

Definition 8.5. Let T be a rational tangle of slope q, where 0 < jqj < 1. If q >

0, we say that an alternating diagram D.T / is admissible if all the crossings in a
vertical band are at the top of the band, and all the crossings in a horizontal band
are on the right of the band. If q < 0, we say that an alternating diagram D.T / is
admissible if all the crossings in a vertical band are at the top of the band, and all the
crossings in a horizontal band are on the left of the band. For example, the diagram
in Fig. 8.3 is admissible.
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A reduced Montesinos diagram D.K/ is called admissible if the sub-diagram
D.Ti / is admissible for every tangle of slope 0 < jqi j < 1.

For the rest of this chapter, we will assume that D.K/ is a reduced, admissible,
Montesinos diagram. This assumption does not restrict the class of links under
consideration, because every reduced diagram can be made admissible by a
sequence of flypes. We also remark that the placement of crossings in vertical
and horizontal bands implies that every reduced, admissible diagram is also twist-
reduced (see Definition 1.7 on p. 10).

Our goal is to understand the guts of MA D S3nnSA corresponding to a reduced,
admissible diagram.

Theorem 8.6. Suppose K is a Montesinos link with a reduced admissible diagram
D.K/ that contains at least three tangles of positive slope. Then D is A-adequate,
and

��.guts.MA// D ��.G0
A/:

Note that the A-adequacy of D follows immediately from Lemma 8.4. Similarly,
if D.K/ contains at least three tangles of negative slope, then it is B-adequate and

��.guts.MB// D ��.G0
B/:

Recall that in Theorem 5.14 on p. 84, we have expressed ��.guts.MA// in terms
of the negative Euler characteristic ��.G0

A/ and the number jjEcjj of complex disks
required to span the I -bundle of the upper polyhedron. Thus, to prove Theorem 8.6,
it will suffice to show that jjEcjj D 0. If D.K/ is alternating and twist-reduced, all
2-edge loops in GA belong to twist regions, hence the result follows by Corol-
lary 5.19. Thus, for the rest of the chapter, we will assume that D.K/ is non-
alternating; that is, D.K/ contains at least three tangles of positive slope and at
least one tangle of negative slope.

We will prove the desired statement at the end of the chapter, in Proposition 8.16.
In turn, Proposition 8.16 relies on knowing a lot of detailed information about the
structure of shaded faces in the upper polyhedron, along with their tentacles. The
next section is devoted to compiling this information.

8.2 Polyhedral Decomposition

In this section we will describe the polyhedral decomposition of MA, in the case
of Montesinos diagrams. Then, we prove several tentacle-chasing lemmas about the
shape of shaded faces in the upper polyhedron.

Lemma 8.7. Suppose that a non-alternating diagram D.K/ is the cyclic sum of
positive slope tangles P1; : : : ; Pr and negative slope tangles N1; : : : ; Ns . Here, the
order of the indices indicates that P1 is clockwise (i.e. west) of P2, but does not give
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Fig. 8.4 Left: A positive tangle and its A-resolution. Right: A negative tangle and its A-resolution

⊕⊕⊕

Fig. 8.5 Polyhedral regions of D correspond to individual negative tangles, as well as the sum
of all positive tangles. Dashed lines are non-prime arcs. A maximal string of consecutive negative
tangles, called a negative block, is shown on the left

any information about the position of Pi relative to any Nj . Then the polyhedral
regions of the projection plane are as follows:

.1/ There is one polyhedral region containing all of the positive tangles. The lower
polyhedron of this region corresponds to the alternating diagram obtained from
a cyclic sum of P1; : : : ; Pr .

.2/ Every negative tangle Nj corresponds to its own polyhedral region. The
lower polyhedron of this region has a diagram coinciding with the alternating
diagram of the denominator closure of Nj .

Recall that the numerator and denominator closures of a tangle, as well as the
cyclic sum of several tangles, are defined in Definition 8.1.

Proof. Consider the way in which the state circles of sA intersect the individual
tangles. For each tangle T , its intersection with sA will contain some number of
closed circles, along with exactly two arcs that connect to the four corners of T .
When T is a rational tangle, one can easily check that the non-closed arcs of sA \ T

will run along the north and south sides of T if its slope is positive, and along the
east and west sides of T if its slope is negative. See Fig. 8.4.

Now, recall that the polyhedral decomposition described in Chap. 2 proceeds in
two steps. In the first step, we cut MA along white faces; the resulting polyhedra
correspond to the (non-trivial) regions in the complement of the state circles
sA. Here, all of the positive tangles are grouped into the same complementary
region. On the other hand, every maximal consecutive sequence of negative tangles
Ni; : : : ; NiCk defines its own complementary region. See Fig. 8.5. We call such a
maximal string of negative tangles a negative block.
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The second step of the polyhedral decomposition is the cutting along non-prime
arcs. The region containing all the positive tangles is prime, and does not need to be
cut further. On the other hand, if negative tangles Ni and NiC1 are adjacent in D,
they will be separated by a non-prime arc ˛. Thus, at the end of this second step,
every negative tangle corresponds to its own lower polyhedron.

The claimed correspondence between these lower polyhedra and alternating link
diagrams is a direct consequence of Lemma 2.21 on p. 29. ut
Remark 8.8. Examining Fig. 8.5, along with the shape of individual positive
tangles in Fig. 8.4, gives a quick proof of Lemma 8.4.

Lemma 8.9. Let D.K/ be a reduced, admissible, non-alternating, A-adequate
Montesinos diagram. Let s be a segment of the graph HA constructed from D.
Consider the two tentacles that run along s. Then

.1/ At least one of these two tentacles terminates immediately downstream from s.

.2/ Both tentacles terminate immediately downstream from s, unless s is adjacent
to the NE or SW corner of a positive tangle, or the NW or SE corner of a
negative tangle.

Proof. Let C and C 0 be state circles connected by s. Note that s is contained in
some rational tangle T . Suppose, as a warm-up, that that C is an innermost circle
entirely contained in T . Then the tentacle that runs downstream toward C will
terminate immediately after reaching C , and conclusion (1) is satisfied. We store
this observation for later.

To prove the lemma, we consider three cases, conditioned on whether C and/or
C 0 are entirely contained in T .

Case 1: C and C 0 are entirely contained in T . Then, by the above observation,
the tentacles that run downstream to both C and C 0 terminate immediately. Thus (1)
and (2) both hold, proving the lemma in this case.

Case 2: C is entirely contained in T but C 0 is not. By the above observation, the
tentacle that runs downstream toward C will terminate immediately. Also, Fig. 8.4
shows that a state circle C 0 that is not entirely contained in T must constitute the
north or south side of a negative tangle, or else the east or west side of a positive
tangle.

Suppose, for example, that T is a positive tangle and that C 0 forms the east side
of it. Then the tentacle running from s toward C 0 will turn north along C 0. Hence,
if there is another segment of HA that meets the east side of T , further north than s,
then the tentacle will need to terminate immediately downstream from s. The only
way that this tentacle can continue running downstream along C 0 is if s is adjacent
to the NE corner of the tangle.

By the same argument, if T is a positive tangle and C 0 is the west side of T , then
the tentacle that runs downstream toward C 0 will have to terminate immediately
after s, unless s is adjacent to the SW corner of the tangle. Similarly, if T is
a negative tangle and C 0 is its north or south side, then the tentacle that runs
downstream toward C 0 will have to terminate immediately after s, unless s is
adjacent to the NW or SE corner of the tangle. This proves the lemma in Case 2.
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Case 3: neither C nor C 0 are contained in T . Then, by the hypotheses of the
lemma, these sides of the tangle must be connected by a segment s of HA. If T is a
negative tangle, then the north and south sides of T belong to the same state circle.
Thus any segment s spanning T north to south would violate A-adequacy. So T

must be a positive tangle, whose west side is C and whose east side is C 0.
If s is not adjacent to the NE corner of tangle T , then the argument above

implies that the tentacle running downstream toward C 0 will terminate immediately
downstream from s. Similarly, the tentacle running downstream toward C will
terminate, unless s is adjacent to the SW corner of T . The only situation in which
neither of these tentacles terminate immediately after s is the one where s is
simultaneously adjacent to the NE and SW corners of the tangle. But then the tangle
T contains a single crossing, and has slope C1, violating Definition 8.3 of a reduced
diagram. This proves the lemma. ut
Lemma 8.10. Let D.K/ be as in Lemma 8.9 and let � be a simple arc in a shaded
face that starts in an innermost disk of HA. (See Definition 3.2 on p. 37.) Then the
course of � must satisfy one of the following:

.1/ � terminates after running downstream along 2 or fewer segments of HA.

.2/ � terminates after running downstream along 3 segments of HA, where the
middle segment spans a positive tangle east to west.

.3/ � runs downstream along one tentacle, through a non-prime switch, and then
upstream along one tentacle into another innermost disk. In this case, both
innermost disks belong to consecutive negative tangles.

See Fig. 3.2 on p. 36 for a review of tentacles and non-prime switches. One way
to summarize the conclusion of the lemma is that, in the special case of admissible
Montesinos diagrams, right-down staircases in HA have at most 3 stairs.

Proof. By hypothesis, � starts in an innermost disk of HA. Let s1 be the segment of
HA along which � runs out of this innermost disk. If s1 is not adjacent to the NE or
SW corner of a positive tangle, or the NW or SE corner of a negative tangle, then
Lemma 8.9 implies � must terminate immediately, and conclusion (1) holds.

Suppose s1 belongs to a positive tangle T1, and is adjacent to its NE corner. By
Lemma 8.7, the polyhedral region containing T1 does not have any non-prime arcs,
hence � cannot enter a non-prime switch. Thus the only way � can continue running
downstream is by entering a negative tangle T2 along a segment s2 on the north
side of T2. As we have already seen, a negative tangle cannot be spanned north
to south by a single segment (otherwise, it would have integer slope and violate
Definition 8.5). Thus s2 connects to an innermost circle, and � must terminate after
two segments.

Similarly, if s1 is adjacent to the SW corner of a positive tangle T1, then � can
only continue running downstream by entering a negative tangle T2 along a segment
s2 in on the south side of T2. After this, � must terminate after two segments, and
conclusion (1) holds.

Suppose s1 belongs to a negative tangle T1, and is adjacent to its SE corner. After
running along s1, � can enter a non-prime switch, or continue running downstream
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through tentacles. Suppose, first, that � enters a non-prime switch. All the non-prime
arcs of D.K/ separate consecutive negative tangles, as in Fig. 8.5. After entering a
non-prime switch from the SE corner of T1, � can run downstream to the NE corner
of T1 and terminate, run downstream to the SW corner of the next negative tangle
T2 and terminate, or run upstream to the NW corner of the negative tangle T2. After
this, � is forced to run upstream into an innermost disk, as in conclusion (3).

Next, suppose that after running along s1, � continues downstream through
tentacles. Thus � must enter a positive tangle T2 through a segment s2 on the west
side of T2. If s2 leads to an innermost disk, then � must terminate after two steps.
Alternately, if s2 spans the positive tangle T2 east to west but is not adjacent to the
NE corner of T2, then � must also terminate after two steps. Finally, if s2 spans the
positive tangle T2 east to west and is adjacent to the NE corner of T2, then we can
repeat the analysis of positive tangles at the beginning of the proof (with s2 playing
the role of s1). In this case, � must terminate after at most three steps. If there are
indeed 3 steps, then the middle segment s2 spans a positive tangle from west to east,
and conclusion (2) holds.

