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EFFECTIVE DISTANCE BETWEEN NESTED

MARGULIS TUBES

DAVID FUTER, JESSICA S. PURCELL, AND SAUL SCHLEIMER

Abstract. We give sharp, effective bounds on the distance between tori of
fixed injectivity radius inside a Margulis tube in a hyperbolic 3–manifold.

1. Introduction

A key tool in the study of hyperbolic manifolds is the thick-thin decomposition.
For any number ε > 0, a manifold M is decomposed into the ε–thin part, con-
sisting of points on essential loops of length less than ε, and its complement the
ε–thick part. Margulis proved the foundational result that there is a universal
constant ε3 > 0 such that for any hyperbolic 3–manifold M , the ε3–thin part is
a disjoint union of cusps and tubes. Analogous statements hold in all dimensions
and for more general symmetric spaces. This result has had numerous important
consequences in the study and classification of hyperbolic 3–manifolds and Kleinian
groups. Thurston and Jørgensen used the Margulis lemma to describe the structure
of the set of volumes of hyperbolic manifolds, with limit points occurring only via
Dehn filling [28]. The Margulis lemma also plays a major role in the construction
of model manifolds used in the proofs of the Ending Lamination Theorem [8, 22]
and the Density Theorem [23, 24].

Since tubes and cusps are well-understood quotients of hyperbolic space by ele-
mentary groups, it seems that the thin parts of manifolds should be easy to analyze.
However, in practice, the thin parts of a manifold are often very difficult to con-
trol. For example, the optimal value for the Margulis constant ε3 is still unknown.
The best known estimate is due to Meyerhoff [20]. Additionally, given an ε–thin
tube, it is very difficult to analyze and bound simple quantities such as the radius
of the tube in full generality. This is because the radius depends not only on ε,
but also on the rotation and translation — the complex length — at the core of
the tube. Although the radius is a continuous function of these parameters, it is
nondifferentiable in many places. See Proposition 3.10 for a formula and Figure 2
for a graph.

In this paper, we address the geometry of thin parts of (possibly singular) hy-
perbolic 3–manifolds. Given 0 < δ < ε and a tube of injectivity radius ε/2 (the
ε–tube, for short), we determine sharp, effective bounds on the distance between
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the boundaries of the ε–tube and the δ–tube. These bounds are independent of the
complex length λ+ iτ of the core of the tube. Our main result is the following.

Theorem 1.1. Suppose that 0 < δ < ε ≤ 0.3. Let N = Nα,λ,τ be a hyperbolic solid
torus whose core geodesic has complex length λ+ iτ and cone angle α ≤ 2π, where
λ ≤ δ. Then the distance dα,λ,τ (δ, ε) between the δ and ε tubes satisfies

max

{
ε− δ

2
, arccosh

ε√
7.256 δ

− 0.0424

}
≤ dα,λ,τ (δ, ε) ≤ arccosh

√
cosh ε− 1

cosh δ − 1
.

We remark that the argument of arccosh in the lower bound of Theorem 1.1
may be less than 1; hence arccosh(·) is undefined. To remedy this, we employ the
convention that an undefined value does not realize the maximum. The real point
is that the lower bound is not very strong (less than ε/2) for any pair (δ, ε) such

that ε <
√
7.256 δ. On the other hand, the lower bound of Theorem 1.1 is sharp up

to additive error for any pair (δ, ε) where ε ≥
√
7.256 δ. The upper bound is sharp

for every pair (δ, ε). See Section 1.3 for more details.

1.1. Motivation and applications. Ineffective bounds on the distances between
thin tubes were previously observed by Minsky [22, Lemma 6.1] and Brock and
Bromberg [6, Theorem 6.9], who credit the bound to Brooks and Matelski [9].
Universal bounds of this sort, depending only on δ and ε, are required in the proof
of the Ending Lamination Theorem, both for punctured tori [22] and for general
surfaces [8,21]. In particular, Minsky used such bounds in the proof of the “a priori
bounds” theorem that curves appearing in a hierarchy have universally bounded
length [21]. One consequence of “a priori bounds” is Brock’s volume estimate for
quasifuchsian manifolds and for mapping tori [4, 5]. A second consequence is the
result (due to Minsky, Bowditch, and Brock–Bromberg [3, 7]) that distance in the
curve complex of a surface S is coarsely comparable to electric distance in a 3–
manifold of the form S × R.

In a slightly different direction, Brock and Bromberg applied the ineffective
bounds on distances between tubes to cone-manifolds, establishing uniform bilip-
schitz estimates between the thick part of a cusped 3–manifold and the thick parts
of its long Dehn fillings [6]. This application requires a version of Theorem 1.1 for
solid tori with a cone-singularity at the core. In turn, the Brock–Bromberg result
has been combined with the Ending Lamination Theorem to show that geometri-
cally finite hyperbolic 3–manifolds are dense in the space of all (tame) hyperbolic
3–manifolds [23, 24].

The past few years have witnessed an intense effort to make theorems in coarse
geometry effective, that is, to make the constants explicit. Recent effective results
include, for instance, [2,15,17]. Finding an effective version of the distance between
thin tubes has been a major obstacle to extending those efforts. Theorem 1.1
provides such an effective result.

Theorem 1.1 is already being applied to obtain effective versions of several results
mentioned above. Futer and Taylor have outlined an effective “a priori bounds”
theorem, combining Theorem 1.1 with sweepout arguments [15] and effective results
about hierarchies [2]. Aougab, Patel, and Taylor have found an effective “electric
distance” theorem, again using a combination of Theorem 1.1 and sweepout argu-
ments [1]. Finally, the authors of this paper have used Theorem 1.1 in combination
with a number of cone-manifold estimates due to Hodgson and Kerckhoff [18, 19]
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EFFECTIVE DISTANCE BETWEEN NESTED MARGULIS TUBES 4213

to effectivize the Brock–Bromberg bilipschitz theorem [14]. Our effective results on
cone-manifolds require Theorem 1.1 to hold for singular solid tori.

Finally, Theorem 1.1 offers a useful step toward finding the Margulis constant
ε3. The current state of knowledge is that 0.104 ≤ ε3 ≤ 0.775, with the lower
bound due to Meyerhoff [20] and the upper bound realized by the Weeks manifold.
Furthermore, a theorem of Shalen [25, 26], building on earlier work of Culler and
Shalen [13], says that 0.29 is a Margulis number for all but finitely many hyperbolic
3–manifolds. That is, for all but finitely many choices ofM , the 0.29–thin part ofM
is a disjoint union of cusps and tubes. Any manifold M failing this property must
be closed and must have vol(M) < 52.8. By combining Theorem 1.1 with our work
on cone-manifolds, we produce an explicit lower bound on the injectivity radius of
any exception to Shalen’s theorem. This makes it theoretically feasible (although
computationally impractical) to enumerate all manifolds with vol(M) < 52.8 and
injectivity radius bounded below and to determine their Margulis numbers [14].

1.2. Distance between tubes, as a function. Let 0 < δ ≤ ε be injectivity radii,
and consider a solid torus N = Nα,λ,τ whose core geodesic has complex length
λ + iτ and cone angle α ≤ 2π. The distance between the ε– and δ–tubes in N is
defined carefully in Definition 3.1. We denote this distance by dα,λ,τ (δ, ε). For our
current discussion, it helps to note that dα,λ,τ (δ, ε) is the difference of tube radii
of the ε–tube and δ–tube, and that each tube radius is determined by taking a
maximum of many smooth functions. See Proposition 3.10 for an exact formula.
As a consequence, dα,λ,τ (δ, ε) is a continuous but only piecewise smooth function
of the quantities δ, ε, λ, and τ .

The failure of global smoothness can be explained as follows. For each value of
ε > 0 and each complex length λ+ iτ of the core of N , the radius of the ε–tube is
determined by some power of the generator of π1(N). This power can change as
the data λ, τ, ε changes. For instance, Figure 1 shows the power of the core when
ε = 0.2 is fixed but λ + iτ varies. Meanwhile, Example 3.9 shows how the power
can depend on ε.

Figure 2 shows the graph of d2π,λ,τ (δ, ε) when δ = 0.05 and ε = 0.2 are fixed but
(λ, τ ) vary. Since the graph is the difference of a pair of wildly varying, piecewise-
smooth functions, it is an extremely complicated terrain of deep valleys, narrow
ridges, and sharp peaks. The sharp ridges are points of nondifferentiability and oc-
cur where the power of the core for δ changes. Other points of non-differentiability,
where the power for ε changes, occur in the valleys. Even though δ and ε are
fixed, the value of dα,λ,τ (δ, ε) ranges a great deal: from approximately 0.117 to
2.065. Nevertheless, Theorem 1.1 gives upper and lower bounds depending only on
δ and ε.

