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Abstract
We prove that every cusped hyperbolic 3-manifold has
a finite cover admitting infinitely many geometric ideal
triangulations. Furthermore, every long Dehn filling of
one cusp in this cover admits infinitely many geomet-
ric ideal triangulations. This cover is constructed in
several stages, using results about separability of periph-
eral subgroups and their double cosets, in addition to
a new conjugacy separability theorem that may be of
independent interest. The infinite sequence of geometric
triangulations is supported in a geometric submanifold
associated to one cusp, and can be organized into an
infinite trivalent tree of Pachner moves.
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1 INTRODUCTION

Ahyperbolic 3-manifold𝑀 is called cusped if it is noncompact andhas finite volume. Every cusped
3-manifold𝑀 admits a topological ideal triangulation: that is, a decomposition into finitely many
tetrahedra whose vertices have been removed, with faces identified in pairs by affine maps. A geo-
metric ideal triangulation is a stronger notion, where each tetrahedron is isometric to the convex
hull of 4 non-coplanar points in ℍ3, and where the tetrahedra are glued by isometry to give the
complete hyperbolic metric on𝑀. See Definition 2.2 for precise details. The focus of this paper is
on geometric triangulations.
The presence of a geometric triangulation makes the geometry of 𝑀 much more accessible

to both practical and theoretical study. On the practical side, geometric ideal triangulations are
central to the workings of the computer program SnapPy [7] that computes hyperbolic structures
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INFINITELY MANY VIRTUAL GEOMETRIC TRIANGULATIONS 2353

and rigorously verifies their geometric properties [20]. On the theoretical side, Thurston’s origi-
nal proof of the hyperbolic Dehn filling theorem implicitly assumed that the 3-manifold at hand
admits a geometric triangulation [29]. Similarly, Neumann and Zagier’s work on volume assumes
that the complement of some closed geodesic in𝑀 admits a geometric triangulation [23].
Despite the importance of geometric triangulations, the first part of the following conjecture

has been open for multiple decades.

Conjecture 1.1. Let𝑀 be a (finite volume) cusped hyperbolic 3-manifold. Then

(1) (Folklore)𝑀 admits at least one geometric ideal triangulation.
(2) 𝑀 admits infinitely many geometric ideal triangulations.

In the 1980s, Conjecture 1.1.(1) was widely believed to follow from the work of Epstein and Pen-
ner [10].More precisely, the community believed that a geometric ideal polyhedral decomposition
of𝑀 can always be subdivided to give a geometric ideal triangulation. It took time to realize that a
naive refinement of the Epstein–Penner cell decomposition does not suffice; see the discussion of
coning in Section 2 for a description of some of the challenges. To our knowledge, the first record
of Conjecture 1.1.(1) in the literature is by Petronio [25, Conjecture 2.3], in 2000. See also Petronio
and Porti for a useful account of the history [26].
By contrast, Conjecture 1.1.(2) is new. We propose this tantalizing strengthening of the original

conjecture because searching for infinite and flexible sequences of geometric triangulationsmight
provide a pathway to finding at least one. Indeed, our main result can be interpreted as a proof of
concept that such a pathway exists in the context of finite covers and Dehn filling.
Passing to covers makes both parts of Conjecture 1.1 more amenable. Toward Part (1) of the

Conjecture, Luo, Schleimer and Tillmann showed that every cusped hyperbolic manifold𝑀 has
a finite cover that supports a geometric triangulation [22]. We recall their proof strategy in Sec-
tion 2, and incorporate several of their ideas in the proof of our theorems. Our main result, in the
direction of Conjecture 1.1.(2), is the following.

Theorem 1.2. Let 𝑀 be a cusped hyperbolic 3-manifold and 𝐴 ⊂ 𝑀 a horocusp. Then there is a
finite cover �̂� → 𝑀, such that 𝐴 lifts to a cusp 𝐴 ⊂ �̂�, with the following properties.

∙ �̂� admits infinitely many geometric ideal triangulations.
∙ For every sufficiently long slope 𝑠 on 𝜕𝐴, the Dehn filling �̂�(𝑠) admits infinitely many geometric
ideal triangulations.

Part of the interest of Theorem 1.2 comes from the fact that direct constructions of geomet-
ric ideal triangulations are only known in special classes of manifolds. For example, Guéritaud
proved that certain well-studied triangulations of hyperbolic once-punctured torus bundles are
geometric [13]. Futer extended Guéritaud’s method to hyperbolic 2-bridge link complements [13,
Appendix]. Guéritaud and Schleimer proved that if𝑀 is a generic multi-cusped hyperbolic man-
ifold, then long Dehn fillings of 𝑀 will admit geometric triangulations [15]. Ham and Purcell
found geometric ideal triangulations of highly twisted link complements, by adapting Guéritaud
and Schleimer’s construction to some especially nice triangulations of fully augmented links [16].
There have also been attacks on Conjecture 1.1.(1) that have attempted to subdivide a geometric

polyhedral decomposition into geometric ideal tetrahedra. Wada, Yamashita, and Yoshida
[30], building on work of Yoshida [32], described a sufficient condition on the dual 1-skeleton
of a polyhedral decomposition to make such a subdivision possible. Sirotkina proved that a
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2354 FUTER, HAMILTON, and HOFFMAN

subdivision is always possible if each 3-cell has at most six faces [28]. Goerner proved that a
subdivision is always possible if each 3-cell is a (not necessarily regular) ideal dodecahedron [12].
Champanerkar, Kofman, and Purcell have constructed interesting examples of link complements
admitting a decomposition into regular ideal bipyramids, which can then be subdivided into
geometric ideal tetrahedra [5, Theorem 3.5].
To our knowledge, there is only one prior paper constructing infinitely many geometric tri-

angulations on the same hyperbolic manifold. Dadd and Duan showed that the figure-8 knot
complement, which decomposes into two regular ideal tetrahedra, supports infinitely many geo-
metric triangulations [9]. Their proof strategy is very delicate, in that it does not extend to the
figure-8 sister manifold, which also decomposes into two regular ideal tetrahedra.
Given a cusped manifold𝑀, the topological Pachner graph of𝑀 is the graph whose vertices are

isotopy classes of (topological) ideal triangulations, with edges corresponding to 2–3 moves and
their inverses. (See Definition 3.5 for the definition of a 2–3move, and Figure 3 for an illustration.)
The geometric Pachner graph of 𝑀 is the induced subgraph whose vertices are geometric ideal
triangulations. The infinitely many geometric triangulations found by Dadd and Duan [9] are
organized in the form of an infinite ray in a single component of the geometric Pachner graph of
the figure-8 knot complement. In a generic situation, the infinitelymany geometric triangulations
constructed in Theorem 1.2 contain an even greater amount of structure.

Theorem 1.3. Let𝑀 be a cusped hyperbolic 3-manifold containing a non-rectangular cusp. Then
there exists a finite cover �̂� → 𝑀 such that the geometric Pachner graph of �̂� contains a subgraph
homeomorphic to an infinite trivalent tree.

The hypothesis on a non-rectangular cusp can be explained as follows. As we describe in Sec-
tion 2, every non-compact end of 𝑀 has the form 𝐴 ≅ 𝑇 × [0,∞), where 𝑇 is a torus endowed
with a Euclidean metric that is well defined up to similarity. We say that 𝐴 is rectangular if the
Euclideanmetric on𝑇 admits a rectangular fundamental domain, and non-rectangular otherwise.
By the work of Nimershiem [24], the Euclidean structures on cusp tori of hyperbolic 3-manifolds
form a dense subset of themoduli space of(𝑇2). Since rectangular tori represent a codimension-
one slice of (𝑇2), one can say that a generic cusped 3-manifold satisfies the hypotheses of
Theorem 1.3.
The infinite trivalent tree mentioned in Theorem 1.3 can be identified with the dual 1-skeleton

of the Farey graph. See Definition 3.9 and Figure 4 for a review of the Farey graph; in brief, its
vertices correspond to slopes, or simple closed curves on a torus, and to rational numbers in ℝℙ1.
The branches of the trivalent tree of Theorem 1.3 limit to every point of ℝℙ1. In particular, the
infinite sequence of geometric triangulations that we will construct can be chosen to approach
any rational or irrational foliation on a cusp torus of �̂�. Manifolds with rectangular cusps satisfy
a slightly weaker version of Theorem 1.3; see Remark 6.12 for details.

1.1 Proof strategy

Next, we outline the main ideas in the proofs of Theorems 1.2 and 1.3. Both proofs use the same
initial setup and general strategy. Since having a non-rectangular cusp simplifies the argument
considerably, Theorem 1.3 will be proved first.
Let𝑀 be a cusped hyperbolic 3-manifold. We will obtain geometric triangulations by subdivid-

ing the canonical (Epstein–Penner) polyhedral decompositions of covers of𝑀. Section 2 reviews
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INFINITELY MANY VIRTUAL GEOMETRIC TRIANGULATIONS 2355

the Epstein–Penner construction [10], emphasizing the way in which the canonical polyhedral
decomposition  depends on the choice of neighborhoods of the cusps. That section also reviews
the process of subdivision via coning and lays out a sufficient condition (involving an order on the
cusps) that ensures  can be subdivided into geometric ideal tetrahedra. See Lemma 2.9, which
is essentially due to Luo, Schleimer, and Tillmann [22], for details.
In Section 3, we describe a particular feature of the canonical polyhedral decomposition  that

occurs in the “generic” scenario when a manifold 𝑀 has multiple cusps, one cusp 𝐴 is chosen
to be sufficiently small, and there is a unique shortest path from 𝐴 to the other cusps. In this
situation, Guéritaud and Schleimer [15] show that the canonical polyhedral decomposition 

has only one or two cells poking into this cusp 𝐴. These cells fit together to form a submanifold
called a drilled ananas (see Definition 3.3). In Lemma 3.6, we show that a drilled ananas admits
an infinite sequence of geometric ideal triangulations. When 𝐴 is a non-rectangular cusp, these
triangulations are arranged in a trivalent tree of 2–3 moves, as described in Theorem 1.3.
To build covers of𝑀 satisfying the above-mentioned conditions,wewill need to separate certain

subgroups and subsets of𝜋1(𝑀) fromgroup elements that cause undesired coincidences. Section 4
reviews several key definitions and results about separability that are needed for our purposes.
The strongest result that is needed for the proof of Theorem 1.3 is Theorem 4.4, due to Hamilton,
Wilton, and Zalesskii [18], which provides separability of double cosets of peripheral subgroups.
With this background in hand, we can begin to construct covers. Assuming that𝑀 has a non-

rectangular cusp, Section 5 produces a sequence of finite covers �̂� → �̊� → 𝑀, with increasingly
strong properties. In particular, �̊� contains a drilled ananas, while �̂� has a polyhedral decompo-
sition ̂ that can be subdivided via coning. It will follow that �̂� admits an infinite trivalent tree
of geometric ideal triangulations, establishing Theorem 1.3.

1.2 New separability tools

To prove Theorem 1.2, which handles hyperbolic manifolds with rectangular cusps and provides
an additional conclusion about Dehn fillings, we need stronger separability tools than what was
previously available in the literature. The following new result may be of independent interest.
In the theorem statement, a peripheral subgroup of Γ = 𝜋1(𝑀) is a subgroup coming from the
inclusion of a cusp.

Theorem 1.4 (Conjugacy separation of peripheral cosets). Let𝑀 = ℍ3∕Γ be a cusped hyperbolic
3-manifold. Let 𝐻 and 𝐾 be (maximal) peripheral subgroups of Γ corresponding to distinct cusps
of 𝑀. Let g ∈ Γ be an element such that 𝐾 is disjoint from every conjugate of g𝐻. Then there is a
homomorphism 𝜑∶ Γ → 𝐺, where𝐺 is a finite group, such that 𝜑(𝐾) is disjoint from every conjugate
of 𝜑(g𝐻).

Theorem 1.4 has the following topological interpretation. A maximal peripheral subgroup𝐻 ⊂

Γ is the stabilizer of a horoball 𝐵 ⊂ ℍ3. Given g ∈ Γ ⧵ 𝐻, the coset g𝐻 is the set of all elements
of Γ that move 𝐵 to g𝐵. Connecting these two horoballs is a geodesic arc 𝛽 that projects to an arc
𝛽 ⊂ 𝑀. We wish to find a finite cover �̂� → 𝑀 where the cusp corresponding to 𝐾 lifts, and where
every preimage of 𝛽 connects distinct cusps. Theorem 1.4 provides such a cover, corresponding to
the subgroup Γ̂ = 𝜑−1◦𝜑(𝐾) that contains 𝐾 but excludes every conjugate of g𝐻.
Several precursors of Theorem 1.4 appear in the recent literature on 3-manifold groups. Given

a peripheral subgroup 𝐾 and a single element g ∈ Γ that is disjoint from every conjugate of 𝐾, it
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2356 FUTER, HAMILTON, and HOFFMAN

is straightforward to find a finite quotient that witnesses this disjointness [18, Lemma 4.5]. Given
non-conjugate subgroups 𝐻 and 𝐾, Chagas and Zalesskii find a finite quotient of Γ where their
images are not conjugate [4]. Given a pair of non-conjugate peripheral subgroups𝐻 and𝐾,Wilton
and Zalesskii use an argument of Hamilton to construct a finite quotient 𝜑∶ Γ → 𝐺, such that
non-trivial elements of 𝜑(𝐻) and 𝜑(𝐾) always lie in distinct conjugacy classes [31, Lemma 4.6].
It is worth recalling the proof of the last result. First, take a hyperbolic Dehn filling𝑀(𝑠) corre-

sponding to a quotient Γ → Γ(𝑠), where 𝐾 stays parabolic but non-trivial elements of 𝐻 become
loxodromic. In particular, the quotient of 𝐻 is represented by loxodromic matrices of trace not
equal to 2. Then, take a congruence quotient of the matrix group Γ(𝑠) in a matrix group over a
finite ring (see Definition 4.6), where the traces of these loxodromic matrices can still be distin-
guished from 2. Our contribution to this narrative is that we achieve even stronger separability for
non-conjugate parabolic subgroups 𝐻 and 𝐾, separating the image of 𝐾 from the image of every
conjugate of g𝐻.
The proof of Theorem 1.4 appears in Section 4, and uses a similar two-step method: first con-

struct an appropriate Dehn filling, and then analyze the congruence quotients related to the Dehn
filling. As part of this analysis, we apply tools from algebraic number theory, including a theorem
of Hamilton [17, Corollary 2.5] (restated below as Proposition 4.9), to control the traces of an entire
coset g𝐻.
Using the separability Theorem 1.4, we prove Theorem 1.2 in Section 6. If �̊� is a cover of 𝑀

containing a drilled ananas �̊�, as above, we use the topological interpretation of Theorem 1.4
to construct two additional covers

(

𝑀 → 𝑀 → �̊� where the ananas �̊� lifts but most edges of
the polyhedral decomposition

(

 connect distinct cusps. In particular,

(

𝑀 has a drilled ananas

(

𝑁 and a polyhedral decomposition

(

 that can be subdivided into ideal tetrahedra via coning,
which implies infinitely many geometric triangulations. Then, we build a cover �̂� →

(

𝑀 where
the drilled ananas

(

𝑁 has two distinct lifts. One of these lifts supports infinitely many geometric
triangulations, while the other gets filled to obtain the Dehn filling conclusion of the theorem.
The opening paragraphs of Section 6 outline this construction in much greater detail.

2 TRIANGULATIONS AND POLYHEDRAL DECOMPOSITIONS

This section reviews some standard definitions about hyperbolic manifolds and their polyhedral
decompositions and triangulations. Then, it proves Lemma 2.9 and Corollary 2.10, which will be
our main ways to obtain a geometric triangulation from a polyhedral decomposition.
For the remainder of this paper, the symbol 𝑀 denotes a cusped, orientable hyperbolic

3-manifold. (Since Theorems 1.2 and 1.3 construct finite covers, no generality is lost in assum-
ing that𝑀 is orientable.) We will use �̃� to denote the universal cover of𝑀, which is isometric to
ℍ3. Other decorations, such as �̂� and𝑀, denote finite-sheeted covers of𝑀.