Finally, suppose s1 belongs to a negative tangle T1, and is adjacent to its NW
corner. Then we argue as above, with all the compass directions reversed, and reach
the same conclusions. ut
Lemma 8.11 (Head locator). Let D.K/ be a reduced, admissible, A-adequate
Montesinos diagram that is non-alternating. If a shaded face in the upper polyhe-
dron of the polyhedral decomposition of MA meets an innermost disk (has a head) in
a positive tangle, then it meets no other innermost disks elsewhere. If a shaded face
meets an innermost disk in a negative tangle, then it may meet another innermost
disk in the same negative block, but it will not meet any innermost disk in any other
negative block.

See Fig. 8.5 for the notion of a negative block. Recall as well that a head of a
shaded face is an innermost disk, as in Fig. 3.1 on p. 36.

Proof. A shaded face meets more than one innermost disk only when it runs through
a non-prime switch. Since all non-prime arcs in our diagrams lie inside of negative
blocks, only innermost disks inside the same negative block can belong to the same
shaded face. ut
Lemma 8.12. Let D.K/ be a reduced, admissible, non-alternating Montesinos
diagram with at least three positive tangles. Then tentacles of the same shaded face
in the upper polyhedron of the polyhedral decomposition of MA cannot run across
the north and the south of the outside of a single negative block.

Proof. Note that by Lemma 8.4 D.K/ is A-adequate. The tentacle across the north
of the outside of a negative block runs from a segment in the positive tangle directly
to the west of that negative block. See Fig. 8.5. Hence, by Lemma 8.11 (Head
locator), its head is either inside that positive tangle, or, if it came from a segment
running east to west in that positive tangle, its head will be inside the negative block
directly to the west.
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Similarly, the tentacle across the south of the outside of a negative block runs
from a segment in the negative tangle directly to the east of that negative block,
hence has its head inside the positive tangle directly to the east, or the negative
block directly to the east.

Note that the positive tangles directly to the east and west cannot agree, by
the assumption that our diagram has at least three positive tangles. Similarly, the
negative blocks to the east or west cannot agree. Hence the conclusion follows. ut
Lemma 8.13. Suppose that D.K/ is a reduced, admissible Montesinos diagram
with at least three positive tangles that is not alternating. Any tentacle in the
polyhedral decomposition of MA running over the outside of a negative block cannot
have a head inside that negative block.

Proof. The head of a tentacle running over the outside of a negative block lies in the
positive tangle or the negative block directly to the west, in case the tentacle runs
across the north, or in the positive tangle or negative block directly to the east, in
case the tentacle runs across the south. Then the result follows from Lemma 8.11
(Head locator). ut

8.3 Two-Edge Loops and Essential Product Disks

Next, we study EPDs in the upper polyhedron of the polyhedral decomposition of
MA. Recall that, by Corollary 6.6, every EPD in the upper polyhedron P must
run through tentacles adjacent to a 2-edge loop in GA. In Lemma 8.14 below, we
show that these 2-edge loops can be classified into three different types. Most of our
attention will be devoted to particular type of 2-edge loop, depicted in Fig. 8.6.

Lemma 8.14. Let D.K/ be a reduced, admissible, A-adequate, non-alternating
Montesinos diagram. Let C; C 0 be a pair of state circles of sA. These circles are
connected by multiple segments of HA (corresponding to a two-edge loop of GA) if
and only if one of the following happens:

.1/ C and C 0 co-bound one or more bigons in the short resolution of a twist region,
which is entirely contained in a tangle. See Fig. 5.4.

.2/ C is contained inside a negative tangle Ni of slope �1 < q � �1=2, and is
connected by segments of HA to the state circle C 0 that runs along the north
and south of Ni . See Fig. 8.6.

.3/ There are exactly two positive tangles P1 and P2, and C; C 0 are the state circles
that run along the east and west sides of these tangles.

Proof. If the circles C; C 0 satisfy one of the conditions of the lemma, it is easy
to see that they will be connected by two or more segments of HA. To prove the
converse, suppose that C and C 0 are connected by two segments of HA. Each
of these segments corresponds to a crossing of the diagram D, and belongs to a
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I
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Fig. 8.6 The form of a negative tangle with a 2-edge loop of type (2) of Lemma 8.14. There is
exactly one segment at the north, and one or more parallel segments on the south–west. The south–
east of the tangle may or may not have additional segments and state circles. The segment on the
north of innermost disk I , plus a segment on the south I , forms a bridge from the north to the
south of the tangle

particular rational tangle. We consider several cases, conditioned on how C and C 0
intersect this common tangle.

First, suppose that C and C 0 are both closed loops inside a tangle T . Since the
tangle diagram is alternating, each of these state circles is innermost. Thus there is
a loop in the projection plane that runs through the regions bounded by C and C 0,
and intersects the projection of K exactly at the two crossings where C meets C 0.
Then these crossings are twist-equivalent. Since a reduced, admissible Montesinos
diagram must be twist-reduced, the two crossings are connected by one or more
bigons. Thus conclusion (1) holds.

Next, suppose that C is entirely contained in a tangle T , and that C 0 \T consists
of one or two arcs. If the two segments of HA connect C to the same arc on the
side of a tangle, then again the corresponding two crossings are twist-equivalent,
and must be connected by one or more bigons. Thus conclusion (1) holds. If the two
segments of HA connect C to opposite sides of the tangle, then C 0 must contain
both of those arcs (east and west in the case of a positive tangle, north and south in
the case of a negative tangle). We investigate this possibility further.

If T D Pi is a positive tangle, then Fig. 8.5 shows that the state circle on the east
side of Pi also runs along the west side PiC1, but is disjoint from every other positive
tangle. Thus the east and west sides of Pi belong to the same state circle only if there
is exactly one positive tangle—but this violates A-adequacy, by Lemma 8.4.

If T is a negative tangle, then Fig. 8.5 shows that the north and south sides of T

will indeed belong to the same state circle C 0. Now, let q < 0 be the slope of T ,
and let Œa0; a1; : : : ; an� be the continued fraction expansion of q. Since the diagram
D is reduced, we have q 2 .�1; 0/, hence a0 D 0. Moving from the boundary
of the tangle inward, the first crossings will be ja1j negative crossings in a vertical
band. If ja1j � 3, or if ja1j D 2 and ja2j > 0, then the north and south sides of
T will not connect to the same state circle in T . Note that these conditions on a1

and a2 are describing exactly the rational numbers jqj < 1=2. On the other hand,
if �1 < q � �1=2, there is exactly one circle C that connects to the north and south
sides of the tangle. This state circle is the boundary of an innermost disk I depicted
in Fig. 8.6. Thus conclusion (2) holds.
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Finally, suppose that neither C nor C 0 is entirely contained in a single tangle.
Then each segment of HA that connects C to C 0 must span all the way from the
north to the south sides of a tangle, or from the east to the west. Since the diagram
D.K/ is reduced and non-alternating, every tangle has slope jqi j < 1, hence no
single edge of HA can span a tangle from north to south. The remaining possibility
is that each segment of HA that connects C to C 0 spans a positive tangle east to
west. If these two segments lie in the same tangle T , the corresponding crossings
are twist-equivalent, hence conclusion (1) holds. If these two segments lie in two
different positive tangles P1 and P2, and the east and west sides of these tangles
belong to the same state circles C; C 0, then P1 and P2 must be the only positive
tangles in the diagram. Thus conclusion (3) holds. ut

Lemma 8.14, combined with Corollary 6.6, will allow us to find and classify
EPDs in the polyhedral decomposition for Montesinos links. Looking over the
conclusions of Lemma 8.14, we find that two-edge loops of type (1) are very
standard, and easy to deal with using Lemma 5.17. Loops of type (3) will be ruled
out once we assume that D.K/ has at least three positive tangles. Thus most of our
effort is devoted to studying EPDs that run over a two-edge loop of type (2).

It is worth taking a closer look at negative tangles that support a two-edge loop
of (2). The A-resolution of such a negative tangle is illustrated in Fig. 8.6. Note in
particular that there is exactly one segment connecting the innermost disk I to the
outside of the negative block at the north of the tangle. On the south, one or more
parallel segments connects the innermost disk to the outside of the negative block on
the south, and these segments are all at the south–west of the diagram. The portion
of the diagram on the south–east can have additional state circles and edges, or not.
The 2-edge loop runs over the single segment in the north and one of the parallel
strands in the south–west.

Lemma 8.15. Let Ni be a negative tangle in a reduced, A-adequate, Montesinos
diagram D.K/, with at least three positive tangles. Let E be an essential product
disk in the upper polyhedron, which runs over a 2-edge loop of that spans Ni north
to south, as in Fig. 8.6. Then @E must run through the innermost disk I shown in
Fig. 8.6. Furthermore, @E must run adjacent to the 2-edge loop through at least one
tentacle whose head is the innermost disk I .

Proof. By Lemma 8.9, all tentacles that run downstream toward I must terminate
upon reaching I . Thus, each time @E runs along a segment that connects I to the
north or south sides of the tangle, it must either pass through the tentacle that runs
downstream out of I (hence, through the innermost disk I ), or through a tentacle
that runs downstream toward I (hence, into I ). In either case, the disk E must run
through I .

Next, suppose for a contradiction that on both the north and south sides of the
tangle, @E runs in tentacles that terminate at I . Since @E intersects only two shaded
faces, one of which has a head at I , the two tentacles running toward I from the
north and south must belong to the same shaded face. But then the heads of these
two tentacles are both attached to the outside of the negative block, one on the north
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and one on the south, and so the negative block must have tentacles of this same
color both on the north and on the south. This contradicts Lemma 8.12. Therefore,
@E must run downstream out of I , either on the north or on the south (or both). ut

8.4 Excluding Complex Disks

We are now ready to prove the following proposition. As remarked earlier, the
statement that jjEcjj D 0 and the upper polyhedron contains no complex disks,
combined with Theorem 5.14, immediately implies the non-alternating case of
Theorem 8.6.

Proposition 8.16. Suppose that D.K/ is a reduced, admissible, non-alternating
Montesinos link diagram with at least three positive tangles. Then every EPD in the
upper polyhedron is either parallel to a white bigon face (simple), or parabolically
compresses to bigon faces (semi-simple). In particular, in the terminology of
Lemma 5.8, Ec D ;.

Proof. Let E be an essential product disk in the upper polyhedron. By Corollary 6.6,
@E must run over tentacles adjacent to a 2-edge loop in GA. With the hypothesis that
D.K/ has at least three positive tangles, Lemma 8.14 implies that every 2-edge loop
in GA is of type (1) or (2).

Type (1) loops correspond to crossings in a single twist region, in which the all-A
resolution is the short resolution (see Fig. 5.4 on p. 86). Note that by Lemma 5.17,
removing all the bigons in the A-twist regions does not affect the number jjEcjj
of complex disks in the spanning set of the upper polyhedron. But if all bigons
in A-regions are removed, the only remaining two-edge loops will be of type (2),
spanning a negative tangle north to south. Thus, if we can show that every EPD
running over a type (2) loop is simple or semi-simple, it will follow that the same
conclusion holds for type (1) loops as well.

For the remainder of the proof, we assume that E is an essential product disk,
such that @E runs over tentacles adjacent to a 2-edge loop that spans a negative
tangle north to south, as in Fig. 8.6. Then, by Lemma 8.15, @E must run through an
innermost disk I , as in Fig. 8.6. We will show that E is either parallel to a bigon
face, or parabolically compressible to a collection of bigon faces.

Following the setup of Chap. 6, color the shaded faces met by E orange and
green,1 so that the shaded face containing the innermost disk I is green. As in
Lemma 6.1 (EPD to oriented square), we may pull @E off the shaded faces, forming
a normal square. Note that under the orientation convention of Lemma 6.1 (EPD to
oriented square), any arc of the normal square on a white face cuts off a vertex at
the head of a green tentacle and at the tail of an orange tentacle.

