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Abstract

The Jones polynomial of an alternating link is a certain specialization of the Tutte polynomial of the
(planar) checkerboard graph associated to an alternating projection of the link. The Bollobás–Riordan–
Tutte polynomial generalizes the Tutte polynomial of graphs to graphs that are embedded in closed oriented
surfaces of higher genus.

In this paper we show that the Jones polynomial of any link can be obtained from the Bollobás–
Riordan–Tutte polynomial of a certain oriented ribbon graph associated to a link projection. We give some
applications of this approach.
© 2007 Published by Elsevier Inc.
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1. Introduction

Informally, oriented ribbon graphs (a.k.a. combinatorial maps, rotation systems) are graphs
with a cyclic orientation of the edges meeting at a vertex (see Chapter 10 of Tutte’s book on graph
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theory [26]). Their genus is the minimal genus of an oriented surface constructed by attaching
polygonal faces in a manner prescribed by the cyclic orientation. Recently, Bollobás and Riordan
extended the Tutte polynomial to ribbon graphs [4] as a three-variable polynomial, where the
exponents of the third variable are related to the genus of the ribbon graph.

The ribbon graphs of interest in this introductory paper arise naturally from link projections.
We will show that the Jones polynomial, via the Kauffman bracket, is a specialization of the
Bollobás–Riordan–Tutte polynomial of these oriented ribbon graphs. Furthermore, this approach
leads to a natural notion of the minimal genus of the ribbon graph over all link projections which
we call Turaev genus of a link. Links of Turaev genus zero are exactly the alternating links.

Our approach is different from the one taken by Thistlethwaite [24], where he gives a span-
ning tree expansion of the Jones polynomial via signed graphs. Using these ideas, Kauffman
defined a three-variable Tutte polynomial for signed graphs [17]. For alternating links, our ap-
proach coincides with Thistlethwaite’s approach: the Jones polynomial of an alternating link is
a specialization of the Tutte polynomial of Tait’s checkerboard graph of an alternating link pro-
jection. The connection between the Tutte polynomial and the Jones polynomial for alternating
knots was fruitfully used in [10,11]. The books [3,28] give a good introduction to the interplay
between knots and graphs.

There is a version of the Jones polynomial for links in 3-manifolds M that are I -bundles over
orientable surfaces: that is, M = S ×I with I = [0,1] the unit interval. In this setting, one defines
a version of the Kauffman bracket for link projections on S and the Jones polynomial is a nor-
malization of this bracket that remains invariant under Reidemeister moves on S. Chmutov and
Pak [7] were the first to relate the Bollobás–Riordan–Tutte graph polynomial to link invariants:
they showed that the Kauffman bracket of an alternating link projection on S is an evaluation
of the Bollobás–Riordan–Tutte polynomial of the checkerboard graph of the projection. Thus,
Chmutov and Pak generalize Thistlethwaite’s result for alternating links in I -bundles. In [8] they
extend their result to virtual links.

In this paper we relate the Bollobás–Riordan–Tutte polynomial and the Kauffman bracket
in a context different than that of Chmutov and Pak: we work with links in S3 and consider
projections up to the usual Reidemeister moves. We show that the Kauffman bracket of any
connected link projection is obtained as an evaluation of the Bollobás–Riordan–Tutte polynomial
of a certain oriented ribbon graph (the A-graph) associated to the projection. We conclude that
the Jones polynomial of any link can be obtained from the Bollobás–Riordan–Tutte polynomial
of the ribbon graph. From this point of view, our result is a generalization of Thistlethwaite’s
alternating link result to all links.

The paper is organized as follows: Section 2 recalls the definition of an oriented ribbon graph.
Section 3 describes the construction of a ribbon graph from a diagram of a link. Section 4 uses
the surface of the ribbon graph to prove a duality result. The relationship to Fomenko’s concept
of atom [12], as introduced into knot theory by Manturov [20], is also discussed. In Section 5, we
define the Bollobás–Riordan–Tutte polynomial of this ribbon graph, and show how the Kauffman
bracket of the diagram can be obtained as a specialization of this polynomial. Passing from the
Kauffman bracket to the Jones polynomial is then a matter of multiplying by a well-known
diagrammatic factor.

As an application, we get a spanning tree and a spanning subgraph expansion for the Kauffman
bracket in Section 6. Finally, Section 7 gives some implications for adequate links.
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2. Ribbon graphs

Heuristically, an oriented ribbon graph can be viewed as a multi-graph (i.e. loops and multiple
edges are allowed) equipped with a cyclic order on the edges at every vertex. Isomorphisms
between oriented ribbon graphs are graph isomorphisms that preserve the given cyclic order of
the edges.

The definition of a ribbon graph, however, highlights the permutation (and secondarily, the
topological) structure.

