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also extend a result of Lackenby to show that a collection of double coil knot complements
forms an expanding family iff their volume is bounded.
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1 Introduction

For any diagram of a knot, there is an associated 3-manifold: the complement of the knot
in the 3-sphere. In the 1980s, Thurston proved that the complement of any non-torus, non-
satellite knot admits a hyperbolic metric [4], which is necessarily unique up to isometry. As a
result, geometric information about a knot complement, such as volume and the spectrum of
the Laplacian, gives topological knot invariants. However, in practice, these invariants have
been difficult to estimate with only a diagram of a knot.

Recently, there has been some progress in estimating geometric information from partic-
ular classes of diagrams. For volumes, Lackenby showed that the volume of an alternating
knot complement is bounded above and below in terms of the twist number of an alternating
diagram [20] (see Definition 1.1). We extended these results to highly twisted knots [11] and
to sums of alternating tangles [12]. Purcell used a generalization of the twist number to find
lower volume bounds for additional classes of knots [23], while in [10] we showed that the
volume of a closed 3-braid is bounded above and below in terms of the generalized twist
number of the braid. More recently, Lackenby showed that for alternating and highly twisted
knots, the first eigenvalue A of the Laplacian can be estimated in terms of the twist number
[18]. Based on these examples, one might hope that a suitable generalization of the twist
number of a diagram controls the geometry of all hyperbolic knot complements.

In this paper, we show that the twisting in a diagram cannot give two-sided geometric
bounds for general knots. We do so by presenting a class of knots, called double coil knots,
for which the volume can be made bounded while the twist number becomes arbitrarily large,
or the volume can be made unbounded while the generalized twist number stays constant.
Similarly, we show that A; can stay bounded while the twist number becomes arbitrarily
large, or A can approach O while the generalized twist number stays constant.

To state our results more precisely, we need a few definitions.

Definition 1.1 A diagram of a knot is a 4-valent graph with over-under crossing information
at each vertex. A twist region of a diagram is a portion of the diagram consisting of bigons
arranged end to end, which is maximal in the sense that there are no additional bigons adja-
cent to either end. A single crossing not adjacent to any bigons is also a twist region. See
Fig. 1, left. Note that a twist region containing ¢ crossings corresponds to ¢/2 full twists of
the two strands.

The number of twist regions in a particular diagram D is called the twist number of D.
The minimum of the twist numbers of D as D ranges over all diagrams of a knot K is defined
to be the twist number of K, and is denoted 7 (K).

Definition 1.2 A generalized twist region on g strands, ¢ > 2, is a region of a knot dia-
gram consisting of ¢ strands twisted maximally. That is, if the ¢ — 2 innermost strands are
removed from a generalized twist region on ¢ strands, then the remaining two strands form
a twist region as in Definition 1.1. These two outermost strands bound a twisted, rectangular
ribbon. The additional ¢ — 2 strands are required to run parallel to the two outermost strands,

DOCOEE = -

Fig. 1 Left a twist region. Two strands twist about each other maximally. Right a generalized twist region
with two full twists
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Fig. 2 Lefta (1,2) double coil

knot. Right a (3, 5) double coil
knot //3 @
G
SIS \\\

embedded on this ribbon. By definition, a twist region is a generalized twist on ¢ = 2 strands.
See Fig. 1, right.

In a given diagram D, there is typically more than one way to partition the crossings of
D into generalized twist regions. For example, a single generalized twist region can contain
many ordinary twist regions. The generalized twist number of D is defined to be the smallest
number of generalized twist regions, minimized over all partitions of D into generalized twist
regions.

Definition 1.3 A double coil knot is a knot with exactly two generalized twist regions, where
each twist region contains ¢ > 2 strands and an integral number of full twists. At each end
of each generalized twist region, p < ¢ strands split off to the right, while ¢ — p strands
split off to the left. A knot K with this description is called a (p, g) double coil knot. Note
that K will be a knot precisely when p and g are relatively prime.

The integers p and ¢, together with the number of full twists in each generalized twist
region, completely specify a diagram of a double coil knot. See Fig. 2 for two examples.

Note that when ¢ = 2 and one of the two generalized twist regions contains exactly one
full twist, then corresponding double coil knot is a twist knot. See Fig. 2, left. Thus, double
coil knots can be seen as a generalization of twist knots.

Every double coil knot is also a special case of a double torus knot: it can be embedded on
an unknotted genus-2 surface in 3. To visualize this genus-2 surface, start with the sphere
obtained by compactifying the projection plane, and add one handle for each generalized
twist region. Then, in each region of Fig. 2, the coils run around the cylinder of the handle.
The family of double torus knots has been studied extensively (see e.g., [15-17]).

In Sect. 2, we prove the following two-sided, combinatorial estimate on the volumes of
double coil knots.

Theorem 2.9 Let p and q be relatively prime integers with 0 < p < q, and let k be the
length of the continued fraction expansion of p/q. Let K be a (p, q) double coil knot, in
which each generalized twist region has at least 4 full twists. Then K is hyperbolic, and

0.9718k —0.3241 < vol($3\K) < 4ugk,

where vy = 3.6638 . .. is the volume of a regular ideal octahedron in H.

