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Angled decompositions of arborescent link complements

David Futer and François Guéritaud

Abstract

This paper describes a way to subdivide a 3-manifold into angled blocks, namely polyhedral pieces
that need not be simply connected. When the individual blocks carry dihedral angles that fit
together in a consistent fashion, we prove that a manifold constructed from these blocks must be
hyperbolic. The main application is a new proof of a classical, unpublished theorem of Bonahon
and Siebenmann: that all arborescent links, except for three simple families of exceptions, have
hyperbolic complements.

1. Introduction

In the 1990s, Andrew Casson introduced a powerful technique for constructing and studying
cusped hyperbolic 3-manifolds. His idea was to subdivide a manifold M into angled ideal
tetrahedra: that is, tetrahedra whose vertices are removed and whose edges carry prescribed
dihedral angles. When the dihedral angles of the tetrahedra add up to 2π around each edge
of M , the triangulation is called an angled triangulation. Casson proved that every orientable
cusped 3-manifold that admits an angled triangulation must also admit a hyperbolic metric,
and outlined a possible way to find the hyperbolic metric by studying the volumes of angled
tetrahedra — an idea also developed by Rivin [17]. The power of Casson’s approach lies in the
fact that the defining equations of an angled triangulation are both linear and local, making
angled triangulations relatively easy to find and deform (much easier than to study an actual
hyperbolic triangulation, as in [14, 20] or in some aspects of Thurston’s seminal approach [22]).

The aim of this paper is to extend this approach to larger and more complicated building
blocks. These blocks can be ideal polyhedra instead of tetrahedra, but they may also have non-
trivial topology. In general, an angled block will be a 3-manifold whose boundary is subdivided
into faces looking locally like the faces of an ideal polyhedron (in a sense to be defined). The
edges between adjacent faces carry prescribed dihedral angles. In Section 2, we will describe
the precise combinatorial conditions that the dihedral angles must satisfy. These conditions
will imply the following generalization of a result by Lackenby [11, Corollary 4.6].

Theorem 1.1. Let M be a compact orientable 3-manifold with non-empty boundary,
subdivided into angled blocks in such a way that the dihedral angles at each edge of M sum
to 2π. Then ∂M consists of tori, and the interior of M admits a complete hyperbolic metric.

One can prove that a particular manifold with boundary is hyperbolic in a spectrum of
practical ways, ranging from local to global. In some cases, a combinatorial description of M
naturally guides a way to subdivide it into tetrahedra (see, for example, [9] or [24]). In these
cases, angled triangulations are highly useful. On the other extreme, one can study the global
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Figure 1.1. Examples of d-bracelets. The two 1-bracelets with different numbers of half-twists
in their bands are homeomorphic.

topology of M and prove that it contains no essential spheres, disks, tori, or annuli; Thurston’s
hyperbolization theorem then implies that M�∂M is hyperbolic [23]. Theorem 1.1 provides a
medium-range solution (still relying on Thurston’s theorem) for situations where M naturally
decomposes into pieces that retain some topological complexity.

We will apply Theorem 1.1 to the complements of arborescent links, which are defined in
terms of bracelets. We choose an orientation of S3, to remain fixed throughout the paper.

Definition 1.2. An unknotted band A ⊂ S3 is an annulus or Möbius band, whose core
curve C is an unknotted circle. Such an A has a natural structure as an I-bundle over C, and
we will refer to the fiber over a point of C as a crossing segment of the unknotted band A.

Consider the manifold Md obtained by removing from S3 the open regular neighborhoods of
d disjoint crossing segments of an unknotted band A, and let Kd = Md ∩ ∂A. Then a d-bracelet
Bd is the pair (Md,Kd), as in Figure 1.1. We say that d is the degree of the bracelet.

Note that when d > 0, Bd is determined up to homeomorphism (of pairs) by the integer d.
For example, when d = 2, B2 is homeomorphic to the pair (S2×I, {4 points}×I). When d = 1,
M1 is a 3-ball and K1 is a pair of simultaneously boundary-parallel arcs; a 1-bracelet B1 is
commonly called a trivial tangle. When d = 0, B0 is determined by the number of half-twists
in the band: namely, the linking number of C with ∂A.

Let Bd1 and Bd2 be two bracelets with di > 0, and choose a boundary sphere Si of each Bdi
.

The Si have natural orientations induced by the orientation of S3, and we can glue S1 to S2 by
any orientation-reversing homeomorphism sending the unordered 4-tuple of points S1 ∩ K1 to
the 4-tuple S2 ∩ K2. The union of the Kdi

then defines a collection of arcs in a larger subset
of S3. More generally, if bracelets Bd1 , . . . , Bdn

are glued to form S3 (some of the di being 1),
the arcs in these bracelets combine to form a link K in S3, as in Figure 1.2.

Definition 1.3. A link K ⊂ S3 is called prime if, for every 2-sphere S meeting K
transversely in two points, at least one of the two balls cut off by S intersects K in a single
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Figure 1.2. A generalized arborescent knot, obtained by gluing several bracelets.

boundary-parallel arc. If K is not prime, it is called composite. Note that with this convention,
every split link (apart from the split link consisting of two unknots) is automatically composite.

Definition 1.4. A knot or link K = ∪n
i=1Kdi

obtained when several bracelets are glued
together to form S3 is called a generalized arborescent link. If, in addition, K is prime, then
we say that it is an arborescent link.

The pattern of gluing bracelets to form a link can be represented by a tree T , in which
a d-valent vertex corresponds to a d-bracelet and an edge corresponds to a gluing map of
two neighboring bracelets. The term arborescent, from the Latin word arbor (tree), refers
to this correspondence. Special cases of arborescent links include two-bridge links, which can
be constructed by gluing two 1-bracelets, and Montesinos links, which can be constructed by
gluing a single d-bracelet to d different 1-bracelets. Montesinos links are also known as star
links, because the corresponding tree is a star.

The tree that represents an arborescent link carries a great deal of geometric and topological
information. For example, Gabai has used trees to construct an algorithm that computes the
genus of an arborescent link [7]. Bonahon and Siebenmann have used trees to completely
classify arborescent links up to isotopy [3]. One geometric consequence of their work is the
following result.

Theorem 1.5 (Bonahon and Siebenmann). The following three families, shown in
Figure 1.3, form a complete list of non-hyperbolic arborescent links:

(I) K is the boundary of a single unknotted band;
(II) K has two parallel components, each of which bounds a 2-punctured disk properly

embedded in S3�K;
(III) K or its reflection is the pretzel link P (p, q, r;−1), where each of p, q, r is at least 2

and 1/p + 1/q + 1/r � 1.

Furthermore, an effective algorithm decides whether a given generalized arborescent link K is
prime, and whether it lies in one of the exceptional families.

Bonahon and Siebenmann’s original proof of this theorem made strong use of the double
branched covers of arborescent links. These covers are all graph manifolds, obtained by gluing
Seifert fibered manifolds along incompressible tori that project to gluing spheres of d-bracelets.
Their results and ideas were heavily quoted, but unfortunately the monograph containing the
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Figure 1.3. The three exceptional families of non-hyperbolic arborescent links. For family III,
p, q, r � 2 and 1/p + 1/q + 1/r � 1.

proof [3] remains unfinished. One of our primary motivations in this paper was to write down
a version of the proof.

In the years since Bonahon and Siebenmann’s monograph, several authors have re-proved
parts of the theorem. Menasco [13] proved that a two-bridge link (more generally, a prime
alternating link) is hyperbolic whenever it is not in family I. Oertel [15] proved that the
complement of a Montesinos link contains an incompressible torus if and only if the link is in
family III, with 1/p + 1/q + 1/r = 1. Finally, it follows from Wu’s work on Dehn surgery [25]
that all non-Montesinos arborescent knots are hyperbolic.

It is fairly straightforward to check that the links listed in Theorem 1.5 are indeed non-
hyperbolic. For families I and II, Figure 1.3 reveals an obvious annulus or Möbius band that
forms an obstruction to the existence of a hyperbolic structure. Meanwhile, the pretzel link
complements in family III contain (less obvious) incompressible tori when 1/p + 1/q + 1/r = 1
(by Oertel’s work [15]) and are Seifert-fibered when 1/p + 1/q + 1/r > 1 by Sakuma’s work [19]
(in fact, such links are torus links unless (p, q, r) is a permutation of (2, 2, n)). In particular, all
of these well-studied links are known to be prime. Thus we will focus our attention on proving
that all the remaining arborescent links are indeed hyperbolic.

The proof is organized as follows. In Section 2, we will define angled blocks and prove
Theorem 1.1. In Section 3, we will perform a detailed study of how d-bracelets can be
glued along 4-punctured spheres. This will enable us to algorithmically simplify the bracelet
presentation of any particular link and decide whether it is an exception. In Section 4, we will
use the simplified bracelet structure to subdivide the link complement into tetrahedra and solid
tori. The subdivision will work for all arborescent links except for families I and II. Finally, in
Section 5, we will assign dihedral angles to edges on the boundary of the tetrahedra and solid
tori. For links that are not in family III, these angles will satisfy the criteria of angled blocks,
implying by Theorem 1.1 that the link complement is hyperbolic.

2. Angled blocks

In this section, we develop a theory of angled blocks that provides a practical way of proving
that a given manifold is hyperbolic (Theorem 1.1). We lay out the necessary definitions in
Subsection 2.1. In Subsection 2.2, we study the intersections between blocks and surfaces in a
manifold, and prove that any surface can be placed into a sufficiently nice normal form. The
angle structures on the blocks allow us to define a natural measure of complexity for the normal
surfaces, called combinatorial area, which behaves like hyperbolic area. In Subsection 2.3, we
will use combinatorial area considerations to show that M cannot contain any essential surfaces
of non-negative Euler characteristic, so by Thurston’s hyperbolization theorem M must admit
a hyperbolic structure.
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Our proof of Theorem 1.1 follows the same outline as Casson’s proof that manifolds with an
angled triangulation are hyperbolic, written down by Lackenby in [11, Section 4]. The credit
for developing these ideas goes mainly to Casson and Lackenby.

2.1. From polyhedra to blocks

In studying a 3-manifold M , it is frequently useful to decompose M into pieces that are not
contractible. This idea has been recently studied by other authors. Agol has described a way
to cut a manifold into non-contractible nanotubes (personal communication), while Martelli
and Petronio have cut a manifold into bricks [12]. Rieck and Sedgwick, among others, have
investigated how a solid torus added during Dehn surgery can intersect a Heegaard surface
[16]. Focusing on the individual pieces of the decomposition, Schlenker has studied manifolds
with polyhedral boundary [21]. Our angled blocks fit into this theme.

Definition 2.1. Let S be a closed oriented surface, and let Γ ⊂ S be an embedded graph,
each of whose vertices has degree at least 3. We say that Γ fills S if every component of S�Γ
is an open disk, whose boundary consists of at least 3 edges of Γ. Given a graph Γ that fills
a surface, we can construct a dual graph Γ∗ ⊂ S, well defined up to isotopy, in the following
fashion. Every disk of S�Γ defines a vertex of Γ∗. Every edge e ⊂ Γ separates two faces of
S�Γ; we connect the corresponding vertices of Γ∗ by a dual edge e∗. Finally, S�Γ∗ is a union
of disks, or faces, each corresponding to a vertex of Γ.

Note that this construction still makes sense if the surface S has several components. In this
situation, both Γ and Γ∗ will have as many components as S.

Definition 2.2. A block P is a compact, oriented, irreducible 3-manifold with boundary.
We assume that P does not contain any incompressible tori. (Even boundary-parallel
incompressible tori in P are prohibited, because they may cease to be boundary-parallel after
several blocks are glued together.) As a consequence, if ∂P is a torus, then P must be a solid
torus.

Let Γ be a graph that fills ∂P, whose edges are e1, . . . , en. To every edge ei ⊂ Γ we assign
an internal angle αi and an external angle εi = π − αi. By duality, an edge e∗i ⊂ Γ∗ receives
the same angle as its dual edge ei ⊂ Γ. We say that P is an angled block if this assignment of
angles satisfies the following properties:

(1) 0 < αi < π for all i,
(2)

∑
∂D εi = 2π for every face D of ∂P�Γ∗, and

(3)
∑

γ εi > 2π for every simple closed curve γ ⊂ Γ∗ that bounds a disk in P but is not the
boundary of a face of ∂P�Γ∗.

Finally, we remove from P all the vertices of Γ, making them ideal vertices. We will refer to
the edges of Γ as the edges of P, and to the faces of ∂P�Γ as the faces of P. Removing the
vertices of Γ makes the faces of P ideal polygons.

Property (1) says that P is locally convex at every edge. Property (2) says that the link of
every ideal vertex of P has the angles of a convex Euclidean polygon. Property (3) is based on
the following theorem of Rivin [18].

Theorem 2.3 (Rivin). Let P be an angled polyhedron, that is, a contractible angled block.
Then P can be realized as a convex ideal polyhedron in H3 with the prescribed dihedral angles,
uniquely up to isometry. Conversely, the dihedral angles of every convex ideal polyhedron in
H3 satisfy (1)–(3).
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Such characterizations of polyhedra in H3 by their dihedral angles were first studied by
Andreev [1]. We conjecture that an analogous result holds for non-contractible blocks as well.

Conjecture 2.4. Let P be an angled block. Then its universal cover P̃ can be realized
as a (possibly infinite) ideal polyhedron in H3, with dihedral angles specified by P, uniquely
up to isometry.

When P is contractible, this conjecture is exactly Rivin’s theorem. Schlenker [21, Theorem
8.15] has treated the case where P has incompressible boundary. Finally, when all angles are at
most π/2, the double of P is a cone-manifold with cone angles at most π, and the conjecture
follows from the cone-deformation proof of the hyperbolization theorem for orbifolds (see [2,
4]). We also note that the converse statement (that the ideal polyhedron P̃ must satisfy (1)–(3))
is a fairly straightforward consequence of the Gauss–Bonnet theorem.