Definition 2.1. A connected oriented ribbon graph is a triple, D = (σ0, σ1, σ2) of permutations
of a finite set B = [2n] := {1,2, . . . ,2n − 1,2n}. The triple must satisfy:

• σ1 is a fixed point free involution, i.e. σ1(σ1(b)) = b,σ1(b) �= b for all b.
• σ0(σ1(σ2(b))) = b and
• The group generated by 〈σ0, σ1〉 acts transitively on B .

A oriented ribbon graph is a disjoint union of connected oriented ribbon graphs. We will often
use the term ribbon graph for short, keeping the orientation implicit.

The elements of the set B will be called half edges (les brins in French). Note that it follows
from the second condition that any two permutations determine the third.

2.1. Associated surface and genus of a ribbon graph

Given an oriented ribbon graph D = (σ0, σ1, σ2), the orbits of σ0 form the vertex set, of
cardinality v(D), the orbits of σ1, the edge set, of cardinality e(D) and σ2, the face set, of car-
dinality f (D), respectively. The underlying graph of a ribbon graph has an edge connecting the
vertices in whose orbit its two half edges lie. In addition, this graph is embedded in an oriented
surface with (cellular) faces corresponding to the orbits of σ2 and oriented so that σ0 cyclically
rotates the half edges meeting at a vertex in the rotation direction determined by the orientation.
By convention, we also allow the ribbon graph with an empty set of half-edges. The underlying
graph has one vertex and one face.

Definition 2.2. The genus g(D) of a ribbon graph D with k components is determined by its
Euler characteristic: v(D) − e(D) + f (D) = 2k − 2g(D).

For the definitions and properties of oriented ribbon graphs, we will follow the recent mono-
graph Graphs in surfaces and their applications [19]. In particular, note that we will always
assume the embedding surface is oriented (certain extensions to the non-orientable case are dis-
cussed in [5]). Historically, this concept has been rediscovered several times and explored in
several distinct settings: combinatorics, topology, physics of fields, combinatorial group theory
and algebraic number theory.

Oriented ribbon graphs have also been called: fat graphs, cyclic graphs, combinatorial maps,
rotation systems and dessins d’enfant (Grothendieck’s terminology in the context of the Ga-
lois theory of certain arithmetic algebraic curves). In addition to the book of S.K. Lando and
A. Zvonkin [19] and Tutte’s book [26], surveys of note are those by Robert Cori and Antonio
Machì [6] and the book edited by Leila Schneps [23], which contains a survey of G. Jones and
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D. Singmaster on group theoretical aspects. In the graph theory literature, the original source
often cited is the 1891 article of L. Heffter [14].

3. From a link diagram to the Kauffman state ribbon graph

We will associate an oriented ribbon graph with each Kauffman state of a plane (connected)
link diagram. The graph is constructed as follows: Given a link diagram D(K) of a knot K we
have, as in Fig. 1, an A-splicing and a B-splicing at every crossing. For any state assignment of
an A or B at each crossing we obtain a collection of non-intersecting circles in the plane, together
with embedded arcs that record the crossing splice. Again, Fig. 1 shows this situation locally. In
particular, we will consider the state where all splicings are A-splicings.

To define the desired oriented ribbon graph associated to a plane link diagram, we need to
define an orientation on each of the circles resulting from the A or B splicings, according to a
given state assignment. (We note that these circles will become the vertices of our ribbon graph.)
For a related situation, see Vogel’s algorithm for transforming a link diagram into closed braid
form [1,27].

We orient the resulting set of circles in the plane by orienting each component clockwise
or anti-clockwise according to whether the circle is inside an odd or even number of circles,
respectively. See Fig. 2 for an example.

Given a state assignment s :E → {A,B} on the crossings (the eventual edge set E(D) of
the ribbon graph), the associated ribbon graph is constructed by first resolving all the crossings
according to the assigned states and then orienting the resulting circles as above.

The set of half-edges B will be the collection B = {(C,γ )}, where C is a component circle of
the resolution of the state s and γ is a directed edge from C corresponding to the chosen splice
at a crossing. The permutation σ0 permutes B according to the orientation order of the endpoints
of the oriented arcs γ beginning on C. The permutation σ1 matches the directed arc γ with the
oppositely oriented arc beginning at the other end of the splice. We will denote the ribbon graph
associated to state s by D(s).

4. Duality

Given a link diagram and a state s, one can explicitly construct a surface G(s), following
Cromwell and Turaev [9,25]. The construction uses both s and the dual state ŝ, in which every
crossing is resolved in the opposite way from s. It will turn out that G(s) realizes the genus
of D(s).

Fig. 1. Splicings of a crossing, A-graph and B-graph.
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Fig. 2. The eight-crossing knot 821 with its all-A splicing projection diagram and its orientation.