Definition 2.1. Let𝑀 be a cusped hyperbolic manifold, and let 𝑓∶ �̂� → 𝑀 be a finite cover. Let
𝐴 ⊂ 𝑀 be an embedded submanifold. We say that𝐴 lifts to �̂� if the inclusionmap 𝜄 ∶ 𝐴 ↪ 𝑀 lifts
to an inclusion �̂� ∶ 𝐴 ↪ �̂�. In this case, the image 𝐴 = �̂�(𝐴) is called a lift of 𝐴. The lift 𝐴 forms
only one component of 𝑓−1(𝐴), and covers 𝐴 with degree one.
We remark that a lift is distinct from a path-lift. If 𝛾 ⊂ 𝑀 is a (parametrized) closed curve based

at 𝑥, then 𝛾 always has a path-lift 𝛾 starting at any preimage 𝑥 ∈ 𝑓−1(𝑥). This path-lift is only a
lift if it returns to 𝑥.
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INFINITELY MANY VIRTUAL GEOMETRIC TRIANGULATIONS 2357

Definition 2.2. A geometric ideal polyhedron 𝑃 is the convex hull in ℍ3 of 𝑛 ⩾ 4 non-coplanar
points in 𝜕ℍ3. If 𝑛 = 4, the polyhedron is called a geometric ideal tetrahedron, and its isometry
class is determined by the cross-ratio of its 4 vertices. The polyhedron 𝑃 and its boundary 𝜕𝑃
inherit an orientation from the embedding 𝑃 ↪ ℍ3.
An ideal polyhedron 𝑃 is called an ideal pyramid if 𝑃 contains an ideal vertex 𝑣 (called the

apex) and a unique face 𝐹 not incident to 𝑣 (called the base). It follows that every edge of 𝑃 either
belongs to 𝜕𝐹 (in which case it is called a base edge) or connects 𝑣 to a vertex of 𝐹 (in which case
it is called a lateral edge). Every pyramid is either an ideal tetrahedron, or has a unique choice of
apex and base.
A geometric ideal polyhedral decomposition is a decomposition of𝑀 into geometric ideal poly-

hedra, glued together by orientation-reversing isometries along their boundary faces. The cusps
of 𝑀 are therefore in bijection with the equivalence classes of ideal vertices in  . If all the cells
are ideal tetrahedra, the decomposition  is called a geometric ideal triangulation, and denoted as
 . The preimage of  in a cover �̂� → 𝑀 is denoted as ̂ , and similarly for other decorations.

Convention 2.3. All triangulations and polyhedral decompositions described below are pre-
sumed to be geometric, unless specified otherwise. While there is a rich theory of topological
ideal triangulations of 3-manifolds, sometimes endowed with extra data, our focus in this paper
is on geometry.

Definition 2.4. A (closed) horocusp𝐴 is the quotient of a closed horoball inℍ3 by a discrete group
𝐺 of parabolic isometries, where𝐺 ≅ ℤ × ℤ. Topologically,𝐴 is homeomorphic to 𝑇2 × [0,∞) and
𝜕𝐴 is isometric to a flat torus. The interior of 𝐴 is called an open horocusp.
If𝑀 = ℍ3∕Γ is a finite-volume hyperbolic 3-manifold, an open horocusp in𝑀 is an embedded

noncompact end that is isometric to an open horocusp. A (closed) horocusp in𝑀 is the closure of
an open horocusp in𝑀. In particular, a horocusp 𝐴 ⊂ 𝑀 is homeomorphic to 𝑇2 × [0,∞) with a
finite number of points of tangency on 𝑇2 × {0} identified in pairs.
A horocusp collection in 𝑀 is a union of closed horocusps 𝐴1,… ,𝐴𝑛 containing all the

noncompact ends of𝑀, such that the interiors of the 𝐴𝑖 are pairwise disjoint.

For a hyperbolic 3-manifold𝑀 = ℍ3∕Γ, we typically work with �̃� = ℍ3 in the upper half-space
model. The preimage of a horocusp collection in 𝑀 is a collection of (closed) horoballs in ℍ3

with disjoint interiors, called a packing. When we mention a horoball 𝐴 in ℍ3 in this context, we
implicitly assume that 𝐴 is one of the horoballs in the packing, meaning that 𝐴 covers one of the
specified horocusps of𝑀. We further conjugate Γ in Isom(ℍ3) ≅ PSL(2, ℂ) so that∞ is a parabolic
fixed point of Γ, whichmeans that a horoball𝐴 about∞ occurs in the packing. All other horoballs
in the packing are tangent to points of ℂ. The packing horoballs with largest Euclidean diameter
(equivalently, the horoballs closest to 𝐴) are called full-sized.

Definition 2.5. Let𝑀 be a cusped hyperbolic 3-manifold with horocusp collection𝐴1,… ,𝐴𝑛. An
orthogeodesic is an immersed geodesic segment 𝛾 that begins at 𝜕𝐴𝑖 and ends at 𝜕𝐴𝑗, such that 𝛾
is orthogonal to 𝜕𝐴𝑖 and 𝜕𝐴𝑗 at the respective endpoints. The case 𝐴𝑖 = 𝐴𝑗 is permitted. If 𝐴𝑖 is
tangent to 𝐴𝑗, then a point of tangency is considered an orthogeodesic of length 0. We note that
an orthogeodesic is necessarily the shortest path in its homotopy class.
In a similar fashion, an orthogeodesic in ℍ3 is the shortest path between a pair of disjoint

horoballs 𝐴,𝐴′. This path is necessarily a geodesic segment that is orthogonal to 𝜕𝐴 and 𝜕𝐴′.
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2358 FUTER, HAMILTON, and HOFFMAN

F IGURE 1 The construction of a canonical polyhedral decomposition in a cusped hyperbolic surface. We
have a horoball packing of ℍ2 (black) and the universal cover Σ̃ of the cut locus Σ (red). Dual to Σ̃ is a canonical
triangulation ̃ (blue). Every vertex 𝑣 ∈ Σ̃ is the center of a ball (gray) tangent to a maximal collection of
horoballs that contain the vertices of the cell of ̃ dual to 𝑣.

A collection of horocusps in a hyperbolic manifold 𝑀 determines a canonical decomposition
of𝑀 into polyhedra, as follows.

Definition 2.6. Let𝑀 be a cusped hyperbolic 3-manifold, endowed with a horocusp collection
𝐴1,… ,𝐴𝑛. The Ford–Voronoi domain ⊂ 𝑀 consists of all points of𝑀 that have a unique shortest
path to the union of the 𝐴𝑖 . The complement Σ = 𝑀 ⧵  , called the cut locus, is a 2-dimensional
cell complex consisting of finitely many totally geodesic polygons. The combinatorial dual of Σ
is denoted as  and called the canonical polyhedral decomposition determined by (𝑀,𝐴1, … ,𝐴𝑛).
This polyhedral decomposition has one geodesic edge for each polygonal face of Σ, one totally
geodesic 2-cell for each edge of Σ, and one 3-cell for each vertex of Σ. The edges of are bi-infinite
extensions of orthogeodesics between the cusps. See Figure 1 for a 2-dimensional example.
The top-dimensional cells of  can be characterized as follows. By construction, every 3-cell

𝑃 ⊂  is dual to a vertex 𝑣 ∈ Σ. There is a metric ball 𝐷 centered at 𝑣, which is tangent to some
number of horocusps (corresponding to the ideal vertices of 𝑃), and disjoint from their interiors.
Furthermore, the collection of cusps tangent to 𝐷 is maximal with respect to inclusion.

In the context of closed surfaces, the construction of the canonical decomposition dates back
to the work of Voronoi and Delaunay in the early 20th century. Epstein and Penner [10] gave a
characterization of  using convexity in the hyperboloid model of ℍ3. As a consequence,  is
sometimes called the Delaunay or Epstein–Penner decomposition of𝑀.
The canonical polyhedral decomposition  determined by a choice of horocusps is always geo-

metric. Thus every cusped hyperbolic 3-manifold admits a geometric polyhedral decomposition.
Furthermore, one may attempt to subdivide the polyhedra of  into tetrahedra by coning.

Definition 2.7. Let 𝑃 be a (geometric) ideal polyhedron, and let 𝑣 be an ideal vertex of 𝑃. The
coning of 𝑃 from 𝑣 is the decomposition of 𝑃 into (geometric) ideal pyramids whose apex is 𝑣 and
whose bases are the polygonal faces of 𝑃 not incident to 𝑣. If 𝑃 is an ideal pyramid and 𝑤 is a
vertex of the base of 𝑃, the coning of 𝑃 from 𝑤 results in ideal tetrahedra, because every face of 𝑃
not incident to 𝑤 is an ideal triangle.
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INFINITELY MANY VIRTUAL GEOMETRIC TRIANGULATIONS 2359

Definition 2.8. Let  be a (geometric) ideal polyhedral decomposition of 𝑀, and let 𝑉 denote
the set of cusps of 𝑀. Consider a strict partial order ≺ on 𝑉. Observe that ≺ imposes a (strict)
partial order on the vertices of any polyhedron 𝑃 ⊂  , because vertices of 𝑃 map to cusps of 𝑀.
The coning of 𝑃 induced by ≺ is the following subdivision: if 𝑃 has a unique ≺-minimal vertex 𝑣,
then 𝑃 is coned from 𝑣; otherwise, 𝑃 is not subdivided at all.
The iterated coning of 𝑃 induced by≺ is the following two-step procedure. First, cone 𝑃 from its

unique≺-smallest vertex (if such a vertex exists), which either leaves 𝑃 unchanged or decomposes
it into pyramids. Second, cone each pyramid from the unique≺-smallest vertex of its base (if such
a vertex exists).

Lemma 2.9. Let 𝑀 be a cusped hyperbolic 3-manifold, and ≺ a strict partial order on the set of
cusps of𝑀. Let be a (geometric) ideal decomposition of𝑀, with the property that every polyhedron
𝑃 ⊂  has a unique ≺-minimal vertex 𝑣𝑃. Then the iterated coning of  induced by ≺ produces a
well-defined subdivision of  into geometric ideal pyramids.
Furthermore, if ≺ gives a total order of the vertices of every polyhedron, then the iterated coning of

 produces a geometric ideal triangulation.

Proof. Suppose that 𝑃 and 𝑃′ are polyhedra of  that are identified along a face 𝐹. We need to
check that the iterated coning of 𝑃 and 𝑃′ induces the same subdivision of the face 𝐹. We show
this by considering two cases.
Case 1: 𝐹 does not have a unique ≺-minimal vertex. In this case, we claim that 𝐹 will not be

subdivided at all. For, polyhedron 𝑃 will be coned from its unique minimal vertex 𝑣𝑃, which is
not contained in 𝐹 by hypothesis. This produces a collection of pyramids, with 𝐹 a base of one of
the pyramids. Since 𝐹 does not have a unique minimal vertex, the second stage of iterated coning
does not subdivide 𝐹 at all. An identical argument applies to 𝑃′, proving the claim.
Case 2: 𝐹 has a unique ≺-minimal vertex𝑤. In this case, we claim that 𝐹 will be subdivided by

coning from𝑤. If𝑤 = 𝑣𝑃 is minimal in all of 𝑃, then 𝑃will be subdivided into pyramids by coning
from 𝑤, hence 𝐹 will be also. Otherwise, if 𝑤 ≠ 𝑣𝑃, then 𝑃 will be subdivided into pyramids by
coning from 𝑣𝑃, and 𝐹 will be the base of one of these pyramids. At the second stage of the iterated
coning, the pyramid in 𝑃 containing 𝐹 will be coned from the minimal vertex of 𝐹, namely,𝑤. An
identical argument applies to 𝑃′, proving the claim.
Finally, observe that if ≺ gives a total order of the vertices of each cell, then we must be in

Case 2: every face 𝐹 has a minimal vertex. Thus every face is subdivided into triangles, and every
pyramid is subdivided into geometric ideal tetrahedra. □

The “furthermore” statement of Lemma 2.9 was previously observed by Luo, Schleimer, and
Tillmann [22, Lemma 7]. They also used the separability of peripheral subgroups (Proposi-
tion 4.3) to show that every cusped 3-manifold 𝑀 with a geometric polyhedral decomposition
 has a finite cover �̂� such that any order on the cusps of �̂� imposes a total order on the ver-
tices of each polyhedron of ̂ . Compare Lemma 5.4 below. Consequently, �̂� has a geometric
ideal triangulation.
In fact, a total order is not necessary to produce a geometric triangulation.

Corollary 2.10. Let𝑀 be a cusped hyperbolic 3-manifold, and ≺ a strict partial order on the set of
cusps of𝑀. Let be a (geometric) ideal decomposition of𝑀, with the property that every polyhedron
𝑃 ⊂  has a unique ≺-minimal vertex 𝑣𝑃. Let  ′ be the pyramidal refinement of  guaranteed by
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2360 FUTER, HAMILTON, and HOFFMAN

Lemma 2.9. Then every choice of diagonals in the non-triangular faces of ′ leads to a decomposition
of  ′ into geometric ideal tetrahedra.

Proof. Following Lemma 2.9, let  ′ be the subdivision into ideal pyramids coming from the iter-
ated coning of induced by≺. Then every non-triangular 2-cell𝐹 ⊂  ′must be the base of exactly
two pyramids. Thus the non-tetrahedral pyramids of ′ are glued in pairs, with each pair forming
a bipyramid that is joined to other cells along ideal triangles only. This means that we have com-
plete freedom to choose diagonals of every non-triangular 2-cell 𝐹, subdividing the two pyramids
adjacent to 𝐹 into tetrahedra, without impacting the choices anywhere else in themanifold. Every
such choice produces a subdivision of  ′ into geometric ideal tetrahedra. □

3 AN INFINITE TREE OF TRIANGULATIONS

In the last section, we described a construction of Luo, Schleimer, and Tillmann for decomposing
an ideal polyhedral decomposition  into a geometric ideal triangulation. Having one geometric
triangulation is clearly a prerequisite to having infinitely many. In this section, we describe a
particular geometric feature called a drilled ananas (see Definition 3.3) that admits an infinite
sequence of geometric triangulations. By embedding a drilled ananas inside a triangulation of a
cuspedmanifold𝑀, we obtain an infinite sequence of ideal triangulations of𝑀. See Lemma 3.6 for
the construction of an infinite sequence of triangulations, and Proposition 3.10 for a more refined
description of an infinite trivalent tree of triangulations.
Consider a polyhedral decomposition  of𝑀. Let 𝐴 ⊂ 𝑀 be a horocusp, chosen small enough

that for every polyhedron 𝑃 ⊂  , the intersection 𝑃 ∩ 𝐴 consists of neighborhoods of ideal ver-
tices. Then  induces a decomposition of the torus 𝜕𝐴 into Euclidean polygons, which truncate
the ideal vertices of polyhedra of  . We call this decomposition the cusp cellulation of 𝜕𝐴, and
denote it (𝐴). If  is the canonical polyhedral decomposition (determined by some choice of
cusps), then (𝐴) satisfies the Delaunay condition: the vertices of every polygon can be inscribed
on a circle, where the interior of the circle does not contain any other vertices.
In the following proposition, 𝐴 is a horocusp of 𝑀. Let 𝐴𝑡 be a sub-horocusp of 𝐴 such that

𝑑(𝜕𝐴, 𝜕𝐴𝑡) = 𝑡. A particular feature occurs when 𝑡 becomes sufficiently large.

Proposition 3.1 (Guéritaud–Schleimer [15]). Let 𝑀 be a cusped hyperbolic 3-manifold, endowed
with a choice of horocusps𝐴, 𝐵1, … , 𝐵𝑛 for 𝑛 ⩾ 1. Assume that an orthogeodesic 𝛼 from𝐴 to 𝐵1 is the
unique shortest path from 𝐴 to ∪𝑛

𝑗=1
𝐵𝑗 . Then, for every sufficiently small sub-horocusp 𝐴𝑡 ⊂ 𝐴, the

canonical decomposition  determined by 𝐴𝑡, 𝐵1, … , 𝐵𝑛 contains a unique edge from 𝐴𝑡 to ∪𝑛
𝑗=1

𝐵𝑗 .
This edge is the bi-infinite extension of 𝛼.
Furthermore, there are one or two 3-cells of  that meet the cusp 𝐴𝑡 . Each such 3-cell is an ideal

pyramid with an apex at 𝐴𝑡 and all lateral edges identified to 𝛼. If 𝐴 is a rectangular cusp, then
the single 3-cell meeting 𝐴𝑡 is a rectangular pyramid and the induced cellulation of 𝜕𝐴𝑡 is a rect-
angle. Otherwise, if 𝐴 is a non-rectangular cusp, then the two 3-cells meeting 𝐴𝑡 are isometric ideal
tetrahedra, and the induced cellulation of 𝜕𝐴𝑡 consists of two isometric, acute triangles.

