
Math. Proc. Camb. Phil. Soc. (2019), 167, 505–530 © Cambridge Philosophical Society 2018

doi:10.1017/S0305004118000440

First published online 28 June 2018

505

Growth of quasiconvex subgroups
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Abstract

We prove that non-elementary hyperbolic groups grow exponentially more quickly than
their infinite index quasiconvex subgroups. The proof uses the classical tools of automatic
structures and Perron–Frobenius theory.

We also extend the main result to relatively hyperbolic groups and cubulated groups.
These extensions use the notion of growth tightness and the work of Dahmani, Guirardel
and Osin on rotating families.

1. Introduction

Consider a group G acting by isometries on a graph ϒ , properly and cocompactly. One
important special case is ϒ(G, S), namely the Cayley graph of G with respect to some finite
generating set S, but ϒ can also be more general. Fix a basepoint b ∈ ϒ and a subset
H ⊂ G. The growth function of H is the function

fH,ϒ(n) = # {h ∈ H : dϒ(b, h(b)) � n} . (1·1)

Since G is a quotient of a free group, and the action on ϒ is proper, the growth function
fG,ϒ is no larger than exponential. For any H ⊂ G, define the growth rate of H to be

λH = λH (ϒ) = lim sup
n→∞

n
√

fH,ϒ(n). (1·2)

We emphasise that the limit depends a great deal on ϒ . However, the triangle inequality in
ϒ implies that λH is independent of b.

In this paper, we will be concerned with groups acting on hyperbolic metric spaces in the
sense of Gromov, including groups that are themselves hyperbolic. We refer the reader to
[Gro87] and [ABC+91] for standard definitions regarding hyperbolic metric spaces and the
groups that act on them.
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506 FRANÇOIS DAHMANI, DAVID FUTER AND DANIEL T. WISE

Cannon showed that when G is hyperbolic, the sequence n
√

fG,ϒ(n) converges to λG

[Can84, Can91]; see Corollary 3·7 below. Coornaert showed the stronger result that fG,ϒ(n)

is bounded above and below by constants times (λG)n [Coo93, theorem 7·12]. In this paper,
we prove that there is a definite separation between the growth rate of G and of any infinite
index quasiconvex subgroup of G.

THEOREM 1·1. Let G be a non-elementary hyperbolic group acting properly and cocom-
pactly on a graph ϒ . Let H be a quasiconvex subgroup of infinite index. Then

λH (ϒ) < λG(ϒ).

Recall that a group is elementary if it contains a cyclic subgroup of finite index. The
growth function of an elementary group G is at most linear, hence λG = 1 for such a group.
Since λH � 1 for any H , the “non-elementary” hypothesis is necessary. The hypothesis that
H is quasiconvex is also necessary, as demonstrated in Examples 9·5 and 9·6.

Theorem 1·1 has extensions to relatively hyperbolic groups and cubulated groups, as fol-
lows. We refer the reader to Section 8 for the relevant definitions.

THEOREM 1·2. Let (G,P) be a non-elementary relatively hyperbolic group and H a re-
latively quasiconvex subgroup of (G,P) of infinite index in G. Suppose that G acts properly
and cocompactly on a graph ϒ . Then

λH (ϒ) < λG(ϒ).

THEOREM 1·3. Let G be a non-elementary group, acting properly and cocompactly on a
CAT(0) cube complex X . Suppose that X does not decompose as a product. Then, for every
subgroup H ⊂ G stabilising an essential hyperplane of X , we have

λH (X ) < λG(X ).

Given these results, one may ask whether there exists a uniform upper bound α < λG

such that λH � α for each infinite index quasiconvex subgroup H ⊂ G. In Theorem 9·4, we
construct an example (with G a free group) showing that no such uniform bound can exist.

1·1. Classical tools

Cannon’s study of the growth rate λG arose as a consequence of his construction of auto-
matic structures for hyperbolic groups. The corresponding counts of rooted paths in a dir-
ected graph are closely tied to the theory of Perron–Frobenius eigenvalues of non-negative
matrices. In keeping with this classical perspective, our proof of Theorem 1·1 primarily re-
lies on automatic structures and Perron–Frobenius theory. We review the relevant material
in Sections 2 and 3.

A crucial consequence of the classical theories, encapsulated in Theorem 3·6, is that the
growth rate λG can be expressed as the Perron–Frobenius eigenvalue of a transition matrix.
Although this statement is surely known to experts, we were unable to find a sufficiently
general statement in the literature. Thus we wrote down a proof in Section 4. We hope that
a written account of Theorem 3·6 will be useful to other researchers.

In the special case where G is torsion-free and ϒ is its Cayley graph with respect to some
generating set, Theorem 1·1 turns out to be a fairly quick consequence of Theorem 3·6 and
the construction of a free product H ∗ Z inside G. To aid the reader, we treat this special
case of Theorem 1·1 in Section 5. See Theorem 5·1.
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Proving the general case of Theorem 1·1 requires certain generalisations of classical res-
ults about automatic structures (Theorem 2·1), growth rates (Theorem 3·6), and free products
(Theorem 5·2). In Section 6, we bootstrap from classical results to derive these general
statements. Then we complete the proof of Theorem 1·1, following the same outline as The-
orem 5·1 while carrying some extra structure.

1·2. Modern extensions

All of the results and tools used in the proof of Theorem 1·1 were known by 1990. By
contrast, the proofs of Theorems 1·2 and 1·3 use a number of tools from modern geometric
group theory.

The first such tool is the notion of growth tightness, introduced by Grigorchuk and de
la Harpe [GdlH97], which roughly states that a group G grows faster than its quotients.
See (7·1) for a precise definition. Arzhantseva and Lysenok [AL02] showed that hyperbolic
groups are growth tight, by first proving a related result about regular languages for such a
group (see Theorem 7·1 below). As we describe in Section 7, this point of view gives an
alternate approach to Theorem 1·1.

In Section 7, we also explain that Theorem 1·1 follows from a very recent theorem of
Matsuzaki, Yabuki and Jaerisch on Patterson–Sullivan measures [MYJ15]. Their result is
stated in very different language, and we explain the translation in Section 7·2.

The second key tool for our approach is the idea of weakly properly discontinuous (WPD)
elements acting on hyperbolic metric spaces, introduced by Bestvina and Fujiwara [BF02].
Given such a G–action on X , and a loxodromic element g ∈ G, Dahmani, Guirardel, and
Osin showed that there is some power gn whose entire normal closure 〈〈gn〉〉 acts loxodrom-
ically [DGO17]. As a consequence, any subgroup H ⊂ G that acts elliptically on X will
survive in the quotient G/〈〈gn〉〉. When the G–action on a graph ϒ is growth tight, this im-
plies that λH (ϒ) < λG(ϒ); we record this fact in Proposition 8·1. Although the proof is
very short, the result is quite general, and may be useful elsewhere.

Both Theorems 1·2 and 1·3 are proved in Section 8, by relying on Proposition 8·1. For
both cubulated groups and relatively hyperbolic groups, growth tightness is known by results
of Arzhantseva, Cashen and Tao [ACT15] and Yang [Yan14]. Thus the challenge is to find
an appropriate action on a hyperbolic space X . For relatively hyperbolic groups, we use the
work of Hruska and Wise [HW09] and Dahmani and Mj [DM17] to repeatedly cone off
the Cayley graph of G until we obtain an appropriate space X . For cubulated groups, the
hyperbolic space X is the contact graph CX of a CAT(0) cube complex X , which has the
right properties by a theorem of Behrstock, Hagen, and Sisto [BHS14]. Thus, in both cases,
we conclude that G grows faster than its subgroups.

In Section 9, we prove Theorem 9·4, which shows that quasiconvex subgroups of a free
group G can have growth rates approaching that of G itself. We also present some examples
and problems that are motivated by this work.

2. Automatic group background

This section recalls some standard facts about automata and regular languages. We refer
to [ECH+92] for background and context. See also [Cal13, section 3] for a rapid survey.

Let S be a finite set of letters, called an alphabet. A word in S is a finite sequence of
letters of S. A language L over S is a subset of the set of all words. A finite state automaton
over S is a finite directed graph � whose edges are labelled by elements of S, with one of
its vertices declared to be a start state, and some of its vertices declared to be accept states.
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Every automaton in this paper will be assumed to be deterministic, meaning that no vertex
has two outgoing edges with the same label.

A directed path e1e2 · · · er in � reads a word consisting of the sequence s1s2 · · · sr of letters
labeling its edges. A word is accepted by � if it is read by a directed path from a start state
to an accept state. A language is regular if it is the full set of words accepted by some finite
state automaton.

A vertex v of an automaton � is redundant if it is not traversed by any path from the start
state to an accept state. Note that a redundant vertex can be removed without any effect on
the language accepted by �. The automaton � is pruned if it contains no redundant vertices.

Let G be a group with a finite, symmetric generating set S. An automatic structure for
(G, S) is a regular language L over S, along with positive constants κ, ε, χ , such that:

(i) each word of L is a (κ, ε)-quasigeodesic in the Cayley graph ϒ(G, S), starting at the
identity;

(ii) the map L → G is surjective;

(iii) if w1, w2 ∈ L and s ∈ S satisfy w1s =G w2, then w1, w2 χ-fellow travel in ϒ(G, S).

See [Can91, definition 11·26]. We refer to [ECH+92] and [GS91] for further details and
other equivalent formulations. We will not make use of the fellow traveling condition (3).

Any total ordering of the alphabet S induces a lexicographic ordering on a language L
over S. Thus, although geodesics in a Cayley graph ϒ(G, S) can be non-unique, for any
g ∈ G one may pick out the geodesic from 1 to g that is lexicographically first. The language
of lexicographically-first geodesics is called a short-lex geodesic language for G.