Let Γ ⊂ S2 be the planar, 4-valent graph of the link diagram. Thicken the projection plane to
a slab S2×[−1,1], so that Γ lies in S2×{0}. Outside a neighborhood of the vertices (crossings),
our surface will intersect this slab in Γ ×[−1,1]. In the neighborhood of each vertex, we insert
a saddle, positioned so that the boundary circles on S2×{1} are the state circles of s, and the
boundary circles on S2×{−1} are the state circles of ŝ. (See Fig. 3.) Then, we cap off each state
circle with a disk, obtaining a closed surface G(s). We call G(s) the Turaev surface of s.

Lemma 4.1. G(s) is an unknotted surface. In other words, S3 \ G(s) is a disjoint union of two
handlebodies.

Proof. By construction, the surface G(s) has the structure of a cell complex, whose 1-skeleton
is Γ and whose 2-cells correspond to state circles of s and ŝ.

Thicken Γ to a regular neighborhood N(Γ ). Because Γ is a planar graph, S3 \ N(Γ ) is a
handlebody. Now, glue in the 2-cells of G(s), one at a time. Each time we add a disk to the
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Fig. 3. Near each crossing of the diagram, a saddle surface interpolates between state circles of s and state circles of ŝ.
The edges of the ribbon graph can be seen as gradient lines at the saddle.

partially constructed surface, we cut the complementary manifold along a disk. It is well known
that when a handlebody is cut along a disk, the result is one or two handlebodies. Thus, by
induction, S3 \ G(s) is a union of handlebodies. �
Lemma 4.2. The oriented ribbon graphs D(s) and D(ŝ) can both be embedded in G(s). Further-
more, D(s) and D(ŝ) are dual on G(s): the vertices of one correspond to the faces of the other,
and the edges of one correspond to the edges of the other.

Proof. Once again, we employ the crucial fact that Γ cuts G(s) into disks that correspond to
state circles of s and ŝ. These disks can be two-colored, with the s-disks (above S2×{0}) white
and the ŝ-disks (below S2×{0}) shaded.

We embed D(s) on G(s) as follows. Pick a vertex in the interior of each white s-disk. Then,
each time two s-disks touch each other on opposite sides of a crossing, connect the corresponding
vertices by an edge. These edges correspond precisely to the splicing arcs in Fig. 1.

Orienting G(s) and the state circles of s, in a manner compatible with the orientation of
the plane projection, results in the half-edges of D(s) being embedded with the correct cyclic
ordering.

We embed D(ŝ) on G(s) in a similar way, by picking a vertex in the interior of each ŝ-disk.
Now, it is easy to observe that the two ribbon graphs are dual to each other. Every crossing of
the diagram gives rise to two intersecting edges, one in each ribbon graph. Every face of D(s)

corresponds to a shaded disk in G(s), which in turn corresponds to a vertex of D(ŝ)—and vice
versa.

Corollary 4.3. The genera of G(s), D(s), and D(ŝ) are all equal.

The state surface G(s) provides a concrete connection between the Jones polynomial of a
link L and the geometry and topology of the link complement. For example, the papers [10,13]
use the checkerboard coloring of this surface to relate the coefficients of the Jones polynomial to
the hyperbolic volume of the link. It also leads to a natural knot invariant:

Definition 4.4. Given a particular projection of a link L, we denote the oriented ribbon graph of
the all-A state by D(A), and of the all-B state by D(B). Then, we define the Turaev genus of L

to be the minimum value of g(D(A)), taken over all projections of L. Note that by Corollary 4.3,
this is also equal to the minimum value of g(D(B)).

Lemma 4.5. When s is the all-A state or the all-B state, the link has an alternating projection
to G(s).
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Fig. 4. Top: a section of the surface G(s) between two consecutive over-crossings. Middle: the projection of the section.
Bottom: the same section of surface, laid out flat. In this flattened picture, one can see that L is alternating on the surface.

Proof. When we project the link to G(s), the image is the same 4-valent graph Γ . Furthermore,
all the state circles of the A and B splicings have disjoint projections to G(s), since we can draw
each circle just inside the boundary of the corresponding disk. In other words, the local picture
is identical to the checkerboard coloring of an alternating diagram in the plane.

This local picture is illustrated in Fig. 4. The top panel shows an arc of L between two consec-
utive over-crossings, as well as the corresponding section of the surface G(s). When this piece
of the surface is laid out flat, one can see that the left crossing becomes an under-crossing, and
the projection of L to the surface is alternating. �
Corollary 4.6. A knot or link L has Turaev genus 0 if and only if it is alternating.

Proof. In an alternating diagram, the state circles of the A and B splicings correspond to the
checkerboard coloring of the plane. In other words, the construction of G(s) recovers the (com-
pactified) projection plane, and D(A) and D(B) have genus 0. Conversely, if L has a diagram
in which the genus of D(A) is 0, then by Lemma 4.5 the link has an alternating projection to a
sphere. �
Example 4.7. Figure 2 shows the non-alternating 8-crossing knot 821, as drawn by Knotscape
[15], and Fig. 5 the all-A associated oriented ribbon graph.
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Fig. 5. All-A splicing ribbon graph for 821.