This result is due to Guéritaud and Schleimer [15, Section 4.1], and appears in the form of a
discussionwith the explicit hypothesis that the cusp torus 𝜕𝐴 is not rectangular. For completeness,
we reproduce an expanded version of their proof.
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INFINITELY MANY VIRTUAL GEOMETRIC TRIANGULATIONS 2361

F IGURE 2 A ball 𝐷 (shown in red) resting on four full-sized horoballs (blue) and tangent to a horoball
about∞ (green). In the setting of Proposition 3.1, all of the full-sized horoballs are in the same orbit of 𝐾 ≅ ℤ2. It
follows that the ball 𝐷 can be tangent to four full-sized horoballs at once if and only if 𝐾 has a rectangular
fundamental domain, as in this figure. The center of 𝐷 corresponds to an ideal rectangular pyramid (dotted).

Proof. Set 𝑀 = ℍ3∕Γ, where we view ℍ3 in the upper half-space model. As described in Sec-
tion 2, we conjugate Γ in Isom(ℍ3) so that a horoball 𝐴 about ∞ covers the horocusp 𝐴. Then
𝐾 = StabΓ(∞) ≅ ℤ2 can be identified with 𝜋1(𝐴) ⊂ Γ. Every preimage of 𝐵𝑗 is a horoball tangent
to a point of ℂ.
By hypothesis, there is a unique shortest orthogeodesic 𝛼 from𝐴 to∪𝑛

𝑗=1
𝐵𝑗 , which leads from𝐴

to 𝐵1. Extend 𝛼 to be a bi-infinite geodesic. After shrinking 𝐴 by an appropriate distance, we may
further assume that 𝛼 is the unique shortest orthogeodesic from𝐴 to𝐴 ∪ (∪𝑛

𝑗=1
𝐵𝑗). Consequently,

there is a choice of horoball 𝐵1 covering 𝐵1, such that all of the full-sized horoballs tangent to
points of ℂ are in the 𝐾-orbit of 𝐵1.
Consider a ball 𝐷 ⊂ ℍ3 that rests on the collection of horoballs tangent to points of ℂ (see

Figure 2). If the Euclidean diameter of 𝐷 is sufficiently large, then 𝐷 will only touch the full-
sized horoballs. Furthermore, if we shrink 𝐴 by a sufficiently large distance 𝑡 ⩾ 0, producing a
sub-horocusp 𝐴𝑡 whose preimage horoball 𝐴𝑡 ⊂ 𝐴 is at sufficient Euclidean height, then 𝐷 will
also be disjoint from 𝐴𝑡. Inflating 𝐷 to a maximal (hyperbolic) radius produces a ball 𝐷+ that is
tangent to 𝐴𝑡 and some number of horoballs from the orbit 𝐾 ⋅ 𝐵1, and is disjoint from all other
horoballs. Observe that 𝐷+ is tangent to either 3 or 4 horoballs in 𝐾 ⋅ 𝐵1, and that the case of 4
occurs precisely when 𝜕𝐴𝑡 = 𝜕𝐴𝑡∕𝐾 has a rectangular fundamental domain.
Now, consider the cut locus Σ𝑡 corresponding to the horocusp collection𝐴𝑡, 𝐵1, … , 𝐵𝑛. Let Σ̃𝑡 be

the preimage of Σ𝑡 in ℍ3, and consider the polyhedral decomposition  =  𝑡 dual to Σ𝑡. By Defi-
nition 2.6, every vertex 𝑣 ∈ Σ̃𝑡 is equidistant from some collection of horoballs (which is maximal
with respect to inclusion), and conversely every point equidistant from a maximal collection of
horoballs is a vertex of Σ̃𝑡. In particular, the hyperbolic center of the ball 𝐷+ constructed in the
previous paragraph must be a vertex 𝑤 ∈ Σ̃𝑡. By Definition 2.6, this vertex 𝑤 is dual to a polyhe-
dron 𝑃𝑤 in the canonical decomposition  , whose ideal vertices lie in the horoballs tangent to
𝐷+. Recall that 𝐷+ is tangent to 𝐴𝑡 and either 3 or 4 full-sized horoballs in 𝐾 ⋅ 𝐵1.
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2362 FUTER, HAMILTON, and HOFFMAN

If there are 3 full-sized horoballs tangent to 𝐷+, then 𝑃𝑤 is an ideal tetrahedron. Furthermore,
up to the action of 𝐾 = StabΓ(∞), there must be exactly one other ideal tetrahedron in  that
intersects 𝐴𝑡. In this case, the induced cusp cellulation of 𝜕𝐴𝑡 consists of two isometric triangles.
These triangles must be acute: otherwise, the circle that circumscribes the 3 vertices of an obtuse
trianglewould contain the fourth vertex of the parallelogram in its interior, violating theDelaunay
condition. Since the two triangles of 𝜕𝐴𝑡 are isometric, the two tetrahedra meeting 𝐴𝑡 are also
isometric. Furthermore, each of the two tetrahedra has 3 edges identified to 𝛼, corresponding to
the fact that the cusp cellulation has a single vertex at 𝛼 ∩ 𝜕𝐴𝑡.
If there are 4 full-sized horoballs tangent to 𝐷+, as in Figure 2, then the polyhedron 𝑃𝑤 is an

ideal rectangular-based pyramid. In this case, 𝑃𝑤 is the only cell of meeting𝐴𝑡, and the induced
cusp cellulation of𝐴𝑡 is a single rectangle with a vertex at 𝛼 ∩ 𝜕𝐴𝑡. Consequently, all lateral edges
of 𝑃𝑤 are identified to 𝛼. □

Remark 3.2. Akiyoshi [1] proved that the canonical polyhedral decomposition  𝑡 determined by
the horocusp collection 𝐴𝑡, 𝐵1, … , 𝐵𝑛 must stabilize as 𝑡 → ∞. Thus, for sufficiently large 𝑡, there
is a stable geometric decomposition  =  𝑡 independent of 𝑡. This is our motivation for dropping
the superscript 𝑡.

In the polyhedral decomposition that occurs in Proposition 3.1, the cells that enter the special
cusp 𝐴𝑡 fit together to form a geometric object that we call a drilled ananas.

Definition 3.3. A drilled ananas is a 3-manifold 𝑁 homeomorphic to 𝑇2 × [0,∞) ⧵ {𝑥}, where
𝑥 ∈ 𝑇2 × {0}, and endowed with a complete hyperbolic metric with the following properties. For
some 𝑦 > 0, the non-compact end𝑇2 × [𝑦,∞) ⊂ 𝑁 is isometric to a horocusp, such that each cross-
section 𝑇2 × {𝑦′} for 𝑦′ > 𝑦 is a horotorus. The boundary 𝜕𝑁 = 𝑇2 × {0} ⧵ {𝑥} is made up of two
totally geodesic ideal triangles, with vertices at 𝑥. These two triangles are glued by isometry along
their edges to form a standard two-triangle triangulation of a once-punctured torus, with shearing
and bending allowed along the edges of this boundary triangulation. If the base of the drilled
ananas is composed of a single totally geodesic ideal rectangle, then wemake a choice of diagonal
to decompose 𝑁 into two ideal tetrahedra.
The horocusp 𝑇2 × [𝑦,∞) ⊂ 𝑁 is called the cusp of 𝑁, while a regular neighborhood of 𝑥 ∈

𝑇2 × {0} is called the thorn of 𝑁.

Here are a few notes on terminology and past usage. The term thorn was coined by Baker and
Cooper [2]. A drilled ananas is a special case of a topological ideal polyhedron in the work of Guéri-
taud [14], and a slightly less special case of an ideal torihedron in the work of Champanerkar,
Kofman, and Purcell [5, Definition 2.1]. Both of these generalizations capture the idea of plac-
ing a hyperbolic structure on a 3-manifold endowed with a polyhedral graph on its boundary.
Guéritaud coined the term ananas (French for pineapple) to describe a topological polyhedron
with the topology of a solid torus. (Compare the definition of a filled ananas immediately above
Claim 6.10.) The object 𝑁 in Definition 3.3 can be obtained by removing the core of a solid torus,
hence drilled ananas.
With the above definition, the conclusion of Proposition 3.1 can be rephrased as follows.

Corollary 3.4. Let𝑀 be a cusped hyperbolic manifold satisfying the hypotheses of Proposition 3.1,
and let  =  𝑡 be the polyhedral decomposition produced by that proposition. Let 𝑁 ⊂ 𝑀 be the
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INFINITELY MANY VIRTUAL GEOMETRIC TRIANGULATIONS 2363

F IGURE 3 The inductive step of Lemma 3.6

submanifold obtained by gluing together all cells of  that have an ideal vertex in cusp 𝐴, along
their shared faces. Then 𝑁 is a drilled ananas composed of two acute ideal tetrahedra or one ideal
rectangular pyramid. Furthermore,𝑁 is convex, with an angle less than 𝜋 at every edge of  ∩ 𝜕𝑁.

Proof. The conclusion that 𝑁 is a drilled ananas is immediate from Proposition 3.1 and
Definition 3.3. It remains to check that 𝑁 is convex.
By Proposition 3.1, each cell of  comprising 𝑁 is an ideal pyramid with a base along 𝜕𝑁. If 𝑁

contains a single rectangular pyramid, we subdivide it into two isometric ideal tetrahedra 𝑇, 𝑇′ by
choosing a diagonal along 𝜕𝑁. Otherwise,𝑁 already consists of two isometric, acute-angled ideal
tetrahedra 𝑇, 𝑇′. The three lateral faces of 𝑇 are glued to the three lateral faces of 𝑇′, and all lateral
edges of 𝑇, 𝑇′ are identified to the single geodesic 𝛼 that connects the thorn of𝑁 to the cusp of𝑁.
Let 𝜃1, 𝜃2, 𝜃3 be the dihedral angles of 𝑇 at the edges identified to 𝛼. Since 𝑇 and 𝑇′ are necessar-

ily isometric, these are also the dihedral angles of 𝑇′ at the edges identified to 𝛼. See Figure 3(I).
Then the three internal angles along the edges of 𝜕𝑁 are 2𝜃1, 2𝜃2, 2𝜃3.
If𝑇 and𝑇′ are cells of , then Proposition 3.1 says that all of their angles are acute. Thus 2𝜃𝑖 < 𝜋

for every 𝑖, hence 𝜕𝑁 is locally convex at every edge on its boundary. Otherwise, if 𝑇 and 𝑇′ were
created by subdividing an ideal pyramid, the cusp 𝐴 ⊂ 𝑁 is rectangular; hence, the Euclidean
triangles truncating the tips of 𝑇 and 𝑇′ have a right angle 𝜃1 and two acute angles 𝜃2, 𝜃3. Conse-
quently, the internal angles along 𝜕𝑁 are 2𝜃1 = 𝜋 and 2𝜃2, 2𝜃3 < 𝜋. In either case, 𝜕𝑁 is locally
convex, hence 𝑁 is convex. □
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2364 FUTER, HAMILTON, and HOFFMAN

A key feature of a drilled ananas is that it is made up of two tetrahedra glued along three faces.
Each of these three faces supports a local move, called a 2–3 move.

Definition 3.5. Let 0 be a topological ideal triangulation of a 3-manifold𝑁, possiblywith bound-
ary. Let 𝑇 and 𝑇′ be distinct tetrahedra in 0 that are glued together along a face 𝐹, and observe
that 𝑇 ∪𝐹 𝑇′ is a bipyramid. A topological 2–3 move replaces 𝑇 ∪ 𝑇′ with three tetrahedra glued
together along a central edge dual to 𝐹, while all other tetrahedra of 0 remain the same. The
resulting triangulation is denoted as 1. We say that a 2–3 move is geometric if 0 and 1 are both
geometric triangulations. Assuming 0 is geometric, a 2–3 move will be geometric whenever the
bipyramid 𝑇 ∪𝐹 𝑇′ is strictly convex.
In Figure 3, tetrahedra 𝑇 and 𝑇′ are shown in panel (I), with face 𝐹 a darker shade of blue. The

dual edge to 𝐹 is dashed in panel (II), and the resulting three tetrahedra are shown in panel (III).

Lemma 3.6. Adrilled ananas𝑁 admits an infinite sequence of geometric triangulations, connected
by geometric 2–3moves.

The inductive construction that proves the lemma is illustrated in Figure 3.

Proof. Let 𝑁 be a drilled ananas. By definition, 𝜕𝑁 is subdivided into two totally geodesic ideal
triangles. Consequently, 𝑁 itself can be subdivided into two geometric ideal tetrahedra 𝑇, 𝑇′ by
coning those triangles to the non-compact end at ∞. As in Proposition 3.1, we think of each of
𝑇, 𝑇′ as a triangular pyramid with a base along 𝜕𝑁. The three lateral faces of 𝑇 are glued to the
three lateral faces of 𝑇′, and all lateral edges of 𝑇, 𝑇′ are identified to a single geodesic 𝛼.
As in Corollary 3.4, let 𝜃1, 𝜃2, 𝜃3 be the dihedral angles of 𝑇 and 𝑇′ at the edges identified to 𝛼.

See Figure 3(I). Since these angles are positive and 𝜃1 + 𝜃2 + 𝜃3 = 𝜋, two of the three angles must
be strictly less than 𝜋∕2. Then the three internal angles along the edges of 𝜕𝑁 are 2𝜃1, 2𝜃2, 2𝜃3. At
least two of these angles (say, 2𝜃1 and 2𝜃2) are strictly less than 𝜋.
We will prove the lemma by induction. Set 𝑁0 = 𝑁. The key inductive claim is as follows.

Claim 3.7. Let𝑁𝑖 be a drilled ananaswith a two-tetrahedron geometric triangulation. Let 𝛽𝑖 ⊂ 𝜕𝑁𝑖

be a boundary edge such that the internal angle at 𝛽𝑖 is less than 𝜋. Then performing a diagonal
exchange on 𝛽𝑖 results in a geometric ideal tetrahedronΔ𝑖 and a new sub-ananas𝑁𝑖+1 ⊂ 𝑁𝑖 , where
𝑁𝑖 = 𝑁𝑖+1 ∪ Δ𝑖 and 𝑁𝑖+1 again has a two-tetrahedron geometric triangulation.

The proof of the claim is almost immediate. Removing 𝛽𝑖 from a triangulation of 𝜕𝑁𝑖 results
in a quadrilateral. Let 𝛽′

𝑖
be the opposite diagonal of this quadrilateral. Observe that the geodesic

representative of 𝛽′
𝑖
lies strictly inside 𝑁𝑖 , because 𝑁𝑖 is locally convex at 𝛽𝑖 . The join of 𝛽𝑖, 𝛽′𝑖 is a

(geometric) ideal tetrahedronΔ𝑖 . Removing the interior ofΔ𝑖 from𝑁𝑖 produces a sub-ananas𝑁𝑖+1

whose boundary is pleated along 𝛽′
𝑖
and the two remaining edges of 𝜕𝑁𝑖 , proving the claim. ✧

Observe that the two-tetrahedron triangulation of 𝑁𝑖 gives rise to a three-tetrahedron triangu-
lation of 𝑁𝑖 = Δ𝑖 ∪ 𝑁𝑖+1, in a geometric 2–3 move. See Figure 3. We can now apply this move to
𝑁𝑖+1, and so on, resulting in an infinite sequence of geometric triangulations of 𝑁 = 𝑁0. □

Corollary 3.8. Suppose that𝑁 is a drilled ananas, and 𝑓∶ �̂� → 𝑁 is a finite cover. Then �̂� admits
an infinite sequence of 𝑓-equivariant geometric triangulations.
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INFINITELY MANY VIRTUAL GEOMETRIC TRIANGULATIONS 2365

F IGURE 4 The Farey complex  . Edges of the dual tree correspond to diagonal exchanges in a torus with
one marked point. Every non-backtracking path in the dual tree, starting from the central triangle, can be
realized via geometric 2–3 moves in a drilled ananas. Figure from Ham and Purcell [16, Figure 3.1]

The corollary follows immediately from Lemma 3.6 because every triangulation of 𝑁 lifts to a
triangulation of �̂�. We also remark that any finite cover �̂� → 𝑁 is regular and has abelian deck
group, because 𝜋1(𝑁) ≅ ℤ2 is abelian.

3.1 Connections to the Farey complex

We can now describe some additional structure in the set of triangulations of a drilled ananas 𝑁.