We may now state Cannon’s celebrated result [Can91, theorem 11·27]. Compare [Cal13,
theorem 3·2·2].

THEOREM 2·1 (Hyperbolic automatic). Let G be a hyperbolic group, with a finite sym-
metric generating set S. Choose an ordering on S, and let L be the resulting short-lex
geodesic language. Then L is regular, maps bijectively to G and endows G with an auto-
matic structure.

We will also need the following result of Gersten and Short about quasiconvex subgroups
[GS91, theorem 2·2].

THEOREM 2·2 (Quasiconvex automatic). Let G be a hyperbolic group with an automatic
structure LG. Let H be a quasiconvex subgroup. Then the sub-language L H ⊂ LG of words
that map to H is itself a regular language.

In Section 6·1, we will generalise these theorems to the context of group actions on graphs.

3. Perron–Frobenius background

As with Section 2, the material in this section is mostly classical and standard. Excellent
references include [Min88] and [FS09, section V·5]. See also [Cal13] for a brief summary
from a group–theoretic perspective.

The main result of this section, Theorem 3·6, should be considered a folklore theorem.
Although the result is very likely known to experts, we could not find a sufficiently general
version in the literature. Therefore, we wrote down a proof.
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3·1. Irreducible matrices

For a matrix B, let Bi j denote the i j-entry. A square matrix A is irreducible if for each
i, j , there exists n > 0 such that (An)i j > 0. By convention, we also regard the 1 × 1 matrix
[0] as irreducible. The following version of the Perron–Frobenius theorem summarises the
basic properties of non-negative irreducible matrices.

THEOREM 3·1 (Irreducible Perron–Frobenius). Let A be an irreducible, non-negative
matrix that is not [0]. Let ρA � 0 be the largest absolute value of an eigenvalue of A.
Then:

(i) ρA > 0, and is itself an eigenvalue;
(ii) if A is integral, then ρA � 1;

(iii) each of the left and right ρA–eigenspaces is spanned by a single positive vector;
(iv) any non-negative (left or right) eigenvector has eigenvalue ρA;
(v) there are h � 1 eigenvalues of absolute value ρA. Furthermore, the spectrum of A is

invariant by a rotation of C through angle 2π/h.

The integer h = h(A) is called the period of the matrix A, and ρA is called its Perron–
Frobenius eigenvalue. If h(A) = 1, we say A is aperiodic.

Proof. This is a combination of several results in [Min88]. See [Min88, theorem I·4·1,
corollary I·4·2, theorem I·4·4 and theorem III·1·2].

The discussion of irreducible matrices connects to the above discussion of regular lan-
guages as follows.

Let � be a directed graph with vertices v1, . . . , vk . We say v j is reachable from vi if
there is a directed path from vi to v j . The graph is called strongly connected if every vertex
is reachable from every other. Any finite directed graph decomposes into a collection of
strongly connected components, linked by a directed acyclic graph. See [FS09, figure V·15].

Now, suppose that � is a finite state automaton with start state v1, and let L be the reg-
ular language accepted by �. We gain information about the growth of L by studying the
adjacency matrix A = A(�), where the entry Ai j equals the number of edges from vi to v j .
The following lemma is a nearly immediate consequence of the definition of A. Compare
[Min88, theorems IV·3·2 and IV·3·3].

LEMMA 3·2. Let � be a finite directed graph with adjacency matrix A. Then:
(i) (An)i j is the number of length n paths from vi to v j ;

(ii) � is strongly connected if and only if A is irreducible;
(iii) if � is strongly connected and has at least one cycle, the period h(A) is equal to the

greatest common divisor of the lengths of cycles in �.

3·2. Weighted graphs

For some of our applications, we need to work in the more general context of weighted
graphs. A weighted graph is a (finite) directed graph with positive real numbers (called
weights) assigned to edges. Define the weight of a path to be the product of the weights of
its edges, counted with multiplicity.

For every pair of vertices vi , v j of a weighted graph �, we shall assume without loss of
generality that there is at most one edge from vi to v j . This is because several weighted
edges can be replaced by a single edge, labelled by the sum of the weights.
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Weighted graphs are in 1–1 correspondence with non-negative square matrices. This can
be seen as follows. Given a weighted graph �, the matrix A(�) has entry Ai j equal to the
weight on the edge from vi to v j (or 0 if no such edge exists). Conversely, given a non-
negative matrix A, we may recover a weighted graph � by constructing an edge vi to v j

with weight Ai j , whenever Ai j � 0.
Note that Lemma 3·2 holds for weighted graphs, with “the number of length n paths”

interpreted as “the total weight of the length n paths.”
We may also state a general form of the Perron–Frobenius theorem. See [Min88, lemma

VI·1·1].

THEOREM 3·3 (General form of Perron–Frobenius). Let � be a (weighted) directed
graph with vertices v1, . . . , vk , where v1 is the start state. Then there is a reordering of
v2, . . . , vk , corresponding to a permutation matrix P, which conjugates A = A(�) to a
matrix P−1 AP with the following properties:

(i) P−1 AP is block upper-triangular;
(ii) the diagonal blocks B1, . . . , Bm of P−1 AP are irreducible, and correspond to the

strongly connected components of �;
(iii) the spectrum of A is the union of the spectra of the diagonal blocks B1, . . . , Bm. In

particular, A has a Perron–Frobenius eigenvalue ρA = max{ρBi }.
An irreducible block Bi is called maximal if ρBi = ρA. In this situation, the strongly

connected component �i ⊂ � corresponding to Bi is also called maximal.
We will also need the following monotonicity result about Perron–Frobenius eigenvalues.

See [Min88, corollary II·2·2].

THEOREM 3·4. Let A and B be non-negative k × k matrices. If A � B in the sense that
Ai j � Bi j for each i, j , then ρA � ρB. Moreover, if B is irreducible and A � B but A � B,
then ρA < ρB.

3·3. Counting paths and words

Let L be a regular language with finite state automaton �. We allow the edges of � to
carry positive weights, which means that each word of L also carries a weight, equal to the
weight of the corresponding path in �. Let Ln denote the set of words of length exactly n,
and L�n the set of words of length at most n. We let w(Ln) denote the total weight of all the
words of length n, and similarly for w(L�n). For a parallel with equation (1·1), define

fL(n) = w(L�n). (3·1)

Note that if all the weights are 1, then fL(n) is the number of words in L�n .
The following result relates the growth of w(Ln) to the Perron–Frobenius eigenvalue of

A(�).

PROPOSITION 3·5. Let L be an infinite regular language with a pruned, weighted auto-
maton �. Let A be the adjacency matrix of �. Then there is a number 0 < τ < ρA and a
positive integer h, such that for each s ∈ {1, . . . , h} there is a polynomial πs(n) with

w(Ln) = πs(n) ρn
A + O(τ n), (3·2)

for each n ∈ N with n ≡ s mod h. Furthermore, πs(n)� 0 for at least one s.
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Similar statements appear in [FS09, theorem V·3] and [Cal13, proposition 3·1·4]. How-
ever, those results do not identify the exponential growth rate of w(Ln) as the Perron–
Frobenius eigenvalue ρA.

To avoid breaking up the exposition, we postpone the proof of Proposition 3·5 to Sec-
tion 4. For now, we derive the following important consequence.

THEOREM 3·6. Let L be an infinite regular language with a pruned, weighted automaton
�. Let A be the adjacency matrix of �. Then

lim
n→∞

n
√

fL(n) = lim
n→∞

n
√

w(L�n) = max {ρA, 1}.
Proof. Suppose, as a warm-up case, that h = 1 in Proposition 3·5. That is, suppose there

is a single nonzero polynomial p(n) such that

w(Ln) = p(n)ρn
A + O(τ n),

where τ < ρA. In this case, there is a different polynomial q(n), of the same degree as p(n),
such that

w(L�n) =
n∑

i=0

w(Li) = q(n)ρn
A + O(τ n) + O(1). (3·3)

One way to derive (3·3) is to apply the method of summation by parts. Another way is to
approximate the sum as an integral, and perform integration by parts:

n∑
i=0

w(Li ) ∼
n∑

i=0

p(i)ρi
A ∼

∫ n

0
p(x)ρx

A dx = q(n)ρn
A − q(0)ρ0

A.

In general, (3·2) expresses w(Ln) in terms of a polynomial πs(n) that depends on s ≡ n
mod h. Summing together h consecutive terms of (3·2) removes this dependence:

rh+h∑
i=rh+1

w(Li ) = p(rh)ρrh
A + O(τ rh),

where p is a nonzero polynomial. Therefore, when we calculate w(L�n) for n = rh + s, the
sum of the first rh terms is independent of s. Thus we get the following analogue of (3·3):

w(L�n) =
rh∑

i=0

w(Li) +
rh+s∑

i=rh+1

w(Li) = qs(n)ρn
A + O(τ n) + O(1), (3·4)

where deg qs(n) = deg p(n), hence qs(n)� 0.
We now analyse the asymptotics as n → ∞. If ρA � 1, the term qs(n)ρn

A is dominant in
(3·4). Therefore,

lim
n→∞

n
√

w(L�n) = lim
n→∞

n
√

qs(n)ρn
A = ρA.

Otherwise, if ρA < 1, if follows that τ < 1. Hence the dominant term in (3·4) will be O(1),
and

lim
n→∞

n
√

w(L�n) = lim
n→∞

n
√

O(1) = 1.

An immediate consequence of Theorems 2·1 and 3·6 is the following version of Cannon’s
theorem on growth rates:
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COROLLARY 3·7. Let G be an infinite hyperbolic group, with finite symmetric generating
set S. Let L be a geodesic regular language mapping bijectively to G. Then

λG = ρA = lim
n→∞

n
√

fL(n) = lim
n→∞

n
√

fG,ϒ(n),

where ρA is the Perron–Frobenius eigenvalue of any pruned automaton for L.