1.3. Sharpness and numerical constants. The hypothesis ε ≤ 0.3 in Theo-
rem 1.1 is slightly arbitrary. This hypothesis is not needed at all in the upper
bound (see Proposition 5.7). In the lower bound, our line of argument requires ε to
be bounded in some way, with the choice of bound affecting the additive constant
(−0.0424) in the statement. (See Theorem 8.8 for a generalized statement that
holds for larger ε.) We chose the value 0.3 because of its connection to currently
available estimates on the Margulis constant ε3. In particular, as described in Sec-
tion 1.1, applying Theorem 1.1 with ε = 0.29 can help determine the finite list of
manifolds for which 0.29 fails to be a Margulis number.
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Figure 1. In each region, all complex lengths λ + iτ have the
indicated power for ε = 0.2. That is, every based loop of length ε
that realizes injectivity radius is freely homotopic to this power of
the core. This figure was inspired by [12, Figure 2].

There are interesting examples illustrating the sharpness of both the upper and
lower bounds of Theorem 1.1. As Proposition 5.7 will show, the upper bound of
Theorem 1.1 is sharp for every pair (δ, ε). It is attained if and only if N is a
nonsingular tube whose core has complex length λ + iτ = δ + 0; that is, the core
has length δ and trivial rotational part.

The lower bound of Theorem 1.1 is sharp up to additive error, which can be
seen as follows. For every pair (δ, ε) such that 0 <

√
7.256δ ≤ ε ≤ 0.3, Theorem 4.6

constructs a solid torus N = N2π,λ,τ such that

(1.2) d2π,λ,τ (δ, ε) ≤ arccosh

(
1.116

ε√
δ

)
.

The core of N has complex length λ + iτ = 1/n2 + 2πi/n, where n is the least
natural number such that 1/n2 ≤ δ. Meanwhile, Theorem 1.1 gives

(1.3) d2π,λ,τ (δ, ε) ≥ arccosh

(
ε√

7.256 δ

)
− 0.0424.

Since arccosh(x) ∼ log(2x) for large x, the expressions in (1.2) and (1.3) differ by
an additive error. In fact, the additive difference is less than 2.2.

One consequence of the above paragraphs is that Theorem 1.1 is sharpest when
the solid torus N is nonsingular; that is, when N is the quotient of H3 by a loxo-
dromic isometry. Thus, while extending Theorem 1.1 to singular tubes introduces a
few technical complications (for example see Propositions 3.10 and 5.6), this exten-
sion does not weaken the statement in any way. We emphasize that the extension
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λ

τ

Figure 2. The graph of d2π,λ,τ (δ, ε) when ε = 0.2 and δ = 0.05 are
fixed, while λ and τ are varying. The values of d2π,λ,τ (δ, ε) range
from approximately 0.117 to 2.065. By comparison, Theorem 1.1
gives ε−δ

2 = 0.075 as a fairly good lower bound and 2.0650 . . . as a
sharp upper bound.

to singular tubes is needed for our forthcoming applications to cone-manifolds and
to bounding the Margulis numbers of (nonsingular) hyperbolic manifolds.

The results of this paper have an interesting relation to the discussion of Margulis
tubes in the work of Minsky (see [22, Section 6] and [21, Section 3.2.2]). On the
one hand, Proposition 7.1 confirms and effectivizes Minsky’s assertion ([22, proof
of Lemma 6.1] and [21, equation (3.6)]) that, for ε ≤ ε3, there is a constant c = c(ε)
such that the radius of an ε–tube of core length λ+ iτ satisfies

r2π,λ,τ (ε) ≥ log

(
1√
λ

)
− c.

On the other hand, the examples of Theorem 4.6 satisfy (1.2) and therefore con-
tradict [21, equation (3.7)]. Of course, this does not affect the overall correctness
of [21], as any lower bound depending only on ε and δ that grows large as δ → 0
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(for instance, the lower bound of Theorem 1.1) suffices for Minsky’s work toward
the classification of Kleinian surface groups.

1.4. Cusps. Recall that the thin part of a hyperbolic 3–manifold is a disjoint union
of cusps and tubes. Although Theorem 1.1 is only stated for tubes, there is a simpler
and stronger statement for cusps.

Proposition 1.4. Let 0 < δ < ε. Let N be a horocusp whose ε–thick part, N≥ε, is
nonempty. Then the δ–thin and ε–thick parts of N are separated by distance

dN (δ, ε) = d(N≤δ, N≥ε) = log

(
sinh(ε/2)

sinh(δ/2)

)
.

Proof. Let x ∈ N be a point such that injrad(x) = δ/2. Then there must be

a lift x̃ ∈ Ñ and a parabolic covering transformation ϕ such that d(x̃, ϕx̃) = δ.
By [11, Lemma A.2], a horocyclic segment from x̃ to ϕx̃ has length 2 sinh(δ/2).
Similarly, if y ∈ N is a point such that injrad(y) = ε/2, then there is a horocyclic
segment from ỹ to ϕỹ of length 2 sinh(ε/2). Now, a standard calculation shows that
the horospheres containing x̃ and ỹ are separated by distance

dN (δ, ε) = d(N≤δ, N≥ε) = log

(
2 sinh(ε/2)

2 sinh(δ/2)

)
. �

We observe that the distance dN (δ, ε) satisfies both the upper and lower bounds
of Theorem 1.1. Thus Theorem 1.1 also applies to cusps.

1.5. Organization. Section 2 lays out definitions and sets up notation that will
be used for the remainder of the paper. Section 3 proves Proposition 3.10, which
gives an exact formula for the radius of an ε–thin tube.

Section 4 describes a family of examples showing the sharpness of the lower
bound of Theorem 1.1. Section 5 proves the upper bound of Theorem 1.1 and
shows that it is sharp.

The lower bound of Theorem 1.1 requires a delicate case analysis, treating shal-
low and deep tubes separately. For a maximally sharp estimate, we rely on a result
of Zagier [20], later improved by Cao, Gehring, and Martin [10]. We obtain a bound
on the Euclidean metric on the tube boundary in Section 6 and prove a lower bound
on the depth of an ε–tube in Section 7. These ingredients are combined to give the
final proof in Section 8.

Appendix A contains several elementary lemmas in hyperbolic trigonometry that
are useful elsewhere in the paper.

2. Tubes and equidistant tori

In this section, we set notation and give definitions for solid tori, tubes, and
injectivity radii that will be used for the remainder of the paper.

To form a nonsingular hyperbolic tube, one starts with a neighborhood of a geo-
desic in H3 and takes a quotient under a loxodromic isometry fixing that geodesic.
In order for our results to hold for both nonsingular and singular tubes, we will take
a quotient of a more complicated space, as in the following definition. Fix 0 ∈ H3

to be an arbitrary basepoint.

Definition 2.1. Let σ ⊂ H
3 be a bi-infinite geodesic. Let Ĥ

3 denote the metric
completion of the universal cover of (H3 − σ). Let σ̂ be the set of points added in
the completion.
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The space Ĥ3 can be regarded as an infinite cyclic branched cover ofH3, branched
over σ. The branch set σ̂ ⊂ Ĥ3 is a singular geodesic with infinite cone angle.

There is a natural action of C (as an additive group) on Ĥ3, where z ∈ C

translates σ̂ by distance Re(z) and rotates by angle Im(z). Since σ̂ has infinite cone
angle, we have that angles of rotation are real-valued. Conversely, every isometry
ϕ of Ĥ3 that preserves orientation on both Ĥ3 and σ̂ comes from this action and
has a well-defined complex length z = ζ + iθ. We can therefore write ϕ = ϕζ+iθ.

We endow Ĥ
3 with a system of cylindrical coordinates (r, ζ, θ), as follows. Choose

a reference ray perpendicular to σ̂, and let the points of this ray have coordinates
(r, 0, 0), where r ≥ 0 measures distance from σ̂. Then, let (r, ζ, θ) be the image of
(r, 0, 0) under the isometry ϕζ+iθ. The distance element in these coordinates is ds,
where

(2.2) ds2 = dr2 + cosh2 r dζ2 + sinh2 r dθ2.

Definition 2.3. Consider a group G = Z×Z of isometries of Ĥ3, generated by an
elliptic ψiα and a loxodromic ϕ = ϕλ+iτ , where α > 0 and λ > 0. The quotient
space Nα,λ,τ is an open solid torus whose core curve Σ is a closed geodesic of
complex length λ + iτ and with a cone singularity of angle α at the core. We call
N = Nα,λ,τ a model solid torus.

Note that if α = 2π, the quotient of Ĥ
3 by the elliptic ψiα recovers H

3. In
this case, the model solid torus N2π,λ,τ is nonsingular and can be identified with
H3/〈ϕλ+iτ 〉, where ϕλ+iτ is a loxodromic isometry of H3 with complex length λ+iτ .

Definition 2.4. Let N = Nα,λ,τ be a model solid torus, and let x ∈ N . Then
the injectivity radius of x, denoted injrad(x), is the supremal radius r such that an
open metric r–ball about x is isometric to a ball Br(0) ⊂ H3. Since we are using
open balls, the supremal radius is attained. If α �= 2π and x lies on the singular
core geodesic, we set injrad(x) = 0.