Definition 3.9. The Farey complex  is a simplicial complex whose vertices are isotopy classes of
arcs on a torus 𝑇2 based at a marked point 𝑥, and whose edges correspond to arcs that are disjoint
(except at 𝑥). The vertices of  are commonly identified with the rational points ℚℙ1 ⊂ ℝℙ1, as
follows. Endow 𝑇2 with a standard Euclidean metric, with fundamental domain a unit square.
Then every loop in 𝑇2 based at 𝑥 can be pulled tight to a Euclidean geodesic of some well-defined
slope ℚ ∪ {∞}. Conversely, every rational slope defines a unique isotopy class of arc from 𝑥 to 𝑥.
Triangles in  correspond to (isotopy classes of) one-vertex triangulations of 𝑇2 with the vertex

at 𝑥, or equivalently to ideal triangulations of 𝑇2 ⧵ {𝑥}. The dual 1-skeleton of  is a trivalent tree,
with every edge of the dual tree corresponding to a diagonal exchange. See Figure 4.

Using Definition 3.9, we can state the following stronger formulation of Lemma 3.6.

Proposition 3.10. Let𝑁 be a drilled ananas with a geometric triangulation consisting of two acute-
angled tetrahedra. Then 𝑁 admits an infinite trivalent tree of geometric 2–3 moves, with vertices of
the tree in natural bijection with triangles of the Farey complex  .

Proof. The proof amounts to adding some book-keeping to the proof of Lemma 3.6. Let 𝑁0 = 𝑁,
subdivided into ideal tetrahedra𝑇, 𝑇′. By hypothesis, all dihedral angles of𝑇 and𝑇′ are acute. This
triangulation of𝑁 defines an induced cellulation of the boundary of the horocusp𝐴 ⊂ 𝑁. In fact,
this cusp cellulation is a one-vertex triangulation: the one vertex is the intersection between 𝜕𝐴
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2366 FUTER, HAMILTON, and HOFFMAN

and the single edge 𝛼 ⊂ 𝑁 into cusp 𝐴, while the two triangles are the cross-sections 𝜕𝐴 ∩ 𝑇 and
𝜕𝐴 ∩ 𝑇′. Let 𝜏0 be this triangulation of 𝜕𝐴. Fix a framing of 𝜕𝐴 so that the three slopes occurring
in 𝜏0 are 0∕1, 1∕0, and 1∕1, as in the central triangle of Figure 4.
Observe that any one-vertex triangulation of 𝜕𝐴 defines an ideal triangulation of 𝜕𝑁, by project-

ing outward from the cusp. In the opposite direction, any ideal triangulation of the boundary 𝜕𝑁𝑖

for some sub-ananas𝑁𝑖 ⊂ 𝑁 defines a one-vertex cusp triangulation. We will pass freely between
the two viewpoints.
Now, let 𝛽0 be a boundary edge of 𝑁0. In order to carry out the construction of Claim 3.7, the

internal angle of 𝛽0 needs to be less than 𝜋. But since all dihedral angles of 𝑇 and 𝑇′ are acute,
we may choose 𝛽0 at will. Now, the new sub-ananas 𝑁1 ⊂ 𝑁0, constructed as in Claim 3.7, will
induce a new cusp cellulation 𝜏1 of 𝜕𝐴, which differs from 𝜏0 via a diagonal exchange. Thus we
may choose 𝜏1 to be any one of the three triangulations adjacent to 𝜏0 in Figure 4.
Continuing inductively, suppose that we have constructed the sub-ananas 𝑁𝑖 ⊂ 𝑁𝑖−1 ⊂ … ⊂

𝑁0, and that 𝜕𝑁𝑖 has ideal triangulation 𝜏𝑖 . Then, as noted in the proof of Lemma 3.6, there are
two edges of 𝜕𝑁𝑖 that have interior angle less than 𝜋. The third edge necessarily has angle more
than 𝜋; it is the edge 𝛽′

𝑖−1
that was just created in constructing𝑁𝑖 . (See Figure 3(IV), with indices

shifted by 1.) Thus we may choose 𝛽𝑖 to be any edge of 𝜕𝑁𝑖 other than 𝛽′𝑖−1, which means that the
new cusp triangulation 𝜏𝑖+1 is allowed to be any of the two neighbors of 𝜏𝑖 that are distinct from
𝜏𝑖−1. In summary, the path 𝜏0, 𝜏1, … of cusp cellulations associated with𝑁0,𝑁1, … is allowed to be
any non-backtracking path starting from 𝜏0. □

In any path 𝜏0, 𝜏1, … of cusp cellulations constructed in the above proof, the slopes of edges
approach some limiting value in ℝℙ1, and the edges themselves approach a foliation with the
limiting slope. Thus the geometric retriangulations of𝑁 can be chosen to limit to any foliation of
the torus.
The strategy for proving Theorem 1.2 and Theorem 1.3 can now come into view. Given a cusped

3-manifold 𝑀, we will find a cover �̊� with a polyhedral decomposition ̊ as in Proposition 3.1,
where two ideal tetrahedra fit together to form a drilled ananas. A further cover �̂� ensures that the
other cells of ̂ can be subdivided into ideal tetrahedra as well. Producing these covers requires
tools from subgroup separability, described in the next section.

4 SEPARABILITY

This section begins with a review of some standard results about separable subsets and subgroups
in a group 𝐺. The main content of the section is a proof of Theorem 1.4.

Definition 4.1. Let𝐺 be a group. The profinite topology on𝐺 is the topologywhose basic open sets
are cosets of finite-index normal subgroups. Since every coset of a finite-index subgroup𝐻 < 𝐺 is
the complement of finitely many other cosets of𝐻, the basic open sets are also closed.
A subset 𝑆 ⊂ 𝐺 is called separable if it is closed in the profinite topology on 𝐺.

The following characterization is standard.

Lemma 4.2. Let 𝐺 be a group and 𝑆 ⊂ 𝐺 a subset. The following are equivalent.

(1) 𝑆 is separable.
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INFINITELY MANY VIRTUAL GEOMETRIC TRIANGULATIONS 2367

(2) For every element g ∈ 𝐺 ⧵ 𝑆, there is a homomorphism 𝜑∶ 𝐺 → 𝐹, where 𝐹 is a finite group and
𝜑(g) ∉ 𝜑(𝑆).

Proof. The set 𝑆 is closed if and only if every g ∈ 𝐺 ⧵ 𝑆 is contained in a basic open set disjoint
from 𝑆. But, by Definition 4.1, a basic open set containing g is precisely the preimage of an element
under a homomorphism to a finite group. □

If 𝑀 is a cusped hyperbolic 3-manifold, a subgroup of 𝜋1(𝑀) coming from the inclusion of a
horocusp 𝐴 is called peripheral. This peripheral subgroup of 𝜋1(𝑀) is also maximal abelian: it is
not contained in any larger abelian subgroup.
We will need to separate peripheral subgroups and their double cosets. The following separa-

bility result has been known since the 1980s, if not earlier. See, for example, Long [21, p. 484] for
a proof.

Proposition 4.3. Let 𝑀 = ℍ3∕Γ be a cusped hyperbolic 3-manifold. Then maximal abelian
subgroups of Γ are separable. In particular, peripheral subgroups of Γ are separable.

We will also need to separate peripheral double cosets, using the following theorem of
Hamilton, Wilton, and Zalesskii [18, Theorem 1.4].

Theorem 4.4 (Hamilton–Wilton–Zalesskii [18]). Let 𝑀 = ℍ3∕Γ be a finite-volume hyperbolic 3-
manifold. Let 𝐻 and 𝐾 be abelian subgroups of Γ. Then, for every g ∈ Γ, the double coset 𝐻g𝐾 =

{ℎg𝑘 ∶ ℎ ∈ 𝐻, 𝑘 ∈ 𝐾} is separable in Γ.

Theorem 4.4 is the strongest separability tool needed in the proof of Theorem 1.3. The reader
who is mainly interested in that result is invited to proceed directly to Section 5.

4.1 Algebraic tools for separability

The separability results that we use in this paper, including Theorem 4.4 and Theorem 1.4, are
proved using tools from algebraic number theory. To set up the proof of Theorem 1.4, we review
some needed definitions and results.
A number field is a finite field extension ofℚ. An extremely useful connection between number

fields and 3-manifolds comes from the following result.

Theorem 4.5 (Thurston [29], Bass [3], Culler–Shalen [6, 8]). Let𝑀 = ℍ3∕Γ be a cusped hyperbolic
3-manifold. Then

(1) Γ ⊂ PSL(2, ℂ) can be lifted to SL(2, ℂ).
(2) Γ can be conjugated in SL(2, ℂ) to lie in SL(2, 𝑅) ⊂ SL(2, 𝑘), where 𝑅 is a finitely generated

subring of a number field 𝑘.

Conclusion (1) was observed by Thurston [29, p. 98] and carefully written down by Culler and
Shalen [8, Proposition 3.1.1], with a simplified proof by Culler [6, Corollary 2.2]. Conclusion (2)
was observed by Thurston [29, Proposition 6.7.4] as an algebraic consequence of Mostow rigidity,
and independently proved by Bass [3].
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2368 FUTER, HAMILTON, and HOFFMAN

The arithmetic data associated to a ring 𝑅 can be used to construct finite quotients of both rings
and groups. The construction uses the following notions.

Definition 4.6. If 𝑘 is a number field, let 𝑘 denote the ring of integers of 𝑘. If 𝔭 is a non-zero
prime ideal of 𝑘, we let 𝑘𝔭 denote the 𝔭-adic completion of 𝑘 and 𝑘𝔭

the ring of integers of
𝑘𝔭. The ring𝑘𝔭

has a unique maximal ideal. The quotient of𝑘𝔭
by this maximal ideal is a finite

field called the residue class field of𝑘𝔭
. The quotientmap is called the residue class fieldmapwith

respect to 𝔭. If 𝑅 is a finitely generated ring in a number field 𝑘, then 𝑅 ⊂ 𝑘𝔭
for all but finitely

many primes 𝔭 of 𝑘. Restricting the residue class field map to 𝑅 yields a finite quotient of 𝑅.
Now, suppose Γ ⊂ SL(2, 𝑅), where 𝑅 is a ring. Let 𝐼 ⊂ 𝑅 be an ideal, such that 𝑆 = 𝑅∕𝐼 is finite.

Then the homomorphism

SL(2, 𝑅) → SL(2, 𝑆)

where coefficients are reduced modulo 𝐼 is called a congruence quotient of PSL(2, 𝑅). We also call
the composition

𝜑∶ Γ ↪ SL(2, 𝑅) → SL(2, 𝑆)

a congruence quotient of Γ. (This is slightly abusive, because Γmay fail to surject SL(2, 𝑆).)

We now describe three algebraic results that will be used in the proof of Theorem 1.4. The first
of these is [18, Theorem 2.6].

Proposition 4.7 (Hamilton–Wilton–Zalesskii [18]). Let 𝑅 be a finitely generated ring in a number
field 𝑘. By fixing aℚ embedding of 𝑘 into ℂ, we may view 𝑘 ⊂ ℂ. Let 𝜔 ∈ 𝑅, and set 𝑍𝜔 = {𝑚 + 𝑛𝜔 ∣

𝑚, 𝑛 ∈ ℤ} and 𝑄𝜔 = {𝑚 + 𝑛𝜔 ∣ 𝑚, 𝑛 ∈ ℚ}. If 𝑦 ∈ 𝑅 − 𝑄𝜔, then there exist a finite ring 𝑆 and a ring
homomorphism 𝜌∶ 𝑅 → 𝑆 such that 𝜌(𝑦) ∉ 𝜌(𝑍𝜔).

The following technical lemma is a variant of Proposition 4.7.

Lemma 4.8. Let 𝑅 be a finitely generated ring in a number field 𝑘. By fixing a ℚ embedding of 𝑘
into ℂ, we may view 𝑘 ⊂ ℂ. Let 𝜔 ∈ 𝑅 − ℝ. Then there is an infinite collectionΩ of primes ofℚ, such
that for each prime 𝑝 ∈ Ω, there exist a finite field 𝐹𝔭 of characteristic 𝑝 and a ring homomorphism
𝜂𝑝 ∶ 𝑅 → 𝐹𝔭, such that {1, 𝜂𝑝(𝜔)} is linearly independent over 𝔽𝑝.
Consequently, 𝜂𝑝 has the following property. Consider an element 𝑦∗ ∈ 𝑄𝜔 = {𝑚 + 𝑛𝜔 ∣ 𝑚, 𝑛 ∈

ℚ}. Express 𝑦∗ in lowest terms:

𝑦∗ =
𝑚∗ + 𝑛∗𝜔

𝑣∗
,

where𝑚∗, 𝑛∗ ∈ ℤ and 𝑣∗ ∈ ℕ. If 𝜂𝑝(𝑦∗) = 𝜂𝑝(𝑚 + 𝑛𝜔) for some𝑚, 𝑛 ∈ ℤ, then 𝑣∗𝑚 ≡ 𝑚∗ (mod 𝑝)

and 𝑣∗𝑛 ≡ 𝑛∗ (mod 𝑝).

Proof. Since 𝜔 ∈ ℂ − ℝ, the set {1, 𝜔} is linearly independent over ℚ. By a standard argument
used in the proof of Theorem 4.4 (compare [18, p. 278]), we can preserve this property in a finite
quotient.We include the details for completeness. Let 𝐿 denote the normal closure of 𝑘 overℚ and
let �̄� ∈ Gal(𝐿∕ℚ) represent complex conjugation. Since 𝜔 ∈ ℂ − ℝ, we know 𝜔 is not fixed by �̄�.
By the Tchebotarev Density Theorem, there exist infinitely many primes 𝑝 of ℚ with unramified
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INFINITELY MANY VIRTUAL GEOMETRIC TRIANGULATIONS 2369

extension 𝔭 in 𝐿 such that �̄� is the Frobenius automorphism for 𝔭∕𝑝. After eliminating a finite set
of primes, if necessary, we may assume that 𝑅 ⊂ 𝐿𝔭

, where 𝐿𝔭
denotes the ring of integers in

the 𝔭-adic field 𝐿𝔭. Given such a prime 𝑝, let 𝐹𝔭 denote the residue class field of 𝐿𝔭
and let 𝔽𝑝

denote the finite field of 𝑝 elements. Let 𝜂𝑝 be the composition of the inclusion map of 𝑅 into𝐿𝔭
with the residue map:

𝜂𝑝 ∶ 𝑅 ↪ 𝐿𝔭
→ 𝐹𝔭.

Since �̄� is the Frobenius automorphism of 𝐿∕ℚ with respect to 𝔭∕𝑝, Gal(𝐿𝔭∕ℚ𝑝) = ⟨�̄�′⟩ where
�̄�′ = �̄� on 𝐿. Since �̄�(𝜔) ≠ 𝜔, it follows that 𝜔 ∉ ℚ𝑝. The Galois group of 𝐹𝔭∕𝔽𝑝 is also induced by
�̄�. This implies that 𝜂𝑝(𝜔) ∉ 𝔽𝑝, and therefore, the set {1, 𝜂𝑝(𝜔)} is linearly independent over 𝔽𝑝.
Next, suppose that 𝜂𝑝(𝑦∗) = 𝜂𝑝(𝑚 + 𝑛𝜔) for some𝑚, 𝑛 ∈ ℤ. Then

𝜂𝑝(𝑚∗ + 𝑛∗𝜔) = 𝜂𝑝(𝑣∗𝑦∗) = 𝜂𝑝(𝑣∗𝑚 + 𝑣∗𝑛𝜔).

The above equality can be rewritten as 𝜂𝑝(𝑣∗𝑚 −𝑚∗) + 𝜂𝑝(𝑣∗𝑛 − 𝑛∗)𝜂𝑝(𝜔) = 0. Since the
set {1, 𝜂𝑝(𝜔)} is linearly independent over 𝔽𝑝, it follows that 𝑣∗𝑚 ≡ 𝑚∗ (mod 𝑝) and 𝑣∗𝑛 ≡

𝑛∗ (mod 𝑝). □

The third preliminary algebraic result is a combination of [17, Theorem 2.3 and Corollary 2.5].