Proof. Any pruned automaton � for the language L has weights of 1 on the edges, hence
(1·1) and (3·1) give

fG,ϒ(n) = fL(n) = w(L�n).

Since A(�) is an integer matrix, we have ρA � 1. Now, Theorem 3·6 gives the result.

4. Growth rates of regular languages

The goal of this section is to prove Proposition 3·5, which is needed in the proof of The-
orem 3·6. It is worth mentioning that [FS09] contains special cases of the same statement:
see Theorem V.3 and Proposition V.7. While the proofs in [FS09] are rooted in complex
analysis, we will derive Proposition 3·5 from the Perron–Frobenius theorem plus element-
ary facts about non-negative matrices.

LEMMA 4·1. Let A be an irreducible, aperiodic, k × k matrix, and V, W ∈ R
k . Assume

that A, V, W are non-negative and nonzero. Then there are constants C > 0 and 0 < τ <

ρA such that

V TAnW = Cρn
A + O(τ n).

Proof. Since A has period 1, Theorem 3·1(v) implies there is only one eigenvalue with
absolute value ρA. By Theorem 3·1(iii), the eigenspace of ρA is spanned by a single unit-
length eigenvector E , all of whose entries are positive. Thus W has a positive projection to
E . Under these hypotheses, the method of power iteration (see e.g. [GVL96, section 7·3·1])
produces a convergent sequence

AnW

||AnW || −→ E,

with an exponential rate of convergence. Thus, for n � 0, the vector AnW has all positive
entries, and these entries grow by a factor converging exponentially quickly to ρA. Con-
sequently the product V T (AnW ) also grows by a factor converging exponentially quickly
to ρA.

LEMMA 4·2. Let U be an m × m upper triangular matrix with 1’s on the diagonal. Then,
for n ∈ N, the entry (U n)i j is given by a polynomial pi j (n). Furthermore, the degree of pi j

is bounded above by | j − i |.
Proof. Write U n = ((U − I ) + I )n , and apply the binomial theorem. Since (U − I ) is

nilpotent, all terms above degree m in (U − I ) will vanish.

LEMMA 4·3. Let J be a k × k matrix in Jordan form. Suppose that the first m diagonal
entries are 1, and that any other diagonal entries have absolute value less than τ < 1. Then,
for n ∈ N and for any row vector W ∈ R

k , we have

W J n = (p1(n), . . . , pm(n), O(τ n), . . . , O(τ n)), (4·1)

where each pi (n) is a polynomial of degree at most i − 1.
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Proof. The top m × m block of J is a unipotent matrix U as in Lemma 4·2. Since J is
in Jordan form, the first m entries of W J n are given by multiplying the first m entries of W
by U n . By Lemma 4·2, these first m entries are polynomials of the indicated degrees. The
remaining entries decay as τ n because the remaining Jordan blocks have eigenvalues less
than τ .

LEMMA 4·4. Let A be a k × k non-negative matrix with Perron–Frobenius eigenvalue
ρA > 0. Suppose that any eigenvalue of absolute value ρA must actually equal ρA. Then, for
any V ∈ R

k and n ∈ N,

V (A/ρA)n = (p1(n) + O(τ n) , . . . , pk(n) + O(τ n)),

where τ < 1 and pi (n) is a (possibly zero) polynomial in n.

Proof. Note that (A/ρA) has eigenvalue 1 with multiplicity m � 1, and all other eigen-
values have absolute value bounded by τ < 1. Thus (A/ρA) is conjugate to a matrix J
satisfying Lemma 4·3. Hence there is an invertible matrix R such that

V (A/ρA)n = V (R−1 J R)n = V R−1 J n R.

Applying Lemma 4·3 to W = V R−1, we see that W J n has the form given in (4·1), with m
polynomials in the leading entries and O(τ n) in the remaining entries. Consequently each
entry of (W J n)R is of the form pi (n) + O(τ n) for new polynomials pi .

Finally, in the special case where all eigenvalues of J are 1, then there are no O(τ n) terms,
and we may thus choose an arbitrary 0 < τ < 1 to satisfy the statement of the lemma.

We can now complete the proof of Proposition 3·5.

Proof of Proposition 3·5. The proof proceeds in two steps. In Step 1, we prove that there
is an integer h such that

w(Ln) = πs(n) ρn
A + O(τ n), (4·2)

where πs is a polynomial depending on s ≡ n mod h. This can be viewed as an upper
bound on the exponential growth rate of w(Ln), which is attained if and only if πs(n) � 0.
In Step 2, we analyse a sub-language L ′ ⊂ L and show that it grows at least as fast as ρn

A.
This gives a lower bound on w(Ln) and ensures that πs(n)� 0 for some s.

Assume, without loss of generality, that the vertices v1, . . . , vk of � have been reordered
as in Theorem 3·3, hence A is in block upper-triangular form with irreducible blocks
B1, . . . , Bm . The hypothesis that L is infinite ensures that every maximal component �i ⊂ �

contains a nontrivial closed directed path, which implies that each maximal block Bi is
nonzero, hence ρA = ρBi > 0 by Theorem 3·1.

Let h(Bi ) be the period of the i th block. We choose a positive integer h that is a multiple of
each h(Bi ), and furthermore such that h is (a multiple of) the length of some closed directed
path based at some vertex v� in a maximal component. By Theorem 3·1(v), every eigenvalue
of Ah that has absolute value ρh

A must actually equal ρh
A, hence Ah satisfies Lemma 4·4.

Step 1. Let V0 ∈ R
k be the row vector (1, 0, . . . , 0). Let Va ∈ R

k be the column vector
whose j-th entry is 1 if v j is an accept state, and 0 otherwise. By Lemma 3·2, the total
weight of the length n paths in � from v1 to v j is (An)1 j = (V0 An) j . Thus the total weight
of length n paths from v1 to accept states is

w(Ln) = V0 An Va. (4·3)
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Fix s ∈ {1, . . . , h} and suppose that n = rh + s for r ∈ N. By Lemma 4·4, there exist
polynomials pi , qi and constants σ, σ ′ < 1 such that

V0 An

ρn
A

= V0 As

ρs
A

·
(

Ah

ρh
A

)r

= (p1(r) + O((σ ′)r ), . . . , pk(r) + O((σ ′)r ))

= (q1(n) + O(σ n), . . . , qk(n) + O(σ n)).

The first equality above holds because n = rh + s, the second equality holds by Lemma 4·4,
and the third equality holds by letting σ ′ = σ h and noting that polynomials in r are also
polynomials in n.

Right-multiplying by Va , we obtain the following equality for some polynomial πs and
some constant σ < 1. This is equivalent to (4·2).

w(Ln)

ρn
A

= V0 An Va

ρn
A

= πs(n) + O(σ n).

Step 2. It remains to show that πs(n)� 0 for at least one s. To that end, we will construct
a sub-language L ′ ⊂ L , which grows roughly as quickly as ρn

A. More precisely, we find
s ∈ {1, . . . , h} and constants C > 0 and τ < ρA, such that

w(Ln) � w(L ′
n) = Cρn

A + O(τ n) for n ≡ s mod h. (4·4)

Comparing (4·2) to (4·4), it follows that πs(n)� 0 for the corresponding s.
By the definition of h, there is a length h closed directed path based at a state v� belonging

to a maximal component �i ⊂ �. Since � is pruned, there is a directed path γ from v1 to v�

and a directed path δ from v� to an accept state. Let

s ≡ �(γ ) + �(δ) mod h.

Let L ′ ⊂ L be the sub-language corresponding to paths in � that follow γ from v1 to v�,
then follow closed directed paths of length rh based at v� (for some r ∈ N), then follow δ to
an accept state. Note that the closed paths based at v� must lie in �i . By construction, every
word in L ′ has length n ≡ s mod h.

Let Bi be the maximal irreducible block of A corresponding to �i . The matrix Bh
i may

not be irreducible, but by Theorem 3·3 it contains an irreducible block D corresponding to
a weighted subgraph of �i containing v�. In addition, every eigenvalue of Bh

i with absolute
value ρh

Bi
= ρh

A = ρD must actually equal ρh
A, hence D is both irreducible and aperiodic.

By Lemma 3·2, some diagonal entry (Dr ) j j is the total weight of the length rh directed
closed paths based at v�. Let W be a vector with 1 in the j th entry and 0’s elsewhere. By
Lemma 4·1, the total weight of the length rh paths based at v� is

(Dr ) j j = W T Dr W = (C ′)ρr
D + O((τ ′)r ) = (C ′)ρrh

A + O((τ ′)r )

for constants C ′ > 0 and τ ′ < ρh
A.

Since words in L ′ of length �(γ ) + �(δ) + rh are in 1–1 correspondence with closed
directed paths at v� of length rh, we have

w(L ′
�(γ )+�(δ)+rh) = w(γ ) · w(δ) · W T Dr W,

where w(γ ) and w(δ) are the weights of γ and δ respectively. Thus, setting n = �(γ ) +
�(δ) + rh, we obtain

w(Ln) � w(L ′
n) = w(γ ) · w(δ) · (C ′)ρrh

A + O((τ ′)r ) = Cρn
A + O(τ n),

where τ ′ = τ h . This establishes (4·4), completing the proof.
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5. The torsion-free case

This section gives a quick proof of the following special case of Theorem 1·1:

THEOREM 5·1. Let G be a non-elementary, torsion-free hyperbolic group with gener-
ating set S. Let ϒ = ϒ(G, S) be the Cayley graph of G with respect to S. Let H be a
quasiconvex subgroup of infinite index. Then

λH (ϒ) < λG(ϒ).