For ε > 0, the ε–thick part of N is

N≥ε = {x ∈ N : injrad(x) ≥ ε/2}.
The ε–thin part is N<ε = N −N≥ε. We define N≤ε and N>ε similarly.

We emphasize that our definition of the ε–thick part corresponds to injectivity
radius ε/2 rather than ε. Both choices seem to be common in the literature on
Kleinian groups. Our convention agrees with that of Minsky [21, 22] and Brock–
Canary–Minsky [8], while differing from the convention of Brock–Bromberg [6] and
Namazi–Souto [23].

If M is a nonsingular manifold, every essential loop through a point x ∈ M≥ε

has length at least ε. A similar statement holds for singular tubes.

Lemma 2.5. Let N = Nα,λ,τ be a model solid torus whose core is singular. That

is, assume N is the quotient of Ĥ3 by Z2 ∼= 〈ψiα, ϕλ+iτ 〉 for α �= 2π. Choose a

point x ∈ N and a lift x̃ ∈ Ĥ3. Set ε = 2 injrad(x). Then

ε = min
{
d(x̃, ηx̃) : η ∈ Z

2 − {0}
}
.(2.6)

Similarly, suppose N is a nonsingular solid torus, the quotient of H3 by Z ∼= 〈ϕλ+iτ 〉
and x̃ ∈ H3 is a point covering x. Then

ε = min
{
d(x̃, ηx̃) : η = ϕn

λ+iτ ∈ Z− {0}
}
.(2.7)
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Proof. We focus on the singular case, as the nonsingular case is well-known. For
an arbitrary basepoint 0 ∈ H3, there is an isometric embedding f : Bε/2(0) → N

such that f(0) = x. Then any nontrivial element η ∈ Z2 must translate Bε/2(x̃) by
distance at least ε, so

min{d(x̃, ηx̃) : η ∈ Z
2 − {0}} ≥ ε.

Next, since injrad(x) = ε/2, the continuous extension of f to Bε/2(0) either hits
the core Σ or fails to be one to one. If it fails to be one to one, then a lifted ball
is tangent to a translate of itself under a nontrivial element η ∈ Z

2. On the other
hand, if it meets the core Σ, then there is a point z ∈ f(Bε/2(0))∩Σ. The preimage

z̃ of z is fixed by an elliptic subgroup 〈ψiα〉 ⊂ Z2. Thus a translate of the lifted
ball by the generator η = ψiα will be tangent to the ball.

In either case, there are two distinct lifts of the ball, namely, Bε/2(x̃) and

Bε/2(ηx̃), that are tangent in Ĥ3. Therefore, d(x̃, ηx̃) = ε, and the minimum
over all group elements must be at most ε. �

Definition 2.8. If N is a nonsingular tube and ε ≥ λ, we define the power for ε
to be any n ∈ N so that the deck transformation η = ϕn realizes the minimum in
equation (2.7). If N is a singular tube and ε > 0, we define the power for ε to be
any n ∈ N ∪ {0} so that the deck transformation η = ϕnψm realizes the minimum
in equation (2.6) for some m ∈ Z. The power is uniquely defined for almost every ε.

We remark that the power for ε is genuinely a function of ε and N , and does
not depend on the choice of x ∈ N such that injrad(x) = ε/2. This is because for

every ε > 0 and every loxodromic η ∈ Isom(Ĥ3), the set {y ∈ Ĥ3 : d(y, ηy) = ε} is a
Euclidean plane at fixed radius from the core geodesic σ̂ (or equal to σ̂ or empty).
The quotient of this set in N is equidistant from the core of N . This is a distinctly
3–dimensional phenomenon: already for η ∈ Isom(H4), the set of points moved by
distance ε can be far more complicated [27].

3. Tube radii

We now provide a bit of background for tube radii in hyperbolic 3–manifolds,
well-known to the experts. Let N = Nα,λ,τ be a model solid torus, as in Def-
inition 2.3. Our eventual goal is to bound distances between the boundaries of
the ε–thin and δ–thin tubes N≤ε and N≤δ, independently of α, λ, and τ . In this
section, we derive a formula for the radius of one such tube.

Definition 3.1. Let ε > 0, and assume the ε–thin part N<ε is nonempty. Then
T ε = ∂N≤ε is a torus consisting of points whose injectivity radius is exactly ε/2.
All of the points of T ε lie at the same radius from the core geodesic Σ. We denote
this radius by

r(ε) = rα,λ,τ (ε).

We let Tr denote the equidistant torus at radius r from the core of N . Subscripts
denote radius, while superscripts denote thickness. Thus

T ε = Tr(ε).

Given 0 < δ < ε, where N<δ �= ∅, we define the distance d(δ, ε) between T δ and T ε

as follows:

(3.2) d(δ, ε) = dα,λ,τ (δ, ε) = rα,λ,τ (ε)− rα,λ,τ (δ).
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Our next goal is to find a formula for r(ε) = rα,λ,τ (ε) in terms of complex lengths

of isometries stabilizing the singular geodesic of Ĥ3.

Definition 3.3. Let ϕλ+iτ be an isometry of Ĥ3, fixing the singular geodesic σ̂,
with complex length λ + iτ . For ε ≥ λ, define the translation radius, denoted
tradλ,τ (ε), to be the value of r such that ϕλ+iτ translates all points of the form

(r, ζ, θ) ∈ Ĥ3 by distance ε.
We also need to compute the translation radius of a loxodromic isometry ϕλ+iτ

acting on H3 instead of Ĥ3. Since angles in H3 are only defined modulo 2π, this
radius coincides with the translation radius of ϕλ+i(τ mod 2π) acting on Ĥ3, namely,
tradλ, τ mod 2π(ε).

The usage (τ mod 2π) can be generalized to angles modulo other numbers.

Definition 3.4. Given a ∈ R and b > 0, we define (a mod b) to be

a mod b = x ∈ [−b/2, b/2) such that (a− x) ∈ bZ.

In many situations, the translation radius can be computed in closed form.

Lemma 3.5. Let (r, ζ1, θ1) and (r, ζ2, θ2) be points of Ĥ3 in cylindrical coordinates,
and let d be the distance between those points. If |θ1 − θ2| ≤ π, then

cosh d = cosh(ζ1 − ζ2) cosh
2 r − cos(θ1 − θ2) sinh

2 r

= (cosh(ζ1 − ζ2)− cos(θ1 − θ2)) cosh
2 r + cos(θ1 − θ2).(3.6)

If |θ1 − θ2| ≥ π, then

cosh d = (cosh(ζ1 − ζ2) + 1) cosh2 r)− 1.

Consequently, when ε ≥ λ and 0 ≤ |τ | ≤ π, we have

(3.7) r = tradλ,τ (ε) = arccosh

√
cosh ε− cos(τ )

cosh λ− cos(τ )
.

Proof. Equation (3.6) is proved in Gabai–Meyerhoff–Milley [16, Lemma 2.1]. See
Hodgson–Kerckhoff [18, Lemma 4.2] for the extension to singular tubes in the case

where |θ1 − θ2| ≤ π. If |θ1 − θ2| ≥ π, then the geodesic in Ĥ
3 between the two

points will pass through the singular axis σ̂. Thus the distance remains the same
if we set |θ1 − θ2| = π; hence cos(θ1 − θ2) = −1.

For equation (3.7), we substitute d = ε and (ζ1, θ1) = (λ, τ ) and (ζ2, θ2) = (0, 0).
Solving for r in (3.6) gives the result. �

Remark 3.8. It will be convenient to refer to Definition 3.3 and Lemma 3.5 even
in situations when ε < λ, hence when there do not exist points of Ĥ3 that ϕλ+iτ

translates by distance ε. If ε < λ, we define tradλ,τ (ε) = −∞. Similarly, when
x < 1, we set arccosh(x) = −∞. Under this convention, (3.7) holds for all pairs
(λ, ε).

The translation radius tradλ,τ (ε) is related to the radius of the ε–thin part of
N = Nα,λ,ε, but they are not necessarily identical.

Example 3.9. Set α = 2π, λ = 0.1, and τ = π. Then N = Nα,λ,τ is a quotient
of H3. The generator ϕ = ϕλ,τ of π1N ∼= Z will translate any point x̃ ⊂ H3 along
the invariant geodesic σ and also rotate it by π about σ. When ε < 0.1, we have
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Figure 3. Schematic showing how the tangency pattern of balls
Bε, ϕ(Bε), and ϕ2(Bε) depends on ε. In this figure, α = 2π,
λ = 0.1, τ = π are fixed. When ε is small, the balls Bε and ϕ(Bε)
are tangent first (shaded). When ε is larger, Bε and ϕ2(Bε) become
tangent first.

N≤ε = ∅ or equivalently tradλ,τ (ε) = −∞. When 0.1 ≤ ε ≤ 0.2, the map ϕn for
n ≥ 2 will translate any point of H3, including points of σ, by a distance larger
than ε. Thus, the radius of N≤ε is governed by ϕ alone: that is, r(ε) = tradλ,τ (ε),
and the power for ε is 1.