1Note: For versions of the monograph in grayscale, orange faces will appear in the figures as light
gray, green as darker gray.
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Fig. 8.7 Ideal vertices of an EPD, of types (1), (2), and (3). In each type, the boundary of the EPD,
shown in red, and can run north or south from the innermost disk. Both cases are shown

We consider the possible locations of the ideal vertices of E . Equivalently,
we consider the possible white faces into which @E has been pulled. Using
Lemma 8.10, we may enumerate the possible locations for an ideal vertex of E .
These are shown in Figs. 8.7–8.9.

.1/ An ideal vertex of @E may appear on the innermost disk of Fig. 8.6 itself. This
means the vertex is at the head of a tentacle running north or south out of the
innermost disk I .

.2/ An ideal vertex of @E may appear at the head of a tentacle running out of the
negative block containing I , if @E runs downstream from I to the next adjacent
positive tangle.

.3/ If @E runs downstream from I to the next adjacent positive tangle, then across a
segment spanning the positive tangle east to west, and then downstream across
the outer state circle of the next negative block, the vertex may appear on the
next adjacent negative block.

.4/ If @E runs downstream from I , across a non-prime arc, and then upstream,
then it will run through an innermost disk in the next adjacent negative tangle.
The vertex may appear on this innermost disk. Note the corresponding orange
tentacle will either come from an innermost disk inside the negative tangle, or
from a tentacle across the north or south of the negative block. All three of these
possibilities are shown in Fig. 8.8.

.5/ If @E runs across a non-prime arc, then upstream into an innermost disk J , and
the vertex does not appear on this innermost disk, then @E must run downstream
again from J . In fact, to obtain the correct orientation near an ideal vertex of E ,
its boundary must run downstream for at least two stairs in a staircase starting
at J . Thus, by Lemma 8.10, @E runs along a second 2-edge loop, with an
innermost disk at J . (See Fig. 8.9.) Exiting this 2-edge loop, one of the vertices
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(5)Fig. 8.9 Ideal vertices of an
EPD, of type (5). The
boundary of the EPD, shown
in red, can run north or south.
Both cases are shown

of types (2), (3), (4), or (5) must occur. Note that between the pairs of 2-edge
loops is a collection of bigons. We will handle this last type by induction on the
number of negative tangles in a negative block.

Now, each EPD has two vertices. From the green innermost disk I , @E runs
through the green shaded face in two directions (north and south) toward these
two vertices. Each must be one of the above enumerated types. We consider all
the combinations of these types of vertices.

Type (1) and type (1): This combination cannot happen. For if both vertices lie
on the given innermost disk, then @E does not run through any green tentacles
exiting the innermost disk, which contradicts Lemma 8.15.

Type (1) and type (2): In this case, type (2) implies the negative tangle contain-
ing the innermost disk I is to the far west or far east of the negative block, and
the green tentacle leaves this negative tangle and wraps around to the side of the
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(1) and (2)Fig. 8.10 Combining
vertices of type (1) and (2).
Left: type (1) north and (2)
south; right: type (1) south
and (2) north

adjacent positive tangle. Note that although @E meets a vertex here, the tentacle
itself must continue until it terminates at the same negative tangle, forming a white
bigon face. See Fig. 8.10.

Next, note that since one of the vertices is of type (1), a tentacle across the outside
of the given negative block must be orange (either top or bottom, depending on
whether the EPD runs through an orange tentacle of the 2-edge loop on the north
or south). Since the other vertex, which lies on the outside of the negative block,
must also meet an orange tentacle, Lemma 8.11 (Head Locator) implies the only
possibility is that the other vertex meets the same orange tentacle, and @E runs
through this orange tentacle connecting the vertices. In this case, @E bounds only
bigon(s), and E is parabolically compressible to bigons.

Type (1) and type (3): This case cannot occur by the Head Locator Lemma 8.11;
for, the head of the orange in type (1) would lie in the positive tangle or negative
block adjacent to one side, and the head of the orange in type (3) would lie in the
negative block to the opposite side.

Type (2) and type (2): In this case, tentacles from the north and south of the
negative tangle run along the sides of the positive tangles to the east and west of the
negative block. Lemma 8.11 (Head Locator) puts serious restrictions on the diagram
from here. (See Fig. 8.11.) In particular, by Lemma 8.11, any head(s) of the orange
face must lie in the same positive tangle, or in the same negative block. Note that
when the vertex on the west of the negative block is of this type, then the orange
tentacle it meets must either

(a) Run across the south of the given negative block, if the vertex is at the very
south-east of the positive tangle, and have its head in the positive tangle or
negative block to the east, or

(b) Come from an innermost disk in that positive tangle to the west of our negative
block, or

(c) Come from an innermost disk inside the negative block to the west of our
original negative block.

Three similar options hold for the east. Lemma 8.11 (Head locator) implies that
only one of two possibilities may occur: on the west, the vertex lies at the south–east
tip of the positive tangle, and the orange head(s) are in the positive tangle or negative
block to the east, or on the east the vertex lies at the north–west tip of the positive
tangle, and all orange head(s) are in the positive tangle or negative block to the west.
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Fig. 8.11 Possibilities for type (2) and (2)
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Fig. 8.12 Possibilities for types (2) north and (3) south. Note there are similar possibilities for (2)
south and (3) north

We argue that E parabolically compresses to bigons. Both cases are similar; we go
through the case that the head of the orange lies to the east (Fig. 8.11, left).

First, note that since each innermost disk of a positive tangle has a distinct color,
the two segments attached to orange tentacles that meet vertices of @E must have
a head in the same orange innermost disk in the positive tangle. Thus the segment
at the south–west of the positive tangle to the east, which must have orange on one
side, must be attached to the same state circles as the segment near the vertex on the
east of the negative block. Then these segments are twist-equivalent, hence bound
a chain of bigons Hence, @E must run from the vertex on the west of the negative
block, through the tentacle across the south, up the segment at the south–west of the
positive tangle to the east, then encircle bigons, and connect to the vertex on the east
of the negative block. The diagram must be as shown in Fig. 8.11, and the EPD is
parabolically compressible to bigons.

Type (2) and type (3): The appearance of a type (3) vertex forces the head(s) of
the orange shaded face to lie in the negative block adjacent to one side, which, just
as above in the case (2) and (2), puts restrictions on the portion of the diagram with
the vertex of type (2). The argument is similar if the orange innermost lies to the
east or to the west. For ease of explanation, we go through the case that the orange
lies to the east. The result is illustrated in Fig. 8.12.
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In particular, in this case the orange tentacle of vertex (2) must run across the
south of the outside of the negative block, and across a segment spanning the
next (eastward) positive tangle from east to west. Further, there must be an orange
tentacle just inside the adjacent negative block to the east, adjacent to this positive
tangle. This tentacle comes from an innermost disk J in the first negative tangle
in this negative block. The other vertex, of type (3) meets a tail of another orange
tentacle inside this negative block, at the top. Thus, the innermost disk at the head
of this other tentacle either agrees with J , or is connected to J by a sequence of
non-prime switches. If J is the head of both tentacles, then they must bound bigons
between them, and E parabolically compresses to bigons, as in Fig. 8.12. If J is
not the head of both tentacles, then there is a sequence of 2-edge loops of the type
shown in Fig. 8.9, this time with an orange innermost disk, and E running across
each loop in a string separated by non-prime arcs. Again this bounds bigons, and
parabolically compresses to bigons.

Type (3) and type (3): This case cannot occur. Two vertices of this type would
require orange heads in both negative blocks to the east and west of the given
negative block, contradicting Lemma 8.11 (Head locator).

Next, consider vertices of type (4): the vertex lies on an innermost disk in the
adjacent negative tangle. Again we analyze the possible locations for orange heads
from the other vertex, using Lemma 8.11 (Head Locator).

Type (1) and type (4): In this case, an orange tentacle meeting a vertex of
type (1) must run over the outside of the negative block, so Lemmas 8.12 and 8.13
imply that the innermost disk in the adjacent negative tangle must meet an orange
tentacle connected to the same side of the outside of the given negative block. This
implies @E will bound a sequence of bigons, and hence E parabolically compresses
to bigons. See Fig. 8.13, left.

Type (2) and type (4): Here, the vertex of type (2) meets an orange tentacle on
the outside of the negative block. Thus Lemmas 8.12 and 8.13 imply that the orange
tentacle meeting the vertex of type (4) must have its head attached to the outside
of the negative block. Then, @E must run through this outside tentacle toward the
vertex of type (2). If the tentacle terminates at the vertex of type (2), then @E

encloses only bigons. Otherwise, the tentacle has its head attached to another state
circle. In this case, the argument is the same as the one in case (2) and (2) above.
The orange tentacle meeting the other vertex is also attached to this state circle, and
we have a parabolic compression to bigons.

Type (3) and type (4): In this case, the head of an orange tentacle meeting the
vertex of type (3) must be in the next adjacent negative block. Thus, by the Head
Locator Lemma 8.11, the orange tentacle meeting the vertex of type (4) must have
its head inside the same adjacent negative block. Then, an argument similar to that
in case (2) and (3) implies that @E encircles only bigons. Compare Fig. 8.12 to
Fig. 8.13.

Type (4) and type (4): Here, Lemmas 8.12, and 8.13 imply that the orange
tentacles meeting the two vertices cannot come from the north on one side and
the south on the other, or the north or south on one side and an innermost disk on
the other. Neither can both orange tentacles come from innermost disks in distinct



8.4 Excluding Complex Disks 137

(2) and (4) (2) and (4)

...
... ...

...

(3) and (4)

...

...

...

...
...

(4) and (4)

... ... ... ...

...

...

......

...

I I

I

I

Fig. 8.13 All possibilities for type (4) north

negative tangles, for those tangles will be separated by green non-prime switches,
not orange connecting switches. The only remaining possibility is that the orange
tentacles come from outside the negative block on the same side. In this case, @E

bounds bigons, as desired. See Fig. 8.13.
Type (5) cases: Recall that in type (5), an arc of @E runs over a non-prime arc

and upstream, but the next vertex does not lie on an innermost disk in this negative
tangle. Then @E must continue downstream out of this innermost disk. Thus we
have another 2-edge loop as in Fig. 8.6, and the options from Lemma 8.10 imply
that from here, @E cannot meet a vertex immediately, so its path toward a vertex
is one of type (2), (3), (4), or (5). By induction on the number of negative tangles
in a negative block, there will be some finite number of consecutive 2-edge loops
corresponding to instances of case (5), but eventually @E will run to a vertex of
types (2), (3), or (4). Note that between these 2-edge loops from type (5), we have
only bigon faces. Combining the above arguments with these additional bigon faces,
we find that in all cases @E encloses only bigons.

This phenomenon is illustrated in the bottom panel in Fig. 8.13. Thinking of the
middle green innermost disk I as the innermost disk of the representative 2-edge
loop, we argued that this figure arose by combining vertices of type (4) and (4).
However, if we think of the right-most innermost green disk as the innermost disk
of our representative 2-edge loop, then this figure illustrates a vertex of type (1)
(bottom right), from which @E runs over a second 2-edge loop to the west, which is
type (5), followed by a vertex of type (4). More generally, we could have n negative
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tangles as in the middle of the bottom panel of Fig. 8.13, strung end to end. Between
such tangles, @E bounds only bigons.

This completes the enumeration of cases. For every combination of ideal vertices,
E parabolically compresses to bigons. Thus there are no complex EPDs in the upper
polyhedron. This completes the proof of Proposition 8.16, hence also the proof of
Theorem 8.6. ut



Chapter 9
Applications

In this chapter, we will use the calculations of guts.S3nnSA/ obtained in earlier
chapters to relate the geometry of A-adequate links to diagrammatic quantities and
to Jones polynomials. In Sect. 9.1, we combine Theorem 5.14 with results of Agol,
Storm, and Thurston [6] to obtain bounds on the volumes of hyperbolic A-adequate
links. A sample result is Theorem 9.7, which gives tight diagrammatic estimates on
the volumes of positive braids with at least 3 crossings per twist region. The gap
between the upper and lower bounds on volume is a factor of about 4:15.