In addition to the background in Sections 2 and 3, the proof of Theorem 5·1 uses the
following theorem first formulated by Gromov [Gro87].

THEOREM 5·2 (Free product). Let G be a non-elementary, torsion-free hyperbolic group.
Let H be an infinite index quasiconvex subgroup. Then ∃g � 1 such that 〈H, g〉� H � 〈g〉.

See Arzhantseva [Arz01, theorem 1] for a proof, and see Gitik [Git99, corollary 4] for
a similar statement with additional hypotheses. See also Theorem 6·8, which gives a slight
generalisation using ping-pong on ∂G. Note that Arzhantseva also proves the stronger result
that 〈H, gm〉 is quasiconvex in G for sufficiently large m.

Proof of Theorem 5·1. Assume that H is non-trivial, as otherwise the statement of the
theorem is immediate since G has exponential growth. By Theorem 5·2, we may choose an
element g � 1 such that K = 〈H, g〉� H � 〈g〉.

By Theorem 2·1, let LG be a regular language of geodesics in ϒ(G, S), mapping biject-
ively to G. By Theorem 2·2, the sub-language L H consisting of geodesics words mapping
to points of H is itself regular.

Let �H be a pruned finite state automaton that accepts L H . Let ρH be the Perron–
Frobenius eigenvalue of the adjacency matrix of �H . By Corollary 3·7, we have

λH = ρH . (5·1)

Let σ be an arc in ϒ from 1 to g. Let x be the label of the first edge of σ . We introduce
a new letter x ′ into our alphabet, with the understanding that x ′ maps to x ∈ S when words
are mapped to group elements. Let σ ′ be a copy of σ , with x replaced by x ′.

Let �M be a finite state automaton built from �H as follows: for each accept state vi ∈ �H ,
we attach an arc from vi to the start state v1, in the form of a directed, labelled copy of σ ′.
(The replacement x → x ′ ensures that �M is deterministic.)

We claim that �M is strongly connected. Indeed, every state of �H is reachable from the
start state, leads to an accept state, and the accept state leads to the start via σ ′. Thus every
vertex (including the vertices on the copies of σ ′) is part of a directed closed path through
the start state v1.

The language L M accepted by �M consists of words mapping to the monoid M generated
by H and positive powers of g. Since K is a free product, the composed map L M → M →
G is injective. Furthermore, a word of length n in L M maps to a path of length n, hence the
endpoint of this path lies in the ball of radius n about 1 ∈ ϒ . Thus, letting fM(n) be the
number of words of length at most n in L M , as in (3·1), we have

fM(n) � fG,ϒ(n). (5·2)

Therefore, we have

λH = ρH < ρM = lim
n→∞

n
√

fM(n) � lim
n→∞

n
√

fG,ϒ(n) = λG .
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Here, the first equality holds by (5·1). The strict inequality holds by Theorem 3·4, since
�H is a proper subgraph of the strongly connected graph �M . The next equality holds by
Theorem 3·6. The non-strict inequality holds by (5·2), and the final equality is by (1·2), the
definition of λG . Note that the limit exists by Corollary 3·7.

6. General actions by hyperbolic groups

Proving Theorem 1·1 in the general case of group actions on graphs requires dealing with
several complexities that did not arise in Section 5. The next two subsections give a way
to circumvent these complexities. First, Theorem 6·7 gives an analogue of Theorem 2·1 and
Corollary 3·7 for group actions on graphs that may have multiple vertex orbits and non-trivial
point stabilisers. Next, Theorem 6·8 gives an analogue of Theorem 5·2 that will work in the
presence of torsion. With these results in hand, we can complete the proof of Theorem 1·1.

6·1. A language for group actions

Let G be a group acting properly and cocompactly on a graph ϒ . The following con-
structions build a regular language LG adapted to this action. The results are summarised in
Theorem 6·7.

Construction 6·1 (Free action). Let G act on a graph ϒ . We may assume without loss of
generality that G acts without inversions. For, if G inverts an edge e, we add a second copy
of e without changing any distances in ϒ . We retain the name ϒ .

We construct a new graph ϒ̂ with a free action by G. To that end, choose representatives
of the orbits in ϒ of vertices and edges.

Each vertex of ϒ̂ is a pair (g, v), where g ∈ G and v is a representative vertex of ϒ . An
edge of ϒ̂ is likewise a pair (g, e), where e is a representative edge of ϒ . The edge (g, e)
connects vertices (gh, u) and (gk, v) in ϒ̂ whenever e connects vertices hu and kv in ϒ .
Note that G acts freely on ϒ̂ and that there is an equivariant surjection ϒ̂ → ϒ induced by
(g, v) → gv and (g, e) → ge.

For each vertex v of ϒ , let Stab G(v) denote its stabiliser. We now form a new graph ϒ∗

as follows. For every representative vertex v , and every left coset g Stab G(v), we connect
every pair of elements of (g Stab G(v))(1, v) by an edge. This includes loop edges with
both endpoints at g(1, v). We refer to these new edges as tiny edges. Add duplicates of tiny
edges corresponding to order 2 elements of Stab G(v), ensuring that G acts on ϒ∗ without
inversions. Again, there is an equivariant surjection ϒ∗ → ϒ , which collapses every tiny
edge. We call ϒ∗ the blowup of ϒ . Note that G acts freely on ϒ∗.

The point of adding tiny edges is that without them, ϒ̂ may not be connected; see Ex-
ample 6·3. However, we have the following.

Claim 6·2. If ϒ is connected, then ϒ∗ is also connected.

Proof. A path e1 · · · en in ϒ lifts to a sequence ê1, . . . , ên of edges in ϒ̂ . Letting vi denote
the vertex between ei and ei+1, the terminal vertex of êi lies in the same Stab G(vi) orbit as
the initial vertex of êi+1. We may thus join them by tiny edges to create a path in ϒ∗.

Example 6·3. Let G = Z2 ∗ Z2 = 〈a, b | a2, b2〉. Let ϒ be the Bass–Serre tree of the free
product. That is: ϒ is a copy of R, with vertices at Z, on which a acts by reflection about 0
and b acts by reflection about 1. There are two G–orbits of vertices (namely, even and odd
integers), and every vertex is stabilized by a conjugate of 〈a〉 or 〈b〉. Every edge is in the
G–orbit of e = [0, 1]. See Figure 1.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0305004118000440
Downloaded from https://www.cambridge.org/core. Temple University Libraries, on 04 Oct 2019 at 16:16:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0305004118000440
https://www.cambridge.org/core


Growth of quasiconvex subgroups 517

Fig. 1. The graphs of Example 6·3. Top: the Bass–Serre tree ϒ , where 〈a〉 and 〈b〉 stabilise vertices as
shown. Bottom: the blowup ϒ∗, with tiny edges shown dashed. Deleting the tiny edges gives ϒ̂ . Note that
〈a〉 and 〈b〉 act on ϒ∗ by rotation, without fixed points.

Given this setup, the 0–skeleton of ϒ̂ is ϒ̂(0) = Z × {0, 1}. Then a and b act on ϒ̂(0)

by reflecting each copy of Z (about 0 and 1, respectively) and then interchanging the two
copies. The combined effect appears as a rotation in Figure 1. Thus, for every integer n, ϒ̂

has an edge of the form ((ba)n, e) with vertices at (2n, 0) and (2n+1, 0). Similarly, ϒ̂ has
an edge of the form (a(ba)n, e) with vertices at (−2n, 1) and (−2n−1, 1). In particular, ϒ̂

has infinitely many connected components.
To form ϒ∗, we add the following tiny edges: one loop edge at every vertex of ϒ̂ , as well

as two tiny edges connecting (v, 0) to (v, 1) for every v ∈ Z. The two tiny edges from (v, 0)

to (v, 1) are permuted by Stab G(v).

Construction 6·4 (Transitive action). Let G act cocompactly (and without inversions) on
a graph ϒ . We will create a new group G+ acting transitively on the vertices of a graph ϒ+.

Let ϒ∗ be the blowup of ϒ , with the resulting free G–action, as described in Construc-
tion 6·1. We attach 2–cells as follows. First, choose a single representative from each G–orbit
of based cycles, and attach a 2–cell along it. Then extend equivariantly, to obtain a simply
connected 2–complex with a free G action. We retain the name ϒ∗. Let D be the quotient
of G\ϒ∗ obtained by identifying all 0–cells. Then π1 D = G+ � G ∗ Fr , where Fr is a free
group whose generators are in 1–1 correspondence with edges in a spanning tree for G\ϒ∗.

Consider the universal cover D̃, which is a tree of copies of ϒ∗. We let ϒ+ be the 1–
skeleton of D̃. The deck group G+ acts transitively on the vertices of ϒ+.

Construction 6·5 (Regular language). We continue with the notation of Construction 6·4.
Choose a generating set S+ for G+ by considering its action on ϒ+. Each generator cor-
responds to a closed path in the 1–skeleton of D of the form yey′, where e is a non-tiny
edge, and y, y′ are tiny edges. This includes the case where y or y′ is a loop edge in ϒ∗,
representing a trivial element of G.

Assuming that ϒ has at least one edge, each tiny edge is homotopic to the concatenation
of two generator paths. Thus the proof of Claim 6·2 shows that S+ generates G+. The set S+

is finite whenever the action of G on ϒ is proper and cocompact. Note that S+ is symmetric
by definition.

Since G+ � G ∗ Fr is hyperbolic, Theorem 2·1 provides a geodesic regular language
L+ that maps bijectively to G+. Let LG ⊂ L+ be the sublanguage mapping bijectively to
G ⊂ G+. Since G is quasiconvex in G+ � G ∗ Fr , the sublanguage LG is regular by
Theorem 2·2.