With the numbering of the half-edges as given in the diagram, the fixed-point-free involution
σ1 is given in cycle notation by:

σ1 = {{1,2}, {3,4}, {5,6}, {7,8}, {9,10}, {11,12}, {13,14}, {15,16}}.
The vertex permutation reads the half-edges around a circle of the state splicing. In cycle notation
the permutation is:

σ0 = {{2,6,12,10,14,16,8,4,15,13}, {1,3,5}, {7,9,11}}.
By the defining property relating all three permutations,

σ2 = {{13,10,7,16,4,1}, {5,2}, {8,11,6,3}, {12,9}, {15,14}}

and we have five faces. The Euler characteristic of this ribbon graph is

v(D) − e(D) + f (D) = 3 − 8 + 5 = 0,

so we have that the genus is 1, as displayed in Fig. 6. Since the knot is non-alternating we know
by Corollary 4.6 that the Turaev genus of the knot must be one.

Remark 4.8. In a series of articles beginning with [20] and his book [21], Manturov introduces
the concept of atom into knot theory, motivated by Fomenko’s use in his study [12] of Hamil-
tonian systems.

An atom is a triple (M2,Γ, c) with

(1) M2 is a closed, compact, oriented two-manifold;
(2) Γ is a graph embedded in M so that the complement is a disjoint union of 2-disks;
(3) c is a two-coloring (checkerboard coloring) of the complementary regions.

A vertical atom is an atom where M is embedded in three-space, the projection, π , to the
z-axis is a Morse function and the level set at z = c, π−1(c) is a plane 4-valent graph whose
complement is a disjoint union of 2-disks. The closed surface, G(s), constructed in this section
is a vertical atom in which Γ is the initial plane projection of the link (with the checkerboard
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Fig. 6. Toroidal embedding of the all-A splicing ribbon graph for 821.

coloring of the complement). And, as detailed above, the ribbon graph associated to any state,
D(s), is embedded in this surface. In particular the graph of the all-A state ribbon graph, D(A)

can be embedded so that the vertices are in the complementary disks of a fixed, chosen color and
the edges connect the two regions of that color at a crossing.

5. The Bollobás–Riordan–Tutte polynomial

In this section we will recall the definition of the Bollobás–Riordan–Tutte polynomial C(D) ∈
Z[X,Y,Z] of a ribbon graph D from [4]. The definition requires several different combinatorial
measurements of the ribbon graph.

Definition 5.1. For an oriented ribbon graph D, we define the following quantities:

v(D) = the number of vertices = the number of orbits of σ0,

e(D) = the number of edges = the number of orbits of σ1,

f (D) = the number of faces = the number of orbits of σ2,

k(D) = the number of connected components of D,

g(D) = 2k(D) − v(D) + e(D) − f (D)

2
, the genus of D,

n(D) = e(D) − v(D) + k(D), the nullity of D.

The construction will be completed in two stages. For a ribbon graph with an edge that is not a
loop, i.e. does not connect a vertex with itself, the polynomial satisfies some contraction/deletion
relations. This reduces the computation to the computation of the Bollobás–Riordan–Tutte poly-
nomial for ribbon graphs with one vertex:
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5.1. The Bollobás–Riordan–Tutte polynomial for ribbon graphs with one vertex

For a ribbon graph D with one vertex and e(D) edges, we define the Bollobás–Riordan–Tutte
polynomial C(D) for one-vertex ribbon graphs as:

C(D) :=
∑

H⊂D

Yn(H)Zg(H).

Here, the summation is over all 2e(D) subgraphs of D obtained by deleting a subset of edges.
These are the spanning subgraphs on the same vertex set as D.

5.2. The Bollobás–Riordan–Tutte polynomial of a ribbon graph with many vertices

Given an edge e in an oriented ribbon graph, there is a naturally defined ribbon graph D/e

obtained by contracting the edge e to a vertex, with the cyclic order of the half-edges now meeting
at that vertex given by amalgamating the two cyclic orders as shown in Fig. 7.

Similarly, denote by D − e the oriented ribbon graph obtained by deleting an edge e and
omitting both half-edges in the orbit e from the cyclic order at the corresponding vertices.

Recall that an edge of a graph is called a bridge when its deletion increases the number of
components by 1.

Theorem 5.2. (See Bollobás–Riordan [4].) There is a well-defined invariant of an oriented rib-
bon graph D, C(D;X,Y,Z) ∈ Z[X,Y,Z], the Bollobás–Riordan–Tutte polynomial, satisfying:

C(D) = C(D − e) + C(D/e) for e neither a bridge nor a loop,

C(D) = XC(D/e) for e a bridge,

C(D) =
∑

H⊂D

Yn(H)Zg(H) if D has one vertex.