The length of the continued fraction expansion of p/q turns out to be unrelated to either
the twist number or the generalized twist number of a (p, ¢) double coil knot. As a result,
we can show that neither of those quantities predicts the volume of K.

Theorem 3.3 The volumes of hyperbolic double coil knots are not effectively predicted by
either the twist number or generalized twist number. More precisely:

(a) Forany g > 3, and any p relatively prime to q, there exists a sequence K, of (p, q)
double coil knots such that t(K,) — oo while vol(S3\K,,) stays bounded.
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(b) All double coils have generalized twist number 2, but their volumes are unbounded.

Theorem 3.3 implies that the known upper bounds on volume in terms of twist number
can be quite ineffective. Lackenby initially found an upper bound on volume that was linear
in terms of twist number [20]. Agol and Thurston improved the constants in Lackenby’s
estimate, and showed that the upper bound is asymptotically sharp for a particular family
of alternating links [20, Appendix]. However, for the double coil knots of Theorem 3.3, the
volume is bounded but the estimate in terms of twist number will become arbitrarily large.
This phenomenon occurs in much greater generality: see Theorem 3.1 for the most general
statement, and Corollary 3.2 for an application to m-braids.

For a Riemannian manifold M, A1 (M) is defined to be the smallest positive eigenvalue of
the Laplace—Beltrami operator Af = —div grad f. It turns out that the volume and A; of a
double coil knot are closely related. In Sect. 4, we show the following result.

Theorem 4.3 Let K be a hyperbolic double coil knot. Then

_ A < MST\K) < _ A
vol(S§3\K)2 — ~ vol($3\K)’

where A > 8.76 x 10713 and A, < 12650.
Combining Theorem 3.3 with Theorem 4.3 immediately gives the following.

Corollary 4.5 The first eigenvalue of the Laplacian of hyperbolic double coil knots is not
effectively predicted by either the twist number or generalized twist number. More precisely:

(a) Forany q > 3, and any p relatively prime to q, there exists a sequence K, of (p,q)
double coils such that T(K,) — 0o while 11 (S°\K,,) is bounded away from 0 and cc.

(b) All double coil knots have generalized twist number 2, but the infimum of {A1 (S3\Kn)}
is zero.

Theorem 4.3 also extends a result of Lackenby about expanding families. Recall that a
collection {M;} of Riemannian manifolds is called an expanding family if inf A1 (M;) > 0.
Lackenby showed that knots whose volumes are bounded above and below by the twist num-
ber form an expanding family if and only if their volumes are bounded [18, Theorem 1.7].
Even though the volumes of double coil knots are very far from being governed by the twist
number, Theorem 4.3 implies that a sequence of double coil knots forms an expanding family
if and only if their volumes are bounded.

This paper is organized as follows. In Sect. 2, we study the geometry and combinatorics of
a certain surgery parent of double coil knots. The volume estimates for these parent links lead
to volume estimates for double coil knots in Theorem 2.9. In Sect. 3, we construct hyperbolic
knots that have bounded volume but arbitrarily large twist number. In Sect. 4, we describe the
connection between the volume of a double coil knot and its first eigenvalue A;. Our main
tool here is Theorem 4.1, which gives two-sided bounds for A; of a finite-volume hyperbolic
3-manifold, in terms of the volume and the Heegaard genus.

2 Volume estimates for double coil knots
In this section, we study the volumes of double coil knots. We begin by showing thata (p, q)

double coil knot is obtained by Dehn filling a certain 3-component link, closely related to
the 2-bridge link of slope p/g. Next, we obtain two sided diagrammatic bounds on volumes
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of these parent links. Finally, we apply a result of the authors [11] to bound the change in
volume under Dehn filling, obtaining two-sided diagrammatic estimates on the volume of
the double coil knots.

2.1 Augmentations of double coil knots

A twist knot as in Fig. 2a may be viewed as a Dehn filling of the Whitehead link, which is
itself a Dehn filling of the Borromean rings. Similarly, we may view double coil knots as
Dehn fillings of a class of link complements in S3. The idea is as follows. At each of the
two generalized twist regions of a double coil knot, insert a crossing circle C;, namely a
simple closed curve encircling all g strands of the generalized twist. The complement of the
resulting three-component link is homeomorphic to the complement of the three-component
link with all full twists removed from each twist region. Examples of such links are shown
in Fig. 3. We call such a link the augmentation of a double coil knot.

The augmentation of a (p, ¢g) double coil knot has a simple description in terms of the
rational number p/q, as follows. The augmentation consists of three components. Two,
namely C; and C3, can be isotoped to lie orthogonal to the projection plane, bounding dis-
joint disks D1 and D in $3. The third component can be isotoped to be a nontrivial simple
closed curve embedded on the projection plane, disjoint from the intersections of C; and C»
with the projection plane. We adopt the convention that the projection plane contains a point
at infinity, forming a sphere in 3. Note that the projection sphere minus the four points of
intersection with C and C3 is a 4-punctured sphere S. Once we have determined a framing
for S, any simple closed curve can be described by a number in Q U {1/0}.