Each word in L+ is a path in ϒ+ starting at the canonical basepoint b. Since ϒ+ is a tree
of copies of ϒ∗, the words of LG ⊂ L+ correspond to paths that stay in one copy of ϒ∗.
Consider the projection ϒ∗ → ϒ , which collapses all tiny edges.
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Let Lb = LStab G (b) be the finite set of words in LG mapping to b ∈ ϒ .

Claim 6·6. The projection ϒ∗ → ϒ maps words of length n in LG − Lb to length n
geodesics in ϒ .

Proof. Since every generator in S+ contains exactly one non-tiny edge, a word of length
n always determines a path of length n. What needs to be shown is the converse: a geodesic
of length n � 1 in ϒ is always hit by a word of length n in LG .

A geodesic in ϒ from b to gb � b is a path e1e2 · · · en . By Claim 6·2, the geodesic
in ϒ “lifts” to a path of the form y0e1 y1e2 y2 · · · en yn in ϒ∗. This path determines a word
(y0e1 y1)(y′

2e2 y2) · · · (y′
nen yn) in S+ of the same length, where every y′

i is a loop edge. By
the previous paragraph, a word of length less than n is not possible. Hence the geodesic
language LG contains a word of length n mapping to this path.

The result of these constructions is encapsulated in the following theorem.

THEOREM 6·7. Let G be a hyperbolic group acting properly and cocompactly on a graph
ϒ . Fix a basepoint b ∈ ϒ . Then there is a regular language LG with the following properties:

(i) LG → Gb is a surjection with fibers of cardinality exactly | Stab G(b)|;
(ii) the words in Lb, i.e. the preimage of b, have length 1 or 0, and correspond to paths

of length 0;
(iii) every word of length n in LG − Lb corresponds to a length n geodesic in ϒ , starting

at b;
(iv) for every quasiconvex subgroup H ⊂ G, the sublanguage L H ⊂ LG of words map-

ping to Hb is regular;
(v) let ρH be the Perron–Frobenius eigenvalue of the transition matrix for any pruned

automaton accepting L H . Then growth rate λH (ϒ) satisfies

λH (ϒ) = lim
n→∞

n
√

fH,ϒ(n) = lim
n→∞

n
√

fL H (n) = ρH . (6·1)

Proof. Recall, from Construction 6·5, that LG is a regular sublanguage of the language
L+. Since LG maps bijectively to G, and the surjection G → Gb has fibers of cardinality
| Stab G(b)|, conclusion (i) follows.

Conclusion (ii) recalls the definition of Lb, combined with the fact that every non-trivial
word of Lb is expressible by a single letter in S+. Conclusion (iii) is a restatement of
Claim 6·6.

Every quasiconvex subgroup H ⊂ G is also quasiconvex in G+ � G ∗ Fr . Thus, by
Theorem 2·2, the sublanguage L H ⊂ L+ of words mapping to H is also regular.

Equation (6·1) should be considered right to left. The right-most equality is by The-
orem 3·6, and implies that the limit exists. The middle equality follows by (i), because
fL H (n) = | Stab G(b)| · fH,ϒ(n), and the constant factor disappears in the limit. The left-
most equality is by the definition of λH (ϒ).

6·2. Ping-pong with torsion

Recall that our proof of Theorem 5·1 relies on Theorem 5·2, which produces a free product
H ∗ 〈g〉 ⊂ G. Such a product may fail to exist when H has torsion. For instance, let G =
G ′ × Zp, and let H = H ′ × Zp for some quasiconvex H ′ ⊂ G ′. Then for any g � 1, the
subgroup 〈H, g〉 will have a nontrivial center, and thus does not split as a (nontrivial) free
product.
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Although the exact statement of Theorem 5·2 does not hold in general, we have the fol-
lowing generalisation to hyperbolic groups with torsion.

THEOREM 6·8. Let G be a hyperbolic group. Let H ⊂ G be a quasiconvex subgroup, and
let Z+ ⊂ G be a maximal elementary subgroup that is not commensurable with a subgroup
of H. Then there exists a finite index subgroup Z ⊂ Z+ such that 〈H, Z〉 is isomorphic to
the amalgamated free product H ∗(H�Z) Z, where H � Z is finite.

A version of Theorem 6·8, with the additional hypothesis that H � Z+ is separable, is due
to Martı́nez–Pedroza and Sisto [MPS12, corollary 4]. To complete the analogy with The-
orem 5·2, they also show that 〈H, Z〉 is quasiconvex in G whenever [Z+ : Z ] is sufficiently
large.

Remark 6·9. When [G : H ] = ∞, subgroups Z+ as in Theorem 6·8 are abundant. Indeed,
∂G is the closure of attracting fixed points of loxodromic elements, and so we can choose
an element g with limn→±∞ gn = p±∞ � ∂ H . Let Z+ = Stab G({p+, p−}). Then ∂ Z+ =
{p+, p−}, hence Z+ is maximal elementary.

We will give a short alternate proof of Theorem 6·8 using the following version of the
ping-pong lemma. See Gitik [Git99] for a particularly simple proof.

LEMMA 6·10 (Ping-pong). Let H, Z be subgroups of a group G acting on a set �, and
suppose [Z : (H � Z)] > 2. Let �H and �Z be disjoint, nonempty subsets of � such that
(H − Z)�H ⊂ �Z and (Z − H)�Z ⊂ �H . Then 〈H, Z〉� H ∗H�Z Z.

Proof of Theorem 6·8. Let � = ∂G. We will construct an open neighbourhood U of ∂ Z+
such that hU � U = � for each h ∈ H − Z+. Since H acts properly discontinuously
on � − ∂ H , there is an open neighbourhood V of ∂ Z+ such that {h1, . . . , hm} is the finite
subset of H with hi V � V � �. By making V smaller if necessary, we ensure that this
finite set coincides with Stab H (∂ Z+). Now, define U = �m

i=1hi V , and observe that U is
Stab H (∂ Z+)–invariant.

Let �H = U . Let �Z be the compact set � − U . Since Z+ is maximal, we have Z+ =
Stab G(∂ Z+), hence (H − Z+) � Stab H (∂ Z+) = �. Thus, for h ∈ H − Z+, we have

h�H = hU ⊂ ∂G − U = �Z .

Recall that Z+ acts on � = ∂G with north–south dynamics. Thus, all sufficiently long
translators in Z+ will squeeze the compact set �Z into any open neighbourhood about ∂ Z+.
By the separability of (H � Z+) ⊂ Z+, there is a finite index subgroup Z ⊂ Z+ that contains
H � Z+ but excludes the finitely many elements that fail to map �Z into U . In other words,
for z ∈ Z − H , we have

z�Z ⊂ U = �H .

Now, Lemma 6·10 completes the proof.

6·3. Exponential growth discrepancy

We can now restate and prove the main theorem of this paper. The proof follows the same
outline as that of Theorem 5·1, while incorporating the extra structure developed in this
section.
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THEOREM (1·1). Let G be a non-elementary hyperbolic group acting properly and
cocompactly on a graph ϒ . Let H be a quasiconvex subgroup of infinite index. Then

λH (ϒ) < λG(ϒ).

Proof. Assume that H is infinite, as otherwise the statement of the theorem is immediate
since G has exponential growth. By Remark 6·9, choose an infinite order element g such
that 〈g〉 is not commensurable with a subgroup of H . By Theorem 6·8, there exists m > 0
such that K = 〈H, gm〉 splits as an amalgamated free product H ∗F Z over a finite group F ,
where [Z : 〈gm〉] < ∞.

Fix a basepoint b ∈ ϒ . By Theorem 6·7, there is a regular language LG with a sequence
of maps

LG
α−→ G

β−→ Gb, (6·2)

where α is a bijection and β has fibers of constant cardinality C = | Stab G(b)|. Theorem 6·7
also guarantees that the sublanguage L H mapping to H is regular.

Let σ be an arc in ϒ from b to gmb. Let x be the label of the first edge of σ . We introduce
a new letter x ′ into our alphabet, with the understanding that α(x ′) = α(x) ∈ G. In other
words, x ′ represents the same group element as x . Let σ ′ be a copy of σ , with x replaced by
x ′. For later use, we assign a weight of 1/|F | to the initial edge of σ ′. All other edges have
weight 1.

Let �H be a pruned finite state automaton that accepts L H . Let �M be a finite state auto-
maton built from �H as follows: for each accept state vi ∈ �H , we attach an arc from vi

to the start state v1, in the form of a directed, labelled copy of σ ′. As in the proof of The-
orem 5·1, these arcs ensure that �M is strongly connected. As in (6·2), we extend the map α

to a map L M → G, which is no longer injective. Let us examine its (failure of) injectivity.
The language accepted by �M consists of words mapping under α to the monoid M ⊂ K

generated by H and gm . If k = h0gmh1gm · · · gmhr is an element of M whose normal form
in K has r appearances of gm , then k is hit by exactly |F |r elements of L M , because M ⊂
K � H ∗F Z . Since the weight of the path representing gm is 1/|F |, each of these words in
L M has weight |F |−r , hence the total weight of α−1(k) ⊂ L M is 1. (Recall from Section 3
that the weight of a word is the product of the weights of its letters.)

Since β : G → Gb has fibers of constant cardinality C , it follows from the above para-
graph that for each k ∈ M , the total weight of of the words mapping to kb is

w(α−1β−1(kb)) = C.

By Theorem 6·7(iii), a word of length n in L M maps to a path of length � n, hence the
endpoint of this path lies in the ball of radius n about b ∈ ϒ . Therefore, letting fM(n) be the
total weight of the words of length at most n in L M , we have

fM(n) � C fG,ϒ(n). (6·3)

Let ρH and ρM be the Perron–Frobenius eigenvalues of the adjacency matrices of �H and
�M , respectively. Then

λH (ϒ) = ρH < ρM = lim
n→∞

n
√

fM(n) � lim
n→∞

n
√

C fG,ϒ(n) = λG(ϒ).