Now, consider what happens when ε is ever so slightly larger than 0.2, say ε =
0.201. Because ϕ2 has trivial rotational part, a point x̃ can lie relatively far from
σ (at radius r = 0.1001 . . .) and still be translated by distance ε. In symbols, for a
point x̃ = (r, 0, 0) ∈ H

3, we have

d(x̃, ϕ2x̃) = ε and trad2λ, 2τ mod 2π(ε) = trad2λ, 0(ε) = r = 0.1001 . . . .

Meanwhile, because ϕ rotates points by angle π about σ, it will move the same point
x̃ = (r, 0, 0) ∈ H3 by a distance much larger than ε, whereas the points translated
by distance ε lie closer to σ:

d(x̃, ϕx̃) = 0.2239 . . . > ε and tradλ,τ (ε) = 0.0871 . . . < r.

Finally, ϕn for n > 2 has both translational and rotational parts larger than that
of ϕ2, so ϕn will definitely move any point of H3 further than ϕ2. In fact, for every
ε ≥ 0.201, the radius of N≤ε is governed by ϕ2: that is, r(ε) = trad2λ,2τ (ε), and
the power for ε is 2. See Figure 3.

The above example is instructive in two ways. First, it illustrates that the
power for ε is locally constant but jumps when ε crosses certain isolated values.
Additional examples of this phenomenon are described in Section 4. Second, the
displayed equations above show that while ε = 2injrad(x) is determined by taking
a minimum distance over all nonzero powers of ϕ (see Lemma 2.5), the tube radius
r(ε) is determined by taking a maximum value of tradnλ,nτ (ε) over all nonzero
powers. Proposition 3.10 makes this idea precise for singular as well as nonsingular
tubes.

Before moving on, we note that the power for ε can only jump upward as ε
increases; see Remark 5.4. When ε is fixed but λ+ iτ varies, the jumping behavior
of powers follows the combinatorics of the Farey graph, as illustrated in Figure 1.
The jumping behavior also explains why the function rα,λ,τ (ε) and the related
function dα,λ,τ (δ, ε) have points of nondifferentiability, as visible in Figure 2.
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We are now ready to give a formula for the radius of the ε–tube N≤ε. The
following is the main result of this section.

Proposition 3.10. Let N = Nα,λ,τ be a model solid torus of cone angle α ≤ 2π.
For any ε such that N≤ε �= ∅, the radius r(ε) = rα,λ,τ (ε) of the tube N≤ε can be
computed as follows.

When the tube is nonsingular (that is, α = 2π)

r2π,λ,τ (ε) = max
n∈N

{
tradnλ, nτ mod 2π(ε)

}
= max

n∈N

{
arccosh

√
cosh ε− cos(nτ )

cosh(nλ)− cos(nτ )

}
.

When the tube is singular (that is, 0 < α < 2π)

rα,λ,τ (ε) = max

{
trad0,α(ε), max

n∈N

{tradnλ, nτ mod α(ε)}
}
.

Furthermore, if π ≤ α < 2π, then trad0,α(ε) = ε/2.

Remark 3.11. In each case of Proposition 3.10, it suffices to take a maximum over
a finite set. Indeed, when nλ > ε, the translation length of ϕn is sure to be larger
than ε. Thus, by Remark 3.8, all values of n larger than ε/λ will contribute −∞ to
the set over which we are taking a maximum and can therefore be ignored.

The integer n ∈ N∪{0} that realizes the maximum is the same as the power for
ε, defined in Definition 2.8. This gives another way to show that r(ε) is actually a
maximum rather than a supremum.

Proof of Proposition 3.10. First, assume that N is nonsingular. In this case, the
solid torus N can be described as N2π,λ,τ = H3/〈ϕλ+iτ 〉 ∼= H3/Z. Let x ∈ N be a
point such that 2injrad(x) = ε, and let x̃ be a preimage in H3. By Lemma 2.5, we
have

ε = min {d(x̃, ϕnx̃) : n ∈ Z− {0}} .
Let m ∈ Z − {0} be a power realizing the minimum. Without loss of generality,
we may assume m > 0. Then, for every n ∈ N, we have d(x̃, ϕnx̃) ≥ d(x̃, ϕmx̃). In
other words, a point ỹ ∈ H3 that ϕn moves by distance ε would have to be closer to
the core geodesic than x̃ is; hence tradmλ,mτ mod 2π(ε) ≥ tradnλ, nτ mod 2π(ε). (This
includes the possibility that no such point ỹ exists: i.e., tradnλ,nτ mod 2π(ε) = −∞;
see Remark 3.8.) We conclude that

r2π,λ,τ (ε) = tradmλ,mτ mod 2π(ε) = max
n∈N

{
tradnλ, nτ mod 2π(ε)

}
.

For every n ∈ N, we may compute tradnλ, nτ mod 2π(ε) via equation (3.7):

tradnλ, nτ mod 2π(ε) = arccosh

√
cosh ε− cos(nτ )

cosh(nλ)− cos(nτ )
,

where both sides might be −∞ as in Remark 3.8.
Now, assume that N is a singular tube of cone angle α < 2π. In this case, N

can be described as Nα,λ,τ = Ĥ3/Z2, where Z2 = 〈ϕ, ψ〉 = 〈ϕλ+iτ , ψiα〉. Let x ∈ N

be a point such that 2injrad(x) = ε, and let x̃ be a preimage in Ĥ3. As above,
Lemma 2.5 describes ε as a minimum of d(x̃, ηx̃) over all choices of η ∈ Z

2 − {0}.
We begin by restricting the values of η that need to be considered.

Fix n > 0, and consider all isometries of the form η = ϕnψm as m varies over Z.
All of these isometries translate the singular geodesic σ ⊂ Ĥ3 by the same distance,
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so d(x̃, ηx̃) will be smallest when the rotational angle is smallest (in absolute value).
Equivalently, the translation radius will be largest when the rotational angle is
smallest. Thus

max
m∈Z

{
tradnλ,nτ+mα(ε)

}
= tradnλ,nτ mod α(ε).

Similarly, if η = ϕ0ψm for m �= 0, then d(x̃, ηx̃) will be smallest for η = ψ. We
conclude that

rα,λ,τ (ε) = max

{
trad0,α(ε), max

n∈N

{tradnλ, nτ mod α(ε)}
}
.

It remains to interpret the quantity trad0,α(ε) for various values of α. When
0 < α < π, a ball Bε/2(x̃) will be tangent to its image under ψ without meeting the

axis of Ĥ3. In this case, trad0,α(ε) can be computed as in equation (3.7). When

π ≤ α < 2π, the ball Bε/2(x̃) will bump directly into the core geodesic σ ⊂ Ĥ3;
hence trad0,α(ε) = ε/2. �

4. Examples demonstrating sharpness

In Section 7 below, we will prove lower bounds on the radius of an ε–tube in
terms of ε and the core length λ. Quantitatively, the lower bound on cosh r(ε)

will be on the order of ε/
√
λ. The following family of examples, suggested by Ian

Biringer, shows that an O(ε/
√
λ) bound is in fact optimal. As a consequence, we

show in Theorem 4.6 that the lower bound of Theorem 1.1 is sharp up to additive
error.

Proposition 4.1. For any n ≥ 4, let Nn = N2π,λ,τ be a nonsingular model solid
torus whose core geodesic has complex length

λ+ iτ =
1

n2
+ i

2π

n
.

Then, for every ε in the range 1.016/n ≤ ε ≤ 0.3, the tube radius in Nn satisfies

cosh r(ε) =

√
cosh ε− 1

cosh
√
λ− 1

∈
(

ε√
λ
, 1.004

ε√
λ

)
.

Plugging the minimal and maximal values of ε into the above estimate shows
that the radii appearing in Proposition 4.1 range from arccosh(1.016) = 0.1767 . . .
to arccosh(0.3n), which goes to ∞ with n. We suspect that similar behavior cannot
hold for very small radii.

The proof of Proposition 4.1 needs the following easy monotonicity result, which
will be used repeatedly below.

Lemma 4.2. Let a, b ∈ R be constants, and consider the function

g(x) =
a− x

b− x
=

x− a

x− b
.

Then g(x) is strictly increasing in x if b < a and strictly decreasing in x if a < b.

Proof. Compute the derivative. Alternately, consider g as a linear fractional trans-
formation of RP1, which preserves orientation if and only if det

[
1 −a
1 −b

]
> 0. �
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Proof of Proposition 4.1. Fix ε ≥
√
λ = 1/n. Let r(ε) = r2π,λ,τ (ε) be the radius of

the ε–tube, as in Definition 3.1. We begin by proving a lower bound on r(ε), using
Proposition 3.10:

r2π,λ,τ (ε) = max
m∈N

{tradmλ,mτ mod 2π(ε)}

≥ tradnλ, nτ mod 2π(ε)

= trad√λ, 0(ε)

= arccosh

√
cosh ε− 1

cosh
√
λ− 1

.(4.3)

We will eventually show that, for ε ≥ 1.016/n, the above inequality is actually
equality. This amounts to showing that n is indeed the power for ε (see Defini-
tion 2.8). This requires a few estimates.