Proposition 4.9 (Hamilton [17]). Let 𝑅 be a finitely generated ring in a number field 𝑘, let 𝜆 be a
non-zero element of 𝑅 that is not a root of unity, and let 𝑥1, 𝑥2, … , 𝑥𝑗 be non-zero elements of 𝑅. Then,
for every sufficiently large integer 𝑞, there exist a non-zero prime ideal 𝔭 of 𝑘 , a finite field 𝐹𝔭, and
a ring homomorphism 𝜎∶ 𝑅 → 𝐹𝔭 such that 𝑅 ⊂ 𝑘𝔭

, the multiplicative order of 𝜎(𝜆) is equal to 𝑞,
and 𝜎(𝑥𝑖) ≠ 0, for each 1 ⩽ 𝑖 ⩽ 𝑗. The field 𝐹𝔭 is the residue class field of 𝑘𝔭

and the map 𝜎 is the
restriction to 𝑅 of the residue class field map with respect to 𝔭.

4.2 Conjugacy separation of peripheral cosets

We can now prove Theorem 1.4.

Proof of Theorem 1.4. Let 𝐻 and 𝐾 be maximal parabolic subgroups of Γ corresponding to dis-
tinct cusps of 𝑀, and let g ∈ Γ be an element such that 𝐾 is disjoint from every conjugate of
g𝐻. In particular, this implies g ∉ 𝐻. Fix a non-trivial element ℎ0 ∈ 𝐻. Since 𝐻 is a maximal
abelian subgroup of Γ, and g ∉ 𝐻, the commutator [g , ℎ0] = gℎ0g−1ℎ

−1
0

is non-trivial. Let 𝐴 be
the cusp of 𝑀 corresponding to 𝐾, let 𝐵 be the cusp corresponding to 𝐻, and let 𝐶1, … , 𝐶𝓁 be
the remaining cusps. We will leave the cusp 𝐴 unfilled, and will fill the remaining cusps. So long
as a tuple of slopes 𝐬 on 𝐵, 𝐶1, … , 𝐶𝓁 avoids finitely many slopes on each cusp, the Dehn filled
manifold𝑀(𝐬)will be hyperbolic. Thus, by Thurston’s hyperbolic Dehn surgery theorem, we can
choose generators ℎ1 and ℎ2 of𝐻 that can be completed to tuples 𝐬1 and 𝐬2 where𝑀(𝐬1) and𝑀(𝐬2)

are both hyperbolic. Then, for 𝑗 = 1, 2, the fundamental group 𝜋1(𝑀(𝐬𝑗)) has a discrete, faithful
representation to a group of isometries Γ(𝐬𝑗) ⊂ PSL(2, ℂ). By Theorem 4.5, we view Γ(𝐬𝑗) as a
subgroup of SL(2, ℂ). Let 𝜓𝑗 ∶ Γ → Γ(𝐬𝑗) be the quotient homomorphism induced by the inclu-
sion𝑀 ↪ 𝑀(𝐬𝑗). By choosing sufficiently long Dehn fillings, we may assume that 𝜓1([g , ℎ0]) and
𝜓2([g , ℎ0]) are non-trivial. These choices ensure the following properties for 𝑗 ∈ {1, 2}:
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2370 FUTER, HAMILTON, and HOFFMAN

∙ 𝜓𝑗(𝐾) is a parabolic subgroup of Γ(𝐬𝑗),
∙ 𝜓𝑗(𝐻) is a loxodromic subgroup of Γ(𝐬𝑗),
∙ 𝜓𝑗(g) ∉ 𝜓𝑗(𝐻).

Before working with the Dehn filled manifolds, we examine the coset g𝐻 in Γ. By Theorem 4.5,
we can conjugate Γ to lie in SL(2, 𝑘) for some number field 𝑘. After possibly expanding 𝑘, and
then conjugating Γ in SL(2, 𝑘), we may assume that

g =

(
𝑎 𝑏

𝑐 𝑑

)
, ℎ1 = ±

(
1 1

0 1

)
, and ℎ2 = ±

(
1 𝜔

0 1

)
,

for a fixed element 𝜔 ∈ ℂ − ℝ. Note that the traces of ℎ1 and ℎ2 are determined by the lift to
SL(2, ℂ), and might not coincide. Thus an arbitrary element gℎ𝑚

1
ℎ𝑛
2
∈ g𝐻 can be expressed as

gℎ𝑚1 ℎ
𝑛
2 = ±

(
𝑎 𝑏

𝑐 𝑑

)(
1 𝑚 + 𝑛𝜔

0 1

)
= ±

(
𝑎 𝑎(𝑚 + 𝑛𝜔) + 𝑏

𝑐 𝑐(𝑚 + 𝑛𝜔) + 𝑑

)
, (4.1)

where the sign ± depends on the traces of ℎ1, ℎ2 and the parity of𝑚, 𝑛.
As above, set 𝑍𝜔 = {𝑚 + 𝑛𝜔 |𝑚, 𝑛 ∈ ℤ} and 𝑄𝜔 = {𝑚 + 𝑛𝜔 |𝑚, 𝑛 ∈ ℚ}. Then

g𝐻 ⊂

{
±

(
𝑎 𝑎𝑥 + 𝑏

𝑐 𝑐𝑥 + 𝑑

) ||| 𝑥 ∈ 𝑍𝜔

}
.

Since g ∉ 𝐻, and 𝐻 is a maximal parabolic subgroup of Γ, we have 𝑐 ≠ 0. Thus gℎ𝑚
1
ℎ𝑛
2
∈ g𝐻 is

parabolic if and only if tr(gℎ𝑚
1
ℎ𝑛
2
) = ±(𝑎 + 𝑑 + 𝑐(𝑚 + 𝑛𝜔)) ∈ {±2}. Solving for 𝑥 = 𝑚 + 𝑛𝜔 ∈ 𝑍𝜔,

let

𝑦+ = 𝑦+1 =
2 − 𝑎 − 𝑑

𝑐
and 𝑦− = 𝑦−1 =

−2 − 𝑎 − 𝑑

𝑐
.

Then the coset g𝐻 contains a parabolic element if and only if {𝑦+, 𝑦−} ∩ 𝑍𝜔 ≠ ∅. We will
abuse notation slightly by thinking of the subscripts as either symbols (±) or numbers (±1),
as convenient.
The pair 𝑦+ and 𝑦−, corresponding to trace +2 and trace −2, are the “problem elements” that

we will need to track throughout the proof. In particular, let 𝑅 ⊂ 𝑘 be the ring generated by the
coefficients of the generators of Γ. By expanding 𝑅 if necessary, we may assume that 𝑐−1 ∈ 𝑅,
which implies 𝑦± ∈ 𝑅.
From here, the proof proceeds as follows. For each number 𝑖 ∈ {±1}, we will construct a homo-

morphism 𝜑𝑖 ∶ Γ → 𝐺𝑖 , where 𝐺𝑖 is a finite group. Each 𝜑𝑖 will be either a congruence quotient
of Γ, or the product of a congruence quotient of Γ and a congruence quotient of Γ(𝐬𝑗) for some 𝑗.
Then we will package these homomorphisms together to obtain

𝜑 = 𝜑− × 𝜑+∶ Γ⟶ 𝐺 = 𝐺− × 𝐺+.

In particular, for every 𝛾 ∈ Γ, the image 𝜑(𝛾) is a tuple of matrices, each with coefficients in a
finite ring, and each with a well-defined trace. To complete the proof, we will see that for every
ℎ ∈ 𝐻 and every 𝓁 ∈ 𝐾, some coordinate of 𝜑(gℎ) differs in trace from the same coordinate of
𝜑(𝓁). This will imply that 𝜑(gℎ) cannot be conjugate to 𝜑(𝓁).
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INFINITELY MANY VIRTUAL GEOMETRIC TRIANGULATIONS 2371

For each 𝑖 ∈ {±1}, the definition of𝜑𝑖 ∶ Γ → 𝐺𝑖 depends onwhether 𝑦𝑖 belongs to𝑄𝜔. If 𝑦𝑖 ∉ 𝑄𝜔,
we argue as follows.

Claim 4.10. Suppose 𝑦𝑖 ∈ 𝑅 − 𝑄𝜔. Then there is a ring homomorphism 𝜌𝑖 ∶ 𝑅 → 𝑆𝑖 , where 𝑆𝑖 is a
finite ring, such that the following holds. For every pair (𝑚, 𝑛) ∈ ℤ2, we have

𝜌𝑖(𝑚 + 𝑛𝜔) ≠ 𝜌𝑖(𝑦𝑖).

By Proposition 4.7, there exist a finite ring 𝑆𝑖 and a ring homomorphism 𝜌𝑖 ∶ 𝑅 → 𝑆𝑖 such that
𝜌𝑖(𝑦𝑖) ∉ 𝜌𝑖(𝑍𝜔). By the definition of 𝑍𝜔, this means 𝜌𝑖(𝑦𝑖) ≠ 𝜌𝑖(𝑚 + 𝑛𝜔) for any (𝑚, 𝑛), proving
Claim 4.10. ✧

Using 𝜌𝑖 , we define a congruence quotient

𝜑𝑖 ∶ Γ ↪ SL(2, 𝑅) → 𝐺𝑖 = SL(2, 𝑆𝑖) if 𝑦𝑖 ∉ 𝑄𝜔, (4.2)

completing the definition of 𝐺𝑖 and 𝜑𝑖 in this case.
Alternately, if 𝑦𝑖 ∈ 𝑄𝜔, Lemma 4.8 provides an infinite set of primesΩ, such that for each𝑝 ∈ Ω

there is an associated finite field 𝐹𝔭 and ring homomorphism 𝜂𝑝 ∶ 𝑅 → 𝐹𝔭. The central claim in
this case is the following.

Claim 4.11. Suppose 𝑦𝑖 ∈ 𝑄𝜔. Then there is a choice of Dehn filling quotient𝜓𝑗 ∶ Γ → Γ(𝐬𝑗)where
the coefficients of Γ(𝐬𝑗) lie in a finitely generated ring 𝑇𝑗 , a prime number 𝑝 ∈ Ω, and a ring
homomorphism 𝜎𝑝,𝑖 ∶ 𝑇𝑗 → 𝐸𝑖 , where 𝐸𝑖 is a finite field, such that the following holds. For every
pair (𝑚, 𝑛) ∈ ℤ2, we have

𝜂𝑝(𝑚 + 𝑛𝜔) ≠ 𝜂𝑝(𝑦𝑖) or 𝜎𝑝,𝑖◦ tr ◦𝜓𝑗(gℎ
𝑚
1 ℎ

𝑛
2 ) ≠ ±2.

In fact, the desired homomorphism 𝜎𝑝,𝑖 exists for all sufficiently large 𝑝 ∈ Ω. However, we will
only need 𝜎𝑝,𝑖 for one 𝑝 ∈ Ω.
We momentarily postpone the proof of Claim 4.11 to describe the construction of 𝜑𝑖 . The ring

homomorphism 𝜂𝑝 defines a congruence quotient

𝜈0 ∶ Γ ↪ SL(2, 𝑅) → SL(2, 𝐹𝔭).

Similarly, 𝜎𝑝,𝑖 defines a homomorphism 𝜈𝑖 factoring through a congruence quotient:

𝜈𝑖 ∶ Γ
𝜓𝑗
��→ 𝜓𝑗(Γ) = Γ(𝐬𝑗) ↪ SL(2, 𝑇𝑗) → SL(2, 𝐸𝑖).

We can now define

𝜑𝑖 = 𝜈0 × 𝜈𝑖 ∶ Γ⟶ 𝐺𝑖 = SL(2, 𝐹𝔭) × SL(2, 𝐸𝑖) if 𝑦𝑖 ∈ 𝑄𝜔, (4.3)

completing the definition of 𝐺𝑖 and 𝜑𝑖 in this case.

Proof of Claim 4.11. We begin by specifying the choice of Dehn filling quotient 𝜓1 or 𝜓2. Write
𝑦𝑖 = (𝑚𝑖 + 𝑛𝑖𝜔)∕𝑣𝑖 in lowest terms, as in Lemma 4.8. If 𝑣𝑖 = 1, then we set 𝑗 = 2 and work with
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2372 FUTER, HAMILTON, and HOFFMAN

the Dehn filling 𝜓𝑗 = 𝜓2 ∶ Γ → Γ(𝐬2) for concreteness (although 𝜓1 would also work). Assuming
𝑣𝑖 ≠ 1, we have either 𝑣𝑖 ∤ 𝑚𝑖 or 𝑣𝑖 ∤ 𝑛𝑖 . If 𝑣𝑖 ∤ 𝑚𝑖 , then we set 𝑗 = 2 and select the Dehn filling
𝑀(𝐬2) and the quotientmap𝜓2 ∶ Γ → Γ(𝐬2). Then𝜓2(𝐻) is an infinite cyclic loxodromic subgroup
of Γ(𝐬2) generated by 𝜓2(ℎ1). Consequently, 𝜓2(ℎ𝑚1 ℎ

𝑛
2
) = 𝜓2(ℎ

𝑚
1
), where

𝑣𝑖𝑚 ≢ 𝑚𝑖 (mod 𝑣𝑖) because 𝑣𝑖 ∤ 𝑚𝑖.

Similarly, if 𝑣𝑖 ∤ 𝑛𝑖 , then we set 𝑗 = 1 and select the Dehn filling 𝑀(𝐬1) and the quotient map
𝜓1 ∶ Γ → Γ(𝐬1). This has the effect that 𝜓1(ℎ𝑚1 ℎ

𝑛
2
) = 𝜓1(ℎ

𝑛
2
), where

𝑣𝑖𝑛 ≢ 𝑛𝑖 (mod 𝑣𝑖) because 𝑣𝑖 ∤ 𝑛𝑖.

In either case, the above non-congruences will be used in the endgame of the proof of the claim.
Because the arguments for 𝑚𝑖 and 𝑛𝑖 are entirely parallel, and differ only by a substitution of
symbols, we assume without loss of generality that 𝑣𝑖 ∤ 𝑚𝑖 , hence 𝑗 = 2 and we have the Dehn
filling quotient 𝜓2 ∶ Γ → Γ(𝐬2).
By Theorem 4.5, we can conjugate Γ(𝐬2) in SL(2, ℂ) such that Γ(𝐬2) ⊂ SL(2, 𝑇), where 𝑇 = 𝑇2 is

a finitely generated ring in a number field. Moreover, we may assume that

𝜓2(g) =
(
𝑟 𝑠

𝑡 𝑢

)
and 𝜓2(ℎ1) =

(
𝜆 0

0 𝜆−1

)
,

for some 𝑟, 𝑠, 𝑡, 𝑢, 𝜆 ∈ ℂ with |𝜆| ≠ 1. Then

𝜓2(g𝐻) =
{(

𝑟 𝑠

𝑡 𝑢

)(
𝜆𝑚 0

0 𝜆−𝑚

) |||𝑚 ∈ ℤ

}
=

{(
𝑟𝜆𝑚 𝑠𝜆−𝑚

𝑡𝜆𝑚 𝑢𝜆−𝑚

) |||𝑚 ∈ ℤ

}
,

and tr ◦𝜓2(gℎ𝑚1 ℎ
𝑛
2
) = 𝑟𝜆𝑚 + 𝑢𝜆−𝑚. In particular, 𝜓2(g𝐻) contains a parabolic matrix if and only

if 𝑟𝜆𝑚 + 𝑢𝜆−𝑚 = ±2 for some𝑚, which is true if and only if 𝜆𝑚 is a root of 𝑟𝑥2 ± 2𝑥 + 𝑢. Let

𝜁 =
1 +

√
1 − 𝑟𝑢

𝑟
, 𝜉 =

1 −
√
1 − 𝑟𝑢

𝑟

be the roots of 𝑟𝑥2 − 2𝑥 + 𝑢. Then {−𝜁, −𝜉} are the roots of 𝑟𝑥2 + 2𝑥 + 𝑢. By expanding 𝑇 = 𝑇2,
if necessary, we may assume that {𝜁, 𝜉} ⊂ 𝑇. Since 𝜓2(g) does not commute with 𝜓2(ℎ1), we have
𝑠 ≠ 0 and 𝑡 ≠ 0. Therefore, 𝑟𝑢 ≠ 1, which implies that 𝜁 ≠ 𝜉.
To prove the claim, we consider two cases.
Case 1: 𝜆2𝑚𝑖 ∉ {𝜁2𝑣𝑖 , 𝜉2𝑣𝑖 }.
By Proposition 4.9, for all sufficiently large primes 𝑝 ∈ Ω, there exist a finite field 𝐸𝑖 and a ring

homomorphism 𝜎𝑝,𝑖 ∶ 𝑇 → 𝐸𝑖 , such that

𝜎𝑝,𝑖(𝜁 − 𝜉) ≠ 0, 𝜎𝑝,𝑖(𝜆
2𝑚𝑖 − 𝜁2𝑣𝑖 ) ≠ 0, 𝜎𝑝,𝑖(𝜆

2𝑚𝑖 − 𝜉2𝑣𝑖 ) ≠ 0,

and the multiplicative order of 𝜎𝑝,𝑖(𝜆) is equal to 2𝑝.
Suppose for a contradiction that there exist𝑚, 𝑛 ∈ ℤ such that

𝜂𝑝(𝑚 + 𝑛𝜔) = 𝜂𝑝(𝑦𝑖) and 𝜎𝑝,𝑖◦ tr ◦𝜓2(gℎ
𝑚
1 ℎ

𝑛
2 ) = 𝜎𝑝,𝑖(𝑟𝜆

𝑚 + 𝑢𝜆−𝑚) = ±2.
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INFINITELY MANY VIRTUAL GEOMETRIC TRIANGULATIONS 2373

Then Lemma 4.8 implies

𝑣𝑖𝑚 ≡ 𝑚𝑖 (mod 𝑝) ⇒ 2𝑣𝑖𝑚 ≡ 2𝑚𝑖 (mod 2𝑝).