Here, the first equality holds by (6·1). The strict inequality holds by Theorem 3·4, since �H

is a proper subgraph of the strongly connected graph �M . The next equality holds by The-
orem 3·6. The non-strict inequality holds by (6·3), and the final equality is by the definition
(1·2) of λG .
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7. Interlude: alternate approaches to Theorem 1·1
After the first version of this paper was distributed, several mathematicians informed us

that Theorem 1·1 can also be derived from various modern tools. In this section, we survey
two alternate approaches: one using growth tightness and a second using Patterson–Sullivan
measures.

7·1. Growth tightness and regular languages

Let G act properly and cocompactly on a graph ϒ . As in Construction 6·1, we may assume
without loss of generality that G acts without inversion. For any normal subgroup N , the
quotient G/N acts properly and cocompactly on the quotient graph N\ϒ . We say that the
action of G on ϒ is growth tight if, for any infinite normal subgroup N ,

λG/N (N\ϒ) < λG(ϒ). (7·1)

Grigorchuk and de La Harpe introduced growth tightness in the context of Cayley graphs
[GdlH97], and proved that the property holds for free groups with respect to free generating
sets. Arzhantseva and Lysenok showed that hyperbolic groups are growth tight with respect
to any generating set [AL02]. Sambusettti proved growth tightness for free products and
several other classes of groups [Sam02]. Yang [Yan14] studied groups with so-called con-
tracting elements, and in particular proved that non-elementary relatively hyperbolic groups
are growth tight.

Arzhantseva, Cashen, and Tao generalised the definition to the context of group actions on
metric spaces [ACT15]. Through this lens, they recovered all previously known examples
of tightness, and extended the result to several new contexts (for instance, CAT(0) cube
complexes). The above definition is a special case of theirs.

We now restrict to the case where G is a hyperbolic group with a finite symmetric gener-
ating set S. Following Theorem 2·1, let L = LG be a short-lex geodesic language mapping
bijectively to G. For a constant C > 0, we say that elements x, y are C–close if x = gyh
such that |g|, |h| � C . We say that x C–contains y if the short-lex geodesic word x ∈ L
representing x contains a subword that is C–close to y. Given w ∈ G, define

X (w, C) = {x ∈ G : x does not C–contain w}.
The following theorem of Arzhantseva and Lysenok is the main technical result of

[AL02]. See [AL02, theorem 2]. It implies growth tightness for hyperbolic groups [AL02,
theorem 1], and also Theorem 1·1 for the case where ϒ is the Cayley graph of G.

THEOREM 7·1. Let G be a non-elementary hyperbolic group with with finite generating
set S and Cayley graph ϒ = ϒ(G, S). Then there is a constant C = C(G, S) such that

λX (w,C)(ϒ) < λG(ϒ).

Given an infinite index quasiconvex subgroup H ⊂ G, and C as in Theorem 7·1, choose
a geodesic γ in ϒ from 1 to w, such that w is very far from H (as a function of C and the
quasiconvexity constant). Then, for every g ∈ G, the translated geodesic gγ must have at
least one endpoint far from H . Thus, by the quasiconvexity of H , no geodesic path from
1 to h ∈ H can contain a subpath C–close to w. It follows that H ⊂ X (w, C), hence
Theorem 7·1 gives

λH (ϒ) � λX (w,C)(ϒ) < λG(ϒ),

establishing Theorem 1·1 for Cayley graphs.
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7·2. Patterson–Sullivan measures

For a group G with generating set S, the Poincaré series is

ζG(x) =
∑
g∈G

e−x |g|,

where |g| denotes the length of g in the generating set. If the growth rate λG is a well-defined
limit, there is a critical exponent h(G, S) = log λG(ϒ(G, S)) such that ζG(x) converges for
all x < h(G, S) and diverges for x > h(G, S). The Poincaré series is used to construct
a probability measure on G � ∂G, called the Patterson–Sullivan measure. See Coornaert
[Coo93] or Calegari [Cal13, section 2·5] for more detail.

The group G is said to be of divergence type if ζG(x) diverges at x = h(G, S). One imme-
diate consequence of Cannon’s work on the growth of regular languages (more precisely, of
Proposition 3·5 and Corollary 3·7) is that hyperbolic groups have divergence type. We can
now state the following theorem of Matsuzaki, Yabuki and Jaerisch [MYJ15, corollary 2·8],
restated in the notation of our paper.

THEOREM 7·2. Let G be a non-elementary group acting discretely on a hyperbolic met-
ric space ϒ . Suppose that H ⊂ G is a subgroup of divergence type, and that the limit set
�(H) is a proper subset of �(G). Then λH (ϒ) < λG(ϒ).

We observe that Theorem 1·1 follows as a consequence of Theorem 7·2, because
quasiconvex subgroups of hyperbolic groups have divergence type, and quasiconvex sub-
groups of infinite index have limit set �(H)��(G).

8. Beyond hyperbolic groups

The goal of this section is to prove Theorems 1·2 and 1·3, which were stated in the in-
troduction. Although the hypotheses of these theorems are quite different (one concerns
relatively hyperbolic groups, the other cubulated groups), the proof strategy is the same.
Both proofs rely on the notion of growth tightness, defined in Section 7·1, as well as weak
proper discontinuity, which we define in Section 8·1.

In Proposition 8·1, we observe that when G admits both a growth tight action on ϒ and
a weakly properly discontinuous action on a hyperbolic space X , the group G grows faster
than any subgroup acting elliptically on X . This result may be of independent interest.

In Section 8·2, we define relative hyperbolicity and present the vocabulary and tools re-
lated to cone-off constructions. Then we construct the space X required to apply Proposi-
tion 8·1 and prove Theorem 1·2.

In Section 8·3, we recall the definitions of CAT(0) cube complexes and their hyperplanes.
Then we prove Theorem 1·3, again relying on Proposition 8·1.

8·1. Weak proper discontinuity meets tightness

Suppose that G acts by isometries on a hyperbolic metric space X . We say that the action
is weakly properly discontinuous (WPD) if the following conditions hold:

(i) G is non-elementary;

(ii) G contains at least one loxodromic element on X ; and

(iii) for every loxodromic g ∈ G, and every x ∈ X , and every r > 0, there exists n > 0
such that the set {γ ∈ G : d(x, γ x) � r, d(gn x, γ gn x) � r} is finite.
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This notion was introduced by Bestvina and Fujiwara [BF02]. The main observation of
this section is that growth tightness combined with the WPD property implies that G grows
faster than any subgroup acting elliptically. We say that the action of H ⊂ G on X is elliptic
if there is a bounded orbit H x ⊂ X .

PROPOSITION 8·1. Let G be a group with a proper, cocompact, and growth tight action
on a graph ϒ . Assume also that G has a WPD action on a hyperbolic space X. Suppose that
H ⊂ G is a subgroup whose action on X is elliptic.

Then the growth rate of H for ϒ is strictly smaller than the growth rate of G:
λH (ϒ) < λG(ϒ).

Proof. Let γ be a loxodromic element of G on X . By [DGO17, theorem 8·7], there exists
m > 0 such that in the normal closure N = 〈〈γ m〉〉G , all non-trivial elements are loxodromic
on X . In particular, this subgroup has trivial intersection with H . Thus the quotient map
G → G = G/N restricts to an embedding H → H ⊂ G. The quotient map ϒ → ϒ =
N\ϒ is also 1–Lipschitz, implying that fH,ϒ(n) � fH ,ϒ(n) for every n. Thus the growth
rates satisfy

λH (ϒ) � λH (ϒ) � λG(ϒ) < λG(ϒ).

Here, the first inequality follows from the above inequality on fH , the second inequality is by
set containment, and the final strict inequality follows from (7·1) because we have assumed
the G–action on ϒ is growth tight.

8·2. Relatively hyperbolic groups

In order to apply Proposition 8·1 to relatively hyperbolic groups, we recall the definitions.
Consider a group G with a finite generating set S. A peripheral structure P is a collection

of subgroups closed under conjugation. We will work with peripheral structures containing
finitely many conjugacy classes. Let P1, . . . , Pk ∈ P be subgroups representing the con-
jugacy classes in P .

The coned-off Cayley graph for S over {P1, . . . , Pk}, denoted X0, is obtained from the
Cayley graph ϒ(G, S) by adding a vertex for each left coset of each Pi and linking it by
length 1 edges to every element of the coset. Observe that G acts by isometries on X0.

The angular distance at a vertex v in X0 is the distance d̂ : link(v) × link(v) → N �
{∞} defined by the length of a shortest path in X0 between a, b ∈ link(v) that does not
contain v .

We say that (G,P) is relatively hyperbolic if X0 is Gromov hyperbolic and if the angu-
lar distance at each vertex is locally finite. See e.g. Hruska [Hru10] for other equivalent
definitions.

Observe that X0 naturally contains ϒ(G, S). Thus we say that a subgroup H ⊂ G is
relatively quasiconvex in (G,P) if its image in X0 is quasiconvex [HW09]. The properties of
relative hyperbolicity and relative quasiconvexity are invariant under quasi-isometry, hence
do not depend on the generating set S.

PROPOSITION 8·2. Let (G,P) be a non-elementary relatively hyperbolic group. Suppose
that H is an infinite-index subgroup of G, which is relatively quasiconvex in (G,P). Then
G has an isometric, WPD action on a hyperbolic space Xh. Furthermore, the action of H is
elliptic.
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In fact, we will prove the stronger statement that the action of G on Xh is acylindrical.
This means that for all r > 0 there exist R, N > 0 such that for all x, y ∈ X with d(x, y) �
R, the set {γ ∈ G : d(x, γ x) � r, d(y, γ y) � r} has cardinality at most N . This property
is stronger than WPD because N is uniform over G and y is less restricted than the element
gn x in the definition of WPD.