Our primary interest is in the manifolds that one may construct by gluing together angled
blocks. To build a manifold with boundary, we first truncate all the ideal vertices of the blocks.
As a result, a block P has two kinds of faces: interior faces that are truncated copies of the
original faces, and boundary faces that come from the truncated vertices. Similarly, P has two
kinds of edges: interior edges that are truncated edges of Γ, and boundary edges along the
boundary faces. We note that a truncated block is a special case of a differentiable manifold
with corners (modeled over R3

+: see [5] for a general definition).

Definition 2.5. Let (M,∂M) be a compact 3-manifold with boundary. An angled
decomposition of M is a subdivision of M into truncated angled blocks, glued along their
interior faces, such that

∑
αi = 2π around each interior edge of M . The boundary faces of the

blocks fit together to tile ∂M .

Theorem 1.1 says that the interior of every orientable manifold with an angled decomposition
must admit a hyperbolic structure. However, this is purely an existence result. An angled
decomposition of a manifold is considerably weaker and more general than a hyperbolic
structure, for two reasons. First, we do not know whether the blocks are actually geometric
pieces — this is the content of Conjecture 2.4. Second, even when the blocks are known to be
geometric, a geometrically consistent gluing must respect more than the dihedral angles. This
means that faces of blocks that are paired in the gluing must be isometric — a condition that
may not hold for faces larger than triangles. To obtain a complete hyperbolic structure, the
truncated vertices of the blocks must also fit together to tile a horospherical torus, meaning
that these Euclidean polygons must have consistent sidelengths as well as consistent angles.

There is an interesting contrast between the rigidity of a hyperbolic structure and the
flexibility of angle structures. By Definitions 2.2 and 2.5, an angle structure on a block
decomposition is a solution to a system of linear equations and (strict) linear inequalities.
The solution set to this system, if non-empty, is an open convex polytope, so for every angled
decomposition there is a continuum of deformations.

In fact, geometric angled blocks — for example, angled polyhedra — can serve as a stepping
stone on the way to finding a complete hyperbolic structure. Every angled polyhedron has
a well-defined volume determined by its dihedral angles, by Theorem 2.3. If the volume of
an angled decomposition is critical in the polytope of deformations, we can exploit Schläfli’s
formula as in Rivin’s theorem [17] and show that the polyhedra glue up to give a hyperbolic
metric: this is carried out for some examples in [9] (where all blocks are tetrahedra). However,
depending on the combinatorics of the decomposition, a critical point may or may not occur.
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In fact, numerical experiments show that some of the decompositions that we will define for
arborescent link complements in Section 4 admit angle structures, but have no critical point,
hence no geometric realization in the hyperbolic metric.

2.2. Normal surface theory in angled blocks

To prove Theorem 1.1, we study the intersections between blocks and (smooth) essential
surfaces.

Definition 2.6. A surface (S, ∂S) ⊂ (M,∂M) is called essential if S is incompressible,
boundary-incompressible, and not boundary-parallel, or if S is a sphere that does not bound
a ball.

Our aim is to move any essential surface into a form where its intersections with the individual
blocks are particularly nice.

Definition 2.7. Let P be a truncated block, and let (S, ∂S) ⊂ (P, ∂P) be a surface. We
say that S is normal if it satisfies the following properties:

(1) every closed component of S is incompressible in P;
(2) S and ∂S are transverse to all faces and edges of P;
(3) no component of ∂S lies entirely in a face of ∂P;
(4) no arc of ∂S in a face of P runs from an edge of P back to the same edge;
(5) no arc of ∂S in an interior face of P runs from a boundary edge to an adjacent interior

edge.
Given a decomposition of M into blocks, a surface (S, ∂S) ⊂ (M,∂M) is called normal if for
every block P, the intersection S ∩ P is a (possibly non-connected) normal surface in P.

Theorem 2.8. Let (M,∂M) be a manifold endowed with a fixed block decomposition.
(a) If M is reducible, then M contains a normal 2-sphere.
(b) If M is irreducible and ∂M is compressible, then M contains a normal disk.
(c) If M is irreducible and ∂M is incompressible, then any essential surface can be moved

by isotopy into normal form.

Proof. The following argument is the standard procedure for placing surfaces in normal
form with respect to a triangulation or polyhedral decomposition [10]. As long as all faces of
all blocks are disks, the topology of the blocks never becomes an issue. We will handle part (c)
first, followed by (b) and (a).

For (c), assume that M is irreducible and ∂M is incompressible. Let (S, ∂S) be an essential
surface in (M,∂M). To move S into normal form, we need to check the conditions of Definition
2.7. Since S is essential in M , it automatically satisfies (1). Furthermore, a small isotopy of S
ensures the transversality conditions of (2).

Consider the intersections between S and the open faces of the blocks, and let γ be one
component of intersection. Note that by Definition 2.1, the face F containing γ is contractible.
We want to make sure that γ satisfies (3), (4), and (5).

(3) Suppose that γ is a closed curve, violating (3). Without loss of generality, we may
assume that γ is innermost on the face F . Then γ bounds a disk D ⊂ F , whose interior is
disjoint from S. However, since S is incompressible, γ also bounds a disk D′ ⊂ S. Furthermore,
since we have assumed that M is irreducible, the sphere D ∪γ D′ must bound a ball. Thus we
may isotope S through this ball, moving D′ past D. This isotopy removes the curve γ from
the intersection between S and F .
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Figure 2.1. When a surface violates condition (4) of normality, an isotopy in the direction of
the arrow removes intersections between S and the faces of M .

(4) Suppose that γ runs from an edge e back to e, violating (4). Then γ and e co-bound a
disk D ⊂ F , and we can assume that γ is innermost (that is, S does not meet D again). If e
is an interior edge, we can use this disk D to guide an isotopy of S past the edge e, as in the
left panel of Figure 2.1. This isotopy removes γ from the intersection between S and F (some
intersection components between S and the interiors of faces other than F may merge, but
their total number always decreases).
If γ lies in a boundary face, then the situation is very similar to the previous paragraph. This
time, the disk D guides an isotopy of S along ∂M , simplifying the intersection between S and
the faces of the blocks.
Finally, if e is a boundary edge and F is an interior face, then D is a boundary compression
disk for S. Since S is boundary-incompressible, γ must also cut off a disk D′ ⊂ S, as in the
right panel of Figure 2.1. Since M is irreducible and ∂M is incompressible, it follows that the
disk D ∪γ D′ is boundary-parallel: D ∪ D′ ∪ Δ bounds a ball B, for some disk Δ ⊂ ∂M . We
must ask on which side of D ∪γ D′ the ball B lies: if a neighborhood of the arc γ in the surface
S meets the interior of B, then S is a disk of B and is boundary-parallel (recall that S does not
meet D again, because γ is innermost among the arcs running from e back to e). Therefore, S
does not meet the interior of B. In particular, D′ is isotopic to D by an isotopy sweeping out
B and missing S�D′. This defines an isotopy of S that can be extended slightly to move D′

past D, thus removing the curve γ from the intersection between S and F .
(5) Suppose that γ runs from a boundary edge to an adjacent interior edge, violating (5).

Then γ once again cuts off a disk D. By isotoping S along this disk, as in Figure 2.2, we remove
γ from the intersection.

It is immediate to check that each of the last three moves reduces the number of components
of S ∩ Z, where Z is the union of the interiors of the faces of M . Thus, after a finite number
of isotopy moves, S becomes normal.

Figure 2.2. When a surface violates condition (5) of normality, a ∂M -preserving isotopy of S
along the disk D, in the direction of the arrow, removes intersections between S and the

faces of M .
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For part (b), assume that M is irreducible and ∂M is compressible. Let S be an essential
disk in M ; under our assumptions, S must be a compression disk for ∂M . To move S into
normal form, we follow a procedure very similar to that in part (c). In particular, condition
(1) of Definition 2.7 is vacuous because S has no closed components. Furthermore, a small
isotopy of S ensures the transversality conditions of (2). Focusing our attention on conditions
(3)–(5), let γ be one component of intersection between S and a face F of a block.

If γ is a simple closed curve, violating (3), the argument is exactly the same as above. We
find that γ bounds a disk D ⊂ F and an isotopic disk D′ ⊂ S, because S is incompressible and
M is irreducible. Thus we may isotope S past D.

If γ runs from an edge e back to e, violating (4), the argument is mostly the same as above.
If e is an interior edge, or γ lies in a boundary face, then the exact isotopies described in part
(c–4) will guide S past e. If e is a boundary edge and γ lies in an interior face F , then γ and
e co-bound a disk D ⊂ F ; up to replacing γ with an outermost arc of D ∩ S on F , we may
assume that D ∩ S = γ so that the disk D realizes a boundary compression of S. The situation
is similar to the right panel of Figure 2.1, except that now γ splits S into disks D1 and D2

(since S itself is a disk). At least one Di ∪γ D must be essential in M , because if they were
both boundary-parallel, S would be boundary-parallel too. If by S we now denote this essential
disk Di ∪γ D, then S can be pushed away from the face F .

Finally, if γ runs from a boundary edge to an adjacent interior edge e, violating (5), an
isotopy of S as in Figure 2.2 will remove γ from the intersections between S and the faces of
the blocks. Each of the last three moves simplifies the intersections between S and the faces,
so a repeated application will place S in normal form.

For part (a), assume that the manifold M is reducible, and let S ⊂ M be a sphere that does
not bound a ball. We will move S into normal form by checking the conditions of Definition
2.7. Note that by Definition 2.2, an essential sphere can never be contained in a single block,
so condition (1) is vacuous. A small isotopy of S ensures the transversality conditions of (2).
Note as well that condition (5) is vacuous, because S is closed. To satisfy conditions (3) and
(4), let γ be one arc of intersection between S and a face F of a block.

If γ is a simple closed curve, violating (3), we may assume as before that γ is innermost in F .
Thus γ bounds a disk D ⊂ F whose interior is disjoint from S. Because S is a sphere, we may
write S = D1 ∪γ D2 for disks D1 and D2. Suppose that each Di ∪γ D bounds a ball Bi. Because
the boundaries of B1 and B2 intersect exactly along a single disk D, either one ball contains
the other or they have disjoint interiors. In either scenario, it follows that S = D1 ∪ D2 must
bound a ball, which is a contradiction. Thus, since at least one Di ∪γ D must fail to bound a
ball, we can replace D by one of the Di. The resulting sphere, which we continue to call S, can
be pushed away from the face F .

If γ runs from an edge e back to e, violating (4), then γ and e co-bound a disk D. As before,
we can use D to guide an isotopy of S past e. (See Figure 2.1, left.) Note that since S is closed,
γ must be an interior edge.

By repeating these moves, we eventually obtain a sphere in normal form.

2.3. Combinatorial area

So far, we have not used the dihedral angles of the blocks. Their use comes in estimating the
complexity of normal surfaces.

Definition 2.9. Let P be an angled block, and denote by εδ the exterior dihedral angle
at the edge δ. Truncate the ideal vertices of P, and label every boundary edge δ with a
dihedral angle of εδ = π/2. Let S be a normal surface in P, and let δ1, . . . , δn be the edges of
the truncated block P met by ∂S (each edge may be counted several times). We define the
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Figure 2.3. In any angled block, vertex links (left) and boundary bigons (right) are the only
connected normal surfaces of area 0.

combinatorial area of S to be

a(S) =
n∑

i=1

εδi
− 2πχ(S).

For the sake of brevity, we will refer to the above sum of dihedral angles (
∑n

i=1 εδi
) as

∑
∂S εi.

Note that by the Gauss–Bonnet theorem, a(S) is just the area of a hyperbolic surface
with piecewise geodesic boundary, with exterior angles εi along the boundary and Euler
characteristic χ(S).

Proposition 2.10. Let S be a normal surface in a truncated angled block P. Then
a(S) � 0. Furthermore, if a(S) = 0, then every component of S is a vertex link (boundary
of a regular neighborhood of a boundary face) or a boundary bigon (boundary of a regular
neighborhood of an interior edge), as in Figure 2.3.

Proof. Because combinatorial area is additive over multiple components of S, it suffices to
consider the case when S is connected. Furthermore, when χ(S) < 0, a(S) > 0, so it suffices to
consider the case when χ(S) � 0. By Definition 2.2, P is irreducible and atoroidal, so S cannot
be a sphere or torus. If S is an annulus, then a(S) =

∑
∂S εi > 0, because ∂S must intersect

some edges and the dihedral angle on each edge is positive. Thus the only remaining case is
when S is a disk.

For the rest of the proof, let D ⊂ P be a normal disk. We consider three cases, conditioned
on n, the number of intersections between D and the boundary faces.

Case 0: n = 0. Recall, from Definitions 2.1 and 2.2, that every interior face of P corresponds
to a complementary region of the graph Γ and to a vertex of the dual graph Γ∗. Thus ∂D
defines a closed path γ through the edges of Γ∗; this is a non-backtracking path because no arc
of ∂D runs from an edge back to itself. The path γ may pass through an edge multiple times,
but it contains a simple closed curve in Γ∗. Thus, by Definition 2.2,

∑
∂D εi � 2π. Equality

can occur only when ∂D encircles an ideal vertex, in other words when D is a vertex link.
Case 1: n = 1. The two boundary edges crossed by ∂D contribute π to the external angle

sum of ∂D. Thus we may isotope ∂D off the boundary face F without increasing the angle
sum, since by Definition 2.2 the interior edges meeting F have a total angle of 2π. Let D′

be the resulting disk, and a1, . . . , ak be the intersection points, numbered consecutively, of ∂D′

with interior edges of the block near F (in Figure 2.4, k = 2).
We claim that D′ is normal. Since n = 1, the only way that D′ can fail Definition 2.7 is if an

arc of ∂D′ violates condition (4) and runs from an interior edge e back to itself. This cannot
happen between ai and ai+1, otherwise the block would have a monogon face, in contradiction
with Definitions 2.1 and 2.2. Hence condition (4) is violated by an arc starting from a1 in the
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Figure 2.4. We may isotope ∂D off a boundary face of P, producing a normal disk D′ with
a(D′) � a(D).

direction opposite a2 to end on the same interior edge e (or by an analogous arc from ak). But
then the corresponding arc of D must connect e to an adjacent boundary edge, contradicting
condition (5). Thus, by case (0), a(D) � a(D′) � 0.