If 𝜎𝑝,𝑖(𝑟𝜆𝑚 + 𝑢𝜆−𝑚) = 2, then 𝜎𝑝,𝑖(𝜆𝑚) is a root of 𝑓(𝑥) = 𝜎𝑝,𝑖(𝑟)𝑥
2 − 2𝑥 + 𝜎𝑝,𝑖(𝑢) over 𝐸𝑖 . Since

the two distinct roots of 𝑓 over 𝐸𝑖 are equal to 𝜎𝑝,𝑖(𝜁) and 𝜎𝑝,𝑖(𝜉), we have 𝜎𝑝,𝑖(𝜆𝑚) = 𝜎𝑝,𝑖(𝜁)

or 𝜎𝑝,𝑖(𝜆𝑚) = 𝜎𝑝,𝑖(𝜉). Similarly, if 𝜎𝑝,𝑖(𝑟𝜆𝑚 + 𝑢𝜆−𝑚) = −2, then 𝜎𝑝,𝑖(𝜆𝑚) = 𝜎𝑝,𝑖(−𝜁) or 𝜎𝑝,𝑖(𝜆𝑚) =
𝜎𝑝,𝑖(−𝜉). In either case,

𝜎𝑝,𝑖(𝜆
2𝑣𝑖𝑚) = 𝜎𝑝,𝑖(𝜁

2𝑣𝑖 ) or 𝜎𝑝,𝑖(𝜆
2𝑣𝑖𝑚) = 𝜎𝑝,𝑖(𝜉

2𝑣𝑖 ).

Since 2𝑣𝑖𝑚 ≡ 2𝑚𝑖 (mod 2𝑝) and themultiplicative order of 𝜎𝑝,𝑖(𝜆) is equal to 2𝑝, this implies that

𝜎𝑝,𝑖(𝜆
2𝑚𝑖 ) = 𝜎𝑝,𝑖(𝜁

2𝑣𝑖 ) or 𝜎𝑝,𝑖(𝜆
2𝑚𝑖 ) = 𝜎𝑝,𝑖(𝜉

2𝑣𝑖 ),

a contradiction.
Case 2: 𝜆2𝑚𝑖 ∈ {𝜁2𝑣𝑖 , 𝜉2𝑣𝑖 }.
Without loss of generality, we may assume that 𝜆2𝑚𝑖 = 𝜁2𝑣𝑖 . First, suppose that 𝑣𝑖 = 1. This

means that 𝑦𝑖 = 𝑚𝑖 + 𝑛𝑖𝜔 ∈ 𝑍𝜔, hence gℎ𝑚𝑖

1
ℎ
𝑛𝑖
2
∈ g𝐻 has trace ±2 and is parabolic in Γ. Since

𝜆2𝑚𝑖 = 𝜁2𝑣𝑖 and 𝑣𝑖 = 1, 𝜆𝑚𝑖 ∈ {𝜁, −𝜁}. Therefore, 𝜓2(gℎ
𝑚𝑖

1
ℎ
𝑛𝑖
2
) = 𝜓2(gℎ

𝑚𝑖

1
) is also a parabolic ele-

ment in Γ(𝐬2). This is a contradiction, since the only parabolic elements of Γ that remain parabolic
after the Dehn filling lie in conjugates of 𝐾, and the coset g𝐻 is disjoint from every conjugate of
𝐾. We conclude that 𝑣𝑖 > 1.
Next, assume that 𝜆2𝑣𝑖𝑚𝑖 ≠ 𝜉2𝑣

2
𝑖 . By Proposition 4.9, for all sufficiently large primes𝑝 ∈ Ω, there

exist a finite field 𝐸𝑖 and a ring homomorphism 𝜎𝑝,𝑖 ∶ 𝑇 → 𝐸𝑖 , such that

𝜎𝑝,𝑖(𝜁 − 𝜉) ≠ 0, 𝜎𝑝,𝑖(𝜆
2𝑣𝑖𝑚𝑖 − 𝜉2𝑣

2
𝑖 ) ≠ 0,

and themultiplicative order of 𝜎𝑝,𝑖(𝜆) is equal to 2𝑣𝑖𝑝. Suppose for a contradiction that there exist
𝑚, 𝑛 ∈ ℤ such that

𝜂𝑝(𝑚 + 𝑛𝜔) = 𝜂𝑝(𝑦𝑖) and 𝜎𝑝,𝑖◦ tr ◦𝜓2(gℎ
𝑚
1 ℎ

𝑛
2 ) = 𝜎𝑝,𝑖(𝑟𝜆

𝑚 + 𝑢𝜆−𝑚) = ±2.

Then Lemma 4.8 implies

𝑣𝑖𝑚 ≡ 𝑚𝑖 (mod 𝑝) ⇒ 2𝑣2𝑖 𝑚 ≡ 2𝑣𝑖𝑚𝑖 (mod 2𝑣𝑖𝑝).

Since 𝜎𝑝,𝑖(𝑟𝜆𝑚 + 𝑢𝜆−𝑚) = ±2, we have 𝜎𝑝,𝑖(𝜆𝑚) = 𝜎𝑝,𝑖(±𝜁) or 𝜎𝑝,𝑖(𝜆𝑚) = 𝜎𝑝,𝑖(±𝜉). If 𝜎𝑝,𝑖(𝜆𝑚) =
𝜎𝑝,𝑖(±𝜁), then

𝜎𝑝,𝑖(𝜆
2𝑣𝑖𝑚) = 𝜎𝑝,𝑖(𝜁

2𝑣𝑖 ) = 𝜎𝑝,𝑖(𝜆
2𝑚𝑖 ).

Since the multiplicative order of 𝜎𝑝,𝑖(𝜆) is divisible by 2𝑣𝑖 , we have

2𝑣𝑖𝑚 ≡ 2𝑚𝑖 (mod 2𝑣𝑖),
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2374 FUTER, HAMILTON, and HOFFMAN

contradicting the fact that 𝑣𝑖 ∤ 𝑚𝑖 . If 𝜎𝑝,𝑖(𝜆𝑚) = 𝜎𝑝,𝑖(±𝜉), then, since the multiplicative order of
𝜎𝑝,𝑖(𝜆) is equal to 2𝑣𝑖𝑝 and 2𝑣2𝑖 𝑚 ≡ 2𝑣𝑖𝑚𝑖 (mod 2𝑣𝑖𝑝), we obtain

𝜎𝑝,𝑖(𝜆
2𝑣𝑖𝑚𝑖 ) = 𝜎𝑝,𝑖(𝜆

2𝑣2
𝑖
𝑚) = 𝜎𝑝,𝑖(𝜉

2𝑣2
𝑖 ),

which contradicts our assumption in choosing 𝜎𝑝,𝑖 .
Finally, assume that 𝜆2𝑣𝑖𝑚𝑖 = 𝜉2𝑣

2
𝑖 . By Proposition 4.9, there exist a finite field 𝐸𝑖 and a

ring homomorphism 𝜎𝑝,𝑖 ∶ 𝑇 → 𝐸𝑖 , such that 𝜎𝑝,𝑖(𝜁 − 𝜉) ≠ 0, and the multiplicative order of
𝜎𝑝,𝑖(𝜆) is divisible by 2𝑣2

𝑖
. Suppose that there exist 𝑚 ∈ ℤ such that 𝜎𝑝,𝑖(𝑟𝜆𝑚 + 𝑢𝜆−𝑚) = ±2.

Then 𝜎𝑝,𝑖(𝜆𝑚) = 𝜎𝑝,𝑖(±𝜁) or 𝜎𝑝,𝑖(𝜆𝑚) = 𝜎𝑝,𝑖(±𝜉). By the argument above, 𝜎𝑝,𝑖(𝜆𝑚) ≠ 𝜎𝑝,𝑖(±𝜁). If
𝜎𝑝,𝑖(𝜆

𝑚) = 𝜎𝑝,𝑖(±𝜉), then

𝜎𝑝,𝑖(𝜆
2𝑣2

𝑖
𝑚) = 𝜎𝑝,𝑖(𝜉

2𝑣2
𝑖 ) = 𝜎𝑝,𝑖(𝜆

2𝑣𝑖𝑚𝑖 ).

Since the multiplicative order of 𝜎𝑝,𝑖(𝜆) is divisible by 2𝑣2𝑖 , this implies that

2𝑣2𝑖 𝑚 ≡ 2𝑣𝑖𝑚𝑖 (mod 2𝑣2𝑖 ).

But this contradicts the fact that 𝑣𝑖 ∤ 𝑚𝑖 , completing the proof of Claim 4.11. ✧

We can now complete the proof of the theorem. For each 𝑖 ∈ {±1}, we have defined a homo-
morphism 𝜑𝑖 ∶ Γ → 𝐺𝑖 , using Equation (4.2) if 𝑦𝑖 ∉ 𝑄𝜔 and Equation (4.3) if 𝑦𝑖 ∈ 𝑄𝜔. Now,
define

𝜑 = 𝜑−1 × 𝜑+1 ∶ Γ⟶ 𝐺 = 𝐺−1 × 𝐺+1.

We need to show that 𝜑(𝐾) is disjoint from every conjugate of 𝜑(g𝐻).
Consider an arbitrary element gℎ𝑚

1
ℎ𝑛
2
∈ g𝐻, and suppose for a contradiction that 𝜑(gℎ𝑚

1
ℎ𝑛
2
)

is conjugate to 𝜑(𝓁) for some 𝓁 ∈ 𝐾. Since 𝓁 is parabolic, we know tr(𝓁) ∈ {±2}. Recalling the
general form for gℎ𝑚

1
ℎ𝑛
2
in Equation (4.1), define a number 𝜖 = 𝜖(𝓁, 𝑚, 𝑛) ∈ {±1} so that

tr(gℎ𝑚1 ℎ
𝑛
2 ) = 𝜖 ⋅ tr(𝓁)

2
⋅ (𝑎 + 𝑑 + 𝑐(𝑚 + 𝑛𝜔)).

In other words, 𝜖 = 1 when tr(ℎ𝑚
1
ℎ𝑛
2
) = tr(𝓁), and 𝜖 = −1 otherwise. We use the coordinate 𝜑𝜖 of

𝜑 to obtain a contradiction.
If 𝑦𝜖 ∉ 𝑄𝜔, then 𝜑𝜖(𝓁) ∈ SL(2, 𝑆𝜖). Since 𝜑𝜖(gℎ𝑚1 ℎ

𝑛
2
) is conjugate to 𝜑𝜖(𝓁), we have

tr ◦𝜑𝜖(gℎ
𝑚
1 ℎ

𝑛
2 ) = 𝜌𝜖◦ tr(gℎ

𝑚
1 ℎ

𝑛
2 ) = 𝜌𝜖

(
𝜖 tr(𝓁)

2
(𝑎 + 𝑑 + 𝑐(𝑚 + 𝑛𝜔))

)
= 𝜌𝜖(tr(𝓁)) = tr ◦𝜑𝜖(𝓁).

Since 𝜌𝜖 is a ring homomorphism and 𝜖 tr(𝓁)
2

∈ {±1} is a unit, we may rearrange terms to obtain

𝜌𝜖(𝑎 + 𝑑 + 𝑐(𝑚 + 𝑛𝜔)) = 𝜌𝜖

(
2

𝜖

)
⇒ 𝜌𝜖(𝑐(𝑚 + 𝑛𝜔)) = 𝜌𝜖

(
2

𝜖
− 𝑎 − 𝑑

)
.

But then 𝜌𝜖(𝑚 + 𝑛𝜔) = 𝜌𝜖(𝑦𝜖), contradicting Claim 4.10.
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INFINITELY MANY VIRTUAL GEOMETRIC TRIANGULATIONS 2375

If 𝑦𝜖 ∈ 𝑄𝜔, then𝜑𝜖(𝓁) = (𝜈0(𝓁), 𝜈𝜖(𝓁)) ∈ SL(2, 𝐹𝔭) × SL(2, 𝐸𝜖), a product of twomatrices. Since
𝜈0(gℎ

𝑚
1
ℎ𝑛
2
) is conjugate to 𝜈0(𝓁), we obtain

tr ◦ 𝜈0(gℎ
𝑚
1 ℎ

𝑛
2 ) = 𝜂𝑝◦ tr(gℎ

𝑚
1 ℎ

𝑛
2 ) = 𝜂𝑝

(
𝜖 tr(𝓁)

2
(𝑎 + 𝑑 + 𝑐(𝑚 + 𝑛𝜔))

)
= 𝜂𝑝(tr(𝓁)) = tr ◦ 𝜈0(𝓁).

Then the same rearrangement of terms as before gives 𝜂𝑝(𝑚 + 𝑛𝜔) = 𝜂𝑝(𝑦𝜖). Meanwhile, since
𝜈𝜖(gℎ

𝑚
1
ℎ𝑛
2
) is conjugate to 𝜈𝜖(𝓁), we obtain

𝜎𝑝,𝜖◦ tr ◦𝜓𝑗(gℎ
𝑚
1 ℎ

𝑛
2 ) = tr ◦ 𝜈𝜖(gℎ

𝑚
1 ℎ

𝑛
2 ) = tr ◦ 𝜈𝜖(𝓁) = ±2,

contradicting Claim 4.11. In either case, the proof is complete. □

5 MANIFOLDSWITH NON-RECTANGULAR CUSPS

In this section, we prove Theorem 1.3. We begin with a cusped, hyperbolic 3-manifold 𝑀 con-
taining a horocusp 𝐴. We will construct a sequence of finite covers �̂� → �̊� → 𝑀, with an
increasingly strong sequence of properties. The final cover �̂� will have infinitely many geometric
ideal triangulations, implying Theorem 1.3. The construction proceeds in four steps.

Step 1. Construct a cover �̊� → 𝑀 where 𝐴 lifts to a horocusp �̊� that has a unique shortest path
to the other cusps. This is accomplished in Lemma 5.2.

Step 2. Shrink �̊� ⊂ �̊� to a small sub-horocusp �̊�𝑡. By Proposition 3.1 andCorollary 3.4, the canon-
ical cell decomposition ̊ determined by �̊�𝑡 and the other cusps contains an embedded
drilled ananas �̊� consisting of one or two cells of ̊ .

Step 3. Construct a cover �̂� → �̊�where every polyhedron in the lifted polyhedral decomposition
̂ has vertices at distinct cusps. This is accomplished in Lemma 5.4.

Step 4. Now, ̂ can be subdivided into geometric ideal tetrahedra by Lemma2.9, and furthermore,
̂ contains a cover �̂� of the original ananas �̊�. If the cusp 𝐴 was non-rectangular, the
induced triangulation of �̂� is equivariant with respect to the cover of �̊�. To conclude the
proof, we use Lemma 3.6 to find infinitely many ideal triangulations of �̂�, hence of �̂�.

Step 1 builds covers using Theorem 4.4, whereas Step 3 uses Proposition 4.3. Steps 2 and 4
construct and subdivide polyhedral decompositions, but do not build any covers. The hypothesis
that 𝐴 is a non-rectangular cusp is used only in Step 4. See Remark 5.5 for a detailed description
of how this hypothesis is used.
The following basic lemma will be used to apply the results of Section 4.