Proof of Proposition 8·2. Let X0 denote the coned-off Cayley graph of G, as above.
Hruska and Wise [HW09, theorem 1·4] proved that H has finite relative height: there ex-
ists a smallest integer h � 0 such that any intersection of essentially distinct conjugates
gi Hg−1

i for i = 0, . . . , h has finite diameter in X0. (Here, one says that conjugates gi Hg−1
i

are essentially distinct if the cosets gi H are all distinct.)
Observe that a subgroup of a peripheral group Pi has relative height 0, and a malnormal

subgroup H ⊂ G has relative height 1.
For 1 � i � h, let Hi denote the collection of intersections of i–tuples of essentially dis-

tinct conjugates of H . In this way, Hh+1 consists of finite or parabolic groups, but, if h � 0,
Hh contains groups with infinite diameter in X0. We may choose conjugacy representatives
(Hi)0 for elements in Hi , and let CSHi denote the collection of the left cosets of the groups
of (Hi)0 that are finite or parabolic, and of the left cosets of the stabilizers of the limit sets
in the boundary of the other groups of (Hi)0.

Starting from X0, let Xi be the cone-off of Xi−1 over the collection of subsets CSHh+1−i .
In [DM17, corrigendum theorem 3], Dahmani and Mj proved that G, with the relative

metric of X0, has saturated graded relative hyperbolicity with respect to H . This means that
every Xi is hyperbolic for i = 0, . . . , h, and the angular distance at each cone-vertex is
bounded from below by a proper function of the distance in Xi−1. The key fact in our setting
is that Xi is hyperbolic for all i and that the elements of CSHh−i+1 are uniformly quasicon-
vex, and mutually cobounded in the metric of Xi−1. See [DM17, corrigendum proposition
2]. Here, mutually cobounded means that for any pair of distinct cosets, the shortest point
projection of one to the other has uniformly bounded diameter.

By the time the inductive construction reaches Xh , the collection CSH1 has been coned
off, which means the cosets of H have been coned-off.

LEMMA 8·3. Xh is hyperbolic, and the action of G on Xh is acylindrical.

Proof. We will use [DGO17, proposition 5·40], which ensures that if X is a hyperbolic
graph, with an isometric G–action, and if Q is an invariant collection of uniformly quasicon-
vex subspaces that are mutually cobounded, then the action of G on a certain cone-off of X
over Q is acylindrical. We take the precaution of saying “a certain cone-off” because the con-
struction of [DGO17] is different from the the one we defined here (in particular, the radius
of the cones is much larger). However, there is an equivariant quasi-isometry between both
cone-offs, and acylindricity is preserved by equivariant quasi-isometries. Thus, the cone-off
construction we use here, on a hyperbolic space, over a collection of uniformly quasiconvex,
uniformly mutually cobounded subsets, preserves the acylindricity of the action.

From here, the proof proceeds by induction on height. For the base case, note that the
action of G on X0 is acylindrical by the work of Osin [Osi16, proposition 5·2]. This also fol-
lows from the above [DGO17, proposition 5·40] applied to the coning-off of horoballs in a
cusp-uniform space associated to (G,P), which gives a space equivariantly quasi-isometric
to X0 (see [DM17, proposition 2·8]).

Assume that the action of G is acylindrical on Xi . The construction of Xi+1 is a coning-
off of a family of quasiconvex, mutually cobounded subsets of the hyperbolic space Xi . By
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[DGO17, proposition 5·40], combined with the equivariant quasi-isometry described above,
the action of G is therefore acylindrical on Xi+1.

Thus by induction, Xh is hyperbolic and the action of G on Xh is acylindrical.

Notice that the action of H on Xh is elliptic since it has been coned-off. Furthermore, since
H has infinite index in G and is relatively quasi-convex in (G,P) which is non-elementary
relatively hyperbolic, its limit set is not the whole boundary of G, and the stabilizer of its
limit set has infinite index in G. The diameter of Xh is infinite. Thus, by a theorem of Osin
[Osi16, theorem 1·1], the action of G on Xh contains loxodromic elements.

We can now restate and prove Theorem 1·2.

THEOREM (Theorem 1·2). Let (G,P) be a non-elementary relatively hyperbolic group,
and H a relatively quasiconvex subgroup of (G,P) of infinite index in G. Suppose that G
acts properly and cocompactly on a graph ϒ . Then

λH (ϒ) < λG(ϒ).

Proof. We need to check the the hypotheses of Proposition 8·1. Indeed, Proposition 8·2
provides a WPD action by G on a hyperbolic space X = Xh , where H acts elliptically.
The growth tightness of non-elementary relatively hyperbolic groups is a theorem of Yang
[Yan14, corollary 1·7] and Arzhantseva–Cashen–Tao [ACT15, theorem 8·6]. Thus, by Pro-
position 8·1, we have λH (ϒ) < λG(ϒ).

8·3. Cubulated groups

Proposition 8·1 also enables us to extend Theorem 1·1 to the context of groups acting on
CAT(0) cube complexes. We recall the definitions very quickly, while pointing the reader to
e.g. [Hag14] or [Wis12] for a detailed treatment.

For 0 � n < ∞, an n-cube is [−1/2, 1/2]n . A cube complex is the union of a number of
cubes, possibly of different dimensions, glued by isometry along their faces. A cube complex
X is called CAT(0) if it is simply connected, and if the link of every vertex is a flag simplicial
complex.

A CAT(0) cube complex X has two natural metrics: the L1 or combinatorial metric that
metric that agrees on X (0) with the graph metric on ϒ = X (1); and the L2 or CAT(0) metric
obtained by extending the Euclidean path-metric on the cubes. (By a theorem of Gromov, the
L2 metric indeed satisfies the CAT(0) inequality for geodesic triangles. See Leary [Lea13]
and the references therein.) The theorem below is valid in either metric on X .

A midcube of an n-cube C is an (n − 1) cube obtained by restricting one coordinate of
C to 0. A hyperplane V ⊂ X is a connected union of midcubes, with the property that V
intersects every cube of X in a midcube or in the empty set. Every hyperplane separates X .
A hyperplane is V called essential if both components of X − V contain points arbitrarily
far from V .

The carrier of a hyperplane V is the subcomplex of X consisting of all cubes that meet V .
The adjacency of hyperplane carriers can be encoded in the contact graph CX , introduced
by Hagen [Hag14]. The vertices of this graph are hyperplanes of X , and hyperplanes V, W
are connected by an edge of CX if and only if their carriers are disjoint. Hagen proved that
CX is a quasi-tree, and in particular is hyperbolic [Hag14].

With this background, we can now state and prove the following result.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0305004118000440
Downloaded from https://www.cambridge.org/core. Temple University Libraries, on 04 Oct 2019 at 16:16:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0305004118000440
https://www.cambridge.org/core
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THEOREM (1·3). Let G be a non-elementary group, acting properly and cocompactly on
a CAT(0) cube complex X . Suppose that X does not decompose as a product. Then, for
every subgroup H ⊂ G stabilising an essential hyperplane of X , we have

λH (X ) < λG(X ).

Proof. First, we may assume without loss of generality that all hyperplanes of X are
essential. Otherwise, replace X by its essential core Y , as provided by the essential core
theorem of Caprace and Sageev [CS11, proposition 3·5]. The hyperplanes of Y will be in
bijective correspondence with the essential hyperplanes of X . Furthermore, X is contained
in a bounded neighbourhood of Y , hence λG(X ) = λG(Y) and λH (X ) = λH (Y).

Under the hypotheses of the theorem, Caprace and Sageev proved that some element
g ∈ G has a rank-one action on X . This means that g acts by translation on a combinat-
orial geodesic axis A, and furthermore this axis does not bound a half-plane [CS11]. Since
all hyperplanes of X are essential, the construction of [CS11, section 6.1] produces an ele-
ment g such that no power gn stabilises a hyperplane. Furthermore, there is a hyperplane V
intersecting A, such that V and gV are not neighbours in CX .

By a theorem of Behrstock, Hagen, and Sisto [BHS14, theorem A], the G–action on CX
is WPD. In fact, the rank-one element g produced by Caprace and Sageev is loxodromic on
CX . Meanwhile, by the definition of CX , any subgroup H ⊂ G stabilising a hyperplane
V ⊂ X necessarily fixes a vertex of CX .

We claim that the isometry g is contracting: this means that that every ball in X disjoint
from the axis A has universally bounded projection to A. For the CAT(0) metric on X , this is
a theorem of Bestvina and Fujiwara [BF09, theorem 5·4]. For the combinatorial metric on X ,
this is a theorem of Genevois [Gen16, theorem 3·10]. (Alternately, one may use an argument
of Huang [Hua17] to transfer the Bestvina–Fujiwara conclusion to the cubical metric.) As
a consequence of the claim, a theorem of Arzhantseva, Cashen, and Tao [ACT15, theorem
6·4] and Yang [Yan14, theorem 1·3] says that the G–action on X is growth tight.

We have now checked all the hypotheses of Proposition 8·1, with ϒ = X (1) and CX
playing the role of X . Thus we have an inequality of growth rates:

λH (X ) < λG(X ).

9. Examples and open problems

This section explores the extent to which the hypotheses of Theorems 1·1–1·3 can be
loosened, or the conclusions strengthened.
9·1. Uniform bounds on growth

Given Theorem 1·1, one may ask whether there exists a uniform upper bound α < λG

such that λH � α for each infinite index quasiconvex subgroup H ⊂ G. For instance,
Corlette showed that this is the case with lattices in quaternionic hyperbolic spaces [Cor90].