It remains to show that the area of D is strictly positive. If a(D′) > 0, this is automatic. If
a(D′) = 0, then D′ must be a vertex link, parallel to a boundary face F1. This F1 cannot be
the boundary face F that intersects D, for otherwise all of D is parallel to F , forcing some
arc of ∂D to violate condition (5). As a result, the interior edges containing points a1, . . . , ak

must run in parallel between F1 and F . However, by Definition 2.1, the boundary of a block
cannot have parallel edges, so in fact k = 1. Thus, because the (exterior) dihedral angle at a1

is strictly less than π, we have a(D) > a(D′) � 0.
Case 2: n � 2. Since ∂D crosses at least 4 boundary edges, a(D) � 0, with equality only if

n = 2 and ∂D is disjoint from the interior edges. We restrict our attention to this case, and
claim that D is a boundary bigon.

Push ∂D off the two boundary faces F1 and F2, in a way that minimizes the angle sum of the
new disk D′. Denote by a1, . . . , ak and b1, . . . , bl the points where ∂D′ crosses interior edges near
F1 and F2, respectively. Orient the edge germs containing the ai and bj away from the faces F1

and F2. If A and B are the sums of the angles of D′ at the ai and bi, respectively, then A,B � π.
Suppose that D′ is normal. Since we know that a(D′) � a(D) = 0, it follows by case (0) that

D′ must be the vertex link associated to a boundary face F ′. Moreover, we have A = B = π,
and hence k, l � 2. Let us isotope D′ into ∂P while keeping its boundary fixed, so that after the
isotopy, D′ contains the boundary face F ′ as well as initial segments of all interior edges starting
at F ′: these initial segments end at a1, . . . , ak, b1, . . . , bl, in that cyclic order around F ′. Suppose
that the orientations on the interior edges through the ai are inward for D′ (in particular, this
will happen whenever F1 �= F ′). Then, since k � 2, it follows that ∂P contains an ideal bigon,
which is impossible. Therefore the orientations point outward, which implies notably that
F1 = F ′. Similarly, F2 = F ′. As a result, the boundary of the original disk D violates condition
(4), for example, at the boundary edge situated between ak and b1 (Figure 2.5, left), which is
a contradiction.

Therefore D′ is not normal: define Δ = D′ (we are going to modify Δ, but not D′). Then the
loop ∂Δ must violate (4), running in a U-turn from an interior edge e back to e: we can isotope
the disk Δ so as to erase this U-turn. The angle sum of Δ decreases to a value less than 2π,
so Δ is even less normal now (by case (0)). If ∂Δ still crosses any (interior) edges, then we can
repeat the operation, until ∂Δ violates (3), and Δ can be isotoped into an interior face (recall
that the block P is irreducible). Therefore D′ can be isotoped, with fixed boundary, to a disk
in the union of all (open) interior faces and interior edges. Interior edges must connect across
D′ the points a1, . . . , ak, b1, . . . , bl of ∂D′, which are still cyclically ordered (Figure 2.5, right.)
If some edge goes from ai to aj (where i < j) then there must be an edge from as to as+1 for
some i � s < j, and therefore ∂P contains an ideal monogon, which is impossible. Therefore
every edge across D′ runs from an ai to a bj , in fact to bk+1−i (and we have k = l). If k � 2,
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Figure 2.5. When n = 2 and a(D) = 0, we have a contradiction for D′ normal (left), as well as
for D′ non-normal (right), unless k = l = 1.

then ∂P contains an ideal bigon. Therefore k = 1, so D′ is traversed by a single edge e, and
the original disk D is the boundary bigon associated to e.

For an essential surface (S, ∂S) ⊂ (M,∂M), we can define the combinatorial area a(S) by
adding up the areas of its intersections with the blocks. This definition of combinatorial area
was designed to satisfy a Gauss–Bonnet relationship.

Proposition 2.11. Let (S, ∂S) ⊂ (M,∂M) be a surface in normal form. Then

a(S) = −2πχ(S).

Proof. Consider the decomposition of S into S1, . . . , Sn, namely its components of intersec-
tion with the various blocks. Let S′ = Si1 ∪ . . . ∪ Sik

be a union of some Si glued along some
(not necessarily all) of their edges: S′ is a manifold with polygonal boundary. Define the interior
angle of S′ at a boundary vertex to be the sum of the interior angles of the adjacent Siα

, and
the exterior angle as the complement to π of the interior angle. It is enough to prove that

k∑
α=1

a(Siα
) =

∑
∂S′

εi − 2πχ(S′), (2.1)

where the εi are the exterior angles of S′: the result will follow by taking S′ = S (the union
of all Si glued along all their edges), because all εi are then equal to π − (π/2 + π/2) = 0.
Since M is orientable, up to replacing S with the boundary of its regular neighborhood, we
can restrict to the case where S is orientable.

We prove (2.1) by induction on the number of gluing edges, where the set of involved
components Siα

is chosen once and for all. When no edges are glued, (2.1) follows from
Definition 2.9. It remains to check that the right-hand side of (2.1) is unchanged when two
edges are glued together. In what follows,

– ν is the number of boundary vertices of S′,
– θ is the sum of all interior angles along ∂S′, and
– χ is the Euler characteristic of S′.

Thus the right-hand side of (2.1) is νπ − θ − 2πχ.
If we glue edges ab and cd, where a, b, c, d are distinct vertices of S′, then θ is unchanged,

but ν goes down by 2 and χ goes down by 1: (2.1) is preserved.
If we glue edges ab and bc by identifying a and c, where a, b, c are distinct vertices, then

θ goes down by 2π, because b becomes an interior vertex, while ν goes down by 2 and χ is
unchanged: (2.1) is preserved.
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If we glue two different edges of the form ab, closing off a bigon boundary component of S′,
then θ goes down by 4π because both a and b become interior vertices. Since ν goes down by
2, and χ goes up by 1, again (2.1) is preserved.

If we glue an edge ab to a monogon boundary component cc, where a, b, c are distinct vertices,
then θ is unchanged, while ν goes down by 2 and χ goes down by 1. If we glue two boundary
monogons aa and bb together (where a �= b), then θ goes down by 2π, while ν goes down by 2
and χ(S′) is unchanged. In all cases, (2.1) is preserved.

We are now ready to complete the proof of Theorem 1.1.

Theorem 1.1. Let (M,∂M) be an orientable 3-manifold with an angled decomposition.
Then ∂M consists of tori, and the interior of M is hyperbolic.

Proof. Each component of ∂M is tiled by boundary faces of the blocks. Just inside each
boundary face, a block has a normal disk of area 0. These vertex links glue up to form a closed,
boundary-parallel normal surface S of area 0. By Proposition 2.11, χ(S) = 0, and since M is
orientable, the boundary–parallel surface S must be a torus. Thus ∂M consists of tori.

By Thurston’s hyperbolization theorem [23], the interior of M carries a complete, finite-
volume hyperbolic metric if and only if M contains no essential spheres, disks, annuli, or tori.
By Theorem 2.8, if M has such an essential surface, then it has one in normal form. A normal
sphere or disk has a positive Euler characteristic, and hence a negative area; thus it cannot
occur.

A normal torus T ⊂ M has area 0 and thus, by Proposition 2.10, must be composed of
normal disks of area 0. Since T has no boundary, these must all be vertex links, which glue
up to form a boundary-parallel torus. Similarly, a normal annulus A ⊂ M must be composed
entirely of bigons, since a bigon cannot be glued to a vertex link. However, a chain of bigons
forms a tube around an edge of M , which is certainly not essential. Thus we can conclude that
M is hyperbolic.

3. A simplification algorithm for arborescent links

Recall, from the introduction, that a generalized arborescent link is constructed by gluing
together a number of d-bracelets. In this section, we describe an algorithm that takes a
particular link and simplifies its bracelet presentation into a reduced form. This algorithm,
directly inspired by Bonahon and Siebenmann’s work [3], has several uses. First, if a given
generalized arborescent link is composite, the algorithm will decompose it into its prime
arborescent pieces. Second, the simplified bracelet description will allow us to rapidly identify
the non-hyperbolic arborescent links listed in Theorem 1.5. In particular, the algorithm
recognizes the unknot from among the family of generalized arborescent links. Finally, the
simplified bracelet form of an arborescent link turns out to be the right description for
the block decomposition of the link complement that we undertake in Section 4.

3.1. Slopes on a Conway sphere

Whenever two bracelets are glued together, they are joined along a 2-sphere that intersects the
link K in 4 points. This type of sphere, called a Conway sphere, defines a 4-punctured sphere in
the link complement. Our simplification algorithm is guided by the way in which gluing maps
act on arcs in Conway spheres.
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Figure 3.1. Arcs of slope 0, 1, and ∞ give an ideal triangulation of a 4-punctured sphere S.

Definition 3.1. Let S be a 4-punctured sphere. An arc pair γ ⊂ S consists of two disjoint,
properly embedded arcs γ1 and γ2, such that γ1 connects two punctures of S and γ2 connects
the remaining two punctures of S. A slope on S is an isotopy class of arc pairs, and is determined
by any one of the two arcs.

To visualize slopes, it helps to picture S as a pillowcase in R3 surrounding the unit square
of R2, with punctures at the corners. (See Figure 3.1.) Any arc pair on the pillowcase
can then be straightened so that its intersections with the front of the pillow have a well-
defined Euclidean slope. A marking of S (that is, a fixed homeomorphism between S and
the pillowcase of Figure 3.1) induces a bijection between slopes on S and elements of
P1Q = Q ∪ {∞}.

Slopes on 4-punctured spheres can be neatly represented by the Farey complex F , shown
in Figure 3.2. Vertices of F correspond to slopes (arc pairs), edges of F to disjoint slopes,
and triangles to triples of disjoint slopes. Observe that a choice of three disjoint arc pairs of
different slopes gives an ideal triangulation of S. Figure 3.2 also illustrates that F (with its
vertices removed) is homeomorphic to the Poincaré disk and can be endowed with a hyperbolic
metric, making the triangles of F straight ideal triangles. The dual of F is an infinite trivalent
planar tree.

Figure 3.2. The Farey complex F of a 4-punctured sphere (graphic by Allen Hatcher).
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Definition 3.2. Let S be a boundary sphere of a d-bracelet. This Conway sphere will be
assigned a preferred slope, as follows. When d > 1, choose a crossing segment on each side of
S (see Definition 1.2). If we isotope these two segments into S, we get an arc pair whose slope
is the preferred slope of S. When d = 1, K1 consists of two arcs that can be isotoped into S;
their slope is then the preferred slope of S. Note that the two definitions (for d = 1 and d > 1)
are truly different. The case d = 0 is empty (a 0-bracelet has no boundary spheres).

3.2. The algorithm

We will perform the following sequence of steps to simplify the bracelet presentation of a
generalized arborescent link.

(1) Remove all 2-bracelets. As Figure 1.1 illustrates, the two boundary components of a
2-bracelet B2 are isotopic, and moreover B2 is homeomorphic to the pair

(S2 × I, {4 points} × I).

Thus, whenever a 2-bracelet sits between two other bracelets, those other bracelets can be
glued directly to one another, with the gluing map adjusted accordingly.

(2) Remove needless 1-bracelets. Suppose that a 1-bracelet B1 is glued to a d-bracelet Bd

(with d > 1), and that their preferred slopes at the gluing Conway sphere are Farey neighbors.
Then the two arcs of K1 can be isotoped to lie on the Conway sphere ∂B1, without intersecting
the crossing segments of Bd. As a result, the arcs Kd ∪ K1 combine to form the band of a (d−1)-
bracelet, as in Figure 3.3. Thus we may remove B1 and replace Bd by a bracelet Bd−1, with
one fewer boundary component.

Figure 3.3. Removing a needless 1-bracelet.

(3) Undo connected sums. Suppose that a 1-bracelet B1 is glued to a d-bracelet Bd (with
d > 1), and that their preferred slopes are equal. Then there are several different 2-spheres
that pass through the trivial tangle of B1 and intersect K in a pair of points connected by a
crossing segment. In this situation, we cut K along the crossing segments of Bd, decomposing
it as a (possibly trivial) connected sum of d − 1 other links, as in Figure 3.4. On the level of
bracelets, each piece of K that was glued to a Conway sphere of Bd will instead be glued to
its own 1-bracelet, whose slope on the gluing sphere is given by the crossing segments of Bd.
After this cutting operation, we will work separately with each of the d − 1 new links. That
is, we will apply the reduction algorithm to simplify the bracelet presentation of each of these
links. The algorithm may reveal that one or more of the new links is actually the unknot
(see Theorem 3.9), and thus that we have undone a trivial connected sum. In this case, we
may simply throw away the trivial pieces, having still gained the benefit of a simpler bracelet
presentation of K.

(4) Repeat steps (1)–(3), as necessary. Note that removing a needless 1-bracelet can create
a new 2-bracelet (as in Figure 3.3), and removing a 2-bracelet can change the gluing map of a
1-bracelet. However, since each of the above steps reduces the total number of Conway spheres
in the construction of K, eventually we reach a point where none of these reductions is possible.
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Figure 3.4. Special 1-bracelets decompose a link as a connected sum.

Definition 3.3. Let A ⊂ S3 be an unknotted band, and let T = S3�A be the open solid
torus equal to the complement of A. Let Ln be a link consisting of n parallel, unlinked copies
of the core of T .