In Sect. 9.2, we apply these ideas to Montesinos links, and obtain diagrammatic
estimates for the volume of those links. Again, the bounds are fairly tight, with a
factor of 8 between the upper and lower bounds.

In Sect. 9.3, we relate the quantity ��.guts.S3nnSA// to coefficients of the Jones
and colored Jones polynomials of the link K D @SA. One sample application here is
Corollary 9.16: for A-adequate links, the next-to-last coefficient ˇ0

K detects whether
a state surface is a fiber in S3 n K . Finally, in Sect. 9.4, we synthesize these ideas to
obtain relations between the Jones polynomial and volume. As a result, the volumes
of both positive braids and Montesinos links can be bounded above and below in
terms of these coefficients.

9.1 Volume Bounds for Hyperbolic Links

Using Perelman’s estimates for volume change under Ricci flow with surgery,
Agol, Storm, and Thurston [6] have obtained a relationship between the guts of an
essential surface S � M and the hyperbolic volume of the ambient 3-manifold M .
The following result is an immediate consequence of [6, Theorem 9.1], combined
with work of Miyamoto [68, Proposition 1.1 and Lemma 4.1].

D. Futer et al., Guts of Surfaces and the Colored Jones Polynomial, Lecture Notes
in Mathematics 2069, DOI 10.1007/978-3-642-33302-6 9,
© Springer-Verlag Berlin Heidelberg 2013
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Theorem 9.1. Let M be finite-volume hyperbolic 3-manifold, and let S � M be a
properly embedded essential surface. Then

vol.M / � v8 ��.guts.M nnS//;

where v8 D 3:6638 : : : is the volume of a regular ideal octahedron.

Remark 9.2. By [6] and work of Calegari, Freedman, and Walker [16], the
inequality of Theorem 9.1 is an equality precisely when S is totally geodesic
and M nnS is a union of regular ideal octahedra. We will not need this stronger
statement.

In general, it is hard to effectively compute the quantity ��.guts.M nnS// for
infinitely many pairs .M; S/. To date, there have only been a handful of results
computing the guts of essential surfaces in an infinite family of manifolds: see
e.g. [3, 57, 58]. In particular, Lackenby’s computation of the guts of checkerboard
surfaces of alternating links [58, Theorem 5] enabled him to estimate the volumes
of these link complements directly from a diagram. See [58, Theorem 1] and [6,
Theorem 2.2].

In the A-adequate setting, we have the following volume estimate.

Theorem 9.3. Let D D D.K/ be a prime A-adequate diagram of a hyperbolic link
K . Then

vol.S3 n K/ � v8 .��.G0
A/ � jjEcjj/;

where ��.G0
A/ and jjEcjj are as in the statement of Theorem 5.14 and v8 D

3:6638 : : : is the volume of a regular ideal octahedron.

Proof. We will apply Theorem 9.1 to the essential surface SA and the 3-manifold
S3 n K . Since S3nnSA is homeomorphic to .S3 n K/nnSA, we have

vol.S3 n K/ � v8 ��.guts.S3nnSA// D v8 .��.G0
A/ � jjEcjj/;

where the equality comes from Theorem 5.14. The result now follows. ut
Theorem 9.3 becomes particularly effective in the case where jjEcjj D 0. For

example, this will happen when every 2-edge loop in the state graph GA comes
from a single twist region of the diagram D.

Corollary 9.4. Let D.K/ be a prime, A-adequate diagram of a hyperbolic link K ,
such that for each 2-edge loop in GA, the edges belong to the same twist region of
D.K/. Then

vol.S3 n K/ � v8 .��.G0
A//:

Proof. This follows immediately from Theorem 9.3 and Corollary 5.19. ut
Remark 9.5. If D D D.K/ is a prime reduced alternating link diagram, then the
hypotheses of Corollary 9.4 are satisfied by both the state graphs GA and GB . Thus
Corollary 9.4 gives lower bounds on volume in terms of both ��.G0

A/ and ��.G0
B/.

By averaging these two lower bounds, one recovers Lackenby’s lower bound on



9.1 Volume Bounds for Hyperbolic Links 141

σ1 σ2

Fig. 9.1 The generators �1

and �2 of the 3-string braid
group

the volume of hyperbolic alternating links, in terms of the twist number t.D/ [6,
Theorem 2.2].

Corollary 9.4 also applies to certain closed braids.

Definition 9.6. Let Bn denote the braid group on n strings. The elementary braid
generators are denoted �1; : : : ; �n�1 (see Fig. 9.1 for the case n D 3). A braid b D
�

r1
i1

�
r2
i2

� � � �rk

ik
is called positive if all the exponents rj are positive, and negative if

all the exponents rj are negative.

Suppose that Db is the closure of a positive braid b 2 Bn. Then it follows
immediately that the diagram Db is B-adequate. In fact, the reduced graph G

0
B

is a line segment with n vertices. Thus, by Theorem 5.11, the state surface SB is a
fiber for S3 nK . (This recovers a classical result of Stallings [89] and Gabai [40].) In
particular, S3nnSB is an I -bundle, and does not contain any guts. On the other hand,
under stronger hypotheses about the exponents rj , one can get non-trivial volume
estimates from the guts of the other state surface SA.

Theorem 9.7. Let D D Db be a diagram of a hyperbolic link K , obtained as
the closure of a positive braid b D �

r1

i1
�

r2

i2
� � � �rk

ik
. Suppose that rj � 3 for all

1 � j � k; in other words, each of the k twist regions in D contains at least 3

crossings. Then

2v8

3
t.D/ � vol.S3 n K/ < 10v3.t.D/ � 1/;

where v3 D 1:0149 : : : is the volume of a regular ideal tetrahedron and v8 D
3:6638 : : : is the volume of a regular ideal octahedron.

Recall that t.D/ denotes the twist number: the number of twist regions in the
diagram D. Observe that the multiplicative constants in the upper and lower bounds
differ by a rather small factor of 4:155 : : : .

The proof of Theorem 9.7 will require two lemmas.

Lemma 9.8. D D Db be a diagram of a hyperbolic link K , obtained as the closure
of the positive braid b D �

r1
i1

�
r2
i2

� � � �rk

ik
, where k � 2. Then

.1/ If K is hyperbolic and rj � 2 for all j , then D is a prime, A-adequate diagram.

.2/ If D is a prime diagram and rj � 6, for all j , then K is hyperbolic.

Proof. First, suppose that rj � 2 for all j . Since b is a positive braid, the
A-resolution of every twist region is the long resolution (see Fig. 5.4 on p. 86).
Thus every edge of GA connects to a bigon on at least one end, and no edge of GA

is a loop. Thus D is A-adequate.
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If K is hyperbolic, it must be prime and non-split. Thus, by Corollary 3.21 on
p. 48, either D is prime or contains nugatory crossings. But a nugatory crossing in
a braid diagram can only be created by stabilization, which would imply there is a
term �1

i , contradicting the hypothesis that rj � 2 for all j . This proves (1).
Statement (2) follows immediately from [38, Theorem 1.4], once one knows that

D is twist-reduced. As we will not need conclusion (2) in the sequel (it was mainly
included as a pleasant quasi-converse to (1)), we leave it to the reader to show that
D is twist-reduced. ut
Lemma 9.9. Let D D Db be a diagram of a hyperbolic link K , obtained as the
closure positive braid b D �

r1
i1

�
r2
i2

� � � �rk
ik

. Suppose that rj � 3 for all j . Then D is
A-adequate, and

�.G0
A/ D �.GA/ � �2k=3 D �2t.D/=3 < 0:

Proof. The diagram D is A-adequate by Lemma 9.8. Since the A-resolution is the
long resolution, every loop in GA has length at least 3. Thus GA D G

0
A. It remains

to count the vertices and edges of GA.
Recall that the edges of GA are in one-to-one correspondence with the crossings

in Db; thus there are a total of
P

rj edges of GA. The vertices of GA are in
one-to-one correspondence with the state circles in the A-resolution of Db . In a
twist region with rj crossings, there are .rj �1/ bigon circles in the long resolution;
thus there are a total of .

P

rj / � k bigon state circles. It remains to count the non-
bigon state circles of the A-resolution. We call these the wandering state circles, as
they wander through multiple twist regions.

Consider the S1-valued height function on D.K/ that arises from the braid
position of the diagram. Relative to this height function, all segments of HA are
vertical, and connect two critical points of state circles. Thus the number of critical
points on a state circle C equals the number of segments of HA (equivalently, edges
of GA) met by C . To complete the proof of the lemma we need the following.

Claim. Every wandering state circle C has at least 6 critical points.

Proof of claim: Since C has the same number of minima as maxima, the total
number of critical points on C must be even. Also, note that between critical points,
C runs directly along one of the n strands of the braid. At a critical point, it crosses
from the j -th to the .j ˙ 1/-st strand.

Consider the number of distinct strands that C runs along. If C only runs along
one strand of the braid, with no critical points, then that strand is a link component
with no crossings: absurd. If C only runs along the i -th and .i C 1/-st strands of the
braid, then it must have exactly 2 critical points, and is a bigon. This contradicts the
hypothesis that C is wandering.

If C runs along four or more strands of the braid, then it needs at least 6 critical
points (to get from the i -th to the .i C 3/-rd strand, and back), hence we are done.
The remaining possibility is that C runs along exactly three strands of the braid.
This means that C must have at least 4 critical points. If it has more than 4, then we
are done.
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C

Fig. 9.2 A wandering state circle C with exactly 4 critical points. The rectangular boxes are twist
regions. The dashed arcs are strands of the braid, which may run through other twist regions. The
red dotted loop provides a contradiction to primeness

Suppose, for a contradiction, that C runs along exactly three strands and has
exactly 4 critical points. Then, with some choice of orientation along C , it must run
from the i -th to the .i C 1/-st strand at a maximum, then to the .i C 2/-nd at a
minimum, then to the .i C 1/-st strand at a maximum, then finally back to the i -th
at a minimum. In other words, C must look exactly like the state circle of Fig. 9.2.
But the figure reveals an essential loop (dotted, red) meeting D.K/ twice, which
contradicts primeness. Since D is prime by Lemma 9.8, this finishes the proof of
the claim.

To continue with the proof of the lemma, observe that every twist region contains
two critical points of wandering state circles; these are the ends of the long
resolution in Fig. 5.4 on p. 86. On the other hand, by the claim, each wandering
circle has at least 6 critical points. Thus there must be at least three times as many
twist regions as wandering circles. We may now compute:

�.G0
A/ D �.GA/ D .bigon circles/ C .wandering circles/ � .crossings/

�
�
X

rj � k
�

C .k=3/ �
�
X

rj

�

D �2k

3
D �2t.D/

3
: ut

We can now complete the proof of Theorem 9.7.

Proof (of Theorem 9.7). The upper bound on volume is due to Agol and Thurston
[58, Appendix], and holds for all diagrams.

To prove the lower bound on volume, recall that D must be prime by Lemma 9.8.
By Lemma 9.9, we know that GA D G

0
A, hence GA has no 2-edge loops. Thus

Corollary 9.4 applies. Plugging the estimate

��.G0
A/ D ��.G0

A/ � 2t.D/=3

into Corollary 9.4 completes the proof. ut



144 9 Applications

Similar relations between volume and twist number are known for alternating
links, links that admit diagrams with at least seven crossings in each twist region,
and closed 3-braids [6, 32, 34]. To this list, we may add a result about the volumes
of Montesinos links.

9.2 Volumes of Montesinos Links

In this section, we will prove Theorem 9.12, which estimates the volume of
Montesinos links. We begin with a pair of lemmas. For the statement of the lemmas,
recall Definition 8.3 on p. 122 and Definition 8.5 on p. 122.