First, we get a tight two-sided estimate on the quantity in (4.3). Assume that

1/n =
√
λ < ε ≤ 0.3. The monotonicity of the function h(x, y) in Lemma A.3

implies that

1 <
cosh ε− 1

ε2
· λ

cosh
√
λ− 1

≤ cosh(0.3)− 1

(0.3)2
· 1

1/2
= (1.00375 . . .)2.

Multiplying all of this by ε2/λ and taking square roots give

(4.4)
ε√
λ
<

√
cosh ε− 1

cosh
√
λ− 1

< 1.004
ε√
λ
,

as claimed in the statement of the proposition.
Now, assume that ε ≥ 1.016/n. Then (4.3) and (4.4) combine to give

cosh r(ε) ≥
√

cosh ε− 1

cosh
√
λ− 1

>
ε√
λ
= εn ≥ 1.016,

which implies that

(4.5) tanh2 r(ε) > 0.0312.

Next, we claim that (for any ε ≥ λ) the only possible powers for ε are either 1
or n. This can be seen from equation (3.7), substituting τ = 2π/n:

cosh2 tradkλ, kτ mod 2π(ε) =
cosh ε− cos(2πk/n)

cosh(kλ)− cos(2πk/n)
.

When k ∈ nZ, the subtracted term is cos(2πk/n) = 1, hence constant, and the
denominator is smallest for k = n. When k /∈ nZ, we have cos(2πk/n) ≤ cos(2π/n);
hence Lemma 4.2 gives

cosh2 tradkλ, kτ mod 2π(ε) ≤
cosh ε− cos(2πk/n)

cosh(λ)− cos(2πk/n)
≤ cosh ε− cos(2π/n)

cosh(λ)− cos(2π/n)
.

Thus only k = 1 or k = n can give a maximal value of trad.
Finally, we claim that n is indeed the power for ε. Let ϕ = ϕλ,τ be the loxodromic

isometry of H3 that generates the deck group of Nn. Fix r = r(ε), and let T̃r be
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the lift to H3 of the equidistant torus Tr ⊂ Nn. For x̃ ∈ T̃r, let d1 = d(x̃, ϕx̃) and
dn = d(x̃, ϕnx̃). By Lemma 3.5,

cosh d1 = coshλ cosh2 r − cos τ sinh2 r = cosh
(

1
n2

)
cosh2 r − cos

(
2π
n

)
sinh2 r,

cosh dn = cosh(nλ) cosh2 r − cos(nτ ) sinh2 r = cosh
(
1
n

)
cosh2 r − cos(0) sinh2 r;

hence

cosh dn − cosh d1 =
[
cosh

(
1
n

)
− cosh

(
1
n2

)]
cosh2 r −

[
1− cos

(
2π
n

)]
sinh2 r.

Using calculus, we check that when n ≥ 4,

cosh
(
1
n

)
− cosh

(
1
n2

)
1− cos

(
2π
n

) ≤ 0.02945 < tanh2 r,

where the last inequality is by (4.5). Multiplying both sides by cosh2 r gives[
cosh

(
1
n

)
− cosh

(
1
n2

)]
cosh2 r <

[
1− cos

(
2π
n

)]
sinh2 r;

hence cosh dn < cosh d1. This means that ϕn translates points of T̃r by less than
ϕ for all radii satisfying (4.5); hence n is the power for ε.

We conclude that the inequality (4.3) is equality, as desired. �
We use Proposition 4.1 to prove Theorem 4.6, below. Recall from Section 1.3

that the upper bound of Theorem 4.6 differs from the lower bound of Theorem 1.1
by an additive error of less than 2.2.

Theorem 4.6. Fix a pair (δ, ε) such that 0 <
√
7.256δ ≤ ε ≤ 0.3. Given the pair

(δ, ε), there is a model solid torus N = N2π,λ,τ with λ ≤ δ such that

d2π,λ,τ (δ, ε) ≤ arccosh

(
1.116

ε√
δ

)
.

Proof. Given δ as above, let n be the unique integer satisfying

1

n
≤

√
δ <

1

n− 1
.

Now, set λ + iτ = 1/n2 + 2πi/n, and let N = Nn = N2π,λ,τ be a model solid

torus as in Proposition 4.1. Since
√
δ ≤ 0.3/

√
7.256 < 0.1114, we have n ≥ 9. In

addition, ε >
√
7δ ≥

√
7/n, verifying that the hypotheses of Proposition 4.1 hold

in our setting.
We will use Proposition 4.1 to get an upper bound on d2π,λ,τ (δ, ε). To do so, we

need an upper bound on
√
δ/
√
λ. Observe that
√
δ√
λ
= n

√
δ <

n

n− 1
.

Thus, if n ≥ 10, we have
√
δ/λ ≤ 10/9. If n = 9, recall that

√
δ < 0.1114, which

implies that
√
δ/λ = 9

√
δ < 1.0026 < 10/9 as well. Now, we compute

d2π,λ,τ (δ, ε) = r2π,λ,τ (ε)− r2π,λ,τ (δ)

≤ r2π,λ,τ (ε)

≤ arccosh

(
1.004

ε√
λ

)
≤ arccosh

(
1.004 · 10

9

ε√
δ

)
. �
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5. Distance between tubes: Upper bound

In this section we prove the upper bound of Theorem 1.1. This result requires
some lemmas, the first of which is also used in the lower bound.

Lemma 5.1. Let N = Nα,λ,τ be a model solid torus. Let x, y be points of N such
that 2 injrad(x) = δ > 0 and 2 injrad(y) = ε > 0. Then

d(x, y) ≥ ε− δ

2
.

Proof. Let h = d(x, y). If h ≥ ε/2, there is nothing to prove. Thus we may assume
that h < ε/2. By Definition 2.4, there is an embedded ball B = Bε/2(y) that is

isometric to a ball in H3. Since h < ε/2, we have x ∈ B. By the triangle inequality,
there is an embedded ball Bε/2−h(x) contained in B, implying that

injrad(x) = δ/2 ≥ ε/2− h. �

The following lemma controls the type of isometry that realizes injectivity radius
in singular tubes. Recall that T ε = ∂N≤ε ⊂ N denotes the equidistant torus
consisting of points whose injectivity radius is exactly ε/2.

Lemma 5.2. Consider a singular solid torus N = Nα,λ,τ of cone angle α < 2π,
and let 0 < δ < ε. Suppose that, for q ∈ T ε ⊂ N , the injectivity radius injrad(q) is
realized by an elliptic isometry ψiα (compare Lemma 2.5). Then, for every p ∈ T δ,
the injectivity radius injrad(p) is also realized by the same elliptic isometry ψiα.

Proof. There are two cases: α < π and α ≥ π. We consider the latter case first.
Suppose that π ≤ α < 2π, and let q ∈ T ε. By Proposition 3.10, we must have

r(ε) = ε/2; hence there is a point of intersection z ∈ Σ ∩ Bε/2(q), where Σ is the
singular core of N . Let α be the geodesic segment of length ε/2 from q to z.

Let p ∈ T δ. Since the symmetry group of N acts transitively on T δ, we may
assume without loss of generality that p ∈ α ∩ T δ. By Lemma 5.1, we have

r(δ) = d(z, p) = d(z, q)− d(p, q) ≤ ε

2
− ε− δ

2
=

δ

2
.

On the other hand, Proposition 3.10 gives r(δ) ≥ δ/2. Thus r(δ) = δ/2; hence the
injectivity radius of T δ is realized by the elliptic generator ψiα.

Next, suppose that 0 < α < π. According to Proposition 3.10, the injectivity
radius of q ∈ T ε is realized by an elliptic isometry ψiα precisely when

trad0,α(ε) ≤ tradnλ,nτ mod α(ε)

for all n ∈ N. Unwinding the definition of trad(ε) via Lemma 3.5, we see that for
n ≥ 1,

(5.3)
cosh ε− cos(nτ mod α)

cosh(nλ)− cos(nτ mod α)
≤ cosh ε− cosα

1− cosα
.

For simplicity of the following calculations, set

x = cosh ε, a = cosα, b = 1, a′ = cos(nτ mod α), b′ = cosh(nλ).

We consider a, b, a′, b′ to be constants in the following argument, because the integer
n will stay fixed. Note that b < b′ and a < a′. The inequality (5.3) can be rewritten
as

k(x) · x− a′

b′ − a′
=

x− a

b− a
, where k(x) ≥ 1.
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This, in turn, can be rewritten as

k(x) · b− a

b′ − a′
=

x− a

x− a′
.