Example 9·1. For k � 2, let H k
H

be k–dimensional quaternionic hyperbolic space. Every
cocompact lattice G ⊂ Isom(H k

H
) is a hyperbolic group. Let � ⊂ G be an infinite-index

subgroup. Corlette [Cor90] showed that the growth rates of G and � with respect to the
action on H k

H
satisfy

λ�(H k
H
) � e4k < e4k+2 = λG(H k

H
).

Coulon, Dal’bo, and Sambusetti generalized Corlette’s result to all groups with property
(T). For every such group G, they showed that there is a gap between the growth rates of G
and of its quasiconvex subgroups [CDS17].
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On the other hand, in Theorem 9·4 below, we show that no such gap between G and its
subgroups can exist when G = F2.

Before giving the construction, we recall some graph terminology. The girth of a graph is
the length of the shortest cycle. If T is a tree, i.e. a graph with no cycles, the girth of T is
infinite. A rooted tree is a tree T , with a fixed vertex designated as the root. Every rooted tree
can be directed outward from the root. A leaf in a directed tree is a vertex with no outgoing
edges.

For an integer k � 1, a k–tree is a rooted tree where each leaf is reachable from the root
by a geodesic of length k, and every other vertex has 3 outgoing edges, except for at most
one vertex having 2 outgoing edges.

LEMMA 9·2. Let Tk be a k–tree. Then the number of leaves in Tk is at least 2×3k−1, with
the lower bound realized when the root has 2 outgoing edges.

Proof. This holds by induction on the distance from a 2–vertex to a leaf.

Let T be a directed tree. For a vertex v ∈ T and for k � 1, define depth k subtree
Tk(v) ⊂ T to be the subtree reachable by directed paths of length � k from v . We think of
v as the root of Tk(v).

LEMMA 9·3. Let T be a rooted tree with root b. Suppose that for every v ∈ T , the depth k
subtree Tk(v) is a k–tree. Then there is a constant C > 0 such that for n ∈ N,

fT (n) = # {v ∈ T : dT (b, v) � n} � C
(

3 × (
2
3

)1/k
)n

.

Proof. The growth function fT (n) is bounded below by the spherical growth function

sT (n) = # {v ∈ T : dT (b, v) = n} .

By Lemma 9·2, we have

sT (n + k) �
(
2 × 3k−1

)
sT (n),

hence the result follows by induction. The first k values of sT form the base case of the
induction, and determine the constant C .

THEOREM 9·4. Let G = 〈g1, g2〉. Let ϒ be the Cayley graph of G with respect to the free
generators. Then there is a sequence of infinite index quasiconvex subgroups Hk ⊂ G, such
that

lim
k→∞

λHk (ϒ) = 3 = λG(ϒ).

Proof. Let B be a bouquet of two circles. Then we may identify ϒ with B̃, so that the
basepoint b ∈ B̃ corresponds to 1 ∈ G. The spherical growth rate of G is sG,ϒ(n) = 4×3n−1.
Thus

fG,ϒ(n) =
n∑

i=0

sG,ϒ(i) = 2 × 3n − 1 and λG(ϒ) = lim
n→∞

n
√

fG,ϒ(n) = 3.

By residual finiteness of G = π1 B, for each k � 1 let Bk be a finite based cover whose
girth is at least 2k+1. Let Ak be obtained from Bk by removing a single edge at the basepoint.
The endpoints of the removed edge become trivalent in Ak . Then the shortest geodesic path
in Ak starting and ending at a trivalent vertex has length at least 2k, because girth (Bk) �
2k + 1. Let Hk = π1(Ak).
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Consider the based universal cover Ãk as a subtree of ϒ = B̃. The root b ∈ Ãk is a
trivalent vertex corresponding to 1 ∈ ϒ . The vertices of Ãk that lie in the Hk–orbit of b form
an equidistributed subset of density 1/[G : π1 Bk].

Note that Ãk satisfies the hypotheses of Lemma 9·3. This is because every vertex of Ãk

with two outgoing edges is trivalent, and every pair of trivalent vertices in Ãk are distance at
least 2k apart. Thus there is a positive constant C1 such that

fHk ,ϒ(n) � 1

[G : π1 Bk] f Ãk
(n) � C1

(
3 × (

2
3

)1/k
)n

.

Here, the first inequality comes from the density of the Hk–orbit of b in Ãk , and the second
inequality is by Lemma 9·3. Therefore,

3 � λHk (ϒ) = lim
n→∞

n
√

fHk ,ϒ(n) �
(

3 × (
2
3

)1/k
)

,

hence λHk (ϒ) converges to 3 as k → ∞.

The proof of Theorem 9·4 is elementary, and needs none of the tools used in the earlier
sections, as counting vertices is easier in trees than in general Cayley graphs. Theorem 9·4
has been generalised in [LW] to assert that if X is a compact special cube complex, then
there is a sequence of infinite index quasiconvex subgroups of π1 X whose growth rates
converge to the growth rate of π1 X .

9·2. The need for quasiconvexity

The following examples show that some version of the quasiconvexity hypothesis is cru-
cial for Theorem 1·1.

Example 9·5. Let G = π1(M), where M is a closed hyperbolic 3–manifold that fibers
over the circle. This fibration induces a short exact sequence

1 −→ H −→ G −→ Z −→ 1.

It is well known that the fiber subgroup H is highly distorted in G. See e.g. [CT07].
Since G/H �Z, for any Cayley graph ϒ the growth function fG,ϒ(n) is at most linearly

larger than fH,ϒ(n), hence λH (ϒ) = λG(ϒ).

Example 9·6. Rips [Rip82] observed that for each finitely presented group Q there exists
a short exact sequence

1 −→ N −→ G −→ Q −→ 1,

where G is a C ′(1/6) small-cancellation group (hence hyperbolic), and where N is generated
by two elements. This provides normal subgroups N ⊂ G with exotic growth properties. In
particular, when Q has sub-exponential growth (e.g. Q � Z, as in Example 9·5), it follows
that λN = λG .

9·3. Open questions

Problem 9·7. Generalise Theorem 1·3 to cubically convex subgroups of a cubulated
group G. Do all such subgroups grow slower than G itself? Given [ACT15, theorem 9·2]
and Proposition 8·1, the challenge is to find some hyperbolic space on which G is WPD
but H ⊂ G acts elliptically. It may be possible to obtain such a space by coning off certain
G–orbits in the contact graph CX , as in Section 8·2.
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One could also approach this problem using regular languages. By the work of Niblo and
Reeves [NR98], cubulated groups are biautomatic. Thus Theorem 3·6 and the rest of Perron–
Frobenius theory are already available for this problem. The challenge is to construct a free
product as in Theorem 5·2 or Theorem 6·8, or else to circumvent this construction.

Problem 9·8. Find an analogue of Theorem 1·1 that works in the general setting of auto-
matic groups, without any geometric hypotheses. That is, let LG be an automatic structure
for G, with some generating set S. Is there a language–theoretic description of the auto-
matic subgroups H ⊂ G such that fL H grows exponentially more slowly than fLG ? This
question is closely related to the problem, studied by Ceccherini–Silberstein and Woess
[CSW02, CSW03], of deciding what languages are growth sensitive, that is, what languages
have the property that prohibiting a set of sub-words reduces the growth rate of the language.

Problem 9·9. Suppose G is a finitely generated group, and H is a non-trivial subgroup
such that there is a monoid embedding H ∗ N ⊂ G. Show that the growth rate of G is larger
than that of H . If the subgroup H has divergence type, one can likely do this using Poincaré
series, as in [Sam02] and [ACT15, section 6].
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A. Verjovsky, editors, Group theory from a geometrical viewpoint (Trieste, 1990), pages
3–63 (World Science Publishing, River Edge, NJ, 1991). Edited by H. Short.

[ACT15] G. N. ARZHANTSEVA, C. H. CASHEN and J. TAO. Growth tight actions. Pacific J. Math.
278(1) (2015), 1–49.

[AL02] G. N. ARZHANTSEVA and I. G. LYSENOK. Growth tightness for word hyperbolic groups.
Math. Z. 241(3) (2002), 597–611.

[Arz01] G. N. ARZHANTSEVA. On quasiconvex subgroups of word hyperbolic groups. Geom. Dedicata
87(1-3) (2001), 191–208.

[BF02] M. BESTVINA and K. FUJIWARA. Bounded cohomology of subgroups of mapping class
groups. Geom. Topol. 6: (electronic) (2002), 69–89.

[BF09] M. BESTVINA and K. FUJIWARA. A characterisation of higher rank symmetric spaces via
bounded cohomology. Geometric and Functional Analysis 19(1) (2009), 11–40.

[BHS14] J. BEHRSTOCK, M. F. HAGEN and A. SISTO. Hierarchically hyperbolic spaces I: curve com-
plexes for cubical groups. Geom. Topol. 21(3) (2017), 1731–1804.

[Cal13] D. CALEGARI. The ergodic theory of hyperbolic groups. In Geometry and topology down
under, volume 597 of Contemp. Math. (Amer. Math. Soc., Providence, RI, 2013), pages
15–52.

[Can84] J. W. CANNON. The combinatorial structure of cocompact discrete hyperbolic groups. Geom.
Dedicata 16(2) (1984), 123–148.

[Can91] J. W. CANNON. The theory of negatively curved spaces and groups. In Ergodic theory, sym-
bolic dynamics and hyperbolic spaces (Trieste, 1989), Oxford Sci. Publ. (Oxford Univ.
Press, New York, 1991), pages 315–369.

[CDS17] R. COULON and F. DAL’BO, A. SAMBUSETTI. Growth gap in hyperbolic groups and amen-
ability. arXiv:1709.07287 (2017).

[Coo93] M. COORNAERT. Mésures de Patterson–Sullivan sur le bord d’un éspace hyperbolique au sens
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