Remark 5.3. Note that our convention assigns the variable X to a bridge and 1 + Y to a loop,
following that of Bollobás–Riordan [5]. The usual convention for the Tutte polynomial assigns X

and Y , respectively.

Fig. 7. Edge contraction in a ribbon graph.
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5.3. The Bollobás–Riordan–Tutte polynomial, the Kauffman bracket and the Jones polynomial

Given a link projection, the Kauffman bracket polynomial 〈P 〉 ∈ Z[A,A−1] is a regular iso-
topy invariant satisfying:

• (Normalization) 〈©〉 = 1,
• (Trivial Components) 〈L∐©〉 = (−A2 − A−2)〈L〉 := δ〈L〉,
• (Skein) 〈L〉 = A〈LA〉 + A−1〈LB〉.

In condition three, LA is the A-splicing of the diagram at a chosen crossing and LB is the
B-splicing (see Fig. 1).

Recall that for alternating knots or links the Kauffman bracket of an alternating projection
can be considered as an evaluation of the Tutte polynomial of one of the checkerboard graphs,
up to multiplication with a power of the variable of the Kauffman bracket (see [24]). Chmutov
and Pak have used the Bollobás–Riordan–Tutte polynomial to compute the Kauffman bracket of
an alternating link embedded in a cylinder D × I over a ribbon graph D.

The following theorem is a generalization of Thistlethwaite’s [24] result to all links, not just
alternating ones. It does not, however, require the machinery of signed graphs needed in [24] for
the general case. The Kauffman bracket is computed as an evaluation of the Bollobás–Riordan–
Tutte polynomial for a single state!

Theorem 5.4. Let 〈P 〉 ∈ Z[A,A−1] be the Kauffman bracket of a connected link projection
diagram P and D be the oriented ribbon graph of P associated to the all-A-splicing. Then the
Bollobás–Riordan–Tutte polynomial C(D;X,Y,Z) and the Kauffman bracket are related by

A−e(D)〈P 〉 = A2−2v(D)C
(
D;−A4,A−2δ, δ−2),

where δ := (−A2 − A−2), and e(D) and v(D) are as in Definition 5.1.

Proof. We prove the theorem by induction on the number of crossings of P , or equivalently, the
number of edges of D. The base case is when P is a single unknotted circle, and thus D has one
vertex and no edges. Then it immediately follows that A0〈P 〉 = A0 = 1.

For the inductive step, we consider three different cases. By an abuse of notation, we will use
〈D〉 to denote the Kauffman bracket of a projection that yields D as its all-A-graph.

Case 1: DDD has one vertex, and thus all edges are loops. Then use the state sum formula for the
Kauffman bracket to compute that

〈D〉 =
∑

H⊂D

δf (H)−1Ae(D)−e(H)A−e(H)

= Ae(D)
∑

H⊂D

A−2e(H)δf (H)−1

= Ae(D)
∑

H⊂D

(
A−2δ

)2g(H)+f (H)−1(
δ−2)g(H)

= Ae(D)
∑

H⊂D

(
A−2δ

)n(H)(
δ−2)g(H)

,

which is the desired specialization of the Bollobás–Riordan–Tutte polynomial. Note that we did
not need the inductive hypothesis in this case.
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Case 2: Some edge eee of DDD is a bridge. Then the crossing ce of P corresponding to e is nugatory;
i.e. there is a simple closed curve in the projection plane that intersects P exactly once at the
double point ce . If we smooth the link at the nugatory crossing, the all-A-graph of the resulting
diagram will be D/e. The properties of the Kauffman bracket imply that 〈D〉 = (−A3)〈D/e〉.
Using this and the inductive hypothesis, we have

A−e(D)〈D〉 = (−A2)(A−(e(D)−1)〈D/e〉)

= (−A2)(A2−2(v(D)−1)
)
C(D/e;X,Y,Z)

= A2−2v(D)
(−A4)C(D/e;X,Y,Z)

= A2−2v(D)C(D;X,Y,Z),

where the last equation comes from the second axiom of the Bollobás–Riordan–Tutte polyno-
mial.

Case 3: Some edge eee of DDD is neither a bridge nor a loop. Let ce be the crossing of P

corresponding to e. Note that the all-A-graph of the result of an A-splicing at ce will be the
ribbon graph D − e; and the all-A-graph after performing the B-splicing at ce will be the ribbon
graph D/e. Since the projections obtained from P after each of these two splicings are connected,
the induction hypothesis applies. Using the skein relation for the Kauffman bracket, we have

A−e(D)〈D〉 = A−1(A−e(D)〈D/e〉) + A
(
A−e(D)〈D − e〉)

= A−2(A−(e(D)−1)〈D/e〉) + (
A−(e(D)−1)

)〈D − e〉
= A−2(A2−2(v(D)−1)

)
C(D/e;X,Y,Z) + A2−2v(D)C(D − e;X,Y,Z)

= A2−2v(D)
(
C(D/e;X,Y,Z) + C(D − e;X,Y,Z)

)

= A2−2v(D)C(D;X,Y,Z),

where the last equation comes from the first axiom of the Bollobás–Riordan–Tutte polynomial.
This completes the proof of the theorem. �
Remark 5.5. It is not hard to see that the B-graph of a link projection P is equal to the A-graph
of the mirror image of P (compare Figs. 1 and 3). It follows that, in Theorem 5.4, replacement
of D(A) by D(B) will compute the Kauffman bracket of the mirror image of the knot.