We choose our framing as follows. Let 1/0 = oo be the simple closed curve on S that is
disjoint from D and D3, and separates those disks from each other. Now, draw a straight arc
A connecting one of the punctures of C| with one of C, as in Fig. 4a. Let the simple closed
curve encircling this arc be 0/1 = 0. Note that, in choosing A, there is a Z-worth of choices
up to isotopy; by Lemma 2.2, this ambiguity turns out to be immaterial.

Given a fixed meaning for 1/0 and 0/1, as well as an orientation on the 4-punctured pro-
jection sphere S, every curve on S is determined by a number p/q € QU {1/0}, where p and
q are relatively prime. Concretely, this curve can be drawn by marking ¢ ticks on the arcs

Fig. 3 Examples of links
obtained by adding crossing
circles to double coil knots and
untwisting

Fig. 4 (a) A framing for the (a)
4-punctured sphere. (b) The a
curve 2/5

(b)
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corresponding to Dy and D5, and p ticks on the arcs A and A’ of Fig. 4a, and then connecting
the dots, as in Fig. 4b.

Definition 2.1 The three-component link consisting of C;, C3, and the curve of slope p/gq
will be denoted L /,. Thus, Fig. 3 depicts L2 and L3/s. Note that for p, g relatively prime
and 0 < p < g, Ly, is the augmentation of a (p, g) double coil knot. The (p, g) double
coil knot with n full twists in one generalized twist region and n full twists in the other
generalized twist region can be recovered from L/, by performing 1/n; Dehn filling on C;.

Lemma 2.2 The link L, is isotopic to L.y (p/q), by an isotopy that preserves the projection
plane.

Proof Inthe projection plane, the curves of slope p/q and k+(p/q) arerelated by performing
k half-Dehn twists about the closed curve of slope 1/0. Note that this curve of slope 1/0 is
the intersection between the projection plane and a 2-sphere X that separates D from D;.
Thus, because ¥ is disjoint from Cj and C,, the Dehn twists about its equator can be realized
by an isotopy in S* that preserves the projection plane and carries L p/q © L (p/g)- O

Thus we may assume 0 < p < ¢, provided p/q ¢ {0, oo}. The cases in which p/q =0
or oo do not lead to hyperbolic links, and so we will assume g > 2.

Lemma 2.3 The augmentations of double coil knots have the following symmetries:

(a) S3\L p/q admits an orientation-reversing involution, namely reflection in the projection
plane.

(b) S3\Lp/q admits an orientation-preserving involution interchanging C1 and C.

(c) S3\Lp/q is homeomorphic to S3\L_p/q.

Proof The involution in (a) is immediately visible in Fig. 3. The involution in (b) is a 7-
rotation about an axis perpendicular to S. Within S, the involution is a 7 -rotation about two
points (in Fig. 4, the center of the parallelogram and the point at infinity), which sends the
curve of slope p/q to an isotopic curve. Finally, statement (c) is immediate because L /4
becomes L_,/, when viewed from the other side of the projection plane. O

2.2 2-Bridge links and augmented 2-bridge links

The links L/, are related in a fundamental way to 2-bridge links. In order to show this
relationship, we present the following method for constructing links.

Let S denote the 4-punctured sphere. Consider S x [0, 1]embedded in S3, with the framing
on S = § x {t} as above, for all t € [0, 1].

Recall that we may obtain (the complement of) any 2-bridge link by attaching two 2-han-
dles to S x [0, 1], one along the slope 1/0 on S x {1}, and one along a slope p/q on S x {0}.
Since Dehn twisting along 1/0 gives a homeomorphic link, we may assume p/q € Q/Z. The
continued fraction expansion of p/q now describes an alternating diagram of the 2-bridge
link. See [5, Proposition 12.13]. One example is depicted in Fig. 5a.

We modity this construction slightly. Attach a 2-handle to S x {1} along the slope 1/0
as before. However, on S x {0}, chisel out the slope p/q. This separates S x {0} into two
2-punctured disks. Glue one 2-punctured disk to the other, gluing the boundary correspond-
ing to the slope p/q to itself, and gluing the other boundary components in pairs. We call
this link the clasped 2-bridge link of slope p/q. See Fig. 5b for an example.

(Note that up to homeomorphism, there are two ways to glue the 2-punctured disks so that
the boundary p/q is glued to itself. Either way is acceptable and leads to the same results
below: any extra crossing cancels with its mirror image in Proposition 2.5.)
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Fig. 5 (a) Constructing the 2-bridge knot of slope 2/5. (b) Constructing the clasped 2-bridge link of slope

G @

Fig. 6 A belted sum

Remark 2.4 Note that the clasped 2-bridge link of slope p/g has a diagram similar to the
diagram of the regular 2-bridge link of slope p/q, as in Fig. 5. In particular, the diagrams will
be identical “above” the embedded surface S x {0}, and here we take both diagrams to agree
with the standard alternating diagram of the 2-bridge link. On S x {0}, the clasped 2-bridge
link will have an extra link component, the clasp component, which bounds two embedded
2-punctured disks in § x {0}. Below S x {0}, both diagrams consist of two simple arcs, but
they are attached to differing punctures of S x {0} for the 2-bridge link and for the clasped
2-bridge link. Compare the examples in Fig. 5a and b.