Lemma 5.1. Let𝑀 = ℍ3∕Γ be a cusped hyperbolic manifold. Let 𝐵, 𝐵′ ⊂ ℍ3 be horoballs that cover
the same cusp in𝑀, and let g ∈ Γ be an isometry such that g(𝐵) = 𝐵′. Then the set of all elements of
Γ taking 𝐵 to 𝐵′ is of the form

𝑆 = StabΓ(𝐵
′)g StabΓ(𝐵) = g StabΓ(𝐵) = StabΓ(𝐵

′) g ,

both a left coset and a right coset of peripheral subgroups.

 17538424, 2022, 4, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/topo.12271 by T
em

ple U
niversity School O

f L
a, W

iley O
nline L

ibrary on [01/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



2376 FUTER, HAMILTON, and HOFFMAN

Proof. Let ℎ ∈ 𝑆. Then ℎ differs from g by pre-composition with some element 𝑠 ∈ StabΓ(𝐵) and
post-composition with some element 𝑠′ ∈ StabΓ(𝐵

′). In other words,

𝑆 = StabΓ(𝐵
′)g StabΓ(𝐵) =

{
𝑠′ ⋅ g ⋅ 𝑠 ∣ 𝑠′ ∈ StabΓ(𝐵

′), 𝑠 ∈ StabΓ(𝐵)
}
,

proving the first equality of the lemma. Now, observe that StabΓ(𝐵′) = g StabΓ(𝐵)g−1. Thus

𝑆 = g StabΓ(𝐵)g
−1 ⋅ g StabΓ(𝐵) = g StabΓ(𝐵),

proving the second equality of the lemma. The final equality is proved similarly. □

Now, let 𝑀 be a cusped hyperbolic manifold containing a collection of disjoint, closed horo-
cusps. Let𝐴 be one of the horocusps. Let 𝛾1, … , 𝛾𝑛 be the set of all orthogeodesics below a certain
length 𝐿 that connect𝐴 to the union of the other cusps. This set is finite for any 𝐿, and non-empty
when 𝐿 is sufficiently large.
Step 1 of the proof is accomplished by the following lemma.

Lemma5.2. Let𝑀 = ℍ3∕Γ be a cuspedhyperbolicmanifold and𝐴 ⊂ 𝑀 ahorocusp. For 𝑖 = 1, … , 𝑛,
let 𝛾𝑖 be an orthogeodesic from 𝜕𝐴 to some horocusp of𝑀. Assume that 𝛾𝑖 ≠ 𝛾𝑗 for 𝑖 ≠ 𝑗. Then there
is a finite cover �̊� ∶ �̊� → 𝑀, where 𝐴 lifts to a horocusp �̊� ⊂ �̊� and where the path-lifts �̊�1, … , �̊�𝑛
that start at �̊� lead to horocusps of �̊� that are distinct from one another and from �̊�.

Recall from Definition 2.1 that a lift �̊�must cover 𝐴 with degree one. Thus, for each 𝑖, the path
𝛾𝑖 has exactly one path-lift �̊�𝑖 starting at �̊�.

Proof. Conjugate Γ in Isom(ℍ3) so that one preimage of𝐴 is a horoball𝐴 about∞. The subgroup
𝐾 = StabΓ(𝐴) ≅ ℤ2 can be identified with 𝜋1(𝐴). Choose a fundamental domain 𝐷 ⊂ 𝜕𝐴 for the
action of 𝐾. For each 𝑖, let 𝛾𝑖 be a path-lift of 𝛾𝑖 to ℍ3, whose initial point lies in 𝐷. Let 𝐵𝑖 be the
horoball at the forward endpoint of 𝛾𝑖 . By construction, the orthogeodesics 𝛾1, … , 𝛾𝑛 lie in distinct
𝐾-orbits, hence the horoballs 𝐵1, … , 𝐵𝑛 do also. In addition, each 𝐵𝑖 is disjoint from 𝐴.
For every pair (𝑖, 𝑗) with 1 ⩽ 𝑖 < 𝑗 ⩽ 𝑛, let 𝑆𝑖𝑗 ⊂ Γ be the set of all deck transformations that

map 𝐵𝑗 to 𝐵𝑖 . This set may be empty (this will be the case if 𝐵𝑖 and 𝐵𝑗 cover distinct cusps of𝑀).
Otherwise, let g𝑖𝑗 ∈ 𝑆𝑖𝑗 be an arbitrary element and observe that by Lemma 5.1, 𝑆𝑖𝑗 = g𝑖𝑗 StabΓ(𝐵𝑗).
Let 𝑇𝑖𝑗 be the set of all deck transformations that map 𝐵𝑗 to any horoball in the 𝐾-orbit of 𝐵𝑖 . If
𝑆𝑖𝑗 ≠ ∅, we have 𝑇𝑖𝑗 = 𝐾𝑆𝑖𝑗 = 𝐾g𝑖𝑗 StabΓ(𝐵𝑗), a double coset of peripheral subgroups of Γ.
In a similar fashion, let𝑆0𝑗 ⊂ Γ be the set of all deck transformations thatmap𝐵𝑗 to𝐴. If 𝑆0𝑗 ≠ ∅,

Lemma 5.1 says that 𝑆0𝑗 = g0𝑗 StabΓ(𝐵𝑗) for an arbitrary element g0𝑗 ∈ 𝑆0𝑗 . Let𝑇0𝑗 = 𝐾𝑆0𝑗 . Finally,
define

𝑇 =
⋃

0⩽𝑖<𝑗⩽𝑛

𝑇𝑖𝑗 =
⋃

0⩽𝑖<𝑗⩽𝑛

𝐾𝑆𝑖𝑗 =
⋃

𝑖<𝑗, 𝑆𝑖𝑗≠∅

𝐾g𝑖𝑗 StabΓ(𝐵𝑗).

Theorem4.4 says that for every non-empty 𝑆𝑖𝑗 , the double coset𝑇𝑖𝑗 = 𝐾g𝑖𝑗 StabΓ(𝐵) is separable
in Γ. Thus each such double coset is a closed subset of Γ. Since 𝑇 is a finite union of these closed
sets, it follows that 𝑇 itself is closed, hence separable. Observe that 1 ∉ 𝑇, because any element
g ∈ 𝑇𝑖𝑗moves horoball𝐵𝑗 to a distinct location. (This uses the above observation that the horoballs
𝐵𝑖 and 𝐵𝑗 lie in distinct 𝐾-orbits.)
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INFINITELY MANY VIRTUAL GEOMETRIC TRIANGULATIONS 2377

By Lemma 4.2, there is a homomorphism 𝜑∶ Γ → 𝐹, where 𝐹 is a finite group, such that 1 =
𝜑(1) ∉ 𝜑(𝑇). Since 𝜑(𝐾) = 𝜑(𝐾)−1 is a group, we have

{1} ∩ 𝜑(𝐾) ⋅ 𝜑
(⋃

𝑆𝑖𝑗

)
= ∅ ⇒ 𝜑(𝐾) ∩ 𝜑

(⋃
𝑆𝑖𝑗

)
= ∅.

Now, let Γ̊ = 𝜑−1◦𝜑(𝐾). This is a finite-index subgroup of Γ. Let �̊� = ℍ3∕Γ̊. Since StabΓ(𝐴) = 𝐾 =

StabΓ̊(𝐴), the horocusp �̊� = 𝐴∕𝐾 ⊂ �̊� is a lift of 𝐴 ⊂ 𝑀.
By the above displayed equation, 𝜑(Γ̊) = 𝜑(𝐾) is disjoint from 𝜑(𝑆𝑖𝑗), hence Γ̊ is disjoint from

𝑆𝑖𝑗 for every 0 ⩽ 𝑖 < 𝑗 ⩽ 𝑛. Thus 𝐵𝑖 and 𝐵𝑗 belong to different Γ̊-orbits and project to distinct cusps
in �̊�. Similarly, 𝐴 and 𝐵𝑗 belong to different Γ̊-orbits and project to distinct cusps in �̊�. Thus the
geodesic arcs �̊�1, … , �̊�𝑛, namely, the quotients of 𝛾1, … , 𝛾𝑛 in �̊�, lead to cusps of �̊� that are distinct
from one another and from �̊�. □

Returning to our plan for proving Theorem 1.3, suppose that 𝐴 ⊂ 𝑀 is a horocusp and that
{𝛾1, … , 𝛾𝑛} is the set of all orthogeodesics of minimal length from 𝐴 to the other cusps (includ-
ing itself). Following Lemma 5.2, we find a cover �̊� where 𝐴 lifts to �̊� and where the path-lifts
�̊�1, … , �̊�𝑛 lead to cusps �̊�1, … , �̊�𝑛 that are distinct from one another and from �̊�. Since the �̊�𝑖 are
distinct, we may adjust their sizes independently. We keep �̊� = �̊�1 and shrink �̊�2, … , �̊�𝑛 slightly.
Now, �̊�1 is the unique shortest path in �̊� from �̊� to the other horocusps.
In Step 2, we apply Proposition 3.1 to shrink �̊� by a sufficiently large distance (keeping the name

�̊�) so that the canonical polyhedral decomposition ̊ determined by �̊�, �̊�, and the remaining cusps
meets �̊� in one or two 3-cells, each with one ideal vertex at �̊�. By Corollary 3.4, these cells glue
together to form an embedded drilled ananas �̊� ⊂ �̊�.
If 𝐴 is a non-rectangular cusp, then its lift �̊� is also non-rectangular. Thus, by Proposition 3.1,

the drilled ananas �̊� consists of two isometric acute-angled tetrahedra.

Definition 5.3. Let  be an ideal polyhedral decomposition of a cusped hyperbolic 3-manifold
𝑀. A diagonal of  is a bi-infinite geodesic 𝛽 that is contained in some cell of  . A diagonal 𝛽 is
called returning if its endpoints are in the same horocusp of𝑀.

Step 3 of the proof is to apply the following result due to Luo, Schleimer, and Tillmann [22,
Lemmas 8 and 9].

Lemma 5.4. Let �̊� be a cusped hyperbolic 3-manifold with a polyhedral decomposition ̊ . Then
there is a finite regular cover 𝑓∶ �̂� → �̊�, such that the lifted polyhedral decomposition ̂ has no
returning diagonals.

Proof. This is proved in [22, Lemmas 8 and 9], using a fairly straightforward application of
Proposition 4.3. □

We can now prove Theorem 1.3: a cusped hyperbolic 3-manifold 𝑀 containing a non-
rectangular cusp 𝐴 has a cover �̂� with infinitely many geometric ideal triangulations, organized
in a trivalent tree. We stress that each edge of this tree represents a sequence of 𝑛 geometric Pach-
ner moves as described by Corollary 3.8, where 𝑛 is the degree of the local cover �̂� → �̊� of the
ananas �̊� ⊂ �̊�.
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2378 FUTER, HAMILTON, and HOFFMAN

Proof of Theorem 1.3. Let 𝑀 be a cusped hyperbolic 3-manifold, and let 𝐴 ⊂ 𝑀 be a
non-rectangular cusp. Consider the sequence of finite covers

�̂�
𝑓
��→ �̊�

�̊�
��→ 𝑀

constructed inLemma5.2 andLemma5.4. In particular, �̊� has a polyhedral decomposition ̊ such
that two acute-angled ideal tetrahedra of ̊ fit together to form a drilled ananas �̊�. Consequently,
𝜕�̊� consists of two triangular faces of ̊ .
Let ̂ be the polyhedral decomposition of �̂� obtained by pulling back ̊ . Then ̂ contains a

submanifold �̂� that covers �̊�. By Lemma 5.4, 𝑃 has no returning diagonals; hence, the vertices of
every polyhedron 𝑃 ⊂ ̂ are mapped to distinct cusps of �̂�.
Choose an ordering ≺ on the cusps of �̂�. Then, for every polyhedron 𝑃 ⊂ ̂ , we get a total

ordering of the vertices of 𝑃. Thus, by Lemma 2.9, the iterated coning induced by ≺ subdivides ̂
into geometric ideal tetrahedra. By construction, �̂� already consists of tetrahedra, so does not need
to be subdivided. Now, by Corollary 3.8, the initial geometric triangulation of �̂� (which comes
from lifting the two-tetrahedron triangulation of �̊�) is the start of an infinite sequence of geometric
ideal triangulations.
Since 𝐴 is non-rectangular, the triangulation of the drilled ananas �̊� consists of two acute-

angled tetrahedra. Thus every path in the trivalent tree of geometric triangulations of �̊� that was
described in Proposition 3.10 lifts to a path of geometric triangulations of �̂�, hence to a path of
geometric triangulations of �̂�. □

Remark 5.5. If𝐴 is a rectangular cusp of𝑀, the above proof of Theorem 1.3 still constructs covers
�̂� → �̊� → 𝑀, where �̂� contains a submanifold �̂� that covers the drilled ananas �̊�. However,
this time �̂� consists of rectangular pyramids that need to be subdivided into tetrahedra. The sub-
division imposed by ordering the cusps of �̂� may impose different choices of diagonals on the
rectangles of 𝜕�̂�, whichwould obstruct the triangulation of �̂� frombeing equivariant with respect
to the cover �̂� → �̊�. This means that we cannot apply Corollary 3.8 to obtain an infinite sequence
of triangulations. The issue of equivariance does not arise if �̂� is a lift of �̊�.

In the next section, we will deploy Theorem 1.4 to construct a cover �̂� where �̂� is indeed a lift,
enabling us to handle rectangular cusps. This will have the additional benefit that each edge of
the trivalent tree will represent a single geometric 2–3 move, as in Proposition 3.10.

6 RECTANGULAR CUSPS AND DEHN FILLINGS

In this section, we prove Theorem 1.2, which extends Theorem 1.3 to manifolds with rectangular
cusps, and also provides infinitely many geometric triangulations of long Dehn fillings of �̂�. The
proof begins in the same way as Steps 1 and 2 of the four-step outline described at the start of
Section 5. In particular, we will find a cover �̊� → 𝑀 that contains a drilled ananas �̊�. The main
challenge, as mentioned in Remark 5.5, is to build further covers where �̊� continues to lift but
(most) returning diagonals stop being returning. Before outlining how to do this, we introduce a
definition and a motivating example.
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INFINITELY MANY VIRTUAL GEOMETRIC TRIANGULATIONS 2379

Definition 6.1. Let𝑀 = ℍ3∕Γ be a cusped hyperbolic 3-manifold with a distinguished horocusp
𝐴 and a polyhedral decomposition  . Let 𝐴 ⊂ ℍ3 be a horoball covering𝐴, and let ̃ be the lifted
polyhedral decomposition. An𝐴-parabolic diagonal of ̃ is a bi-infinite geodesic 𝛽 contained in a
cell of ̃ , whose ends are in horoballs𝐶 and𝐶′ such that there is a parabolic isometry g ∈ StabΓ(𝐴)

with g(𝐶) = 𝐶′.
An𝐴-parabolic diagonal of is the projection 𝛽 ⊂ 𝑀 of an𝐴-parabolic diagonal of ̃ , for some

horoball 𝐴 covering 𝐴. We remark that the choice of 𝐴 is immaterial: for any other horoball 𝐴′

covering 𝐴, there will be some 𝐴′-parabolic lift of 𝛽. On the other hand, the choice of  can
affect the collection of𝐴-parabolic diagonals, because it affects the set of bi-infinite geodesics that
are diagonals of  in the first place. We also remark that an 𝐴-parabolic diagonal is necessarily
returning, according to Definition 5.3.
A horocusp 𝐶 ⊂ 𝑀 is called 𝐴-problematic (relative to ) if there is an 𝐴-parabolic diagonal 𝛽

of  whose endpoints lie in 𝐶.

Example 6.2. Suppose, as in the conclusion of Corollary 3.4, that 𝑀 = ℍ3∕Γ contains a drilled
ananas 𝑁 that is obtained by gluing one or two cells of  . Let 𝐴 ⊂ 𝑀 be a horocusp containing
the cusp of 𝑁, and let 𝐵 ⊂ 𝑀 be a horocusp containing the thorn of 𝑁. Now, consider a geodesic
𝛽 ⊂ 𝜕𝑁 that lies in a 2-cell of 𝜕𝑁. We claim that 𝛽 must be an 𝐴-parabolic diagonal of  . Indeed,
both endpoints of 𝛽 are in the single thorn of𝑁; hence, every lift of 𝛽 toℍ3must have its endpoints
in horoballs that are permuted by StabΓ(𝐴) for an appropriate horoball 𝐴 covering 𝐴. Thus, by
Definition 6.1, 𝐵 is an 𝐴-problematic cusp relative to  .
Now, suppose that𝑀 = ℍ3∕Γ is some finite cover of𝑀 where𝐴 lifts to𝐴. Since𝐴 lifts, or equiv-

alently StabΓ(𝐴) = Stab
Γ
(𝐴), every 𝐴-parabolic diagonal 𝛽 of  lifts to an 𝐴-parabolic diagonal

𝛽 of the lifted polyhedral decomposition  . In particular, some preimage of 𝛽 continues to be a
returning diagonal in𝑀.