Since a < a′, Lemma 4.2 implies that g(x) = x−a
x−a′ is a strictly decreasing function

of x. Now, for any 0 < δ < ε, set y = cosh δ. We have

k(y) · b− a

b′ − a′
=

y − a

y − a′
>

x− a

x− a′
= k(x) · b− a

b′ − a′
.

We conclude that

k(y) > k(x) ≥ 1, that is,
y − a

b− a
>

y − a′

b′ − a′
.

This means that for every n ∈ N, we have that tradnλ,nτ mod α(δ) is strictly smaller
than trad0,α(δ). Thus r(δ) = trad0,α(δ), as desired. �

Remark 5.4. The above proof can be modified to establish the following “mono-
tonicity of powers” statement. Suppose that 0 < δ < ε and the power for δ is n ∈ N.
That is, for p ∈ T δ, the injectivity radius injrad(p) is realized by a loxodromic isom-
etry ϕn

λ+iτ . Then the power for ε is at least n. Note that by Lemma 5.2, the realizing
isometry must be loxodromic. The proof starts with the following analogue of (5.3):
for all 1 ≤ m < n, we have

(5.5)
cosh δ − cos(mτ mod α)

cosh(mλ)− cos(mτ mod α)
≤ cosh δ − cos(nτ mod α)

cosh(nλ)− cos(nτ mod α)
.

Now, (5.5) combined with the monotonicity of the function g(x) of Lemma 4.2 (in
the opposite direction compared to the last proof) will imply that (5.5) also holds
with ε instead of δ. Since we do not need this statement, we omit the details.

We can now prove the following statement, which will quickly imply the upper
bound of Theorem 1.1.

Proposition 5.6. Suppose 0 < δ < ε and 0 < α ≤ 2π. Then, in any model solid
torus N = Nα,λ,τ such that N≤δ �= ∅, we have

cosh rα,λ,τ (ε)

cosh rα,λ,τ (δ)
≤

√
cosh ε− 1

cosh δ − 1
.

Equality holds if and only if the injectivity radii of T δ and T ε are realized by the
same loxodromic isometry, whose rotational part is trivial. In particular, if α = 2π
and τ = 0, then equality holds.
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Proof. We consider three cases, depending on the value of α and the power for ε.
First, suppose that the power for ε is m ∈ N; hence the injectivity radius of T ε

is realized by a loxodromic isometry ϕm
λ+iτ . In the following computation, using

Proposition 3.10, the ellipsis (· · · ) denotes any elliptic terms that arise when α < 2π:

cosh rα,λ,τ (ε)

cosh rα,λ,τ (δ)

=
max {maxn∈N {cosh tradnλ,nτ mod α(ε)} , · · · }
max {maxn∈N {cosh tradnλ,nτ mod α(δ)} , · · · }

by Proposition 3.10

=
cosh tradmλ,mτ mod α(ε)

max {maxn∈N {cosh tradnλ,nτ mod α(δ)} , · · · }
by definition of m

≤ cosh tradmλ,mτ mod α(ε)

cosh tradmλ,mτ mod α(δ)

=

√
cosh ε− cos(mτ mod α)

coshmλ− cos(mτ mod α)
· coshmλ− cos(mτ mod α)

cosh δ − cos(mτ mod α)
by (3.7)

=

√
cosh ε− cos(mτ mod α)

cosh δ − cos(mτ mod α)

≤
√

cosh ε− 1

cosh δ − 1
by Lemma 4.2.

Observe that the first inequality is equality precisely when m is also the power for
δ. The second inequality is equality precisely when (mτ mod α) = 0: that is, when
the realizing isometry has trivial rotational part.

Next, suppose that the injectivity radius of T ε is realized by an elliptic isometry
ψiα and furthermore that 0 < α < π. Then Lemma 5.2 says that the injectivity
radius of T δ is realized by the same elliptic. Thus we may compute as above:

cosh rα,λ,τ (ε)

cosh rα,λ,τ (δ)
=

cosh trad0,α(ε)

cosh trad0,α(δ)

=

√
cosh ε− cos(α)

1− cos(α)
· 1− cos(α)

cosh δ − cos(α)
by (3.7)

=

√
cosh ε− cos(α)

cosh δ − cos(α)

<

√
cosh ε− 1

cosh δ − 1
.

The inequality is strict because 0 < α < π; hence cosα < 1.
Finally, suppose that the injectivity radius of T ε is realized by an elliptic isometry

ψiα and furthermore that π ≤ α < 2π. Then Lemma 5.2 says that the injectivity
radius of T δ is realized by the same elliptic. Furthermore, r(ε) = ε/2 and r(δ) = δ/2.
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Thus

cosh2(rα,λ,τ (ε))

cosh2(rα,λ,τ (δ))
=

cosh2(ε/2)

cosh2(δ/2)

<
cosh2(ε/2)− 1

cosh2(δ/2)− 1
by Lemma 4.2

=
(2 cosh2(ε/2)− 1)− 1

(2 cosh2(δ/2)− 1)− 1

=
cosh(ε)− 1

cosh(δ)− 1
.

Again, the inequality is strict in this case. �

We can now prove the upper bound of Theorem 1.1, including its sharpness.

Proposition 5.7. Suppose 0 < δ < ε and 0 < α ≤ 2π. Then, in any model solid
torus Nα,λ,τ with N≤δ nonempty, we have

dα,λ,τ (δ, ε) ≤ arccosh

√
cosh ε− 1

cosh δ − 1
.

Furthermore, equality holds if and only if (α, λ, τ ) = (2π, δ, 0).

Proof. Combining Lemma A.1 and Proposition 5.6 gives
(5.8)

cosh dα,λ,τ (δ, ε) = cosh
(
rα,λ,τ (ε)− rα,λ,τ (δ)

)
≤ cosh rα,λ,τ (ε)

cosh rα,λ,τ (δ)
≤

√
cosh ε− 1

cosh δ − 1
.

Next, let us analyze when equality can hold. Assuming δ < ε, hence r(δ) < r(ε),
Lemma A.1 implies that the first inequality of (5.8) will be equality if and only if
r(δ) = 0. But r(δ) ≥ δ/2 > 0 when N is singular; hence equality cannot hold for
singular tori.

From now on, assume that α = 2π; hence N is nonsingular. By Lemma A.1,
the first inequality of (5.8) will be equality precisely when r(δ) = 0, hence when
λ = δ and the realizing isometry is a generator of π1(N) = Z. By Proposition 5.6,
the second inequality of (5.8) is equality precisely when this realizing isometry has
rotational part τ = 0. �

6. Euclidean bounds

We now begin working toward the lower bound of Theorem 1.1. In that argu-
ment, we will need to estimate distances on the torus T ε that forms the boundary
of an ε–tube. The torus T ε ⊂ N inherits a Euclidean metric, as does its preimage

T̃ ε ⊂ Ĥ3, and we may use that metric to measure the distance between points. In

this section, we consider how the Euclidean distance between points on T̃ ε relates
to the actual hyperbolic distance between these points in Ĥ3.

For points p and q in an equidistant torus T̃ ε = T̃r ⊂ Ĥ3, define dE(p, q) to be

the distance between them in the Euclidean metric on T̃r. Note that if p = (r, 0, 0)
and q = (r, ζ, θ) in cylindrical coordinates, then (2.2) gives

(6.1) dE(p, q)
2 = ζ2 cosh2 r + θ2 sinh2 r.
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Lemma 6.2. Let T̃r ⊂ Ĥ3 be a plane at fixed distance r > 0 from the singular

geodesic σ̂. Let p, q ∈ T̃r be points whose θ–coordinates differ by at most A ≤ π and
whose ζ–coordinates differ by at most B. Then

1− cosA

A2
dE(p, q)

2 ≤ cosh d(p, q)− 1 ≤ coshB − 1

B2
dE(p, q)

2.

Proof. Suppose without loss of generality that the cylindrical coordinates of p are
(r, 0, 0) and the coordinates of q are (r, ζ, θ), where |θ| ≤ A. We can now compute
using Lemma 3.5:

cosh d(p, q)− 1 = cosh ζ cosh2 r − cos θ sinh2 r − 1

= (cosh ζ − 1) cosh2 r + (cosh2 r − 1)− cos θ sinh2 r

= (cosh ζ − 1) cosh2 r + (1− cos θ) sinh2 r

=
cosh ζ − 1

ζ2
(ζ cosh r)2 +

1− cos θ

θ2
(θ sinh r)2.(6.3)

If either ζ = 0 or θ = 0, equation (6.3) should be interpreted by substituting the
limiting value of 1/2:

(6.4) lim
ζ→0

cosh ζ − 1

ζ2
=

1

2
= lim

θ→0

1− cos θ

θ2
.

The monotonicity of the functions in (6.4) leads to the following chain of inequali-
ties:

1− cosA

A2
≤ 1− cos θ

θ2
≤ 1

2
≤ cosh ζ − 1

ζ2
≤ coshB − 1

B2
.