Note also that by performing +1/N Dehn filling about the clasp component, we replace
the clasp and the two strands it encircles by N full twists of those two strands (in other words,
a twist region with 2N crossings). By choosing the sign of the Dehn filling appropriately,
we can ensure that the result is the alternating diagram of a 2-bridge link of some new slope.
Thus, the clasped 2-bridge link of slope p/q can be viewed as an augmented 2-bridge link
of some other slope, where we are using the term augmented in the sense of Adams [2].

There is a standard way to add two manifolds containing embedded 2-punctured disks,
explored by Adams [1]. This is the belted sum. We recall the definition.

Let M, be the complement of the link in S> with the following presentation. 7} is some
tangle in a 4-punctured sphere. The four punctures of this sphere are connected in a manner
as shown on the left in Fig. 6, with a simple closed unknotted curve B; encircling the two
strands. Note B bounds a 2-punctured disk S; in the complement of the link. We will call
the link component B the belt component of the link. We will call the link consisting of
T and the component By a belted link. We will only be interested in belted links admitting
hyperbolic structures.

Given two hyperbolic belted links with complements M; and M>, consisting of tangles
T and T, belt components B; and B», and 2-punctured disks S; and S, we form the com-
plement of a new belted link as follows. Cut each manifold M| and M, along S; and S,
respectively. We obtain two manifolds, M, and M>, each with two 2-punctured disks as
boundary. There is a unique hyperbolic structure on a 2-punctured disk, hence any two are
isometric. This allows us to glue M to M by isometries of their boundaries, gluing Bj to
B. The result is the complement of a new belted link. See Fig. 6. We call this new belted
link the belted sum of T} and T5.
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Fig. 7 The belted sum whose
complement is homeomorphic to m m
s3 \Lp/q
p/a
<=
||
—p/q

o U

Proposition 2.5 S3\L p/q 18 homeomorphic to the belted sum of a clasped 2-bridge link of
slope p/q and a clasped 2-bridge link of slope —p/q. (See Fig. 7.)

Proof Slice S3\L p/q along the projection plane. This cuts the manifold into two pieces,
which we call the top half and bottom half, each bounded by a 4-punctured sphere. Let S be
a 4-punctured sphere. Note we can embed S x [0, 1] in the top half in S such that § x {0}
is embedded on the projection plane, and the punctures of S x {t} correspond to points on
the crossing circles Cy and Cs.

Alternately, give S the same framing as above, so that 1/0 corresponds to the curve encir-
cling D; (or D7), and attach a 2-handle to S x {1} along the slope 1/0. By our choice of
framing, the result is homeomorphic to capping off the halves of arcs C and C;. When we
chisel out the slope p/q on the projection plane S x {0}, the result is a manifold with bound-
ary consisting of two 2-punctured disks. This is homeomorphic to the top half of $3\L plg»
as in the left of Fig. 5. Thus the top half of SA\L p/q Sliced along the projection plane is
homeomorphic to a clasped 2-bridge link of slope p/q sliced open along the 2-punctured
disk bounded by the clasp component.

Similarly, when we consider the bottom half of $3\ L p/q sliced along the projection plane,
we see it is homeomorphic to the clasped 2-bridge link of slope — p/q, sliced open along the
2-punctured disk bounded by the clasp component.

Since we glue the 2-punctured disks of the top half to those of the bottom half such that
the chiseled-out curve p/q is glued to itself, this is, by definition, a belted sum of the two
manifolds. O

2.3 Volume bounds for the parent links

Recall that every rational number p/q € Q can be expressed as a finite length continued
fraction. When ¢ > p > 0 and all the terms of the continued fraction are positive, this
expression is unique. We define the length of the continued fraction to be the number of
denominators in this unique continued fraction where all denominators are positive.

Theorem 2.6 Let k be the length of the continued fraction expansion of p/q, withQ < p < g
and q > 2. Then Ly, is hyperbolic, and

4kvy — 1.3536 < vol(SP\L /) < 4kug,
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where v3 = 1.0149 ... is the volume of a regular ideal tetrahedron and vg = 3.6638 ... is
the volume of a regular ideal octahedron in H-.

Proof By Proposition 2.5, S3\L p/q 1s homeomorphic to the belted sum of two clasped 2-
bridge links, one of slope p/q and one of slope —p/g. By Remark 2.4, a portion of the
diagram of each clasped 2-bridge link (essentially, everything away from the clasp) agrees
with the alternating diagram of the regular 2-bridge link of slope p/q or —p/q, respectively.
It is well known that these 2-bridge links will have exactly k twist regions (see, for example
Burde and Zieschang [5, Proposition 12.13]). Thus the clasped 2-bridge links will contain k
twist regions as well as a separate clasp component. By our restrictions on ¢ and p, k > 1.

Now, again by Remark 2.4, the clasped 2-bridge link can be Dehn filled, along slope
+1/N on the clasp component, to give a diagram of a new alternating 2-bridge link Ky.
The link Ky will have k + 1 twist regions, with 2N crossings in the new (k + 1)-st twist
region. As N approaches infinity, the limit in the geometric topology of the K will be the
original clasped 2-bridge link [27]. Because k + 1 > 2, each link Ky is hyperbolic (see e.g.,
[14, Theorem A.1]). Thus its geometric limit is also hyperbolic. Finally, the belted sum of
hyperbolic manifolds is hyperbolic. So L/, is hyperbolic.