Recall from Definition 1.2 that a d-bracelet Bd is the pair (Md,Kd), where Md is the
complement of a regular neighborhood of d disjoint crossing segments of A, and Kd = Md ∩ ∂A.
We define an n-augmented d-bracelet to be Bd,n = (Md,Kd ∪ Ln). Thus a traditional d-bracelet
Bd corresponds to taking n = 0. When n � 1, for all positive d (including d = 1) the preferred
slope of Bd,n at a boundary (Conway) sphere is the slope of the crossing segments of A at this
sphere.

Augmented bracelets naturally arise from certain configurations of d-bracelets. We continue
our algorithm as follows.

(5) Create augmented bracelets. Let B3 be a 3-bracelet glued to 1-bracelets B1 and B′
1.

Suppose that there is a marking of the boundary spheres of B3 such that the preferred slope of
B3 is ∞ and the preferred slopes of B1 and B′

1 are in Z + 1/2. (For example, in the two trivial
tangles of Figure 3.5, these slopes are −1/2 and 1/2; but other values would just correspond
to adding half-twists in the “horizontal” band of B3. An intrinsic criterion is: the slopes of B3

and B1 (respectively B′
1) are not Farey neighbors, but they share exactly two common Farey

neighbors.) In this situation, we will replace B3 ∪ B1 ∪ B′
1 by a once-augmented 1-bracelet

B1,1, as in Figure 3.5. Note that the closed loop in B1,1 can be isotoped to lie on the boundary
sphere S. Up to isotopy, there is exactly one arc pair on S that is disjoint from this loop; its
slope is the preferred slope of B1,1.
Remark: If B3 is glued to three different 1-bracelets, each with slope in Z + 1/2 (so the link
contains no other bracelets than these four), we break the symmetry by choosing two of the
1-bracelets for augmentation.

Definition 3.4. A (possibly augmented) bracelet Bd,n is large if d � 3 or n � 1.

(6) Combine large bracelets when possible. Suppose that large bracelets Bd,n and Bd′,n′

are glued together along a Conway sphere, with their preferred slopes equal. Then we will
combine them into a single (d + d′ − 2)-bracelet, augmented (n + n′) times. Note that at the
beginning of this step, the only augmented bracelets are of the form B1,1, created in step (5).
However, under certain gluing maps, several bracelets of this form may combine with other
large bracelets to form n-augmented d-bracelets, with d and n arbitrarily large.
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Figure 3.5. Creation of an augmented 1-bracelet. The arc pair γ1 ∪ γ2 defines the preferred
slope of B1,1.

(7) Form 0-bracelets and augmented 0-bracelets. Consider a 1-bracelet B1, with preferred
slope s. For any arc pair γ ⊂ ∂B1 whose slope is a Farey neighbor of s, we can construct a
rectangular strip in B1 with boundary K1 ∪ γ. Therefore, when bracelets B1 and B′

1 are glued
together and their preferred slopes share a common neighbor in F , we can glue these two
rectangular strips to form an annulus or Möbius band whose boundary is K1 ∪ K ′

1. In this
situation, we replace B1 ∪ B′

1 by a single 0-bracelet.
In a similar fashion, an augmented 1-bracelet B1,n contains a rectangular strip whose
intersection with the boundary sphere defines the preferred slope of B1,n. Therefore, when
B1,n is glued to a 1-bracelet B1 and their preferred slopes are Farey neighbors, we once again
have an annulus or Möbius band. In this situation (similar to step (2)), we replace B1 ∪ B1,n

by a single augmented bracelet B0,n, as in Figure 3.6.

Figure 3.6. Creating an augmented 0-bracelet.

Remark 3.5. No further instances of steps (1)–(3) occur after the creation of augmented
bracelets in step (5). This is clear for step (1): no (unaugmented) 2-bracelets appear, not even
in step (6) because the bracelets that merge in (6) are already large. Next, observe that the
preferred slopes on Conway spheres of large bracelets are never changed after step (5) (not
even when Conway spheres are cancelled in (6)). An easy discussion then implies that steps
(2)–(3), or their analogues for augmented bracelets, never occur.

The following result summarizes the output of the simplification algorithm.

Proposition 3.6. For every generalized arborescent link given as input, the algorithm
above produces several ‘output links’, of which the input is a connected sum. Let K be such
an output link. Then K is expressed as a gluing of (possibly augmented) bracelets, in which
all 2-bracelets are augmented.
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Furthermore, suppose that bracelets B and B′ are glued along a Conway sphere. Any path
through the 1-skeleton of the Farey complex connecting the preferred slope of B to the preferred
slope of B′ must contain at least the following number of edges (Table 1):

Table 1.

B′
1,0 B′

d,nlarge
—————————

B1,0

∣∣∣ 3 2

Bd,nlarge
∣∣∣ 2 1

Proof. Observe that the reduction algorithm only changes the topological type of K in step
(3), where it cuts K into (possibly trivial) connected summands. Thus the output links do in
fact sum to K.

Top-left entry of the table: if the preferred slopes of bracelets B1,0 and B′
1,0 are at distance

2 (or less) in the Farey graph, they share a Farey neighbor and thus step (7) has reduced them
to a single 0-bracelet. Similarly, the reduction of step (6) accounts for the bottom-right entry,
and step (2) for the non-diagonal entries.

3.3. Analysing the output

We are now ready to recognize the non-hyperbolic arborescent links listed in Theorem 1.5.
After the simplification algorithm, they can appear in any one of the following four ways.

(1) Bracelets augmented more than once. A bracelet Bd,n, where n � 2, will contain two
isotopic link components, as in Figure 3.6. Each of these parallel components bounds a disk
that is punctured twice by the strands of Kd. Thus any link containing such a bracelet falls in
the exceptional family II.

(2) 0-bracelets. By Definition 1.2, the link contained in a 0-bracelet is the boundary of an
unknotted band. These links fall in the exceptional family I.

(3) Once-augmented 0-bracelets. Let K be the link contained in an augmented 0-bracelet
with r half-twists. By reflecting K if necessary, we may assume that r � 0. Now, we consider
the following three cases.

(a) r = 0. Then K is the link depicted in Figure 3.7(a). We note that K is composite,
and thus not arborescent by Definition 1.4.
In fact, we claim that this case (a) is void because the reduction algorithm will have
cut this link into its prime components (two copies of the Hopf link). The augmented
0-bracelet was necessarily created in step (7) from a 1-bracelet B1 and an augmented
bracelet B1,1, which in turn was necessarily created from a 3-bracelet B3 in step (5).
However, B3 must have been glued to B1 with their preferred slopes equal, so in step
(3) the algorithm will have recognized K as a connected sum.
(b) r = 1. Then, as Figure 3.7(b) shows, K is the boundary of an unknotted band with
4 half-twists, which falls in the exceptional family I.
(c) r � 2. Then, as Figure 3.7(c) shows, K is the pretzel link P (r, 2, 2;−1). Because
r � 2 and 1/2 + 1/2 + 1/r > 1, K falls in the exceptional family III.

(4) Exceptional Montesinos links. Recall, from the introduction, that a Montesinos link can
be constructed by gluing a bracelet Bd to d different 1-bracelets. Consider such a link K, with
d � 3. By Proposition 3.6, in any Montesinos output link, the preferred slope of Bd is not a
Farey neighbor of the preferred slope of any of the 1-bracelets. Thus there is a marking of
each Conway sphere, in which the preferred slope of Bd is ∞ and the preferred slope of the
1-bracelet glued to that Conway sphere is not in Z ∪ {∞}.
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Figure 3.7. Augmented 0-bracelets form exceptional links in three different ways.

Once these markings are chosen, there is a unique unknotted band consisting of the arcs of Kd

and arcs of slope 0 along the Conway spheres. We define the number of half-twists in the band
of Bd to be the number of half-twists in this band. If we modify the marking on some sphere
by k/2 Dehn twists about the preferred slope of Bd, the slope of the 1-bracelet glued to that
sphere goes up by k, while the number of half-twists in the band goes down by k. Thus, by
employing Dehn twists of this sort, we can choose markings in which the preferred slope of Bd

is still ∞ and the preferred slope of each 1-bracelet is in the interval (0,1).
We perform two final normalizations. The edge pairs of slopes 0, 1,∞ decompose each Conway
sphere into four triangles. The orientation of the bracelet Bd induces an orientation for each of
the d Conway spheres of ∂Bd. We stipulate that the edges of any triangle of any Conway sphere
S have slope 0, 1,∞, in that clockwise order around the triangle, for the induced orientation
of S. (We recommend that the reader disregard all orientation issues at a first reading. The
choices in this paragraph are unimportant, as long as they are consistent from one Conway
sphere to the next.) This can be assumed, up to changing the marking of some of the Conway
spheres by an orientation-reversing homeomorphism, exchanging the slopes 0,1 and fixing ∞.
Finally, up to reflecting the link K, we can ensure that at least one of the 1-bracelet slopes
falls in the interval (0, 1/2]. Now, we can recognize the exceptional links:

(a) If d = 4, and the slope of every 1-bracelet is 1/2, and there are 2 half-twists in the
band of Bd, then K is the pretzel link P (2,−2, 2,−2), as in Figure 3.8. Thus K falls in
exceptional family II.
(b) If d = 3, and the slope of every 1-bracelet is of the form 1/n, and there is 1 half-twist
in the band of Bd, then K is the pretzel link P (p, q, r;−1). If 1/p + 1/q + 1/r � 1, then
K falls in the exceptional family III.

Definition 3.7. An arborescent link K is called a candidate link if it can be constructed
from (possibly augmented) bracelets in the following fashion:

– The link K is not a 0-bracelet or augmented 0-bracelet.
– All bracelets are either unaugmented or augmented once.
– All 2-bracelets are augmented once.
– The gluing maps of bracelets along Conway spheres satisfy the minimum-distance table

(Table 1) of Proposition 3.6.
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Figure 3.8. The pretzel link P (2,−2, 2,−2) falls in the exceptional family II.

– If K has exactly one large bracelet Bd,0, the normalization process of (4a, b) above does
not reveal K as an exceptional Montesinos link.

So far, we have proved that every link K contained in the output of the algorithm (and thus,
in particular, every arborescent link) either falls into one of the three exceptional families, or
else is a candidate link. To complete the proof of Theorem 1.5, it remains to show the following
theorem.

Theorem 3.8. Let K be a candidate link. Then S3�K admits a decomposition into angled
blocks. Thus, by Theorem 1.1, every candidate link is hyperbolic.

The proof of Theorem 3.8 occupies Sections 4 and 5. In the meantime, we record the following
consequence of Theorem 3.8, which shows that our reduction algorithm does more than merely
sort generalized arborescent links into hyperbolic and non-hyperbolic bins.

Theorem 3.9. Let K be a generalized arborescent link, given in any presentation as a
union of unaugmented bracelets. If we apply the simplification algorithm to K, it will output
several links K1, . . . ,Kn, with the following properties:

(1) K = K1# . . . #Kn, a connected sum of the output links;
(2) every Ki is prime; and
(3) if some Ki is the unknot, it appears as a 0-bracelet with ±1 half-twist.

Therefore, this algorithm recognizes the unknot and factors a link into its prime summands.

Proof. Statement (1) was part of Proposition 3.6. To prove (2), let Ki be a link produced
in the output of the algorithm. By Proposition 3.6 and the discussion that follows it, Ki is
either a candidate link or a known exception. By Theorem 3.8 (which we have yet to prove),
the candidate links are hyperbolic, and thus prime. As we mentioned in the introduction, the
exceptional links in families I and III are also prime. When Ki is in the exceptional family II,
we can identify every group of isotopic components to a single circle, producing a new link K ′

i

that is either hyperbolic or in families I or III. By the cases already discussed, K ′
i is prime,

and thus Ki is also prime.
To prove (3), suppose that Ki is the unknot. Again, it is easy to check that apart from

the 0-bracelet with ±1 half-twist, all the exceptional knots discussed above are non-trivial. By
Theorem 3.8, the candidate links are hyperbolic, and hence also non–trivial. Thus the unknot
Ki can in fact be recognized as a 0-bracelet with ±1 half-twist.
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Remark 3.10. To solve the general link isotopy problem for arborescent links, Bonahon
and Siebenmann [3] developed a special type of calculus on weighted trees representing links.
Our algorithm for simplifying bracelet presentations is directly inspired by their algorithm
for simplifying trees (the latter only keeps more careful track of the order of Conway spheres
along each band). The main result of [3], which uses the machinery of double branched covers
and equivariant JSJ decompositions, can be paraphrased as follows: for every generalized
arborescent link (with a handful of exceptions), any two bracelet presentations produce the
same output under the algorithm above, up to the number of trivial components in the
connected sum. The few exceptions include, for instance, the pretzel link P (2,−2, 2,−2)
depicted in Figure 3.8, which can appear either in pretzel form (as a 4-bracelet glued to four
1-bracelets), or as a twice-augmented 0-bracelet (in two different ways). Thus, by the results
of [3], the algorithm can be said to essentially classify all arborescent links.

4. Block decomposition of the link complement

In this section, we consider a candidate link K (see Definition 3.7) and devise a block decom-
position of S3 � K (up to applying the algorithm of Section 3, we may and will assume that the
bracelet presentation of K satisfies the conditions of Definition 3.7). In what follows, we will
use one ‘large’ block for each large bracelet Bd,n (d � 3 or n = 1). The Farey combinatorics
involved in gluing these blocks to one another and to 1-bracelets will be encoded in a certain
number of ideal tetrahedra in the decomposition.

Consider a large d-bracelet Bd,n (where n = 0 or 1), and recall that its underlying space Md

is S3 minus d open balls. Denote by Kd,n the tangle (union of arcs) contained in Bd,n. Between
any pair of consecutive Conway spheres, Md contains a rectangular strip consisting of crossing
segments; we call this strip a crossing rectangle. The boundary of each crossing rectangle
consists of two arcs of Kd and two arcs on Conway spheres, which define the preferred slopes
of these two Conway spheres.