To get the lower bound of the lemma, we return to (6.3) and substitute the lower
bound (1− cosA)/(A2) for both (1− cos θ)/(θ2) and (cosh ζ − 1)/(ζ2). The upper
bound follows similarly. �

The last result should be interpreted in light of Lemma A.3: so long as d(p, q)
is bounded above, (cosh d(p, q) − 1) is not too different from 1

2d(p, q)
2. Thus

Lemma 6.2 can be interpreted as saying that the Euclidean and hyperbolic dis-
tances are quite similar. The next lemma makes this idea precise in a special case.

Lemma 6.5. Let T̃r ⊂ Ĥ3 be a plane at fixed distance r > 0 from the singular

geodesic σ̂. Let p, q ∈ T̃r be points whose θ–coordinates differ by at most A ≤ π.
Suppose that d(p, q) ≤ 0.3. Then

0.6342 dE(p, q) < d(p, q) < dE(p, q).

Proof. The upper bound d(p, q) < dE(p, q) is immediate, because tubes are strictly
convex. For the lower bound, we use the monotonicity of the function f(x) =
(coshx− 1)/(x2). Lemma A.3 implies that on the interval [0, 0.3], we have

(6.6)
cosh d(p, q)− 1

d(p, q)2
≤ f(0.3) = 0.50376 . . . .

Similarly, g(x) = (1 − cosx)/(x2) is strictly decreasing on [0, π]; hence (setting A
as in Lemma 6.2) we get

(6.7)
1− cosA

A2
≥ g(π) =

2

π2
.
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Plugging (6.6) and (6.7) into Lemma 6.2 gives

0.50377 d(p, q)2 ≥ cosh d(p, q)− 1 ≥ 1− cosA

A2
dE(p, q)

2 ≥ 2

π2
dE(p, q)

2,

which simplifies to the desired result. �

7. The depth of a tube

The next step in the proof of Theorem 1.1 is Proposition 7.1, which provides a
lower bound on the radius of an ε–tube. Note that by Proposition 4.1, the estimate
of Proposition 7.1 is sharp up to multiplicative error in cosh r(ε), hence up to
additive error in r(ε).

Proposition 7.1. Let N = Nα,λ,τ be a model solid torus whose core curve has
cone angle 0 < α ≤ 2π and length 0 < λ ≤ 2.97. Suppose that N≤ε �= ∅. Then the
tube radius r(ε) satisfies

cosh rα,λ,τ (ε) ≥ ε√
(4π/

√
3)λ

≥ ε√
7.256λ

.

The proof breaks into separate cases, depending on whether N is singular or
nonsingular. We will handle singular tubes first.

Lemma 7.2. Let N = Nα,λ,τ be a model solid torus whose core has cone angle
α < 2π. Then

sinh 2rα,λ,τ (ε) ≥
√
3 ε2

αλ
>

√
3 ε2

2πλ
.

Proof. Let Tr ⊂ N be the torus at radius r from the core, and let T̃r be its preimage
in Ĥ

3. By equation (2.2), the area of Tr is

(7.3) area(Tr) = αλ sinh r cosh r =
αλ

2
sinh 2r.

Now, suppose that an (arbitrary) point x ∈ Tr has injrad(x) = ε/2. Let x̃ ∈ T̃r

be a lift of x. By Lemma 2.5, every nontrivial deck transformation η ∈ Z2 − {0}
satisfies

d(x̃, ηx̃) ≥ ε.

This includes elliptic isometries of Ĥ3, because N is singular. Observe that Eu-

clidean distance along T̃r is greater than hyperbolic distance, because tubes are
strictly convex (compare Lemma 6.5). Thus

dE(x̃, ηx̃) > d(x̃, ηx̃) ≥ ε.

This means x̃ is the center of a Euclidean disk of radius ε/2, disjoint from all of its
translates by the deck group. Projecting down to Tr gives an embedded Euclidean
disk of radius ε/2. Since a packing of R2 by isometric disks has density at most

π/(2
√
3), we have

(7.4) area(T ε) ≥ πε2

4
· 2

√
3

π
=

√
3

2
ε2.

Combining this result with equation (7.3), we obtain

area(T ε) =
αλ

2
sinh 2r(ε) ≥

√
3 ε2

2
. �
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The nonsingular case of Proposition 7.1 uses the following result by Cao, Gehring,
and Martin [10, Lemma 3.4], sharpening an earlier lemma by Zagier [20, p. 1045].
We remark that more elementary forms of Lemma 7.5, such as a pigeonhole principle
argument due to Meyerhoff [20, p. 1048], suffice to show a version of Proposition 7.1,

but with a larger constant in front of
√
λ.

Lemma 7.5. Consider a nonsingular tube whose core geodesic has complex length
λ+ iτ , where 0 < λ ≤ 2.97. Then there is an integer m ≥ 1 such that

cosh(mλ)− cos(mτ ) ≤ 2πλ√
3

≤ 3.628λ.

Proof. This is a restatement of [10, Lemma 3.4]. To convert their result to the form
stated above, one needs the identity∣∣∣∣2 sinh2 (

m(λ+ iτ )

2

)∣∣∣∣ = ∣∣cosh (
m(λ+ iτ )

)
− 1

∣∣ = cosh(mλ)− cos(mτ ),

which is readily verified. See [10, equation (3.10)]. �
Using this, we can prove the nonsingular case of Proposition 7.1.

Lemma 7.6. Let r2π,λ,τ (ε) be the radius of a nonsingular tube that has injectivity
radius ε. Suppose the core curve has length λ ≤ 2.97. Then, for every ε ≥ λ,

cosh2(r2π,λ,τ (ε)) ≥
√
3 ε2

4πλ
.

Proof. Let m ≥ 1 be the integer guaranteed by Lemma 7.5. Then Proposition 3.10
gives

cosh2(r2π,λ,τ (ε)) = max
n∈N

{cosh2(tradnλ, nτ mod α(ε))}

≥ cosh2(tradmλ,mτ mod α(ε))

=
cosh ε− cos(mτ )

cosh(mλ)− cos(mτ )

≥ (cosh ε− 1) ·
√
3

2πλ

≥ ε2

2
·
√
3

2πλ
.

�
Proof of Proposition 7.1. IfN is a nonsingular tube whose core has length λ ≤ 2.97,
the proposition holds by Lemma 7.6. Meanwhile, if N is a singular tube whose core
curve has cone angle α < 2π, Lemma 7.2 implies that

cosh2 r(ε) > sinh r(ε) cosh r(ε) =
1

2
sinh 2r(ε) ≥

√
3 ε2

4πλ
. �

8. Distance between tubes: Lower bound

In this section, we prove the lower bound of Theorem 1.1. The proof breaks into
two cases: shallow and deep. A tube is said to be shallow if its radius is bounded
above by some constant denoted rmax. Similarly, a tube is said to be deep if its
radius is bounded below by some constant denoted rmin. The optimal values of
rmin and rmax will be determined later.
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The following lemma gives a bound for shallow tubes.

Lemma 8.1. Suppose that 0 < δ < ε. Let N = Nα,λ,τ be a model solid torus,
where 0 < α ≤ 2π and 0 < λ ≤ min(δ, 2.97). Suppose as well that rα,λ,τ (δ) ≤ rmax

for some rmax > 0. Then

dα,λ,τ (δ, ε) ≥ arccosh
ε√

7.256 δ
− rmax.

Proof. An immediate consequence of Proposition 3.10 is that the tube radius
rα,λ,τ (ε) is decreasing in λ. Combining this fact with Proposition 7.1 gives

dα,λ,τ (δ, ε) = rα,λ,τ (ε)− rα,λ,τ (δ)

≥ rα,δ,τ (ε)− rα,λ,τ (δ)

≥ arccosh
ε√

7.256 δ
− rmax.

�
The corresponding statement for deep tubes is:

Lemma 8.2. Suppose that 0 < δ < ε, where δ ≤ 0.3. Let 0 < α ≤ 2π, and
let N = Nα,λ,τ be a model solid torus such that N≤δ �= ∅. Suppose as well that
rα,λ,τ (δ) ≥ rmin > 0. Then

dα,λ,τ (δ, ε) ≥ log
( ε

δ
· 1.268 sinh rmin

)
− rmin.

To prove Lemma 8.2, we need to compute how fast the Euclidean injectivity
radius changes.

Lemma 8.3. Let 0 < r < R, and consider equidistant tori Tr, TR ⊂ Nα,λ,τ . Let
cr ⊂ Tr be a rectifiable curve, and let cR ⊂ TR be the cylindrical projection of cr to
TR. Then

coshR

cosh r
≤ �(cR)

�(cr)
≤ sinhR

sinh r
.

Proof. Let (r, ζ(t), θ(t)) be a parametrization of cr, where t ∈ [0, 1]. By (2.2), the
distance element on Tr satisfies

ds2 = cosh2 r dζ2 + sinh2 r dθ2.

Thus we may compute that

�(cr) =

∫ 1

0

ds =

∫ 1

0

√
cosh2 r

(
dζ

dt

)2

+ sinh2 r

(
dθ

dt

)2

dt.