Lemma 9.10. Let D.K/ be a reduced, admissible Montesinos diagram with at
least three positive tangles and at least three negative tangles. Let G0

A and G
0
B be

the reduced all-A and all-B graphs associated to D. Then

��.G0
A/ � �.G0

B/ D t.D/ � Q1=2.D/;

where Q1=2.D/ is the number of rational tangles in D whose slope has absolute
value jqj 2 Œ1=2; 1/:

Proof. The link diagram D can be used to construct a Turaev surface T : this is a
closed, unknotted surface in S3, onto which K has an alternating projection. The
graphs GA and GB naturally embed in T as checkerboard graphs of the alternating
projection, and are dual to one another. Furthermore, because D is constructed as a
cyclic sum of alternating tangles, the Turaev surface is a torus. See [21, Sect. 4] for
more details.

Recall that �.G0
A/ D vA � e0

A, where vA is the number of vertices and eA is the
number of edges, and similarly for �.G0

B/. We can use the topology of T to get a
handle on these quantities. Because GA and GB are dual, the number of vertices of
GB equals the number of regions in the complement of GA. Thus, since T is a torus,
we have

vA � eA C vB D �.T / D 0:

Now, consider the number of edges of GA that are discarded when we pass to
G

0
A. Because D has at least three positive tangles, Lemma 8.14 on p. 128 implies

that edges can be lost in one of two ways:

(1) If r is an A-region with c.r/ > 1 crossings, hence c.r/ > 1 parallel edges
in GA, then c.r/ � 1 of these edges will be discarded as we pass to G

0
A. See

Definition 5.16 and Fig. 5.4 on p. 86.
(2) If Ni is a negative tangle of slope qi 2 .�1; �1=2�, then one edge of GA will be

lost from the two-edge loop that spans Ni north to south. See Fig. 8.6 on p. 129.
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The same principle holds for the B-graph GB , with B-regions replacing A-regions
and positive tangles replacing negative ones.

Combining these facts gives

.eA � e0
A/ C .eB � e0

B/ D
X

twist regions

.c.r/ � 1/ C #fi W jqi j 2 Œ1=2; 1/g

D c.D/ � t.D/ C Q1=2.D/:

Finally, since the edges of GB are in one-to-one correspondence with the crossings
of D,

��.G0
A/ � �.G0

B/ D e0
A C e0

B � vA � vB

D .e0
A C e0

B � eA � eB/ C eB C .eA � vA � vB/

D �c.D/ C t.D/ � Q1=2 C c.D/ C 0

D t.D/ � Q1=2.D/:
ut

Lemma 9.11. Let D.K/ be a reduced, admissible Montesinos diagram with at
least three positive tangles and at least three negative tangles. Then

��.G0
A/ � �.G0

B/ � t.D/ � #K

2
:

where #K is the number of link components of K .

Proof. By Lemma 9.10, it will suffice to estimate the quantity Q1=2.D/. Consider a
rational tangle Ri whose slope satisfies jqi j 2 Œ1=2; 1/. Each such tangle contributes
one unit to the count Q1=2.D/. If jqi j > 1=2, then the continued fraction expansion
of qi has at least two terms, hence Ri has at least two twist regions. Only one of
those twist regions will be lost to the count Q1=2.D/.

Alternately, suppose qi D ˙1=2. In this case, one strand of K in this tangle runs
from the NW to the SW corner of the tangle, and another strand runs from the NE
to the SE corner. In other words, the number of link components of K will remain
unchanged if we replace Ri by a tangle of slope 1. See Fig. 8.1 on p. 120.

Let n be the number of tangles of slope ˙1=2 in the diagram D. If we replace
each such tangle by one of slope 1, the number #K of link components is
unchanged. But after this replacement, there are n “breaks” in the diagram, hence
K is a link of at least n components. This proves that n � #K . In other words,
there is a one-to-one mapping from tangles of slope ˙1=2 to link components. We
conclude that
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Q1=2.D/ D
X

i Wjqi j>1=2

1 C
X

i Wjqi jD1=2

1

�
X

i Wjqi j>1=2

t.Ri /

2
C

X

i Wjqi jD1=2

t.Ri / C 1

2

� t.D/ C #K

2
;

and the result follows by Lemma 9.10. ut
Theorem 9.12. Let K � S3 be a Montesinos link with a reduced Montesinos
diagram D.K/. Suppose that D.K/ contains at least three positive tangles and
at least three negative tangles. Then K is a hyperbolic link, satisfying

v8

4
.t.D/ � #K/ � vol.S3 n K/ < 2v8 t.D/;

where v8 D 3:6638 : : : is the volume of a regular ideal octahedron and #K is the
number of link components of K . The upper bound on volume is sharp.

We note that the upper bound on volume applies to all Montesinos links, without
any restriction on the number of positive and negative tangles.

The lower bound on volume is proved using Lemma 9.11. In fact, using
Lemma 9.10 instead of Lemma 9.11, one can obtain the sharper estimate

vol.S3 n K/ � v8

2

�

t.D/ � Q1=2.D/
�

;

where Q1=2.D/ is the number of rational tangles of slope jqi j 2 Œ1=2; 1/.

Proof. Let D.K/ be a reduced Montesinos diagram that contains at least three
positive tangles and at least three negative tangles. As we have observed following
Definition 8.5 on p. 122, any reduced diagram can be made admissible by a sequence
of flypes. Since flyping does not change the twist number of D, we may also assume
that D is admissible. Thus Theorem 8.6 and Lemmas 9.10 and 9.11 all apply to
D.K/.

The hyperbolicity of K follows from Bonahon and Siebenmann’s enumeration
of non-hyperbolic arborescent links [14]. See also Futer and Guéritaud [30,
Theorem 1.5].

The lower bound on volume follows quickly by applying Theorem 9.1 to both
the all-A and all-B state surfaces:

vol.S3 n K/ � v8=2
�

��guts.S3nnSA/ C ��guts.S3nnSB/
�

D v8=2
�

��.G0
A/ C ��.G0

B/
�

� v8=4 .t.D/ � #K/ ;

where the last two lines used Theorem 8.6 and Lemma 9.11.
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+ =

T1 T2 T1 T2

B1 B2 B

Fig. 9.3 A belted sum of tangles T1 and T2. The twice-punctured disks bounded by B1 and B2 are
glued to form the twice-punctured disk bounded by the belt B

The upper bound on volume will follow from a standard Dehn filling argument.
Add a link component B to K , which encircles the two eastern ends of some
rational tangle Ti . Note that B can be moved by isotopy to lie between any pair
of consecutive tangles. Thus the longitude of B forms (part of) the boundary of n

different twice-punctured disks in S3 n .K [ B/, with one disk between every pair
of consecutive tangles.

The link K [ B is arborescent, hence also hyperbolic by [30]. Each twice-
punctured disk bounded by B will be totally geodesic in this hyperbolic metric,
by a theorem of Adams [1].

Let Li be the link obtained by taking the numerator closure of tangle Ti , and
adding an extra circle Bi about the eastern ends of the tangle. Then .K [ B/ is a
belted sum of the tangles T1; : : : ; Tn: it is obtained by cutting each S3 n Li along the
twice-punctured disk bounded by Bi , and gluing these manifolds cyclically along
the twice-punctured disks. (See Fig. 9.3, and see Adams [1] for more information
about belted sums.)

Since the numerator closure of each rational tangle Ti is a 2-bridge link, the link
Li is an augmented 2-bridge link. Thus each Li is hyperbolic. Furthermore, if tangle
Ti contains t.Ti / twist regions, then Li is the augmentation of a 2-bridge link with
at most t.Ti / C 1 twist regions. Therefore, [45, Theorem B.3] implies that

vol.S3 n Li / < 2v8 t.Ti /:

When we perform the belted sum to obtain K [ B , we cut and reglue along
totally geodesic twice-punctured disks. Volume is additive under this operation [1].
This gives the estimate

vol.S3 n .K [ B// < 2v8 t.D/:

Since volume goes down when we Dehn fill the meridian of B , the upper bound on
vol.S3 n K/ follows.

To prove the sharpness of the upper bound, consider the following sequence of
examples. Let n be an even number, and let Kn be a Montesinos link with n rational
tangles, where the slope of the j -th tangle is .�1/j =n. This is a .n; �n; : : : ; n; �n/
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pretzel link. Then every rational tangle has slope ˙1=n, with alternating signs. The
diagram Dn has exactly n twist regions, with exactly n crossings in each region.

Let Jn be a link obtained by adding a crossing circle about every twist region,
as well as the belt component B of Fig. 9.3. Then, by the above discussion, Jn is a
belted sum of n copies of the Borromean rings, hence

vol.S3 n Jn/ D 2v8 n D 2v8 t.Dn/:

Furthermore, Kn can be recovered from Jn by .˙1; n=2/ Dehn filling on the
crossing circles and meridional Dehn filling on the belt component B .

By [38, Theorem 3.8], there is an embedded horospherical neighborhood of
the cusps of Jn, such that in each of the many 3-punctured spheres in S3 n Jn,
the cusp neighborhoods of the 3 punctures are pairwise tangent. Then, by [38,
Corollary 3.9 and Theorem 3.10], the Dehn filling curves have the following length
on the horospherical tori:

• The meridian of the belt B has length `.�/ � n,
• The .˙1; n=2/ curves on the crossing circles have length ` � p

n2 C 1.

In particular, each filling curve has length at least n.
Now, we may use [32, Theorem 1.1] to bound the change in volume under

Dehn filling. As a corollary of that theorem, it follows that when several cusps of a
manifold M are filled along slopes of length at least `min > 2� , the additive change
in volume satisfies

�V � 6� � vol.M /

`2
min

:

(Deriving this corollary requires expanding the Taylor series for .1 � x/3=2; see [32,
Sect. 2.3].) In our setting, vol.S3 n Jn/ D 2v8 n, and all the filling curves also have
length at least n. Thus

2v8 t.Dn/ � vol.S3 n Kn/ D �V � .6� � 2v8 � n/=n2;

which becomes arbitrarily small as n ! 1. Thus the upper bound on volume is
sharp. ut
Remark 9.13. The bounds on the change of volume under Dehn filling, obtained
in [32], can be fruitfully combined with the results of this chapter. This combination
results in relations between simple diagrammatic quantities (such as the twist
number of an A-adequate knot) and the hyperbolic volume of 3-manifolds obtained
by Dehn surgery on a that knot. For example, one may combine Theorem 9.12 with
[32, Theorem 3.4] and obtain the following: Let K � S3 be a Montesinos knot as in
Theorem 9.12, and let N be a hyperbolic manifold obtained by p=q-Dehn surgery
along K , where jqj � 12. Then

v8

4

�

1 � 127

q2

	3=2

.t.D/ � 1/ < vol.N / < 2v8 t.D/:
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9.3 Essential Surfaces and Colored Jones Polynomials

For a knot K let

J n
K.t/ D ˛ntmn C ˇntmn�1 C : : : C ˇ0

nt rnC1 C ˛0
nt rn ;

denote its n-th colored Jones polynomial. One recently observed relation between
the colored Jones polynomials and classical topology is the slope conjecture of
Garoufalidis [42], which postulates that the sequence of degrees of the colored Jones
polynomials detects certain boundary slopes of a knot K . This conjecture has been
proved for several classes of knots [26, 36, 42], including a proof by the authors for
the family of adequate knots [36]. See Theorem 1.6 in the Introduction for a precise
statement.

In the same spirit, we can now show that certain coefficients of J n
K.t/ measure

how far the surface SA is from being a fiber. We need the following lemma; a similar
statement holds for B-adequate diagrams.