The large block Pd,n corresponding to the large bracelet Bd,n will be constructed in
Subsection 4.3: Pd,n will be a solid torus whose boundary is decomposed into ideal polygons,
and some pairs of edges (or even faces) of Pd,n will be identified in the block decomposition
of S3 � K (in addition, the core curve of the solid torus Pd,n will be removed if n = 1). More
precisely, each crossing rectangle in S3 � K will eventually be collapsed to a crossing edge,
which will be realized as an ideal edge of Pd,n (in fact, as a pair of identified edges of Pd,n;
see Figure 4.3 for a preview). Because of this collapsing operation, we need to be very careful
that we do not change the nature of the manifold S3 � K up to homeomorphism. This will
be proved in due course (Subsection 4.2) before actually constructing Pd,n (Subsection 4.3).
Meanwhile, we simply insist that the arc pairs of preferred slope (defined, for example, by
crossing rectangles) in a Conway sphere of a large bracelet will be realized as ideal edges of
the corresponding large blocks. This fact motivates the whole construction of Subsection 4.1,
where we describe all the small blocks (ideal tetrahedra).

4.1. Gluings through tetrahedra

In this section, we use the Farey complex F in order to encode the gluing homeomorphisms
between the boundary spheres of two bracelets into sequences (layers) of ideal tetrahedra,
glued at the interface between large bracelets. This follows [9, Section 5]. We also realize
trivial tangles as gluings of ideal tetrahedra, following [9, Appendix].

4.1.1. Gluing of two large bracelets. Consider two large bracelets Bd,n and Bd′,n′ glued to
one another along a Conway sphere. If Kd,n denotes the union of arcs contained in Bd,n, then
define C := Md � Kd,n and C′ := M ′

d � Kd′,n′ . For the later purpose of realizing (a retract of)
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C as a polyhedral block, we assume that all the arc pairs of the preferred slope are marked on
the Conway spheres of ∂C (and similarly for C′). We will now enhance these graphs on ∂C, ∂C′

to filling graphs (Definition 2.1), then glue C to C′ via a union of ideal tetrahedra attached
to the Conway spheres of C, C′ (thus realizing the gluing homeomorphism between Bd,n and
Bd′,n′).

Let s and s′ be the preferred slopes of C and C′, respectively (see Definition 3.2). By
Proposition 3.6, we know that s �= s′. The obstruction to gluing C to C′ directly is that arcs
of slopes s and s′ may have high intersection number. We regard s, s′ ∈ P1Q as vertices in the
Farey diagram.

Consider the simplest case, where s and s′ are Farey neighbors. Then the four arcs of slope
s and s′ define a subdivision of a Conway sphere of ∂C into two ideal squares. Similarly the
arcs of slope s′ and s subdivide a Conway sphere of ∂C′ into two ideal squares. In this special
case, we may glue ∂C directly to ∂C′ along these two squares.

If s, s′ are not Farey neighbors, we need to consider the sequence of Farey triangles
(T0, . . . , Tm) crossed by the geodesic line from s to s′ (where m � 1, and s and s′ are vertices
of T0 and Tm, respectively). For each 0 � i � m, the vertices of Ti define three slopes, and the
corresponding arc pairs provide an ideal triangulation τi of the Conway sphere S. Moreover, if
x, y are the ends of the Farey edge Ti ∩ Ti+1, then the two arc pairs whose slopes are x and y
define a subdivision σ of the 4-punctured sphere S into two ideal squares: both triangulations τi

and τi+1 are refinements of σ. In fact, τi+1 is obtained from τi by a pair of diagonal exchanges:
remove two opposite edges of τi (thus liberating two square cells, the cells of σ, of which
the removed edges were diagonals); then insert back the other diagonals. Each of these two
diagonal exchanges defines (up to isotopy) a topological ideal tetrahedron in the space S × I:
more precisely, the union of these two ideal tetrahedra is bounded by two topological pleated
surfaces Si, Si+1 isotopic to S × {∗} in S × I, which are pleated along the edges of τi and
τi+1, and intersect each other precisely along the edges of σ (see Figure 4.1). Doing the same
construction for all 0 � i < m, we thus obtain an ideal triangulation of a strong deformation
retract of S × I, whose bottom and top are pleated along an ideal triangulation of S containing
the arc pair of slopes s and s′, respectively.

Finally, the remaining two pairs of edges in the triangulation τ0 (in addition to the pair of
slope s) define a subdivision of the boundary of the space C. The same occurs for C′. We have
completed our aim of gluing C to C′, with boundaries suitably triangulated, using a sequence
of (pairs of) ideal tetrahedra as an interface. Note that the choice of ‘suitable’ boundary
triangulations of C, C′ is forced by the gluing homeomorphism itself.

Definition 4.1. The family of ideal tetrahedra between C and C′ is called a product
region. The same term also refers to the union of that family. Topologically, the product region
is a strong deformation retract of S×I; when s and s′ have no common Farey neighbors, the
product region is homeomorphic to S×I.

Figure 4.1. A layer of two tetrahedra, caught between two topological pleated surfaces
Si, Si+1. Edges with identical arrows are identified.
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Figure 4.2. The surface Sm−1 is glued to itself, realizing a 1-bracelet (trivial tangle).

4.1.2. Gluing a large bracelet to a trivial tangle. Consider the gluing of a large bracelet
Bd,n to a trivial tangle B1,0 along a Conway sphere. As before, define C := Md � Kd,n and
C′ := M1 � K1,0. We will triangulate the Conway sphere S of C and attach ideal tetrahedra to
S to realize a space homeomorphic to C ∪S C′. (Note: we will not need to attach a copy of C′

itself, only ideal tetrahedra.)
Let s and s′ be the preferred slopes of C and C′, respectively. By the minimum-distance table,

Table 1, of Proposition 3.6, we know that s and s′ are not equal and are not Farey neighbors. We
can thus consider the sequence of Farey triangles (T0, . . . , Tm) from s to s′, where m � 1. We
perform the same construction as in Paragraph 4.1.1 above, using topological pleated surfaces
S0, . . . , Sm−1 whose triangulations are given by T0, . . . , Tm−1 (note the omission of Tm). To
realize the trivial tangle complement C′, we will now glue the faces of the pleated surface Sm−1

together in pairs, following Sakuma and Weeks’s construction in [20].
Without loss of generality, we may assume that the vertices of Tm−1 and Tm are 0, 1,∞ and

0, 1, 1
2 , respectively. Each face (ideal triangle) f of Sm−1 has exactly one edge e of slope ∞,

shared with another face f ′. We simply identify f and f ′ by a homeomorphism respecting e.
The result is shown in Figure 4.2: it is straightforward to check that the simple closed curve
in Sm−1 of slope s′ = 1

2 becomes contractible. The gluing thus realizes a 1-bracelet of slope
s′ = 1

2 .

Remark 4.2. If m = 1, note that the Conway sphere of C, made of four ideal triangles,
is Sm−1 and has been directly collapsed to two ideal triangles, without gluing any tetrahedra.
More generally, for any m, all four edges whose slopes are Farey neighbors of s′ are collapsed
to just one edge (the horizontal edge in the last panel of Figure 4.2): though none of these four
edges can have slope s (because s, s′ are not Farey neighbors), some of them may belong to
the Conway sphere in ∂C. In spite of these collapsings, for any candidate link K, we can realize



348 DAVID FUTER AND FRANÇOIS GUÉRITAUD

the space S3 � K with a well-defined manifold structure by gluings of the type above, because
the Conway spheres of C are pairwise disjoint.

4.1.3. Gluing two trivial tangles together. Finally, when two trivial tangles are glued to one
another, we obtain a 2-bridge link K. The strands in each bracelet can be isotoped to proper
pairs of arcs in the Conway sphere, of slopes s and s′. If s, s′ are sufficiently far apart in the
Farey diagram, we can perform the gluing operation above both near C and near C′ (both C and
C′ being homeomorphic to 1-bracelets M1�K1,0). The resulting decomposition into tetrahedra
was constructed by Sakuma and Weeks [20], and also described in the appendix to [9]. For
completeness, we include the following result.

Proposition 4.3. If s, s′ have no common Farey neighbors (that is, satisfy the minimum-
distance table, Table 1, of Proposition 3.6), the union of the tetrahedra defined by the
construction above is a triangulated manifold homeomorphic to S3 � K, where K is a
2-bridge link.

Proof. First, the path of Farey triangles (T0, . . . , Tm) from s to s′ satisfies m � 3: indeed, if
m = 2, then two vertices of T1 are Farey neighbors of s, and two are Farey neighbors of s′; so s
and s′ have a common neighbor. Therefore the first and last pleated surfaces S1 and Sm−1 are
distinct, and there is at least one layer of tetrahedra. Consider the union of all tetrahedra before
folding S1 and Sm−1 onto themselves. Denote by x, y the ends of the Farey edge T1 ∩ T2, and
thicken the corresponding tetrahedron layer between S1 and S2 by replacing each edge whose
slope is x or y with a bigon. The resulting space is homeomorphic to S1 × [0, 1]: therefore, after
folding S1 and Sm−1, we do obtain the manifold S3 � K. It remains to collapse the four bigons
back to ordinary edges, without turning the space into a non-manifold.

Recall (Remark 4.2) that the foldings of S1 and Sm−1 identified all four edges whose slopes are
ends of T0 ∩ T1 (respectively Tm ∩ Tm−1) to one edge, and caused no other edge identifications.
At most one of x, y belongs to the Farey edge T0 ∩ T1; at most one of x, y belongs to Tm ∩ Tm−1;
and none of x, y belongs to both Farey edges simultaneously (s, s′ have no common neighbors).
Thus under the folding of S1 and Sm−1, the two bigons of slope x may become glued along one
edge; the two bigons of slope y may become glued along one edge, and no further identifications
occur between points of the four bigons. When two bigons are identified along one edge, consider
their union as just one bigon. All (closed) bigons are now disjointly embedded in S3 � K, so
we can collapse each of them to an ideal segment without changing the space S3 � K up to
homeomorphism.

Thus, by the results of [9, Theorem A.1], or more broadly by Menasco’s theorem [13], we
already know that 2-bridge links admit angle structures (and are hyperbolic) if and only if
they are candidate links.

4.2. Collapsing

At the beginning of Section 4, we defined the crossing rectangles: a large bracelet Bd,n has
d crossing rectangles R 	 [0, 1] × [0, 1], such that two opposite sides {0, 1} × [0, 1] of R define
the preferred slopes in two consecutive Conway spheres, and the two other sides [0, 1] × {0, 1}
belong to the tangle (union of arcs) contained in Bd,n.

In a candidate link K containing at least one large bracelet, we collapse each crossing
rectangle R 	 [0, 1] × [0, 1] as above to a segment {∗} × [0, 1].
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Proposition 4.4. The space obtained after collapsing the crossing rectangles to segments
is still homeomorphic to the manifold S3 � K.

Proof. As in Proposition 4.3, it is enough to check that the closed crossing rectangles,
before collapsing, are disjointly embedded in the union of ideal tetrahedra and uncollapsed
large bracelets. First, consider a gluing between two large bracelets: since the two preferred
slopes on the gluing Conway sphere are distinct (by the minimum-distance table, Table 1,
of Proposition 3.6), no points of the crossing rectangles adjacent to this Conway sphere get
identified (in the product region corresponding to the Conway sphere, all tetrahedron edges
are disjoint). Then consider a gluing between a large bracelet (with preferred slope s) and a
trivial tangle (with preferred slope s′): in Remark 4.2, we observed that none of the edges that
undergo identifications have slope s, because s, s′ are not Farey neighbors (being at distance
2 or more in the Farey graph). Therefore, no points of any crossing rectangles are identified.
Since the (closed) crossing rectangles are disjointly embedded in S3 � K, we can collapse each
of them to a segment without changing the space S3 � K up to homeomorphism.

4.3. Blocks associated to large bracelets

In this section, we construct the blocks associated to large bracelets. We begin by considering
a large non-augmented bracelet Bd (where d � 3) and set out to construct an ideal polyhedron
version of the space C, now defined as Md � Kd with crossing rectangles collapsed to (ideal)
segments. We will construct C as a polyhedral solid torus (or block) P with some edge
identifications.

Consider a (closed) solid torus P̂ with a preferred, core-parallel, simple closed curve γ̂ on
∂P̂. We endow both P̂ and γ̂ with orientations that will remain fixed throughout the paper.
Draw d disjoint oriented curves γ̂1, . . . , γ̂d isotopic to γ̂ in ∂P̂, so that ∂P̂ is the union of d
annuli Ûi, each bounded by two curves, γ̂i and γ̂i+1 (indices are taken modulo d). For matters
of orientation, we assume that the orientation entering Ûi (from a point of γ̂i), followed by the
orientation of γ̂i, is equal to the orientation on ∂P̂ induced by the orientation of P̂ (Figure 4.3,
left). Next, remove one point in each γ̂i. We still denote by P̂ the solid torus with these d
points removed, and by Ûi the annuli with two boundary points removed. Each curve γ̂i is now
replaced by an ideal (oriented) arc, also denoted by γ̂i, joining a puncture to itself.

Figure 4.3. Block associated to a large (non-augmented) bracelet of degree 5. The solid torus
P is shown before and after the identifications γ̇i ∼ γ̈i. In the right panel, P is the space outside

the grey ‘ring’.
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To construct an ideal cellulation of ∂P̂, we must decompose each annulus Ûi into contractible
ideal polygons. There are two options for doing so.

(1) Choose an ideal arc across Ûi, connecting the puncture of γ̂i to the puncture of γ̂i+1 (for
each i, there is a Z-worth of possible choices for such an arc). Then Ûi is an ideal square cell
with a pair of opposite sides identified.