Futer and Guéritaud have found bounds on the volumes of 2-bridge knots. By [14, Theorem
B.3], the complement of a 2-bridge knot whose standard alternating diagram has k + 1 twist
regions has volume at least 2(k + 1)v3 —2.7066 and at most 2kvg. Since the clasped 2-bridge
link of slope +p/q is the geometric limit of such manifolds, it satisfies the same volume
bounds. Adams observed that the volume of a belted sum of two hyperbolic manifolds is
equal to the sum of the volumes of the two pieces [1]. Thus, the volume of S3\L p/q 18 at
least 4kvs — 1.3536 and at most 4vgk. ]

2.4 Volume bounds for double coil knots

Let K be a (p, q) double coil knot. Then, by Definition 2.1, K is obtained by 1/#; filling on
the component C; of L /,, i = 1, 2. We may bound the volume of K by bounding the change
in volume under Dehn filling. Our main tool is the following recent result of the authors,
Theorem 1.1 of [11].

Theorem 2.7 [11] Let M be a complete, finite-volume hyperbolic manifold with cusps.
Suppose Cq, ..., Cy are disjoint horoball neighborhoods of some subset of the cusps. Let
S1,...,8c beslopesondCy, ..., dCx, each with length greater than 27. Denote the minimal
slope length by €min. Then the manifold M (sy, ..., si), obtained by Dehn filling M along
S1, - .., Sk, is hyperbolic, and

o 2\ 3/2
vol(M(s1,...,S) > (1 - (K : ) ) vol(M).

We also need the following additional notation. Let k, n1, ny be integers. Define

a2 32\/§k2n2}
n°, ——1¢.

()]

1
— mi , d ¢:= =
n :=min{|n{], |n2|} an maX{4 + 7203

Note that the right-hand term of the maximum becomes greater when £ > 26. We may now
give volume bounds on double coil knots.
Theorem 2.8 Let K be a (p, q) double coil knot, where one generalized twist region contains

ny positive full twists, and the other region contains ny twists.
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Let k denote the length of the continued fraction expansion of p/q, and let £ be as in (1)
above. Suppose that at least one of the following holds:

(1) il =4fori=1,02
) kini| >80 fori =1,2.

Then K is hyperbolic with volume

472\ "?
(1 - 7) (4kvs — 1.3536) < vol(S*\K) < dvgk,

where v3 = 1.0149. .. is the volume of a regular ideal tetrahedron and vg = 3.6638 ... is
the volume of a regular ideal octahedron in H>.

Proof By Definition 2.1, K is obtained by 1/n; filling on the component C; of L /,. Thus
the upper bound on volume follows immediately from Theorem 2.6 and the fact that the
volume decreases under Dehn filling [27, Theorem 6.5.6].

For the lower bound, let ¢, denote the minimum of the lengths of 1/n; and 1/n; in
some horoball expansion about the cusps corresponding to C| and C;. Provided £, > 27,
Theorem 2.7 implies that K is hyperbolic and:

or N2\
vol(S\K) > ( - (E” )) Vol(S\L /)

o \2 32
> (1 - ( il ) ) (4kvs — 1.3536).
Zmin

Thus we determine some admissible values of 1, n2, and k, for which the slopes 1/n and
1/ny are both guaranteed to have length at least 2w under some horoball expansion. First,
recall that by Lemma 2.3(a) we may arrange the diagram of L/, such that the link L/, is
fixed under reflection in the projection plane. It follows immediately from [23, Proposition
3.5] that there exists a horoball expansion about these cusps such that the slope 1/n; has

length at least
6 > \J1/4+4n?. )

This quantity is greater than 2t when n; > 4. Hence the conclusion follows in this case.

On the other hand, when k is relatively large, we can get a better estimate on the lengths
of the slopes 1/n1 and 1/n;. In [10, Theorem 4.8], we found bounds on the length of certain
arcs on the cusps of 2-bridge knots. In particular, the shortest non-trivial arc running from
a meridian back to that meridian in a 2-bridge knot with (k + 1) twist regions has length at
least (4v/6/2) k /147. In other words, the area of the maximal cusp about the knot is at least
(4vV6+/2) k - /147, where  is the length of the meridian. Since a clasped 2-bridge link
of slope p/q is the geometric limit of 2-bridge knots with (k + 1) twist regions, the same
estimate applies to the clasped link.

Now, by Proposition 2.5, L/, is obtained as the belted sum of clasped 2-bridge links
of slope p/q and —p/q. Consider what happens to the cusps during the gluing process.
The cusps about C| and C, come from the knot component(s) of the clasped link, i.e. the
component(s) which form the 2-bridge link rather than the clasp. The meridians of C; and
C, agree with meridians of the 2-bridge link, and both have length p. Furthermore, the total
area of the cusps about C and C; is equal to twice the area of the cusp about the 2-bridge

knot, namely at least (8v/6+/2) k - 1/147. But by Lemma 2.3b, there is a symmetry of L rla
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interchanging C1 and C», hence each of those cusps has area at least (4v/6+/2) k - j1/147.
As aresult, in each of C and C», the shortest non-trivial arc running from a meridian back
to that meridian has length at least (4v/ 6v2) k /147.