Lemma 9.14. Let D D D.K/ be an A-adequate diagram with reduced all-A state
graph G

0
A. Then for every n > 1

.1/ j˛0
nj D 1; and

.2/ jˇ0
nj D 1 � �.G0

A/,

where as above ˛0
n, ˇ0

n are the last and next-to-last coefficients of J n
K.t/.

Proof. Part (1) is proved in [60]; part (2) is proved in [23]. See [22] for an alternate
proof of both results. ut
Definition 9.15. With the setting and notation of Lemma 9.14, we define the stable
penultimate coefficient of J n

K.t/ to be ˇ0
K WD jˇ0

nj, for n > 1. For completeness we
define the stable last coefficient to be ˛0

K WD j˛0
nj D 1.

We also define 0
K D 1 if ˇ0

K D 0 and 0 otherwise.
Similarly, for a B-adequate knot K , we define the stable second coefficient of

J n
K.t/ to be ˇK WD jˇnj, for n > 1, and the stable first coefficient to be ˛K WD j˛nj D 1.

We also define K D 1 if ˇK D 0 and 0 otherwise.

The next result, which is a corollary of Theorem 5.11, shows that the stable
coefficients ˇ0

K , ˇK are exactly the obstructions to SA or SB being fibers. We only
state the result for A-adequate links.

Corollary 9.16. For an A-adequate link K , the following are equivalent:

.1/ ˇ0
K D 0.

.2/ For every A-adequate diagram of D.K/, S3 n K fibers over S1 with fiber the
corresponding state surface SA D SA.D/.

.3/ For some A-adequate diagram D.K/, MA D S3nnSA is an I -bundle over
SA.D/.
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Proof. By Lemma 9.14, ˇ0
K D 0 precisely when G

0
A is a tree, for every A-adequate

diagram of K . Thus (1) ) (2) follows immediately from Theorem 5.11 on
p. 82. The implication (2) ) (3) is trivial, by specializing to a particular
A-adequate diagram. Finally, (3) ) (1) is again immediate from Theorem 5.11
and Lemma 9.14. ut
Remark 9.17. Given a knot K , the Seifert genus g.K/ is defined to be the smallest
genus over all orientable surfaces spanned by K . Since a fiber realizes the genus of
a knot [15], Corollary 9.16 implies that g.K/ can be read off from any A-adequate
diagram of K when ˇ0

K D 0. Since GA is a spine for SA (Lemma 2.2), in this case
we have

g.K/ D 1 � �.GA/

2
:

Note that
ˇ

ˇˇ0
K

ˇ

ˇ � 1 C 0
K D 0 precisely when

ˇ

ˇˇ0
K

ˇ

ˇ 2 f0; 1g. By Corollary 9.16,
having ˇ0

K D 0 corresponds to SA being a fiber. Our next result is that
ˇ

ˇˇ0
K

ˇ

ˇ D 1

precisely when MA is a book of I -bundles (hence, SA is a fibroid) of a particular
type.

Theorem 9.18. Let K be an A-adequate link, and let ˇ0
K be as in Definition 9.15.

Then the following are equivalent:

.1/
ˇ

ˇˇ0
K

ˇ

ˇ D 1.
.2/ For every A-adequate diagram of K , the corresponding 3-manifold MA is a

book of I -bundles, with �.MA/ D �.GA/��.G0
A/, and is not a trivial I -bundle

over the state surface SA.
.3/ For some A-adequate diagram of K , the corresponding 3-manifold MA is a

book of I -bundles, with �.MA/ D �.GA/ � �.G0
A/.

Proof. For (1) ) (2), suppose that
ˇ

ˇˇ0
K

ˇ

ˇ D 1, and let D be an A-adequate diagram.
Then, by Theorem 5.14 and Lemma 9.14,

��.guts.MA// D ��.G0
A/ � jjEcjj D 1 � ˇ

ˇˇ0
K

ˇ

ˇ � jjEcjj � 0:

Since ��.�/ � 0 by definition, it follows that �.guts.MA// D 0, hence guts.MA/ D
;. In other words, if there are no guts, all of MA is a book of I -bundles. But, by
Corollary 9.16, MA cannot be an I -bundle over SA, because

ˇ

ˇˇ0
K

ˇ

ˇ ¤ 0.
(2) ) (3) is trivial.
For (3) ) (1), suppose that for some A-adequate diagram, MA is a book of

I -bundles, satisfying �.MA/ D �.GA/ � �.G0
A/. By (5.1) on p. 85, this means

�.G0
A/ D 0. Thus, by Lemma 9.14,

ˇ

ˇˇ0
K

ˇ

ˇ D 1. ut
One of the main results in this manuscript is the following theorem, which shows

that ˇ0
K monitors the topology of MA quite effectively.

Theorem 9.19. Let D D D.K/ be a prime A-adequate diagram of a link K with
prime polyhedral decomposition of MA D S3nnSA and let ˇ0

K and and 0
K be as in
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Definition 9.15. Then we have

jjEcjj C ��.guts.MA// D ˇ

ˇˇ0
K

ˇ

ˇ � 1 C 0
K;

where jjEcjj is as in Definition 5.9, on p. 81.

There is a similar statement for the stable second coefficient of J n
K.t/ of

B-adequate links. If D D D.K/ be a prime B-adequate diagram of a link K , then

jjEcjj C ��.guts.MB// D jˇK j � 1 C K;

where again jjEcjj is the smallest number of complex disks required to span the
I -bundle of the upper polyhedron, as in Definition 5.9 on p. 81.

Proof. By Theorem 5.14, p. 84, we have

��.guts.MA// C jjEcjj D ��.G0
A/:

By Definition 1.5 on p. 6,

��.G0
A/ D ��.G0

A/ C �C.G0
A/;

where �C.G0
A/ D 1 if G0

A is tree and 0 otherwise. By Lemma 9.14(2)

ˇ

ˇˇ0
K

ˇ

ˇ � 1 D ��.G0
A/;

which implies that
ˇ

ˇˇ0
K

ˇ

ˇ D 0 if and only if G0
A is a tree. This in turn implies that

ˇ

ˇˇ0
K

ˇ

ˇ D 0 if and only if �C.G0
A/ D 1. Combining all these we see that the quantity

0
K WD ��.guts.MA// C jjEcjj � ˇ

ˇˇ0
K

ˇ

ˇ C 1;

is equal to 1 if
ˇ

ˇˇ0
K

ˇ

ˇ D 0 and 0 otherwise. This proves the equation in the statement
of the theorem. ut

A simpler version of Theorem 9.19 is Theorem 9.20, which was stated in the
introduction.

Theorem 9.20. Suppose K is an A-adequate link whose stable penultimate coeffi-
cient is ˇ0

K ¤ 0. Then, for every A-adequate diagram D.K/,

��.guts.MA// C jjEcjj D ˇ

ˇˇ0
K

ˇ

ˇ � 1;

where jjEcjj � 0 is as in Definition 5.9. Furthermore, if D is prime and every 2-edge
loop in GA has edges belonging to the same twist region, then jjEcjj D 0 and

��.guts.MA// D ˇ

ˇˇ0
K

ˇ

ˇ � 1:
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Proof. The first equation of the theorem follows immediately from Theorem 9.19,
since 0

K D 0 when ˇ0
K ¤ 0. The second equation of the theorem follows

by combining Corollary 5.19 with Lemma 9.14, since jjEcjj D 0 when the
edges of each 2-edge loop in GA the edges belong in the same twist region of the
diagram. ut

When jjEcjj D 0, Theorem 9.19 provides particularly striking evidence that
coefficients of the Jones polynomials measure something quite geometric: when
ˇ

ˇˇ0
K

ˇ

ˇ is large, the link complement S3 n K contains essential surfaces that are
correspondingly far from being fibroids. As a result, if K is hyperbolic, S3 n K

is forced to have large volume. As noted earlier, classes of links with jjEcjj D 0

include alternating knots and Montesinos links. In this case we have the following.

Corollary 9.21. Suppose K is a Montesinos link with a reduced admissible
diagram D.K/ that contains at least three tangles of positive slope. Then

��.guts.MA// D ˇ

ˇˇ0
K

ˇ

ˇ � 1:

Similarly, if D.K/ contains at least three tangles of negative slope, then

��.guts.MB// D jˇK j � 1:

Proof. Suppose that D.K/ has r � 3 tangles of positive slope. Then Theorem 8.6
on p. 123 implies that ��.guts.MA// D ��.G0

A/. Furthermore, observe in Fig. 8.5
on p. 124 that the graphGA contains at least one loop of length r � 3; this is the loop
that spans every positive tangle west to east. All the edges of this loop are distinct
in G

0
A. Thus G0

A contains at least one non-trivial loop, and is not a tree. Therefore,
by Lemma 9.14 on p. 149,

��.guts.MA// D ��.G0
A/ D ��.GA/ D ˇ

ˇˇ0
K

ˇ

ˇ � 1:

The argument for three negative tangles is identical. ut

9.4 Hyperbolic Volume and Colored Jones Polynomials

If the volume conjecture is true, then for large n, it would imply a relation between
the volume of a knot complement S3 nK and coefficients of J n

K.t/. For example, for
n � 0 one would have vol.S3 n K/ < C jjJ n

K jj, where jjJ n
K jj denotes the L1-norm

of the coefficients of J n
K.t/ and C is an appropriate constant. A series of articles

written in recent years [23, 32–34] has established such relations for several classes
of knots. In fact, in all the known cases the upper bounds on volume are paired
with similar lower bounds. In several cases, our results here provide an intrinsic and
satisfactory explanation for the existence of the lower bounds.



9.4 Hyperbolic Volume and Colored Jones Polynomials 153

To illustrate this, let us look at the example of hyperbolic links K that have
diagrams D D D.K/ that are positive closed braids, such that each twist region
has at least seven crossings. As before, let ˇK; ˇ0

K denote the stable second and
penultimate coefficients of J n

K.t/ (Definition 9.15). Corollary 1.6 of [32] states that
the quantity jˇK jC ˇ

ˇˇ0
K

ˇ

ˇ provides two-sided bounds for the volume vol.S3 nK/. As
we saw in the discussion before Theorem 9.7, the graph G

0
B is a tree, hence ˇK D 0.

Thus the two-sided bound on volume is in terms of
ˇ

ˇˇ0
K

ˇ

ˇ alone. However, since the
argument of [32] is somewhat indirect (requiring twist number as an intermediate
quantity), the upper and lower bounds differ by a factor of about 86.

Our results in this monograph (Corollary 5.19) reveal that the quantity
ˇ

ˇˇ0
K

ˇ

ˇ � 1

realizes the guts of the incompressible surface SA; hence, in the light of Theo-
rem 9.1, we expect it to show up as a lower bound on the volume of S3 n K . In
fact we can now show that

ˇ

ˇˇ0
K

ˇ

ˇ � 1 gives two-sided bounds on the volume of
positive braids that have only three crossings per twist region, rather than seven.
Furthermore, because the argument using guts is more direct and intrinsic, the factor
between the upper and lower bounds is now about 4:15.

Corollary 9.22. Suppose that a hyperbolic link K is the closure of a positive braid
b D �

r1
i1

�
r2
i2

� � � �rk
ik

, where rj � 3 for all 1 � j � k. Then

v8 .
ˇ

ˇˇ0
K

ˇ

ˇ � 1/ � vol.S3 n K/ < 15v3 .
ˇ

ˇˇ0
K

ˇ

ˇ � 1/ � 10v3;

where v3 D 1:0149 : : : is the volume of a regular ideal tetrahedron and v8 D
3:6638 : : : is the volume of a regular ideal octahedron.

Proof. By Lemma 9.9, the graph GA has no 2-edge loops, and �.GA/ D �.G0
A/ <

0. Thus, by Corollary 9.4,

vol.S3 n K/ � �v8 �.G0
A/ D v8.