(2) Choose two disjoint, non-isotopic ideal arcs across Ûi, decomposing Ûi into two ideal
triangles. There is again a Z-worth of possible choices.
Finally, consider the two-fold cyclic cover P of P̂. Each γ̂i lifts to two arcs γ̇i and γ̈i in ∂P
with the same pair of (distinct) punctures as end points. We now identify γ̇i with γ̈i, by
an orientation-reversing homeomorphism. The resulting arc is called γi, and the quotient of P
under this identification is homeomorphic to C, as defined at the beginning of this section. (The
γi are the collapsed crossing rectangles, and the removed tangle Kd is ‘in the ideal vertices’.)
Each arc γi is a crossing segment, not endowed with any orientation. See Figure 4.3.

Under the identification, each band Ui (the lift of Ûi in P) becomes a 4-punctured sphere
included in the boundary of C. Any decomposition of Ûi, as in the dichotomy above, defines
a decomposition of Ui into two ideal squares or four ideal triangles. The two cases of the
dichotomy correspond, as in Subsection 4.1, to the neighboring bracelet either (1) being glued
directly to C, using a very ‘simple’ homeomorphism, or (2) needing an interface of ideal
tetrahedra or being in fact a 1-bracelet (trivial tangle).

Recall that in each case of the dichotomy, the involved choices in Z are forced by the gluing
homeomorphisms (see Subsection 4.1), and essentially reflect the number of half-twists in the
band of the bracelet (Md,Kd) that defined C (and the block P).

4.3.1. Augmented polyhedral d-bracelets (d � 1). Topologically, the construction above is
valid for all d � 1, not just d � 3, and an augmented d-block (associated to an augmented
d-bracelet) is obtained by drilling out the core of the solid torus P. If we denote by Paug the
result of the drill-out, then any decomposition of ∂P into ideal triangles and squares (as in
the dichotomy above) induces, by coning off to the core of Paug, a decomposition of Paug into
contractible ideal polyhedra (tetrahedra and square-based pyramids): the coning-off is induced
by the product structure T2 × (0, 1) of the interior of Paug. For the purpose of finding angle
structures, it will be convenient to regard Paug as such a union of ideal polyhedra, rather than
an elementary block per se.

An essential feature of our polyhedral realizations of d-blocks and augmented d-blocks is
that crossing segments always arise as edges, thus defining a preferred slope on each Conway
sphere of the block. If the block comes from an augmented bracelet, this slope is also the one
defined by the ‘extra’ link component inside the augmented bracelet.

5. Angle structures for the link complement

In this section, we find dihedral angles (satisfying Definition 2.2 and the hypotheses of Theorem
1.1) for the blocks and ideal tetrahedra constructed in Section 4. The key property will be an
explicit description (Subsection 5.2) of the space of angle structures associated to a sequence
of tetrahedra forming a product region (see Definition 4.1) or a 1-bracelet (trivial tangle).
This description (in large part borrowed from [9, Section 5 and Appendix]) is sufficiently
tractable that we can say exactly when the tetrahedra admit dihedral angles that match a
given system of angles for the solid tori (Propositions 5.10 and 5.11). As a result, we can show
that all candidate links (see Definition 3.7) admit angle structures. We will treat the easier
case of non-Montesinos links in Subsection 5.3 and the trickier case of Montesinos links in
Subsection 5.4. Montesinos links are tricky because they include the third family of exceptions
to Theorem 1.5.
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The strategy is as follows: in Subsection 5.1, we choose some dihedral angles to parametrize
the deformation space of solid tori. We show (Propositions 5.3, 5.6, 5.7) that these dihedral
angles define valid angle structures whenever they are, in some appropriate sense, small enough.
On the other hand, the same parameters need to be large enough (Proposition 5.11) for the
trivial tangles to admit angle structures. The conflict that arises can be managed for candidate
links, but causes the exceptional Montesinos links (ruled out in Definition 3.7) to have no angle
structures.

5.1. Angle structures for a non-augmented large block

We consider a solid torus P of degree d whose boundary is subdivided into ideal triangles
and quadrilaterals, as in Subsection 4.3. In this section, we study the space of angle
structures for P. We restrict attention to those angle structures which are invariant under
the natural fixed-point-free involution of P (recall that P was defined as a 2-fold covering in
Subsection 4.3).

Recall the preferred direction of ∂P, defined by the crossing arcs of the corresponding
bracelet. As parameters, we will use the (exterior) dihedral angles at all those edges of ∂P which
are not along the preferred direction. The angles at the edges along the preferred direction can
then be recovered from the requirement that the angles around any vertex of the block add
to 2π.

For simplicity, assume that ∂P is decomposed into ideal triangles only. Recall from Subsection
4.3 that the preferred direction came with an orientation, which we call ‘upwards’. Thus,
each of the d bands U1, . . . , Ud in ∂P is traversed by two ascending and two descending
edges (for example, in Figure 4.3 (left), though all four edges across U2 seem to go
upwards to the right, we agree to call only the steeper pair ascending, and the other pair
descending). By the normalization of markings that precedes Definition 3.7, the slopes of
the descending edges in the corresponding Conway spheres are 0, while the slopes of the
ascending edges are 1, and the slopes associated to the edges along the preferred direction
are ∞.

For each 1 � i � d, we denote by a formal variable ai ∈ [0, π) the (exterior) dihedral angle at
the ascending pair of edges, and bi ∈ [0, π) the angle at the descending pair. (We can recover
the case where Ui is subdivided into two squares by allowing ai = 0 or bi = 0). If the index i is
read modulo d, the exterior dihedral angle at an edge (in the preferred direction) of Ui ∩ Ui+1

must be

ci,i+1 = π − 1
2
(ai + ai+1 + bi + bi+1), (5.1)

so that the angles around each ideal vertex add to 2π. To force all angles to be non-negative,
we require that

0 � ai < π and 0 � bi < π and 0 < ai + bi � π. (5.2)

The particular choice of strong and weak inequalities here implies the following lemma.

Lemma 5.1. Any triangular face of P has at most one edge with dihedral angle 0.

Proof. The exterior dihedral angles of a triangular face are ai, bi, ci,i+1 or ai, bi, ci−1,i.
If ai = 0 one easily checks that bi, ci,i+1, ci−1,i are all positive (because bi = ai + bi > 0 and
ai + bi = bi < π). If bi = 0 the argument is the same. If ci,i+1 = 0 then ai, ai+1, bi, bi+1 are all
positive (because their sum is 2π).
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Figure 5.1. The cover R2 � Z2 of ∂P, with a closed curve γ̃.

Thus a block P with only triangular faces and non-negative dihedral angles ai, bi satisfying
(5.2) uniquely defines a block with positive dihedral angles and, possibly, some quadrilateral
faces. By default, we will usually consider that a block P has only triangular faces and look
for angle systems satisfying (5.2).

From Definition 2.2, recall that an angle structure on P requires every normal simple closed
curve γ in ∂P that bounds a disk in P to have total bending number at least 2π (the total
bending number is the sum of the exterior dihedral angles at the edges encountered by γ,
counted with multiplicity). Such a curve γ can be defined as a non-backtracking closed path
in the dual graph.

Identify ∂P with (R2 � Z2)/〈f, g〉 where f(x, y) = (x, y + 2) and g(x, y) = (x + d, y + k),
where d � 3 is the degree of P and k ∈ Z is an integer such that any g-invariant straight line in
R2 � Z2 projects in ∂P to the boundary of a compression disk of P. (In other words, k is, up to
a constant, the number of half-twists in the band of the bracelet associated to P.) The bands
Ui ⊂ ∂P lift to a subdivision of R2 � Z2 into ‘vertical’ bands (Ũi)i∈Z, where Ũi = (i, i + 1) × R

(see Figure 5.1). Consider a normal simple closed curve γ in ∂P bounding a disk in P, and lift
γ to a curve γ̃ in R2 � Z2.

Either γ̃(1) = γ̃(0) (that is, γ̃ is a closed curve), or γ̃(1) = g±1(γ̃(0)) (the exponent cannot
be larger than 1 in absolute value, because γ is simple).

Lemma 5.2. If γ̃(1) = γ̃(0), the total bending number Nγ of γ is more than 2π, unless γ
is just a loop around a puncture of ∂P.

Proof. If γ̃ visits exactly the vertical bands Ũi, Ũi+1, . . . , Ũj−1, Ũj , then γ̃ crosses both
ascending and descending edges in Ui and in Uj (because γ̃ never crosses the same edge twice
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consecutively). Counting edges met by γ̃, we thus get

Nγ � (ai + bi) + (aj + bj) + 2
j−1∑

k=i+1

min{ak, bk} + 2
j−1∑
k=i

ck,k+1

= 2π + 2
j−1∑

k=i+1

(π − max{ak, bk}),

using (5.1). This quantity is larger than 2π, unless j = i + 1. If j = i + 1, we can assume that
γ̃ visits r � 1 times Ũi and r times Ũi+1, and hence

Nγ � r(ai + bi) + r(ai+1 + bi+1) + 2rci,i+1 = 2rπ :

that quantity is larger than 2π unless r = 1. If r = 1, then γ̃ is (homotopic to) the boundary
of a regular neighborhood of the union of s consecutive vertical edges (along the preferred
direction): in that case however,

Nγ = (s + 1)(ai + bi) + (s + 1)(ai+1 + bi+1) + 2ci,i+1 = 2π + s(ai + bi + ai+1 + bi+1)

is larger than 2π, unless s = 0 and γ is just a loop around a puncture of ∂P.

There remains the case where γ̃(1) = g±1(γ̃(0)), that is, γ bounds a compression disk of the
solid torus P. Then, the condition Nγ > 2π (in terms of the ai, bi) is in general non-vacuous,
and the conjunction of all these conditions (for all normal curves γ) has no nice closed-form
expression in terms of the ai, bi. However, the following three propositions give various sufficient
conditions for Nγ > 2π to hold, independently of γ.

Proposition 5.3. If the block P is of degree d � 3 and if

(d − 2)π >

d∑
i=1

max{ai, bi} (girth condition), (5.3)

then Nγ > 2π for all γ bounding a compression disk, that is, the angles ai, bi, ci,i+1 define an
angle structure for P.

Proof. If γ bounds a compression disk in P, then γ crosses all the bands Ui. Therefore,

Nγ �
d∑

i=1

min{ai, bi} +
d∑

i=1

ci,i+1 = dπ −
d∑

i=1

max{ai, bi},

using (5.1). The conclusion follows.

Consider a normal curve γ ⊂ ∂P bounding a compression disk in P. Let A and B be the
union of all the ascending arcs and descending arcs, respectively, across the annuli Ui ⊂ ∂P,
each oriented from Ui−1 to Ui+1. The torus T := R2/〈f, g〉 naturally contains ∂P as a subset,
and the closure A of A (respectively B of B) in T defines a union of oriented, parallel simple
closed curves in T (see Figure 5.1).

Definition 5.4. We denote by nA and nB the absolute values of the (algebraic) intersection
numbers of γ with A and B, respectively, in T. This definition clearly does not depend on the
choice of compression-disk-bounding curve γ (all such γ are in the same class in H1(T, Z)).
Note that nA + nB � d.
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Remark 5.5. In the special case of Montesinos links, we defined an integer n (up to sign),
called the number of half-twists in the main band, in the normalization that precedes Definition
3.7. Since each descending arc has normalized slope 0 in the corresponding Conway sphere, the
definition of n implies that |n| = nB for Montesinos links.

Proposition 5.6. If nA � 3 and (αi)1�i�d, (βi)1�i�d are positive numbers such that αi �
βi, then setting

(ai, bi) = (π − εαi, εβi)

defines an angle structure for the block P for all sufficiently small ε.

Proof. First, the ai, bi clearly satisfy condition (5.2) above. Any normal curve γ bounding
a compression disk in P meets at least nA � 3 ascending edges, whose pleating angles are all
close to π: thus Nγ > 2π for some small enough ε (independent of γ). A similar proposition
holds when nB � 3.

Proposition 5.7. Suppose the block P has degree d = 3 and (nA, nB) = (2, 1). Choose
positive numbers (αi)1�i�d, (βi)1�i�d such that αi � βi. Setting (ai, bi) = (π − εαi, εβi) defines
an angle structure on P (for small ε) whenever

αi+1 + αi−1 − βi > αi > βi+1 + βi−1

for each i ∈ {1, 2, 3} (taking indices modulo 3).

Proof. Again, condition (5.2) is clearly satisfied. If ε is small enough then, as in Proposition
5.6, it is enough to check Nγ > 2π for a compression-disk-bounding curve γ that crosses A
exactly twice. Note that such a γ crosses at least one edge (of A or of B) within each vertical
band U1, U2, U3. Two cases may arise : if γ crosses A twice within the same vertical band Ui,
then

Nγ � 2ai + bi+1 + bi−1 +
3∑

i=1

ci,i+1 = 2π + (αi+1 + αi−1 − βi) − αi.

If γ crosses A twice in distinct bands, say Ui+1 and Ui−1, then

Nγ � ai+1 + ai−1 + bi +
3∑

i=1

ci,i+1 = 2π + αi − (βi+1 + βi−1).

The conclusion follows. A similar proposition holds when (nA, nB) = (1, 2).

Note that the weaker condition αi+1 + αi−1 > αi > βi+1 + βi−1 would in fact suffice in
Proposition 5.7 (by analysing compression-disk-bounding curves γ more carefully). We will
not need this (sharp) improvement.

5.1.1. Angle structures on augmented blocks. Finally, we note that an augmented block
with prescribed non-negative dihedral angles ai, bi (where (5.2) holds) can always be realized
as a union of tetrahedra with positive angles: the space obtained by coning off the band Ui

to the extra component of the tangle in the block (as in Paragraph 4.3.1) is a union of four
isometric tetrahedra of interior dihedral angles

π − ai

2
,

π − bi

2
,

ai + bi

2
, (5.4)
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all positive by (5.2). The exterior dihedral angles of the augmented block are recovered as

π −
(

π − ai

2
+

π − ai

2

)
= ai,

similarly

π −
(

π − bi

2
+

π − bi

2

)
= bi and π −

(
ai + bi

2
+

ai+1 + bi+1

2

)
= ci,i+1.