Remark 5.6. Let P be a connected projection of a link L, and let w(P ) denote the writhe
of P . Recall that the Jones polynomial JL(t) is obtained from (−A)−3w(P )〈P 〉 by substituting
A := t−1/4. Thus, by Theorem 5.4, the Jones polynomial of L is obtained as a specialization of
the Bollobás–Riordan–Tutte polynomial of the A-graph corresponding to P .

6. The spanning sub-graph and tree expansions

The Bollobás–Riordan–Tutte polynomial has a spanning subgraph expansion and a spanning
tree expansion, yielding the following corollaries.

For the spanning tree expansion we need an order ≺ of the edges of the oriented ribbon
graph D. A spanning tree T of D is a subgraph with the same vertex set, which is connected and
has no cycles (equivalently zero nullity, or no homology). For an edge e of T the cut determined
by e and T is the set of edges in D connecting one component of T − e to the other. An edge E is
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called internally active if e is the smallest element of the cut in the prescribed order ≺. An edge
e not in T is externally active if it is the smallest element in the unique cycle in T ∪ e. Denote
by i(T ) the number of internally active edges in the spanning tree T .

By [4] the spanning tree expansion of the Bollobás–Riordan–Tutte polynomial is given by:
∑

T

Xi(T )
∑

S⊂E(T )

Y n(T ∪S)Zg(T ∪S)

where E(T ) is the set of externally active edges for a given tree T (and the order ≺). Therefore
by Theorem 5.4, we have:

Corollary 6.1. Let 〈P 〉 ∈ Z[A,A−1] be the Kauffman bracket of a connected link projection
diagram P and D := D(A) be the oriented ribbon graph of P associated to the all-A-splicing.
The Kauffman bracket can be computed (using the fixed edge order ≺) by the following spanning
tree expansion:

A−e(D)〈P 〉 = A2−2v(D)
∑

T

Xi(T )
∑

S⊂E(T )

Y n(T ∪S)Zg(T ∪S)

under the following specialization: {X → −A4, Y → A−2δ,Z → δ−2}, where δ := (−A2 −
A−2).

The following spanning subgraph (subgraph with the same vertex set) expansion is obtained
by specializing the expansion defined in [5] to the ribbon graph case where all the edges are
orientable. Again, by Theorem 5.4:

Corollary 6.2. Let 〈P 〉 ∈ Z[A,A−1] be the Kauffman bracket of a connected link projection
diagram P and D := D(A) be the oriented ribbon graph of P associated to the all-A-splicing.
The Kauffman bracket can be computed by the following spanning subgraph H expansion:

A−e(D)〈P 〉 = A2−2v(D)(X − 1)−k(D)
∑

H⊂D

(X − 1)k(H)Y n(H)Zg(H)

under the following specialization: {X → −A4, Y → A−2δ,Z → δ−2} where δ := (−A2 −
A−2).

7. Span of the polynomial of adequate knots

A connected link projection P is called A-adequate (resp. B-adequate) if and only if D :=
D(A) (resp. D

∗ := D(B)) contains no loops (edges with both endpoints at the same vertex).
Now P is called adequate if it is both A- and B-adequate [9], and a link is called adequate if it
admits an adequate projection. The class of adequate links contains that of alternating ones, but
it is much more general. Let e(D) denote the crossing number of P and let v(D), v′(D) denote
the numbers of vertices of D(A), D(B), respectively. It is known that the span of the Kauffman
bracket of an adequate projection P is given by span〈P 〉 = 2e(D) + 2v(D) + 2v′(D) − 4. Next,
we show how to derive this from the subgraph expansion of Proposition 6.2 for connected link
projections.

The following result was essentially obtained by Kauffman [2,16]. Manturov [22] put it into
the atomic context described in Section 4. Here we give a proof using ribbon graphs, together
with corollaries inspired by the ribbon graph approach.
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Lemma 7.1. For a connected link projection P , let M(P) and m(P ) denote the maximum and
minimum powers of A that occur in 〈P 〉. We have:

(a) M(P) � e(D) + 2v(D) − 2, with equality if P is A-adequate.
(b) m(P ) � −e(D) − 2v′(D) + 2, with equality if P is B-adequate.