ˇ

ˇˇ0
K

ˇ

ˇ � 1/:

For the upper bound on volume, we also use Lemma 9.9. The estimate of that
lemma implies that

t.D/ � � 3
2

�.G0
A/ D 3

2

ˇ

ˇˇ0
K

ˇ

ˇ � 3
2
:

Combined with Agol and D. Thurston’s bound vol.S3 n K/ < 10v3.t.D/ � 1/, this
completes the proof. ut

A second result in this vein concerns Montesinos knots and links.

Corollary 9.23. Let K � S3 be a Montesinos link with a reduced Montesinos
diagram D.K/. Suppose that D.K/ contains at least three positive tangles and at
least three negative tangles. Then K is a hyperbolic link, satisfying

v8

�

maxfjˇK j; ˇ

ˇˇ0
K

ˇ

ˇg � 1
� � vol.S3 n K/ < 4v8

�jˇK j C ˇ

ˇˇ0
K

ˇ

ˇ � 2
� C 2v8 .#K/;

where #K is the number of link components of K .
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We remark that the number of link components #K is recoverable from the Jones
polynomial evaluated at 1: JK.1/ D .�2/#K�1. See [49].

Proof. The lower bound on volume is Theorem 9.1 combined with Corollary 9.21.
For the upper bound on volume, we combine the upper bound of Theorem 9.12 with
the estimate of Lemma 9.11:

vol.S3 n K/ < 2v8 t.D/

� 2v8

��2�.G0
A/ � 2�.G0

A/ C #K
�

D 4v8

�jˇK j C ˇ

ˇˇ0
K

ˇ

ˇ � 2
� C 2v8 .#K/:

ut



Chapter 10
Discussion and Questions

In this final chapter, we state some questions that arose from this work and speculate
about future directions related to this project. In Sect. 10.1, we discuss modifications
of the diagram D that preserve A-adequacy. In Sect. 10.2, we speculate about using
normal surface theory in our polyhedral decomposition of MA to attack various open
problems, for example the Cabling Conjecture and the determination of hyperbolic
A-adequate knots. In Sect. 10.3, we discuss extending the results of this monograph
to states other than the all-A (or all-B) state. Finally, in Sect. 10.4, we discuss a
coarse form of the hyperbolic volume conjecture.

10.1 Efficient Diagrams

To motivate our discussion of diagrammatic moves, recall the well-known Tait
conjectures for alternating links:

.1/ Any two reduced alternating projections of the same link have the same number
of crossings.

.2/ A reduced alternating diagram of a link has the least number of crossings among
all the projections of the link.

.3/ Given two reduced, prime alternating diagrams D and D0 of the same link, it is
possible to transform D to D0 by a finite sequence of flypes.

Statements (1) and (2) where proved by Kauffman [55] and Murasugi [74] using
properties of the Jones polynomial. A shorter proof along similar lines was given by
Turaev [95]. Statement (3), which is known as the “flyping conjecture” was proven
by Menasco and Thistlethwaite [67]. Note that the Jones polynomial is also used in
that proof.

One can ask to what extend the statements above can be generalized to semi-
adequate links. It is easy to see that statements (1) and (2) are not true in this case:
For instance, the two diagrams in Example 5.3 on p. 74 are both A-adequate, but
have different numbers of crossings. Nonetheless, some information is known about

D. Futer et al., Guts of Surfaces and the Colored Jones Polynomial, Lecture Notes
in Mathematics 2069, DOI 10.1007/978-3-642-33302-6 10,
© Springer-Verlag Berlin Heidelberg 2013
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crossing numbers of semi-adequate diagrams: Stoimenow showed that the number
of crossings of any semi-adequate projection of a link is bounded above by a link
invariant that is expressed in terms of the 2-variable Kauffman polynomial and the
maximal Euler characteristic of the link. As a result, he concluded that each semi-
adequate link has only finitely many semi-adequate reduced diagrams [91, Theorem
1.1]. In view of his work, it seems natural to ask for an analogue of the flyping
conjecture in the setting of semi-adequate links.

Problem 10.1. Find a set of diagrammatic moves that preserve A-adequacy and
that suffice to pass between any pair of reduced, A-adequate diagrams of a link K .

A solution to Problem 10.1 would help to clarify to what extent the vari-
ous quantities introduced in this monograph actually depend on the choice of
A-adequate diagram D.K/. Recall the prime polyhedral decomposition of MA D
S3nnSA introduced above, and let ˇ0

K and K be as in Definition 9.15 on p. 149.
Since

ˇ

ˇˇ0
K

ˇ

ˇ � 1 C 0
K is an invariant of K , Theorem 9.19 implies that the quantity

jjEcjj C ��.guts.MA// is also an invariant of K . As noted earlier, jjEcjj and
��.guts.MA// are not, in general, invariants of K: they depend on the A-adequate
diagram used. For instance, in Example 5.3 on p. 74, we show that by modifying
the diagram of a particular link, we can eliminate the quantity jjEcjj. This example,
along with the family of Montesinos links (see Theorem 8.6 on p. 123), prompts the
following question.

Question 10.2. Let K be a non-split, prime A-adequate link. Is there an A-adequate
diagram D.K/, such that if we consider the corresponding prime polyhedral
decomposition of MA.D/ D S3nnSA.D/, we will have jjEcjj D 0? This would
imply that

��.guts.MA// D ��.G0
A/ D ˇ

ˇˇ0
K

ˇ

ˇ � 1 C 0
K :

Among the more accessible special cases of Question 10.2 is the following.

Question 10.3. Does Theorem 8.6 generalize to all Montesinos links? That is: can
we remove the hypothesis that a reduced diagram D.K/ must contain at least three
tangles of positive slope?

Note that if D.K/ has no positive tangles, then it is alternating, hence the
conclusion of Theorem 8.6 is known by [58]. If D.K/ has one positive tangle, then
it is not A-adequate by Lemma 8.4. Thus Question 10.3 is open only in the case
where D.K/ contains exactly two tangles of positive slope.

Another tractable special case of Question 10.2 is the following.

Question 10.4. Let K be an A-adequate link that can be depicted by a diagram
D.K/, obtained by Conway summation of alternating tangles. Each such link admits
a Turaev surface of genus one [21]. Does there exist a (possibly different) diagram
of K , for which jjEcjj D 0?

Prior to this manuscript, there have been only a few cases in which the guts
of essential surfaces have been explicitly understood and calculated for an infinite
family of 3-manifolds [3, 57, 58]. Affirmative answers to Questions 10.2, 10.3,
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and 10.4 would add to the list of these results, and could have further applications.
In particular, combined with Theorem 9.1, they would lead to new relations between
quantum invariants and hyperbolic volume.

Next, recall from the end of Sect. 5.5, that given an A-adequate diagram D WD
D.K/, we denote by Dn the n-cabling of D with the blackboard framing. If D is
A-adequate then Dn is A-adequate for all n 2 N. Furthermore, we have

�.G0
A.Dn// D �.G0

A.D//;

for all n � 1. In other words, the quantity �.G0
A/ remains invariant under cabling [60,

Chap. 5]. Recall, from Corollary 5.20 on p. 88, that the quantity ��guts.S3nnSn
A/C

jjEc.D
n/jj is also invariant under planar cabling. This prompts the following

question.

Question 10.5. Let D WD D.K/ be a prime, A-adequate diagram, of a link K . For
n � 1, let Dn denote the n-cabling of D using the blackboard framing. Is it true
that jjEc.D

n/jj D jjEc.D/jj, hence ��.guts.S3nnSn
A// D ��.guts.S3nnSA//, for

every n as above?

We note that an affirmative answer to Question 10.5 would provide an intrinsic
explanation for the fact that the coefficient ˇ0

n of the colored Jones polynomials
stabilizes.

10.2 Control Over Surfaces

In Chaps. 4 and 5, we controlled pieces of the characteristic submanifold of
MA by putting them in normal form with respect to the polyhedral decomposition
constructed in Chap. 3. The powerful tools of normal surface theory have been used
(sometimes in disguise) to obtain a number of results about alternating knots and
links: see, for example, [58, 59, 65, 66]. It seems natural to ask what other results in
this vein can be proved for A-adequate knots and links.

One sample open problem that should be accessible using these methods is the
following the following problem posed by Ozawa [76].

Problem 10.6. Prove that an A-adequate knot is prime if and only if every
A-adequate diagram without nugatory crossings is prime.

Recall that one direction of the problem is Corollary 3.21 on p. 48: if K is prime
and D.K/ has no nugatory crossings, then D must be prime. To attack the converse
direction of the problem, one might try showing that if K is not prime, then an
A-adequate diagram D.K/ cannot be prime.

Suppose that K is not prime, and ˙ � S3 nK is an essential, meridional annulus
in the prime decomposition. Then, since SA is also an essential surface, ˙ can be
moved by isotopy into a position where it intersects SA in a collection of essential
arcs. Thus, after ˙ is cut along these arcs, it must intersect MA D S3nnSA in a
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disjoint union of EPDs. Now, all the machinery of Chap. 4 can be used to analyze
these EPDs, with the aim of proving that D must not be prime.

The same ideas can be used to attack other problems that depend on an
understanding of “small” surfaces in the link complement. For example, if ˙ �
S3 n K is an essential torus, then ˙ \ SA must consist of simple closed curves
that are essential on both surfaces. Cutting ˙ along these curves, we conclude that
˙ \ MA is a union of annuli, which are contained in the maximal I -bundle of MA.
Thus once again, the machinery of Chap. 4 can be brought to bear: by Lemma 4.6,
each annulus intersects the polyhedra in normal squares, and so on. This leads to the
following question.

Problem 10.7. Give characterization of hyperbolic A-adequate links in terms of
their A-adequate diagrams.

We are aware of only three families of A-adequate diagrams that depict non-
hyperbolic links. First, the standard diagram of a .p; q/-torus link (where p > 0

and q < 0) is a negative braid, hence A-adequate by the discussion following
Definition 9.6 on p. 141. Second, by Corollary 3.21 on p. 48, a non-prime
A-adequate diagram (without nugatory crossings) must depict a composite link.
Third, a planar cable of (some of the components of) a link K in an A-adequate
diagram D also produces an A-adequate diagram Dn, but clearly is not hyperbolic.
Thus the following naı̈ve question has a chance of a positive answer:

Question 10.8. Suppose D.K/ is a prime A-adequate diagram that is not a
planar cable and not the standard diagram of a .p; q/-torus link. Is K necessarily
hyperbolic?

A related open problem is the celebrated Cabling Conjecture, which implies
that a hyperbolic knot K does not have any reducible Dehn surgeries. While the
conjecture has been proved for large classes of knots [27, 62, 66, 88], including all
non-hyperbolic knots, it is still a major open problem. Note that if a Dehn filling of
a knot K does contain an essential 2-sphere, then S3 n K must contain an essential
planar surface ˙ , whose boundary is the slope along which we perform the Dehn
filling. The Cabling Conjecture asserts that K must be a cable knot and ˙ is the
cabling annulus. Given existing work [70, 88], an equivalent formulation is that
hyperbolic knots do not have any reducible surgeries.

If K is an A-adequate knot, then our results here provide a nice ideal polyhedral
decomposition of associated 3-manifold MA. It would be interesting to attempt to
analyze essential planar surfaces in S3 n K by putting them in normal form with
respect to this decomposition, to attack the following problem.

Problem 10.9. If ˙ is an essential planar surface in the complement of an
A-adequate knot K , show that either @˙ consists of meridians of K , or ˙ is a
cabling annulus. That is, prove the Cabling Conjecture for A-adequate knots.