Remark 5.8. The augmentation component of each augmented d-bracelet bounds d dis-
joint, homotopically distinct, twice-punctured disks (also known as thrice-punctured spheres),
which must be totally geodesic for the hyperbolic metric if one exists.

In fact, suppose that all large blocks are augmented (the candidate link K is called totally
augmented; a special case of this is the case where there are no large blocks, and K is a
2-bridge link). For totally augmented links, the triangulation constructed above falls into the
class studied in [8, Chapter 2]. There, the second author shows that the triangulation not only
admits positive angle structures, but that one of these structures (the one with largest volume)
actually realizes the hyperbolic metric, and is a refinement of the geometrically canonical
decomposition in the sense of Epstein and Penner [6]. In other words, a certain (explicit)
coarsening of the triangulation is combinatorially dual to the Ford-Voronöı domain of the
manifold with respect to horoball neighborhoods of the cusps which are chosen to be pairwise
tangent at each thrice-punctured sphere.

5.2. Angle structures for product regions and trivial tangles

In this section, we investigate the space of angle structures for the ideal tetrahedra constructed
in Subsection 4.1, that is, not included in augmented blocks. Such tetrahedra live either at the
interface of large blocks P,P ′, or near trivial tangles. While the space of angle structures for
a tetrahedron is easy to describe (a triple of positive angles summing to π), the difficulty is to
deal with many tetrahedra simultaneously.

We begin by focusing on two large blocks P,P ′ separated by a product region (these come
from large bracelets, in the sense of Definition 3.4). Recall from Subsection 4.1 the pleated 4-
punctured spheres (Sj)0�j�m between P and P ′: we can endow Sj with a transverse ‘upward’
orientation, from P to P ′. Suppose that we have solved the problem of finding an angle
structure, that is, that the tetrahedra and solid tori are assigned dihedral angles that add
up to 2π around each edge. Then we can define the pleating angle of the surface Sj at any edge
e ⊂ Sj : namely, if the sum of all dihedral angles at e of tetrahedra and/or solid tori above and
below Sj are π + α and π − α, respectively, then we say that Sj has pleating angle α at e.

It will turn out that pleating angles of the Sj are very convenient parameters for the space
of angle structures: thus, when no angle structure has been defined yet, we will typically look
for angle structures realizing a given set of pleating angles of the Sj , and express the dihedral
angles of the blocks P,P ′ and ideal tetrahedra in terms of these pleating angles.

We arbitrarily require that the pleating angles of Sj at the three edges adjacent to any
puncture of Sj add up to 0 (note that this property would hold in a true hyperbolic metric,
where the holonomy of the loop around any puncture is a parabolic element of Isom+H3). This
property easily implies that the pleating angles of Sj at opposite edges are equal. Restricting to
such a subspace of solutions might (in principle) hamper our goal of finding angle structures;
however, it is technically very convenient, for reasons we are about to outline now.

Consider the 4-punctured sphere S(i) defined by the vertical band Ui ⊂ ∂P (by identifying
the edges in ∂Ui to create the crossing arcs, as in Subsection 4.3). The pleating angles of S(i),
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in the above convention, are ai, bi and −ai − bi, the latter being the angle at the crossing arcs.
Similarly, the 4-punctured sphere S(i+1) defined by the band Ui+1 (that is, corresponding to
the next Conway sphere) has pleating angles ai+1, bi+1,−ai+1 − bi+1. Let e be the crossing
edge S(i) ∩ S(i+1): recall that e is obtained by identification of two edges of the solid torus P,
both carrying an interior dihedral angle of π − ci,i+1. If the interior dihedral angles at e above
S(i) and S(i+1) for the transverse orientation add up to π − (ai + bi) and π − (ai+1 + bi+1),
respectively, then the sum of all dihedral angles at e will be

[π − (ai + bi)] + [π − (ai+1 + bi+1)] + 2[π − ci,i+1] = 2π .

Therefore the linear gluing equation at e will automatically be satisfied.
Recall the Farey vertices s �= s′ from Subsection 4.1 associated to the crossing arcs

(or preferred slopes) of P and P ′. If s, s′ are Farey neighbors, then P and P ′ are glued directly
to one another along a 4-punctured sphere S: the edge pairs of slopes s, s′ subdivide S into two
ideal squares, and the bands in ∂P, ∂P ′ are traversed by edges exactly as in the first member,
(1) vs (2), of the dichotomy of Subsection 4.3 (up to a degree 2 covering).

Proposition 5.9. At the two parallel edges traversing the band of ∂P, we put an (exterior)
dihedral angle ε > 0. We put the same angle ε at the edges traversing the band of P ′. Then,
the pleating angles of S at the edge pairs of slope s, s′ are −ε, ε respectively.

Proof. This proposition is obvious.

Moreover, observe that we can artificially select a pair of diagonals in the two squares making
up S and define the third pleating angle (along these diagonals) to be 0: then (5.2) is satisfied
because the exterior dihedral angles ai, bi of P and P ′ at the gluing Conway sphere are 0 and
ε, though not necessarily in that order.

We now consider the case where s, s′ are not Farey neighbors. The bands of ∂P, ∂P ′

are now subdivided into four triangles each (as in the second member of the dichotomy of
Subsection 4.3), defining a pair of ascending and a pair of descending edges in each of the two
bands. Fix an arbitrary marking of the Conway sphere along which P is glued to P ′. Denote
by A ∈ P1Q and B ∈ P1Q respectively, the slopes of the ascending and descending edge pairs
in the band of ∂P, and denote similarly by A′, B′ ∈ P1Q the slopes of the edges in ∂P ′. We
make no assumption on the order of A,A′, B,B′ in P1Q; that is, we favor no convention as to
which pair is ascending and which is descending. Denote by a, b the exterior dihedral angles of
the block P at the ascending and descending edges, respectively, and define a′, b′ in a similar
way (relative to P ′).

Proposition 5.10. For any small ε > 0, if a = a′ = b = b′ = ε, then the tetrahedra
between P and P ′ admit positive dihedral angles satisfying the linear gluing equations (at
all interior edges).

Proof. Recall the Farey triangles T0, . . . , Tm separating s from s′ (here, m � 1). By
definition (see Subsection 4.1), we have T0 = sAB and Tm = s′A′B′. Recall also the pleated
surface Si associated to Ti: under our convention (transverse orientation for Si), the pleating
angles of S0 at the edge pairs of slopes A,B, s are a, b,−a − b, respectively. Similarly, the
pleating angles of Sm at the edge pairs of slopes A′, B′, s′ are −a′,−b′, a′ + b′. We write these
numbers in the corresponding corners of T0 and Tm (Figure 5.2).

For each 0 < i < m, the oriented line Λ from s to s′ enters Ti across some Farey edge
ei = Ti ∩ Ti−1, and exits through another edge ei+1, either to the left or to the right: we say
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Figure 5.2. The pleating angles written in the corners of the Farey triangles Ti associated to
the pleated surfaces Si.

that Λ makes a Left or makes a Right at Ti, and encode the combinatorics of Λ into a word
Ω = RLL...R of length m − 1.

No letter (R or L) is associated a priori to the Farey triangles T0 and Tm. However, we will
posit that the path enters T0 through the Farey edge e0 := sB, and exits Tm through the edge
em+1 := s′B′, and associate the relevant letter (R or L) to T0 and to Tm. Hence, Ω becomes
a word of length m + 1. This convention is totally artificial, but it will allow us to streamline
the notation in our argument.

For 1 � i � m, we denote by Δ̇i and Δ̈i the two ideal tetrahedra separating the pleated
surfaces Si and Si−1: note that {Δ̇i, Δ̈i} is naturally associated to the Farey edge ei = Ti ∩ Ti−1.
Our goal is to define dihedral angles for Δ̇i and Δ̈i such that the linear gluing conditions around
all edges are satisfied. We will in fact restrict to solutions invariant under the Klein group V4,
that is, such that Δ̇i and Δ̈i are isometric† for all i (this implies in particular that the angles
of Δ̇i and Δ̈i at any shared edge are equal). In what follows, Δi refers to any one of the ideal
tetrahedra Δ̇i, Δ̈i.

Denote by π − wi the dihedral angle of Δi at the pair of opposite edges that is not in
Si ∩ Si−1 (that is, the pair of edges involved in the diagonal exchange that Δi represents).
Then Si has one pleating angle equal to wi while Si−1 has one pleating angle equal to −wi.
By translating indices, we find that for all 1 � i � m − 1 the pleating angles of Si must be

−wi+1, wi and wi+1 − wi

(the value of the third pleating angle is forced upon us by the condition that the pleating
angles add up to 0). Further, we can write these three pleating angles in the corners of the
Farey triangle Ti associated to Si (this was partially done in Figure 5.2). In Figure 5.3 (top),
denoting by ei the Farey edge Ti ∩ Ti−1 associated to the tetrahedra {Δ̇i, Δ̈i}, we see that wi

is in the corner of Ti opposite ei, and −wi+1 is in the corner of Ti opposite ei+1.
We repeat the same procedure for all indices 1 � i � m − 1. It also extends naturally to i = 0

and i = m if we just set (w0, w1) = (a, a + b) and (wm, wm+1) = (a′ + b′, a′): we then recover
the pleating angles of S0 and Sm defined previously.

The bottom part of Figure 5.3 shows the result of the labeling for two consecutive Farey
triangles Ti−1 and Ti, whose corresponding pleated surfaces Si−1 and Si bound the pair of

†The graph carried by each 4-punctured sphere Si is that of the edges of a tetrahedron, and its combinatorial
symmetry group is A4; the group V4 ⊂ A4 acts on these graphs in the usual way, by pairs of disjoint
transpositions of ideal vertices.
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Figure 5.3. Top: two consecutive Farey edges ei−1, ei. Bottom: ei is the horizontal edge and
(wi−1, wi, wi+1) = (u, w, v).

isometric tetrahedra {Δ̇i, Δ̈i} (where 1 � i � m). There are four possible cases, depending on
the letters (R or L) of Ω on the Farey triangles Ti−1 and Ti. In order for Δi to have positive
angles, assuming that 0 < wi < π (for all 1 � i � m), it is necessary and sufficient that each
pleating angle written just below the horizontal edge ei be larger than the pleating angle
written just above, in Figure 5.3 (bottom): namely, the difference between these two pleating
angles (of Si and Si−1) is twice a dihedral angle of Δi.

Suppose that (wi−1, wi, wi+1) = (u,w, v). Denoting by xi (yi) the angle of Δi at the edge
whose slope is given by the right (left) end of ei in Figure 5.3 (bottom), we thus find the
following formulas for xi, yi, zi (still depending on the neighboring letters of Ω):

Ω L L R R L R R L

xi
1
2
(u + v)

1
2
(−u + 2w − v)

1
2
(u + w − v)

1
2
(−u + w + v)

yi
1
2
(−u + 2w − v)

1
2
(u + v)

1
2
(−u + w + v)

1
2
(u + w − v)

zi π − w π − w π − w π − w

(5.5)

Define a hinge index i as an index such that the Farey triangles adjacent to the Farey edge
ei carry different letters (R and L). From (5.5), we see that Δi has positive angles if and only if

• 0 < wi < π for all 1 � i � m (range condition);
• wi+1 + wi−1 < 2wi if i is not a hinge index (concavity condition); (5.6)
• |wi+1 − wi−1| < wi if i is a hinge index (hinge condition).

Recall that m � 1. It is clear that there exist sequences (w0, . . . , wm+1) satisfying the above
conditions such that (w0, w1, wm, wm+1) = (ε, 2ε, 2ε, ε): for example, set all (wi)1�i�m equal
to 2ε, then perturb the non-hinge parameters among {wi}1<i<m to obtain strong (piecewise)
concavity. Proposition 5.10 is proved.

5.2.1. Trivial tangles. As in [9, Appendix], this method of constructing angle structures
extends to the case when P is glued to a trivial tangle (1-bracelet) of slope s′, realized by
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tetrahedra. Then, Figure 4.2 on page 23 shows the surface Sm−1 associated to the next-to-
last Farey triangle Tm−1. As in Figure 4.2, we assume (up to changing the marking of the
4-punctured Conway sphere) that s′ = 1

2 and Tm−1 = 01∞. Gluing the faces of Sm−1 in pairs
amounts to requiring that Sm−1 have pleating angle −π at the edges of slope ∞: in other words,
that wm = π. Thus if we put wm = π (the Farey edge associated to wm is em = Tm ∩ Tm−1),
Table (5.5) still allows us to derive the angles of the tetrahedra Δ1, . . . ,Δm−1, and the positivity
conditions are still given by (5.6). (In that case, there is no ‘artificial’ letter on Tm and no
‘artificial’ parameter wm+1.) Angle structures are thus given by sequences

(w0, w1, w2, . . . , wm−1, wm) = (a, a + b, w2, . . . , wm−1, π), (5.7)

which satisfy (5.6) for 0 < i < m. To describe for which pairs (a, b) such a sequence exists, we
need some notation.

Given two rationals q = y/x and q′ = y′/x′ in reduced form in P1Q, define

q ∧ q′ :=
∣∣∣∣
∣∣∣∣ y y′

x x′

∣∣∣∣
∣∣∣∣

(absolute value of the determinant). We will use the following key property: if pqr is a Farey
triangle and u, p, r, q are cyclically ordered in P1Q, then u ∧ r = (u ∧ p) + (u ∧ q). The property
is easily checked in the case (p, q) = (0,∞) (where u, r have opposite signs), and the general
case follows because the ∧-notation is invariant under PSL2(Z), which acts transitively on
oriented Farey edges pq.