Finally, note that the slope 1/n; crosses the meridian exactly |n;| times. Since each non-
trivial arc from the meridian to the meridian has length bounded as above, the total length
of the slope is at least (4+/ 6\[2) k|n;i|/147. When k|n;| > 80, the slope 1/n; will be longer
than 27, and the desired volume estimate follows. m]

Theorem 2.9, stated in the introduction, is now an immediate corollary of Theorem 2.8.

Theorem 2.9 Let p and q be relatively prime integers with 0 < p < q, and let k be the
length of the continued fraction expansion of p/q. Let K be a (p, q) double coil knot, in
which each generalized twist region has at least 4 full twists. Then K is hyperbolic, and

0.9718k —0.3241 < vol(S*\K) < 4ugk,

Proof If |n;j| > 4 fori = 1,2, then £ > 64.25 in equation (1). Plugging this estimate into
Theorem 2.8, and substituting the numerical values of all the constants in the lower bound
on volume, gives the desired result. O

3 Volume and twist number

The twist number of a knot K, denoted by t(K), is defined to be the minimum twist number
over all knot diagrams of K it is clearly an invariant of K. In this section, we describe a
general construction of hyperbolic knots with bounded volume and arbitrarily large twist
number.

Theorem 3.1 Let K be aknotin S3, and let U C S*\K be an unknot in S3 with the property
that S*\(K U U) is hyperbolic. Suppose that every disk bounded by U intersects K at least
three times. Let K, be the knot obtained by 1/n surgery on U. Then, for |n| sufficiently large,
K, is a hyperbolic knot, with

vol(S*\K,,) < vol(S*\(K UU)) and | llim 7(K,) = oo.

Proof By Thurston’s hyperbolic Dehn surgery theorem [27], K, is hyperbolic for |n| large
enough. Furthermore, because volume decreases strictly under Dehn filling [27, Theorem
6.5.6], we have vol(S3\K,) < vol(§3\(K U U)). Now the complement S3\(K U U) is
the geometric limit of $3\K,,, as |n| — oo. By the proof of the hyperbolic Dehn surgery
theorem, for n large enough, the core of the Dehn filling torus (that is, U) is the unique
minimum-length geodesic in $3\ K,,, and the length of this geodesic goes to 0 as n — 0.
Note that, since K, is obtained from K by twisting about the disk bounded by U, this disk
intersects K, the same number of times as K, namely at least three.

Now we argue that lim,|—.» 7(K,) = 00. Suppose not: assume that 7(K},) is bounded
independently of n. Then consider the knot K,,. Take a diagram of K, for which the twist
number is minimal, equal to t(K},). Encircle each twist region of the diagram by a crossing
circle. The result is a fully augmented link, and the knot K, is obtained by Dehn filling this
fully augmented link. (For an example with two twist regions, compare Fig. 2, left to Fig. 3,
left.)

To obtain the standard diagram of a fully augmented link, we remove all pairs of cross-
ings (full twists) from each crossing circle. (See also, for example, Fig. 6 of [11].) Thus
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the standard diagram of a fully augmented link with t twist regions consists of T crossing
circles encircling two strands each, possibly with a single crossing at each crossing circle.
This can be represented by a 4-valent graph with t vertices, and a choice of crossing at each
vertex. Since 7 (K,) is bounded independently of n, there are only finitely many such 4-valent
graphs, so only finitely many fully augmented links. As a result, there must be an infinite
subsequence of knots K, that is obtained by surgery on a single augmented link.

Recall that this subsequence converges geometrically to $3\ (K U U). Thus, in each twist
region in this infinite subsequence, the number of crossings either becomes eventually con-
stant or goes to infinity. Since infinitely many of the K, are distinct knots, there is at least one
twist region whose number of crossings goes to infinity. Furthermore, since the geometric
limit of $3\ K, is the manifold $3\(K U U) with exactly two cusps, there must be exactly
one twist region whose number of crossings goes to infinity, for if the number of crossings
goes to infinity, the geometric limit yields an additional cusp [27].

Hence we have an infinite subsequence of the knots K, that is obtained from a 2-com-
ponent link K’ U U’ by Dehn filling along an unknotted component U’. Furthermore, the
subsequence S3\K,, converges geometrically to S3\(K’ U U’), and the crossing circle U’
bounds a disc whose interior is pierced exactly twice by K'. Furthermore, under this conver-
gence the core U’ eventually becomes the unique minimal geodesic in S3\K,.

Now recall that for |n| sufficiently large, U is also the unique minimal-length geodesic in
S3\K,,. We conclude that for |n| large enough there must be an isometry S3\K,1 — S3\K,,
that maps U onto U’. However, U’ bounds a disk whose interior is punctured twice by K,
whereas U does not. This is a contradiction. O

One way to construct a sequence of knots satisfying Theorem 3.1 is the following.

Corollary 3.2 Fix an integer m > 3. Then there is a sequence K, of hyperbolic closed
m-braids, such that vol(S3\Kn) is bounded but t(K,,) is unbounded.