Recall that the class of A-adequate knots is very large; see Sect. 1.3 on p. 7.
Therefore, the resolution of Problem 10.9 would be a major step toward a proof of
the Cabling Conjecture.
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10.3 Other States

As we mentioned in Chap. 2, one may associate many states to a link diagram. Any
choice of state � defines a state graph G� and a state surface S� (see also [36]). A
natural and interesting question is: to what extent do the methods and results of this
manuscript generalize to states other than the all-A and the all-B state? For example,
one can ask the following question.

Question 10.10. Does every knot K admit a diagram D.K/ and a state � so that
S� is essential in S3 n K?

As we have seen in Sects. 2.4, 3.4, 4.5, and 5.6, all of our structural results about
the polyhedral decomposition generalize to state surfaces of �-homogeneous, �-
adequate states. In particular, the state surface S� of such a state must be essential,
recovering Ozawa’s Theorem 3.25. In [21], Dasbach, Futer, Kalfagianni, Lin, and
Stoltzfus show that for any diagram D.K/, the entire Jones polynomial JK.t/ can
be computed from the Bollobás–Riordan polynomial [12, 13] of the ribbon graph
associated to the all-A graph GA or the all-B graph GB . It is natural to ask whether
these results extend to other states.

Question 10.11. Let D.K/ be a link diagram that is �-adequate and �-
homogeneous. Does the Bollobás–Riordan polynomial of the graph G� associated
to � carry all of the information in the Jones polynomial of K? How do these
polynomials relate to the topology of the state surface S� ?

10.4 A Coarse Volume Conjecture

Our results here, as well as several recent articles [23,32–34], have established two-
sided bounds on the hyperbolic volume of a link complement in terms of coefficients
of the Jones and colored Jones polynomials. These results motivate the following
question.

Definition 10.12. Let f; g W Z ! RC be functions from some (infinite) set Z to the
non-negative reals. We say that f and g are coarsely related if there exist universal
constants C1 � 1 and C2 � 0 such that

C �1
1 f .x/ � C2 � g.x/ � C1f .x/ C C2 8x 2 Z:

This notion is central in coarse geometry. For example, a function ' W X ! Y

between two metric spaces is a quasi-isometric embedding if dX .x; x0/ is coarsely
related to dY .'.x/; '.x0//. Here, Z D X 	 X .

Question 10.13 (Coarse Volume Conjecture). Does there exist a function B.K/

of the coefficients of the colored Jones polynomials of a knot K , such that for
hyperbolic knots, B.K/ is coarsely related to hyperbolic volume?
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Here, we are thinking of both vol W Z ! RC and B W Z ! RC as functions on
the set Z of hyperbolic knots.

Work of Garoufalidis and Le [43] implies that for a given link K , the sequence
fJ n

K.t/jn 2 Ng is determined by finitely many values of n. This implies that the
coefficients satisfy linear recursive relations with constant coefficients [41]. For
A-adequate links, the recursive relations between coefficients of J n

K.t/ manifest
themselves in the stabilization properties discussed in Lemma 9.14 on p. 149, and
Definition 9.15 on p. 149. Lemma 9.14 is not true for arbitrary knots. However,
numerical evidence and calculations (by Armond, Dasbach, Garoufalidis, van der
Veen, Zagier, etc.) prompt the question of whether the first and last two coefficients
of J n

K.t/ “eventually” become periodic.

Question 10.14. Given a knot K , do there exist a “stable” integer N D N.K/ > 0

and a “period” p D p.K/ > 0, depending on K , such that for all m � N where
m � N is a multiple of p,

j˛mj D j˛N j; jˇmj D jˇN j; ˇ

ˇˇ0
m

ˇ

ˇ D ˇ

ˇˇ0
N

ˇ

ˇ;
ˇ

ˇ˛0
m

ˇ

ˇ D ˇ

ˇ˛0
N

ˇ

ˇ ‹

As discussed above, for knots that are both A and B-adequate, any integer N � 2

is “stable” with period p D 1. Examples show that in general, we cannot hope that
p D 1 for arbitrary knots. For example, [9, Proposition 6.1] states that for several
families of torus knots we have p D 2. In general, if the answer to Question 10.14
is yes, then if we take N to be the smallest “stable” integer then we may consider
the 4p values

j˛mj; jˇmj; ˇ

ˇˇ0
m

ˇ

ˇ;
ˇ

ˇ˛0
m

ˇ

ˇ; for N � m � N C p � 1: (10.1)

The results [23, 32–34], as well as Corollary 9.23 in Chap. 9, prompt the question
of whether this family of coefficients of J n

K.t/ determines the volume of K up to a
bounded constant.

Question 10.15. Suppose the answer to Question 10.14 is yes, and the stable values
j˛mj jˇmj, jˇ0

mj, j˛0
mj of (10.1) are well-defined. Is there a function B.K/ of these

stable coefficients that is coarsely related to the hyperbolic volume vol.S3 n K/?

Remark 10.16. If K is an alternating knot then ˇK; ˇ0
K are equal to the second and

penultimate coefficient of the ordinary Jones polynomial JK.t/, respectively. Since
the quantity jˇK j C ˇ

ˇˇ0
K

ˇ

ˇ provides two sided bounds on the volume of hyperbolic
alternating links one may wonder whether there is a function of the second and the
penultimate coefficient of JK.t/ that controls the volume of all hyperbolic knots
K . In [34, Theorem 6.8], we show that is not the case. That is: there is no single
function of the second and the penultimate coefficient of the Jones polynomial that
can control the volume of all hyperbolic knots.

Finally, we note that the quantity on the right-hand side of the equation in the
statement of Theorem 9.19 can be rewritten in the form

ˇ

ˇˇ0
K

ˇ

ˇ � ˇ

ˇ˛0
K

ˇ

ˇ C 0
K . In the
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view of this observation, it is tempting to ask whether analogues of Theorem 9.19
on p. 150 hold for all knots.

Question 10.17. Given a knot K for which the stable coefficients of Question 10.14
exist, is there an essential spanning surface S with boundary K such that the stable
coefficients of (10.1) capture the topology of S3nnS in the sense of Theorem 9.19,
Corollary 9.16, and Theorem 9.18?
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vol. 3. American Mathematical Society, Providence (2007)

70. Moser, L.: Elementary surgery along a torus knot. Pac. J. Math. 38, 737–745 (1971)
71. Mostow, G.D.: Quasi-conformal mappings in n-space and the rigidity of hyperbolic space

forms. Inst. Hautes Études Sci. Publ. Math. (34), 53–104 (1968)

http://www.math.utk.edu/~morwen


166 References

72. Murakami, H.: An introduction to the volume conjecture. In: Interactions Between Hyperbolic
Geometry, Quantum Topology and Number Theory. Contemporary Mathematics, vol. 541,
pp. 1–40. American Mathematical Society, Providence (2011). doi:10.1090/conm/541/10677

73. Murakami, H., Murakami, J.: The colored Jones polynomials and the simplicial volume of a
knot. Acta Math. 186(1), 85–104 (2001)

74. Murasugi, K.: Jones polynomials and classical conjectures in knot theory. Topology 26(2),
187–194 (1987). doi:10.1016/0040-9383(87)90058-9

75. Ni, Y.: Knot Floer homology detects fibred knots. Invent. Math. 170(3), 577–608 (2007).
doi:10.1007/s00222-007-0075-9

76. Ozawa, M.: Essential state surfaces for knots and links. J. Aust. Math. Soc. 91(3), 391–404
(2011)
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example, 28
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example, 18
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Shortcut lemma, 38
Short resolution, 86, 109

example, 86
Simple EPD, 74
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Simplicial volume, 2

Slope conjecture, 9, 149
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Soup can, 19
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graph, 4

reduced, 4
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Support (of brick), 114

Tail (of tentacle), 26
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Tentacle, 24, 26, 36
chasing, 15, 35, 40, 62, 96
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tail, 26
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Topological quantum field theory (TQFT),

2
Trivial arc, 37
Turaev surface, 3, 144, 156
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and hyperbolic volume, 3, 141, 146
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long and short resolutions, 86
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example, 21

��.Y /, �C.Y /, 7

Zig-zag, 92



LECTURE NOTES IN MATHEMATICS 123
Edited by J.-M. Morel, B. Teissier; P.K. Maini

Editorial Policy (for the publication of monographs)

1. Lecture Notes aim to report new developments in all areas of mathematics and their
applications - quickly, informally and at a high level. Mathematical texts analysing new
developments in modelling and numerical simulation are welcome.
Monograph manuscripts should be reasonably self-contained and rounded off. Thus
they may, and often will, present not only results of the author but also related work
by other people. They may be based on specialised lecture courses. Furthermore,
the manuscripts should provide sufficient motivation, examples and applications. This
clearly distinguishes Lecture Notes from journal articles or technical reports which
normally are very concise. Articles intended for a journal but too long to be accepted
by most journals, usually do not have this “lecture notes” character. For similar reasons
it is unusual for doctoral theses to be accepted for the Lecture Notes series, though
habilitation theses may be appropriate.

2. Manuscripts should be submitted either online at www.editorialmanager.com/lnm to
Springer’s mathematics editorial in Heidelberg, or to one of the series editors. In general,
manuscripts will be sent out to 2 external referees for evaluation. If a decision cannot yet
be reached on the basis of the first 2 reports, further referees may be contacted: The
author will be informed of this. A final decision to publish can be made only on the
basis of the complete manuscript, however a refereeing process leading to a preliminary
decision can be based on a pre-final or incomplete manuscript. The strict minimum
amount of material that will be considered should include a detailed outline describing
the planned contents of each chapter, a bibliography and several sample chapters.
Authors should be aware that incomplete or insufficiently close to final manuscripts
almost always result in longer refereeing times and nevertheless unclear referees’
recommendations, making further refereeing of a final draft necessary.
Authors should also be aware that parallel submission of their manuscript to another
publisher while under consideration for LNM will in general lead to immediate rejection.

3. Manuscripts should in general be submitted in English. Final manuscripts should contain
at least 100 pages of mathematical text and should always include

– a table of contents;
– an informative introduction, with adequate motivation and perhaps some historical

remarks: it should be accessible to a reader not intimately familiar with the topic
treated;

– a subject index: as a rule this is genuinely helpful for the reader.

For evaluation purposes, manuscripts may be submitted in print or electronic form (print
form is still preferred by most referees), in the latter case preferably as pdf- or zipped
psfiles. Lecture Notes volumes are, as a rule, printed digitally from the authors’ files.
To ensure best results, authors are asked to use the LaTeX2e style files available from
Springer’s web-server at:

ftp://ftp.springer.de/pub/tex/latex/svmonot1/ (for monographs) and
ftp://ftp.springer.de/pub/tex/latex/svmultt1/ (for summer schools/tutorials).

www.editorialmanager.com/lnm
ftp://ftp.springer.de/pub/tex/latex/svmonot1/
ftp://ftp.springer.de/pub/tex/latex/svmultt1/


Additional technical instructions, if necessary, are available on request from
lnm@springer.com.

4. Careful preparation of the manuscripts will help keep production time short besides
ensuring satisfactory appearance of the finished book in print and online. After accep-
tance of the manuscript authors will be asked to prepare the final LaTeX source files and
also the corresponding dvi-, pdf- or zipped ps-file. The LaTeX source files are essential
for producing the full-text online version of the book (see http://www.springerlink.com/
openurl.asp?genre=journal&issn=0075-8434 for the existing online volumes of LNM).
The actual production of a Lecture Notes volume takes approximately 12 weeks.

5. Authors receive a total of 50 free copies of their volume, but no royalties. They are
entitled to a discount of 33.3 % on the price of Springer books purchased for their
personal use, if ordering directly from Springer.

6. Commitment to publish is made by letter of intent rather than by signing a formal
contract. Springer-Verlag secures the copyright for each volume. Authors are free to
reuse material contained in their LNM volumes in later publications: a brief written (or
e-mail) request for formal permission is sufficient.

Addresses:
Professor J.-M. Morel, CMLA,
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