Proposition 5.11. Suppose that a trivial tangle complement is glued to a large block P
that has non-negative pleating angles a, b at the edge pairs of slope A,B ∈ P1Q, satisfying (5.2).
Suppose that s, s′ ∈ P1Q are the preferred slopes of P and of the trivial tangle, respectively.
Then sAB is the Farey triangle T0; the points s,A, s′, B are cyclically ordered in P1Q, and
the tetrahedra Δ1, . . . ,Δm−1 (realizing the trivial tangle complement) admit positive angles
whenever

– s ∧ s′ = 2 and a + b = π; or
– s ∧ s′ > 2 and a(B ∧ s′) + b(A ∧ s′) > π > a + b.

Proof. We will show a little more: namely, that the condition is sufficient and necessary for
the existence of a sequence w satisfying both (5.6) and (5.7). The statements about the relative
positions of s,A,B, s′ are true by construction and were proved in Subsection 4.1. The case
s ∧ s′ = 2 corresponds to m = 1, with the 4-punctured sphere Sm−1 = S0 ⊂ ∂P being glued
directly to itself (as in Figure 4.2). Since m = 1, a sequence of the form (5.7) exists if and
only if a + b = π. We now assume that s ∧ s′ > 2, and consider the sequence of Farey triangles
T0, . . . , Tm from s to s′ (where m � 2). The inequality π > a + b must clearly be true in (5.7)
by (5.6), so we focus on the other inequality (which says that a, b are not too small).

For each 0 � i � m, define qi to be the vertex of Ti not belonging to the edge ei (where
e0 = sB and ei = Ti ∩ Ti−1 otherwise). In particular, q0 = A. If

αi = A ∧ qi and βi = B ∧ qi,

it is easy to check that both (αi) and (βi) make the concavity and hinge conditions of (5.6)
critical in the following sense: for each 0 < i < m,

– if i is not a hinge index, then αi+1 + αi−1 = 2αi and βi+1 + βi−1 = 2βi;
– if i is a hinge index, then αi+1 = αi + αi−1 and βi+1 = βi + βi−1.

(In the first case, observe that αi+1 − αi = A ∧ p = αi − αi−1, where p is the common vertex
of the Farey edges ei−1, ei, ei+1. In the second case, observe that qi−1qiqi+1 is a Farey triangle
and A, qi, qi+1, qi−1 are cyclically ordered in P1Q.) We say that (αi) and (βi) satisfy the closure
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Figure 5.4. The sequences v = (vi)0�i�m and w = f ◦ v.

of the concavity and hinge conditions of (5.6) (the system obtained by turning all the strong
inequalities of those conditions into weak ones).

Clearly, any linear combination of the sequences (αi) and (βi) also makes the concavity and
hinge conditions of (5.6) critical. Define

vi := aβi + bαi = a(B ∧ qi) + b(A ∧ qi),

so that (v0, v1) = (a, a + b), and (vi) satisfies the closure of (5.6).
Note that qm = s′, so vm = a(B ∧ s′) + b(A ∧ s′) is the left member of the inequality of the

Proposition.
Claim: If v′ is another sequence that satisfies the closure of (5.6) and (v′

0, v
′
1) = (v0, v1), then

v′
i � vi and v′

i − v′
i−1 � vi − vi−1 for all 1 � i � m.

The claim is true for i = 1, and follows in general by induction on i: if i is not a hinge index,
we have

v′
i+1 � v′

i + (v′
i − v′

i−1) � vi + (vi − vi−1) = vi+1 ;
v′

i+1 − v′
i � v′

i − v′
i−1 � vi − vi−1 = vi+1 − vi

(in each line, the first inequality is true by (5.6), and the second, by induction). Similarly, if i
is a hinge index, then

v′
i+1 � v′

i + v′
i−1 � vi + vi−1 = vi+1 ;

v′
i+1 − v′

i � v′
i−1 � vi−1 = vi+1 − vi .

Thus, if vm � π, then no sequence w = v′ satisfies both (5.6) and (5.7), so there can be
no positive dihedral angle assignment of the form (5.5) for the tetrahedra Δ1, . . . ,Δm−1.
Conversely, if vm > π, choose a concave function f : [0, vm] → R that is equal to the identity on
[0, v1], increasing and strictly concave on [v1, vm], with f(vm) = π; and define wi := f(vi) for
all 1 � i � n (see Figure 5.4). Then (a = w0, w1, . . . , wm = π) satisfies (5.6) (except of course
the range condition at wm = π). Indeed, the range condition holds because v is increasing and
f is monotonic; the concavity condition holds because the image of an arithmetic sequence
under a concave map is concave; and the hinge condition at a hinge index i, which only says
that f(vi−1) + f(vi) > f(vi+1), is the sum of the concavity inequalities

f(vi−1) >
vi−1

vi+1
f(vi+1) and f(vi) >

vi

vi+1
f(vi+1).

5.2.2. 2-bridge links. When two trivial tangles are glued together, we obtain a 2-bridge
link. The construction preceding Proposition 5.11 can be performed both near s and near s′,
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and we refer to [9] for a much more complete treatment. In the remainder of the paper, we
assume that the candidate link K is not a 2-bridge link; that is, it contains at least one large
bracelet.

5.3. Non (strongly) Montesinos links

Observe that the condition in each of Propositions 5.3, 5.6, 5.7 requires that the angles ai, bi

be, in a loose sense, small enough, while Proposition 5.11 requires them to be large enough.
The conflict that arises causes some arborescent link complements to have no angle structures
(essentially, the third family of exceptions in Theorem 1.5).

Definition 5.12. A strongly Montesinos link is an arborescent link which, after the
reduction of Section 3, consists of one non-augmented d-bracelet (d � 3) attached to d trivial
tangles.

Note that some very simple Montesinos links are not strongly Montesinos: for example, links
with tangle slopes (± 1

2 ,± 1
2 , y

x ) were reduced in step (5) of the algorithm of Section 3. Such
links consist of an augmented 1-bracelet glued to a non-augmented 1-bracelet, and may or may
not be candidate links, depending on whether the preferred slopes of the two bracelets satisfy
the minimum-distance table, Table 1, of Proposition 3.6.

Proposition 5.13. If the candidate link K is not strongly Montesinos, then we can endow
all blocks with non-negative dihedral angles satisfying (5.2) such that the girth condition (5.3)
holds for all non-augmented blocks, and the condition of Proposition 5.11 holds at each trivial
tangle. As a result, the ideal decomposition of the link complement admits angle structures,
and the link is hyperbolic.

Proof. Consider a non-augmented block P: since the link is not Montesinos, P is separated
by a product region from some other large block (augmented or not). By Propositions 5.9
and 5.10, the dihedral angles ak, bk of P at the boundary of that product region can be taken
smaller than or equal to any small ε0 > 0, and the product region will still admit positive
angle structures. (More precisely, we take ak = bk = ε0 (Proposition 5.10) except in the special
case where the two blocks are glued directly to one another: then, we use the observation that
immediately follows Proposition 5.9 and take ak, bk equal to ε0 and 0, though not necessarily
in that order.)

We must now find dihedral angles for P such that the girth condition (5.3) holds. Consider
a trivial tangle attached to P, along the band Ui. Note that

A ∧ s′ + B ∧ s′ = s ∧ s′ � 2,

where the inequality follows from the table of minimal Farey distances, Table 1, in Proposi-
tion 3.6. Therefore, by Proposition 5.11, the tetrahedra in the trivial tangle will admit positive
structures as soon as

ai = bi =

⎧⎨
⎩

π

2
if s ∧ s′ = 2,

ε +
π

s ∧ s′
if s ∧ s′ > 2,

(5.8)

for a small ε > 0. Since max {ak, bk} = ε0, under this choice of values, the right member∑d
i=1 max{ai, bi} of the girth condition (5.3) is thus at most

ε0 + (d − 1)
π

2
.
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If d � 4, this quantity is already less than the left member (d − 2)π of (5.3). If d = 3, recall
from Section 3 that P is not attached to two trivial tangles of slope 1/2 modulo Z (otherwise,
we would have replaced the 3-bracelet associated to P by an augmented 1-bracelet in step (5)
of the algorithm). Thus, the above upper bound can be further improved to

ε0 + (π/2) + (ε + π/3) < π = (d − 2)π,

so the girth condition (5.3) is satisfied.
As for augmented bracelets, there is nothing to check: as soon as the ai, bi for an augmented

block P satisfy (5.2) and (near trivial tangles) the condition of Proposition 5.11, P is realized
by a union of tetrahedra with positive angles, by equation (5.4) above.

Finally, Theorem 1.1 implies the existence of a hyperbolic structure.

5.4. Strongly Montesinos links

Suppose that the candidate link K is strongly Montesinos, and recall the non-negative integers
nA, nB from Definition 5.4.

Proposition 5.14. If nA � 3 or nB � 3, the block decomposition admits angle structures.

Proof. Assume that nA � 3 (it is enough to treat this case). It is straightforward to find
a pair (α, β) satisfying the condition of Proposition 5.6 (namely α � β), such that (a, b) =
(π − αε, βε) satisfies the condition of Proposition 5.11 for small ε. For example, take

β = α if s ∧ s′ = 2, and β =
2
3
α if s ∧ s′ � 3

(recall (A ∧ s′) + (B ∧ s′) = s ∧ s′, so a(B ∧ s′) + b(A ∧ s′) � min {2a + b, a + 2b} > π). The
conclusion now follows from the two quoted propositions.

The next two propositions deal exactly with the remaining strongly Montesinos links, where

max{nA, nB} = 2

(since nA + nB � d � 3, this leaves only the cases (nA, nB) ∈ {(1, 2), (2, 2), (2, 1)}). In each
Proposition, we find a few non-hyperbolic links:

– In Proposition 5.15, it is the link already mentioned in Figure 3.8 and Remark 3.10,
which falls into the second class of exceptions of Theorem 1.5.

– In Proposition 5.16, it is exactly the strongly Montesinos links among the third class of
exceptions of Theorem 1.5.

Recall (Definition 5.4 and Remark 5.5) that nB is the number of twists in the ‘main band’ of a
strongly Montesinos link K, as defined prior to Definition 3.7: thus it would be a straightforward
exercise to translate the current block presentations back into planar link diagrams. Recall as
well that we have chosen markings for the Conway spheres of K, in which the large bracelet
has preferred slope ∞ and the trivial tangles have preferred slopes in the interval (0, 1). All
the exceptions arising in Propositions 5.15 and 5.16 were pre-emptively ruled out by the last
condition in the Definition 3.7 of candidate links.

Proposition 5.15. If d = 4 and nA = nB = 2, the block decomposition admits angle
structures, unless all the trivial tangles have slope 1/2.

Proof. The quadruple (s,A,B, s′) associated to a trivial tangle of slope y/x ∈ (0, 1)
is by definition (∞, 1, 0, y/x): therefore, the key condition a(s′ ∧ B) + b(s′ ∧ A) > π from
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Proposition 5.11 becomes

a(y) + b(x − y) > π. (5.9)

Moreover, the denominator x of the slope y/x of the trivial tangle is the integer

∞∧ (y/x) = s ∧ s′.

If at least one of these denominators is larger than 2, we can set ai, bi as in (5.8) above, and
immediately obtain the girth condition (5.3) because π/2 + π/2 + π/2 + (ε + π/3) < 2π. If all
denominators are 2, the link is not hyperbolic (Figure 3.8) and not candidate; it belongs to the
second family of exceptions of Theorem 1.5.

Proposition 5.16. If d = 3 and (nA, nB) = (2, 1), then assume that the trivial tangles have
slopes y1/x1, y2/x2, y3/x3 ∈ (0, 1): the block decomposition admits angle structures, unless one
has y1 = y2 = y3 = 1 and 1/x1 + 1/x2 + 1/x3 � 1.

Proof. Again, if
∑

1/xi < 1, we can set ai, bi as in (5.8) to obtain the girth condition (5.3).
Thus, assume that

∑
1/xi � 1 and (up to a permutation) y3 � 2. This entails in particular

that x3 � 3.
We will set (ai, bi) = (π − αi, βi) for well-chosen small positive numbers αi, βi. As in (5.9)

above, the key condition from Proposition 5.11 is still aiyi + bi(xi − yi) > π. If yi > 1, this
condition is vacuous for small αi, βi. If yi = 1, it can be written (xi − 1)βi > αi. Thus the
following is the full set of sufficient conditions to be satisfied.

– If xi = 2 then αi = βi > 0 (see Proposition 5.11).
– If xi > 2 then αi > βi > 0 (see Proposition 5.11).
– If xi > 2 and yi = 1 then (xi − 1)βi > αi (see Proposition 5.11).
– For all i ∈ {1, 2, 3}, we have αi+1 + αi−1 > αi + βi and αi > βi+1 + βi−1, taking indices

modulo 3 (see Proposition 5.7).
Here the first three conditions ensure the existence of angle structures for the trivial tangles;
the last one, for the solid torus.

If x1 = x2 = x3 = 3, we take

(α1, α2, α3) = (5ε, 5ε, 7ε)
(β1, β2, β3) = (3ε, 3ε, ε) .

While we choose α1 < 2β1 and α2 < 2β2 here, note that α3 is not subjected to the condition
α3 < (x3 − 1)β3, because y3 � 2. The list of conditions above is clearly satisfied.

Finally, if x1 = 2, then x2 � 3: otherwise, the 3-bracelet associated to the block P would
have been replaced by an augmented 1-bracelet in step (5) of the algorithm of Section 3 (so the
link would not be strongly Montesinos). We thus set

(α1, α2, α3) = (7ε, 9ε, 13ε)
(β1, β2, β3) = (7ε, 5ε, ε) .

Again, the list of conditions above is clearly satisfied.

Thus all candidate links are hyperbolic. We have proved Theorem 3.8, and hence
Theorem 1.5.
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