In particular, if P is adequate then

span〈P 〉 = M(P) − m(P ) = 2e(D) + 2v(D) + 2v′(D) − 4.

Proof. Let D := D(A) denote the oriented ribbon graph corresponding to the all-A splicing of P .
Given a spanning subgraph H ⊂ D we have, by Definition 5.1,

2g(H) = 2k(H) − f (H) − v(H) + e(H).

Now a straightforward computation, using k(D) = 1, shows that after the substitutions for
X,Y,Z given in Proposition 6.2 we obtain

Ae(D)−2v(D)+2(X − 1)k(H)−k(D)Y n(H)Zg(H) → Ae(D)−2e(H)
(−A2 − A−2)f (H)−1

. (7.1)

Then M(H) := e(D) − 2e(H) + 2f (H) − 2 is the highest power of A contributed by H. Let
H0 denote the spanning subgraph that contains only the vertices of D and no edges. Now every
spanning subgraph H ⊂ D is obtained from H0 by adding a number of edges. This can be done
in stages so that there are subgraphs H0, . . . ,Hk , with Hk = H and such that, for i = 1, . . . , k,
Hi is obtained from Hi−1 by adding exactly one edge. Then, e(Hi ) = e(Hi−1) + 1 and f (Hi ) =
f (Hi−1) ± 1, and hence the difference M(Hi−1) − M(Hi ) is 0 or 4. Thus we obtain

M(H) � M(H0) = e(D) + 2v(D) − 2, (7.2)

for every spanning subgraph H ⊂ D. Now if P is A-adequate then, since an edge is added be-
tween two distinct vertices of H0, we have f (H1) = f (H0) − 1, and so M(Hi ) decreases at the
first step. By (7.2) it never increases, so we have

M(H) < M(H0) = e(D) + 2v(D) − 2, (7.3)

for every H �= H0. Thus the term with degree M(H0) is never canceled in the subgraph expansion
of 〈P 〉 and part (a) of the lemma follows. Part (b) follows by applying part (a) to the mirror image
of P and using the observation in Remark 5.5. �
Corollary 7.2. Let P be an adequate projection of a link L and let D(A) and D(B) be as above.
Then the genus g(D(A)) = g(D(B)) is an invariant of the link L.

Proof. It is known that e(D) is actually the minimal crossing number of the link L and thus
an invariant of L [9, §9.5]. It is also known that the span of the Kauffman bracket of any link
projection is an invariant of the link. Since P is adequate, by Lemma 7.1, we have span〈P 〉 =
2e(D) + 2v(D) + 2v′(D) − 4. By Lemma 4.2, we have v′ = f (D(A)) and thus (Definition 5.1)
2 − 2g(D(A)) = v(D) + v′(D) − e(D). Thus 4g(D(A)) = 4e(D) − span〈P 〉, and the conclusion
follows from the previous observations. �

The span of the Kauffman bracket in the variable A of a knot projection is four times the span
of the Jones polynomial in the variable t .
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Fig. 8. Non-alternating pretzel knots that realize the estimate of Corollary 7.3.

Corollary 7.3. Let P be a c-crossing, connected projection of a link L, let sL denote the span of
the Jones polynomial of L and let gL be the Turaev genus of the link. Then,

gL � c − sL.

Proof. By Lemma 7.1 and its proof, we have that the span of the Kauffman bracket is less
or equal to 4c − 4g(D(A)). Since the span of the Kauffman bracket in the variable A of a
knot projection is four times the span of the Jones polynomial in the variable t , we have
gL � g(D(A)) � c − sL. �
Remark 7.4. The estimate in Corollary 7.3 is sharp for some families but not in general. For
example, it is sharp for the family of non-alternating pretzel knots P(a1, . . . , ar , b1, . . . , bs),
where ai � 2, bj � 2, r, s � 2, as in Fig. 8. On the one hand, these knots are non-alternating, so
they have Turaev genus at least one. On the other hand, Lickorish and Thistlethwaite [18] prove
that the span of the Jones polynomial is one less than the crossing number. Thus the estimate of
Corollary 7.3 is sharp.

For a non-sharp example, consider the 8-crossing knot 821 in Fig. 2. The span of its Jones
polynomial is 6 (Knotscape [15]), and its Turaev genus is one.

Acknowledgments

We would like to thank Sergei Chmutov and Igor Pak for helpful discussions on the Bollobás–
Riordan–Tutte polynomial. We also thank James Oxley and Vassily Manturov for helpful com-
ments.

References

[1] J.S. Birman, T.E. Brendle, Braids: A survey, in: Handbook of Knot Theory, Elsevier B.V., Amsterdam, 2005, pp. 19–
103.

[2] Y. Bae, H.R. Morton, The spread and extreme terms of Jones polynomials, J. Knot Theory Ramifications 12 (3)
(2003) 359–373.