Proof Given a closed m-braid K, let A be the braid axis of K. That is: S\ A is a solid torus
swept out by meridian disks, with each disk intersecting K in m points. The complement
S3\(K U A) is a fiber bundle over S!, with fiber an m-punctured disk. By a theorem of
Thurston [26], this manifold will be hyperbolic whenever the monodromy is pseudo-Ano-
sov. Furthermore, since the fiber minimizes the Thurston norm within its homology class,
the unknot A does not bound a disk meeting K in fewer than m points. Thus, Theorem 3.1
applies, and the sequence of knots K, obtained by 1/ filling on A has bounded volume but
unbounded twist number. O

For the double coil knots studied in the last section, Theorem 3.1 applies to give:

Theorem 3.3 The volumes of hyperbolic double coil knots are not effectively predicted by
either the twist number or generalized twist number. More precisely:

(a) Forany q > 3, and any p relatively prime to q, there exists a sequence K, of (p,q)
double coil knots such that t(K,) — 0o while VOI(S3\Kn) stays bounded.
(b) All double coils have generalized twist number 2, but their volumes are unbounded.

Proof Statement (b) is an immediate consequence of Definition 1.3 and Theorem 2.9.

For statement (a), consider the sequence K, of double coil knots obtained from L/, by
1/n filling on the circle C; and 1/6 filling on C2. When n > 4, Theorem 2.9 implies that
each K, is hyperbolic. The volumes of $3\ K, are bounded above by the volume of $3\ L pla-
To apply Theorem 3.1 and show that the twist number of K, is unbounded, we need to show
that every disk bounded by C| meets K, at least three times.
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Suppose, for a contradiction, that D is a disk in S> whose boundary is Cy, and such that
|K, N D| < 2. Since S3\K, is hyperbolic, it cannot contain any essential disks or annuli.
Thus K, meets D exactly twice. We assume that D has been moved by isotopy into a position
that minimizes its intersection number with C;, and consider two cases.

Case 1 D is disjoint from C».

Then, when C; and C; are drilled out of S3\ K,,, D becomes a disk in S\ L p/q that inter-
sects K twice, where K is the planar curve of slope p/q that will become K, after Dehn
filling on Cy and C5. Consider the standard diagram of L/, with all full-twists removed
from generalized twist regions. Isotope D so that it intersects the projection plane of this
diagram transversely a minimal number of times. Then the intersection between D and the
4-punctured projection sphere S consists of some number of simple closed curves, as well as
exactly one arc « connecting two of the punctures of S. (These punctures are the intersections
between C and the projection plane—see Fig. 4.)

Since D intersects K twice, and K lies in the projection plane as a curve of slope p/q,
this arc @ C D must intersect the curve of slope p/g at most twice. On the other hand, since
« lies in a disk whose boundary is C1, @ must be isotopic to one half of Cy, in other words
to an arc of slope 1/0 in S. But it is well-known (for example, by passing to the universal
abelian cover R?\Z?) that in a 4-punctured sphere, the arc of slope 1/0 and the closed curve
of slope p/q must intersect at least ¢ times. Since g > 3, this is a contradiction.

Case 2 D is not disjoint from Cj.

Let E=DnN (S3\L,,/q). Then E is a sphere with (r 4 3) holes, where one boundary
circle is at the cusp of Cp, two boundary components are at the cusp of K, and r boundary
components are at the cusp of C,. Consider the length ¢ of the Dehn filling slope along C»,
where » > 1 boundary circles of E run in parallel along the cusp. A result of Agol and
Lackenby (see [3, Theorem 5.1] or [19, Lemma 3.3]) implies that the total length of those
circles is

ré{ < —6x(E) =6(r+1) < 12r.

Thus £ < 12. On the other hand, since we are filling C, along slope 1/6, Eq. (2) above
implies that

L > \J1/4+4.62 = V14425 > 12.

Therefore, in this case as well as in Case 1, we obtain a contradiction. O

4 Spectral geometry

In this section, we investigate the spectral geometry of double coil knot complements. Recall
that, for a Riemannian manifold M, A;(M) is defined to be the smallest positive eigenvalue
of the Laplace—Beltrami operator Af = —div grad f. When M is a hyperbolic 3-manifold,
it is known that A (M) has many connections to the volume of M. The following result is
essentially a combination of theorems by Schoen [25], Dodziuk and Randol [9], Lackenby
[21], and Buser [6].
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Theorem 4.1 Let M be an oriented, finite-volume hyperbolic 3-manifold. Then

2 /750 B e
i < A](M) < 327 w + 6407‘[2 w
vol(M)? vol(M) vol(M)?

)

where g(M) is the Heegaard genus of M.

To write down the proof of Theorem 4.1, we need the following fact.

Lemma 4.2 An oriented, finite-volume hyperbolic 3-manifold M satisfies vol(M) > 1 /2%.
Proof Gabai, Meyerhoff, and Milley recently showed [13] that the unique lowest-volume
orientable hyperbolic 3-manifold is the Weeks manifold of volume &~ 0.9427. This is the
culmination of many increasingly sharp estimates, by a number of hyperbolic geometers. In
fact, Meyerhoff’s 1984 result [22] that vol(M) > 0.00064 is several orders of magnitude
larger than necessary for this lemma. O

Proof (Proof of Theorem 4.1) Dodziuk and Randol [9] showed that for all finite-volume,
hyperbolic n-manifolds (where n > 3), i (M) > A(n)/vol(M )2, where the constant A (n)
depends only on the dimension n. To estimate A(3) for dimension 3, we rely on the work of
Schoen, who gave an explicit estimate for A; (M) when M is closed and negatively curved
[25]. In the special case where M is a closed, hyperbolic 3-manifold, his theorem says that
, w2 1 72230
AM(M) > mingl, — > )
2 vol(M)?