Similarly,

�(cR) =

∫ 1

0

√
cosh2 R

(
dζ

dt

)2

+ sinh2 R

(
dθ

dt

)2

dt

=

∫ 1

0

√
cosh2 R

cosh2 r
· cosh2 r

(
dζ

dt

)2

+
sinh2 R

sinh2 r
· sinh2 r

(
dθ

dt

)2

dt

≥
∫ 1

0

coshR

cosh r

√
cosh2 r

(
dζ

dt

)2

+ sinh2 r

(
dθ

dt

)2

dt

=
coshR

cosh r
�(cr),
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where the inequality in the next-to-last line is Lemma A.2.
A similar computation proves the other inequality in the lemma. �

Proof of Lemma 8.2. Let x ∈ T δ ⊂ N . Then, by Lemma 2.5, there is a lift x̃ ∈ Ĥ3

and a deck transformation η such that d(x̃, ηx̃) = δ. Furthermore, η is a loxodromic
if N is nonsingular. The points x̃, η(x̃) are connected by a Euclidean geodesic arc

c̃δ ⊂ T̃ δ. Projecting back down to N , we have a Euclidean geodesic cδ whose length
satisfies

(8.4) 0.634 �(cδ) = 0.634 dE(x̃, ηx̃) < δ,

where the inequality is by Lemma 6.5.
Let cε ⊂ T ε be the cylindrical projection of cδ to T ε. Since every point of T ε has

injectivity radius ε/2, we know that �(cε) ≥ ε. Therefore,

ε

δ
<

�(cε)

0.634 �(cδ)
≤ sinh r(ε)

0.634 sinh r(δ)
<

er(ε)

2 · 0.634 ·
e−r(δ) · er(δ)
sinh r(δ)

≤ er(ε)−r(δ)

1.268
· ermin

sinh rmin
.

Here, the first inequality uses (8.4), the second inequality is Lemma 8.3, the third
inequality uses the definition of sinh r, and the fourth inequality uses the mono-
tonicity of e−r sinh r. Taking logarithms completes the proof. �

To complete the proof of Theorem 1.1, we need one more elementary lemma.

Lemma 8.5. Consider the function

j(δ, ε) =
1

1.268

(√
δ

7.256
+

√
δ

7.256
− δ2

ε2

)
.

On the domain Q = {(δ, ε) : 0 ≤ ε ≤ 0.3, 0 ≤ δ ≤ ε2/7.256}, the function satisfies
j(δ, ε) ≤ 0.0424.

Proof. It follows from the definition that j(δ, ε) is increasing in ε. Thus the max-
imum over Q occurs on the arc of ∂Q where ε = 0.3. On this arc, we compute
∂
∂δ j(δ, ε) and find that j(δ, ε) has a single interior critical point at δ = 0.0093026 . . . ,
with maximal value j(δ, ε) = 0.042357 . . . . �

We can now complete the proof of the main theorem.

Proof of Theorem 1.1. The upper bound of the theorem is proved in Proposition 5.7.
For the lower bound, suppose that 0 < δ < ε ≤ 0.3, and set rmax = rmin = 0.0424.

Suppose that N = Nα,λ,τ is a model solid torus such that λ ≤ δ. By Lemma 5.1,
we have dα,λ,τ (δ, ε) ≥ (ε− δ)/2. Thus it remains to show that

(8.6) dα,λ,τ (δ, ε) ≥ arccosh
ε√

7.256 δ
− rmin.

If
√
7.256 δ > ε, our convention is that arccosh(ε/

√
7.256 δ) = −∞ (see Remark 3.8);

hence (8.6) holds trivially. If r(δ) ≤ rmin, the desired lower bound of (8.6) holds
by Lemma 8.1. From now on, we assume that r(δ) ≥ rmin = 0.0424 and δ ≤
ε2/7.256 ≤ 0.32/7.256. This means the hypotheses of both Lemmas 8.2 and 8.5 are
satisfied.
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We will use Lemma 8.5 to show that the lower bound of Lemma 8.2 is stronger
than (8.6). We compute as follows, starting from Lemma 8.5:

0.0424 = rmin ≥ 1

1.268

(√
δ

7.256
+

√
δ

7.256
− δ2

ε2

)
,

sinh rmin ≥ 1

1.268
· δ
ε

(√
ε2

7.256δ
+

√
ε2

7.256δ
− 1

)
,

ε

δ
· 1.268 sinh rmin ≥

√
ε2

7.256δ
+

√
ε2

7.256δ
− 1,

log
( ε

δ
· 1.268 sinh rmin

)
− rmin ≥ log

(√
ε2

7.256δ
+

√
ε2

7.256δ
− 1

)
− rmin,

log
( ε

δ
· 1.268 sinh rmin

)
− rmin ≥ arccosh

ε√
7.256 δ

− rmin.

Thus, by Lemma 8.2, the desired lower bound (8.6) holds. �
Remark 8.7. In the above proof, the constant rmin = 0.0424 is (a slight overestimate
for) the maximum of the function j(δ, ε) from Lemma 8.5. The maximum of j(δ, ε)
on its domain is attained when ε takes the maximal value 0.3. This is the primary
reason why the additive constant −0.0424 in the statement of Theorem 1.1 depends
on the upper bound for ε. Meanwhile, the multiplicative constant 7.256 in the

statement of Theorem 1.1 is a slight overestimate for
√
4π/

√
3. This multiplicative

constant comes from Proposition 7.1 and Lemma 8.1, where δ ≤ 2.97 suffices. In
particular, it carries no hypotheses on ε.

Consequently, there is a generalization of Theorem 1.1 that holds for larger values
of ε.

Theorem 8.8. Fix a positive constant εmax ≤ 1.475, and suppose 0 < δ < ε ≤ εmax.
Let j(δ, ε) be the function of Lemma 8.5, and let jmax be the maximal value of
j(δ, εmax) on the interval 0 ≤ δ ≤ ε2max/7.256. Let rmin = arcsinh(jmax).

Then, for every hyperbolic solid torus N = Nα,λ,τ , where 0 < α ≤ 2π and λ ≤ δ,
we have

max

{
ε− δ

2
, arccosh

ε√
7.256 δ

− rmin

}
≤ dα,λ,τ (δ, ε) ≤ arccosh

√
cosh ε− 1

cosh δ − 1
.

Proof. The proof is nearly identical to the above proof of Theorem 1.1. We sub-
stitute εmax in place of 0.3 and the new definition rmin = arcsinh(jmax) in place of
0.0424. In the nontrivial case where δ ≤ ε2/7.256, the hypothesis ε ≤ 1.475 implies
that δ ≤ 0.3, which means Lemma 8.2 still applies. The final computation goes
through verbatim. �

Finally, we observe that the hypotheses of Theorem 8.8 can be loosened even
further, to εmax ≤

√
7.256 · 2.97 = 4.642 . . . , at the cost of a more complicated

adjustment to the value of rmin. Given δmax = ε2max/7.256, we have to adjust the
statement of Lemma 8.2 to work for all δ in the range 0 < δ ≤ δmax. This will cause
the multiplicative constant 1.268 to change, which will cause the function j(δ, ε)
of Lemma 8.5 to change as well. The maximum of the adjusted function will then
determine the needed value of rmin. We expect the constants of Theorem 8.8 to
suffice for our applications.
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Appendix A. Hyperbolic trigonometry

This appendix records several easy lemmas involving hyperbolic sines and cosines.

Lemma A.1. Let 0 ≤ r ≤ s. Then

cosh(s− r) ≤ cosh s

cosh r
,

with equality if and only if r = 0 or r = s.

Proof. Let h = s− r. Then

cosh(s) = cosh(r + h)

= cosh r coshh+ sinh r sinh h

≥ cosh r coshh.

Note that we will have equality if and only if r = 0 or h = 0, as desired. �

Lemma A.2. Let 0 < r ≤ s. Then

cosh s

cosh r
≤ es−r ≤ sinh s

sinh r
,

with equality if and only if r = s.

Proof. Again, let h = s− r. Then, as above,

cosh(s) = cosh r coshh+ sinh r sinhh

≤ cosh r coshh+ cosh r sinh h

= cosh r · eh,
proving the first inequality. Observe that equality holds if and only if h = 0. The
second inequality is proved similarly, using the sum formula for sinh(r + h). �

Lemma A.3. Suppose x, y ≥ 0. Define

f(x) =

{
(coshx− 1)/x2, x > 0,

1/2, x = 0,
and h(x, y) =

f(y)

f(x)
.

Then f(x) is strictly increasing in x, while h(x, y) is increasing in y and decreasing
in x.

Proof. Expanding the Taylor series

coshx = 1 +
x2

2!
+

x4

4!
+

x6

6!
+ · · ·

gives

f(x) =
x0

2!
+

x2

4!
+

x4

6!
+ · · · ,

which is clearly increasing in x. The monotonicity of h is now immediate. �
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