[3] B. Bollobás, Modern Graph Theory, Grad. Texts Math., vol. 184, Springer-Verlag, New York, 1998.
[4] B. Bollobás, O. Riordan, A polynomial invariant of graphs on orientable surfaces, Proc. London Math.

Soc. (3) 83 (3) (2001) 513–531.
[5] B. Bollobás, O. Riordan, A polynomial of graphs on surfaces, Math. Ann. 323 (1) (2002) 81–96.
[6] R. Cori, A. Machì, Maps, hypermaps and their automorphisms: A survey. I, II, III, Expo. Math. 10 (5) (1992)

403–427, 429–447, 449–467.
[7] S. Chmutov, I. Pak, The Kauffman bracket and the Bollobas–Riordan polynomial of ribbon graphs, math.GT/

0404475, 2004.



O.T. Dasbach et al. / Journal of Combinatorial Theory, Series B 98 (2008) 384–399 399
[8] S. Chmutov, I. Pak, The Kauffman bracket of virtual links and the Bollobás–Riordan polynomial, math.GT/0609012,
Mosc. Math. J. 7 (3) (July–September 2007) 409–418.

[9] P.R. Cromwell, Knots and Links, Cambridge Univ. Press, Cambridge, 2004.
[10] O.T. Dasbach, X.-S. Lin, A volume-ish theorem for the Jones polynomial of alternating knots, math.GT/0403448,

Pacific J. Math., in press.
[11] O.T. Dasbach, X.-S. Lin, On the head and the tail of the colored Jones polynomial, math.GT/0604230, Compos.

Math. 142 (5) (2006) 1332–1342.
[12] A.T. Fomenko, The theory of invariants of multidimensional integrable Hamiltonian systems (with arbitrary [ar-

bitrarily] many degrees of freedom). Molecular table of all integrable systems with two degrees of freedom, in:
Topological Classification of Integrable Systems, Adv. Soviet Math., vol. 6, Amer. Math. Soc., Providence, RI,
1991, pp. 1–35.

[13] D. Futer, E. Kalfagianni, J.S. Purcell, Dehn filling, volume, and the Jones polynomial, arXiv: math.GT/0612138,
J. Differential Geom., in press.

[14] L. Heffter, Über das Problem der Nachbargebiete, Math. Ann. 38 (4) (1891) 477–508.
[15] J. Hoste, M. Thistlethwaite, J. Weeks, The first 1,701,936 knots, Math. Intelligencer 20 (4) (1998) 33–48.
[16] L.H. Kauffman, State models and the Jones polynomial, Topology 26 (3) (1987) 395–407.
[17] L.H. Kauffman, A Tutte polynomial for signed graphs, Discrete Appl. Math. 25 (1–2) (1989) 105–127; Combina-

torics and Complexity, Chicago, IL, 1987.
[18] W.B.R. Lickorish, M.B. Thistlethwaite, Some links with nontrivial polynomials and their crossing-numbers, Com-

ment. Math. Helv. 63 (4) (1988) 527–539.
[19] S.K. Lando, A.K. Zvonkin, Graphs on Surfaces and Their Applications, Encyclopaedia Math. Sci., vol. 141,

Springer-Verlag, Berlin, 2004, With an appendix by Don B. Zagier, Low-Dimensional Topology, II.
[20] V.O. Manturov, Atoms, height atoms, chord diagrams, and knots. Enumerating atoms of low complexity using

Mathematica 3.0, in: Topological Methods in Hamiltonian System Theory, Faktorial, Moscow, 1998, pp. 203–212.
[21] V.O. Manturov, Knot Theory, Chapman & Hall/CRC, Boca Raton, FL, 2004.
[22] V.O. Manturov, Minimal diagrams of classical knots, arXiv: math.GT/0501510, 2005.
[23] L. Schneps, Dessins d’enfants on the Riemann sphere, in: The Grothendieck Theory of Dessins d’Enfants, Luminy,

1993, London Math. Soc. Lecture Note Ser., vol. 200, Cambridge Univ. Press, Cambridge, 1994, pp. 47–77.
[24] M.B. Thistlethwaite, A spanning tree expansion of the Jones polynomial, Topology 26 (3) (1987) 297–309.
[25] V.G. Turaev, A simple proof of the Murasugi and Kauffman theorems on alternating links, Enseign. Math. (2) 33

(3-4) (1987) 203–225.
[26] W.T. Tutte, Graph Theory, Encyclopedia of Mathematics and Its Applications, vol. 21, Cambridge Univ. Press,

Cambridge, 2001.
[27] P. Vogel, Representation of links by braids: A new algorithm, Comment. Math. Helv. 65 (1990) 104–113.
[28] D.J.A. Welsh, Complexity: Knots, Colourings and Counting, London Math. Soc. Lecture Note Ser., vol. 186, Cam-

bridge Univ. Press, Cambridge, 1993.