50" vol(M)2
where the second inequality is Lemma 4.2. This completes the proof of the lower bound on
A1(M) in the case where M is closed.

Now, suppose that M has cusps. We may assume that A1 (M) < 1; otherwise, A1(M)
already satisfies the desired lower bound by Lemma 4.2. Let N; be a sequence of closed
manifolds obtained by Dehn filling M, along slopes whose lengths tend to infinity. Thur-
ston’s Dehn surgery theorem [27] implies that the manifolds N; approach M in the geometric
topology; in particular, vol(N;) — vol(M). Meanwhile, assuming that 11 (M) < 1, Colbois
and Courtois [8, Theorem 3.1] showed that 1 (N;) — A1 (M). Thus, since the lower bound
on A holds for each closed N;, it also holds for M.

The upper bound on 11 (M) is a combination of results by Buser [6] and Lackenby [21].
Buser proved an inequality relating X1 (M) to the Cheeger constant h(M), defined by

area(S) ]
min(Vy, Vo) |’

h(M) := inf [
where S is a separating surface in M, and V7, V; are the volumes of the two pieces separated
by S. Buser’s result [6] says that

A (M) < 4h(M) + 10h(M)>.

More recently, Lackenby showed [21, Theorem 4.1] that if a hyperbolic manifold M has a
genus-g Heegaard splitting,

8r(g—1)

h(M) = vol(M)

Plugging this estimate into Buser’s inequality yields the upper bound on A1 (M). O

For double coil knots, Theorem 4.1 implies the following result.
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Theorem 4.3 Let K be a hyperbolic double coil knot. Then

M < M(ST\K) < _ A
vol(§3\K)2 — ~ vol($3\K)’

where A > 8.76 x 10~ and A, < 12650.

Proof Thelowerbound on A is arestatement of Theorem 4.1. Note 72/2°9 & 8.765x 10713,

To establish the upper bound on A, we bound the Heegaard genus of S3\ K . Recall that K
is obtained by Dehn filling two components of the link L, depicted in Fig. 7. Since each of
the boxes in Fig. 7 contains a braid, the figure is a 3-bridge diagram of L, ,. Itis well-known
that a g-bridge link L has Heegaard genus at most g. (One standard way to obtain a Heegaard
surface is to connect the maxima in a g-bridge diagram of L by g — 1 arcs, thicken the union
of L and these arcs, and take the boundary of the resulting genus-g handlebody. The exterior
of this handlebody is unknotted, because L was in bridge position. See [24, Figure 1].) Thus,
SI\L p/q has Heegaard genus at most 3. Since Heegaard genus can only go down under Dehn
filling, $3\K also has Heegaard genus at most 3.

Plugging g(S\K) < 3 into Theorem 4.1, we obtain

M(SI\K) < 647 N 256072
! = VoI(S3\K) ' vol(S3\K)2
647 256072
< +
~ vol($3\K) vol(S3\K) - 2v3
12650
< Ao
vol(S3\K)
where the second inequality follows because the smallest-volume knot is the figure-8 knot,
with vol(S3\K) = 2vs [7]. o

A collection {M;} of hyperbolic 3-manifolds is called an expanding family if inf {\{ (M;)} >
0, that is, A1 (M;) is bounded away from 0. With this notation, Theorem 4.3 has the following
immediate corollary.

Corollary 4.4 Let {K;} be a collection of hyperbolic double coil knots. Then {1 (S*\K;)}
is bounded away from 0 if and only if {vol(S3\K;)} is bounded above. In other words, the
knots {K;} form an expanding family if and only if their volumes are bounded.

Corollary 4.4 is significant in light of recent work of Lackenby [18]. He showed that for
two large families of hyperbolic links (namely, alternating links and highly twisted links),
A 1(S3\K ) is bounded above in terms of the inverse of the twist number of a sufficiently
reduced diagram. Because the volumes of these links are also governed by the twist number
[11,20], it follows that alternating and highly twisted links form an expanding family if and
only if their volumes are bounded [18, Corollary 1.7]. Corollary 4.4 is the analogous result
for double coil knots.

On the other hand, by Theorem 3.3, the volumes of double coil knots are not governed by
the twist number in any meaningful sense. Thus, combining Theorem 3.3 with Corollary 4.4
yields the following result.

Corollary 4.5 The spectrum of the Laplacian of hyperbolic double coil knots is not effec-
tively predicted by either the twist number or generalized twist number. More precisely:

(a) Forany q > 3, and any p relatively prime to q, there exists a sequence K, of (p,q)
double coils such that t(K,) — oo while Ay (SS\K,,) is bounded away from 0 and oo.
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(b) All double coil knots have generalized twist number 2, but the infimum of {A| (S3\Kn)}
is zero.

Proof Each part of this corollary follows by combining Theorem 4.3 with the corresponding
part of Theorem 3.3. O
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