The gist of the following outline is that Example 6.2 is a worst-case scenario that can be isolated
and handled. With Theorem 1.4 and with enough care, all diagonals that are not in the boundary
of a drilled ananas eventually lift to be non-returning, while the ananas continues to lift.
Now, let 𝑀 be a cusped hyperbolic 3-manifold containing a horocusp 𝐴. We will take the

following sequence of steps.

Step 1. Describe a criterion on the distance from𝐴 that any𝐴-problematic cuspmust satisfy. This
is accomplished in Lemma 6.3.

Step 2. Using the criterion of Lemma 6.3, find a finite cover �̊� → 𝑀, where 𝐴 lifts to �̊�. This
cover �̊� contains a polyhedral decomposition ̊ and a drilled ananas �̊� with its cusp in �̊�
and its thorn in �̊�, such that �̊� is the only �̊�-problematic cusp of �̊�. In fact, all �̊�-parabolic
diagonals of ̊ lie in 𝜕�̊�. See Lemma 6.4 for details.

Step 3. Using Theorem 1.4, find a finite cover𝑀 → �̊�, where all of the above features hold (in par-
ticular, �̊� lifts to𝑁), and in addition every polyhedron of has some vertex in a horocusp
other than 𝐵, the thorn of 𝑁. See Lemma 6.5 for details.

Step 4. Using Theorem 1.4 again, find a finite cover

(

𝑀 → 𝑀, where all of the above features hold
(in particular, 𝑁 lifts to

(

𝑁), and in addition all returning diagonals have their endpoints
in cusps that cover 𝐵. This means that there are very few returning diagonals, and the
partial order argument of Corollary 2.10 suffices to find a geometric triangulation

(

 that is
compatiblewith infinitelymany geometric triangulations of

(

𝑀. See Lemma 6.6 for details.
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2380 FUTER, HAMILTON, and HOFFMAN

Step 5. Using 𝐻1(

(

𝑀), find a double cover �̂� →

(

𝑀 where

(

𝑁 has two distinct lifts, called �̂� and
�̂�′. See Lemma 6.7 for details. We will replace one lift �̂� with a triangulated solid torus to
perform a long Dehn filling �̂�(𝑠), while using the other lift �̂�′ to obtain infinitely many
geometric triangulations of �̂�(𝑠).

We now proceed to carry out these steps in detail. In the following lemma,(𝑇2) is themoduli
space of unit-area flat tori, and ℝ+(𝑇2) is the moduli space of flat tori of any area.

Lemma 6.3. There is a function 𝐿∶ ℝ+ × ℝ+(𝑇2) → ℝ+ such that the following holds for every
multi-cusped hyperbolic 3-manifold𝑀.
Suppose that𝑀 contains a horocusp collection 𝐴, 𝐵1, … , 𝐵𝑘 and that 𝛼 is an orthogeodesic from

𝐴 to 𝐵1. Then, in the canonical polyhedral decomposition  determined by 𝐴, 𝐵1, … , 𝐵𝑘 , any 𝐴-
problematic horocusp 𝐵𝑗 must satisfy 𝑑(𝐴, 𝐵𝑗) < 𝐿 = 𝐿(len(𝛼), 𝜕𝐴).
Furthermore, if 𝐴 is replaced by a sub-horocusp 𝐴𝑡 for some 𝑡 > 0, then the distance bound 𝐿 is

replaced by 𝐿 + 𝑡. In symbols,

𝐿(len(𝛼)+𝑡, 𝜕𝐴𝑡) = 𝐿(len(𝛼), 𝜕𝐴) + 𝑡.

One particular consequence of Lemma 6.3 is that the length bound 𝐿 only depends on the
horocusps 𝐴 and 𝐵1. Although varying the sizes of 𝐵2, … , 𝐵𝑘 may have the effect of changing
the polyhedral decomposition  , thereby changing the collection of 𝐴-parabolic diagonals of  ,
the conclusion of the lemma still holds for the same 𝐿.

Proof. Write 𝑀 = ℍ3∕Γ, and conjugate Γ so that 𝐴 is covered by a horoball 𝐴 about∞. Then 𝛼
has a lift �̃� that leads from 𝐴 to a horoball 𝐵1 covering 𝐵1. A further conjugation, preserving the
point∞, ensures that 𝐵1 has Euclidean diameter exactly 1. Then, setting 𝓁 = len(𝛼) = len(�̃�), it
follows that 𝜕𝐴 lies at Euclidean height 𝑒𝓁 . Let𝐾 = StabΓ(𝐴). Note that the length 𝓁 ∈ ℝ+ and the
Euclidean metric 𝜕𝐴 ∈ ℝ+(𝑇2) determine the orbit of horoballs 𝐾𝐵1 up to Euclidean isometry
(equivalently, up to a hyperbolic isometry stabilizing 𝜕𝐴).
Suppose that 𝛽 ⊂ ℍ3 is an𝐴-parabolic diagonal of ̃ . Let𝐶, 𝐶′ be the horoballs at the endpoints

of 𝛽, and let 𝑃 be a polyhedron containing 𝛽. Then, as in Definition 2.6, 𝑃 contains the center of a
metric ball 𝐷 that is tangent to the horoballs about its vertices, including 𝐶 and 𝐶′, and is disjoint
from all other horoballs in the packing.
Let ℎ denote the Euclidean diameter of 𝐶, which is equal to the Euclidean diameter of

𝐶′ because 𝐶′ ∈ 𝐾𝐶. Then 𝑑(𝐴, 𝐶) = 𝓁 − log ℎ. We will see that when ℎ ≪ 1, or equivalently
𝑑(𝐴, 𝐶) ≫ 0, competing pressures on the diameter of 𝐷 lead to a contradiction.
Let 𝑤 be the shortest Euclidean translation length (along ℂ = 𝜕ℍ3 ⧵ {∞}) of any element of

𝐾. Thus the Euclidean distance between the centers of 𝐶 and 𝐶′ is at least 𝑤. Since 𝐷 must be
tangent to 𝐶 and 𝐶′ but disjoint from ℂ, its Euclidean diameter is bounded below by a function
of 𝑤 and ℎ that grows without bound as ℎ → 0. On the other hand, a ball of large Euclidean
diameter whose lowest point is below Euclidean height ℎ must intersect one of the diameter 1
horoballs in the 𝐾-orbit of 𝐵1. Compare to Figure 2. Thus every sufficiently small value ℎ ≪ 1

leads to a contradiction, and there is an upper bound 𝐿 on 𝑑(𝐴, 𝐶) = 𝓁 − log ℎ. Observe that 𝐿
depends only on the lattice of horoballs 𝐾𝐵1, hence on 𝓁 = len(𝛼) and the Euclidean metric on
𝜕𝐴. Thus we may write 𝐿 = 𝐿(len(𝛼), 𝜕𝐴).
To prove the “furthermore,” suppose that we replace 𝐴 by a sub-horocusp 𝐴𝑡. This has the

effect of replacing 𝓁 by 𝓁 + 𝑡 and replacing 𝐴 by a horoball 𝐴𝑡 at Euclidean height 𝑒𝓁+𝑡. Then the
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INFINITELY MANY VIRTUAL GEOMETRIC TRIANGULATIONS 2381

Euclidean length𝑤 and the lattice of horoballs 𝐾𝐵1 both remain the same; hence, the same value
of ℎ ≪ 1 leads to a contradiction. However, the distance 𝑑(𝐴, 𝐶) has just increased by 𝑡. Thus
replacing 𝐴 by 𝐴𝑡 has the effect of replacing 𝐿 by 𝐿 + 𝑡. □

We can now begin constructing covers of a cusped hyperbolic 3-manifold𝑀 containing a horo-
cusp 𝐴. In the following lemma, corresponding to Step 2, we build a cover �̊� → 𝑀 that supports
a polyhedral decomposition ̊ that contains a drilled ananas �̊� with its cusp in �̊�, such that all
�̊�-parabolic diagonals of ̊ lie in 𝜕�̊�.

Lemma 6.4. Let𝑀 be a cusped hyperbolic 3-manifold and𝐴 ⊂ 𝑀 a horocusp. Then there is a finite
cover �̊� ∶ �̊� → 𝑀 such that the following hold.

∙ �̊� contains a horocusp collection �̊�, �̊� = �̊�1, … , �̊�𝑘 , where 𝑘 ⩾ 2 and �̊� ⊂ �̊� is a lift of 𝐴.
∙ There is an orthogeodesic �̊� from �̊� to �̊� that is the unique shortest path from �̊� to ∪�̊�𝑗 .
∙ For large 𝑡 > 0, the polyhedral decomposition ̊ = ̊ 𝑡 determined by �̊�𝑡, �̊�1, … , �̊�𝑘 contains a
drilled ananas �̊�, built out of one or two pyramids whose lateral edges are identified to �̊�, with
its cusp in �̊� and its thorn in �̊�.

∙ For every horoball 𝐴 covering �̊�, there is a corresponding preimage �̃� of �̊�, such that all
𝐴-parabolic diagonals of ̃ lie in 𝜕�̃�.

The main point in Lemma 6.4 is the last bullet, as it provides a partial converse to Example 6.2.

Proof. Choose a collection of disjoint horocusps, containing𝐴. Relative to this collection of horo-
cusps, let 𝛼 be a shortest orthogeodesic in𝑀 that starts at 𝐴. Let 𝐿 = 𝐿(len(𝛼), 𝜕𝐴) be the bound
produced by Lemma 6.3. Let 𝑆 = {𝛾1, … , 𝛾𝑛} be a set of 𝑛 ⩾ 2 orthogeodesics starting at 𝜕𝐴, con-
taining all the orthogeodesics that have length at most 𝐿. We set 𝛾1 = 𝛼. By Lemma 5.2, there is
a finite cover �̊� → 𝑀, where 𝐴 lifts to a cusp �̊�, and where the 𝛾𝑖 ∈ 𝑆 have path-lifts �̊�1, … , �̊�𝑛
that start on 𝜕�̊� and lead to cusps that are distinct from one another and from �̊�. Let �̊�𝑖 be the
horocusp at the endpoint of �̊�𝑖 .
Let �̊� = �̊�1 be the horocusp at the end of �̊� = �̊�1. We keep �̊� fixed, but shrink each of �̊�2, … �̊�𝑛

to ensure that 𝑑(�̊�, �̊�𝑖) ⩾ 𝐿 for 𝑖 = 2, …𝑛. Any other horocusp of �̊�, labeled 𝐵𝑖 for 𝑖 = 𝑛 + 1,… , 𝑘,
must already satisfy 𝑑(�̊�, �̊�𝑖) ⩾ 𝐿. In particular, �̊� is the unique shortest path from �̊� to any cusp
of �̊�.
Now, �̊� and its collection of horocusps satisfies the hypotheses of Proposition 3.1. Thus, for

sufficiently large 𝑡, we may replace �̊� with �̊�𝑡 and build a canonical polyhedral decomposition
̊ = ̊ 𝑡 that contains one or two ideal pyramids with a vertex in �̊� and with their lateral edges
glued to �̊�. By Corollary 3.4, these cells glue up to form an embedded, convex drilled ananas �̊� ⊂

�̊�. By construction, �̊� has its cusp in �̊� and its thorn in �̊�.
By Lemma 6.3, any �̊�-problematic cusp �̊�𝑖 in the polyhedral decomposition ̊ must satisfy

𝑑(�̊�, �̊�𝑖) < 𝐿 or equivalently 𝑑(�̊�𝑡, �̊�𝑖) < 𝐿 + 𝑡. The only horocusp satisfying these hypotheses is
�̊� = �̊�1. Thus any �̊�-parabolic diagonal must have its endpoints in �̊�.
Let �̊� be an �̊�-parabolic diagonal of ̊ = ̊ 𝑡. In the universal cover ℍ3, let 𝐴 be a horoball cov-

ering �̊�, and let �̃� be the preimage of �̊� containing 𝐴𝑡. The �̊�-parabolic diagonal �̊� lifts to an
𝐴-parabolic diagonal 𝛽, whose endpoints must be in horoballs 𝐵, 𝐵′ such that 𝑑(𝐴, 𝐵) < 𝐿. By
construction, �̊� is the only orthogeodesic from �̊� to �̊� with length less than 𝐿. Therefore, 𝐵 and
𝐵′ must be full-sized horoballs connected to 𝐴 by lifts of �̊�. Since the endpoints of 𝛽 are in the
ideal vertices of �̃�, and �̃� is convex, it follows that 𝛽 ⊂ �̃�. In particular, �̊� must lie in one of the
polyhedra comprising �̊�.
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2382 FUTER, HAMILTON, and HOFFMAN

To complete the proof, recall that �̊� consists of either two ideal tetrahedra or one rectangular-
based ideal pyramid. In either case, we think of the constituent cells as pyramids with bases along
𝜕�̊� and lateral edges glued to �̊�. Any diagonal in an ideal pyramid is either a lateral edge or con-
tained in the base. Since the �̊�-parabolic diagonal �̊� has both of its endpoints in �̊�, it cannot be a
lateral edge, andmust be contained in the base of the ambient pyramid. Thus �̊� ⊂ 𝜕�̊� and 𝛽 ⊂ 𝜕�̃�,
as claimed. □

The next lemma, corresponding to Step 3 of the outline, is our first use of Theorem 1.4. Roughly
speaking, the lemma says that there is a cover𝑀 → �̊� where the drilled ananas �̊� lifts, andwhere
returning diagonals are controlled to a significant degree.

Lemma 6.5. Let �̊� = ℍ3∕Γ̊ be a cusped hyperbolic 3-manifold containing a distinguished horocusp
�̊� and a drilled ananas �̊� whose cusp is in �̊� and whose thorn is in horocusp �̊�. Suppose that ̊ is a
polyhedral decomposition of �̊�, with the following property: for every horoball𝐴 covering �̊�, there is
a corresponding preimage �̃� of �̊�, such that all 𝐴-parabolic diagonals of ̃ lie in 𝜕�̃�. Then there is
a finite cover 𝑓∶ 𝑀 → �̊� such that the following hold.

∙ �̊� lifts to a distinguished cusp 𝐴.
∙ �̊� lifts to a drilled ananas𝑁 whose cusp is in 𝐴 and whose thorn is in horocusp 𝐵.
∙ Every 𝐴-parabolic diagonal of  has its endpoints in 𝐵.
∙ Every polyhedron 𝑃 ⊂  has a vertex in some horocusp other than 𝐵.

Proof. Let 𝐴 be a horoball covering �̊�, and let 𝐾 = StabΓ̊(𝐴). Let �̃� ⊂ ℍ3 be the preimage of �̊�
containing𝐴. Then there is a horoball 𝐵 covering �̊�, such that all ideal vertices of �̃� lie in𝐴 ∪ 𝐾𝐵.
By hypothesis, all 𝐴-parabolic diagonals of ̃ lie in 𝜕�̃� and have their endpoints in horoballs of
𝐾𝐵. Let �̊�1, … , �̊�𝑛 be the polyhedra of ̊ that have all of their vertices in �̊�. (If no such polyhedra
exist, we may simply set𝑀 = �̊� and let 𝑓 be the identity map.) For each �̊�𝑖 , let �̊�𝑖 be an edge that
is not �̊�-parabolic. Such an edge must exist, because all �̊�-parabolic edges belong to 𝜕�̊�.
For each �̊�𝑖 , choose a preimage 𝛽𝑖 ⊂ ℍ3. The ends of 𝛽𝑖 lie in horoballs 𝐵𝑖, 𝐵′𝑖 , which must cover

�̊� because both endpoints of �̊�𝑖 are in �̊�. Thus there is an isometry g𝑖 ∈ Γ̊ = 𝜋1(�̊�) such that
g𝑖(𝐵𝑖) = 𝐵′

𝑖
. By Lemma 5.1, the set of all isometries in Γ̊ taking 𝐵𝑖 to 𝐵′𝑖 is a left coset g𝑖 StabΓ̊(𝐵𝑖).

Since �̊�𝑖 is not �̊�-parabolic, the coset g𝑖 StabΓ̊(𝐵𝑖) is disjoint from all Γ̊-conjugates of𝐾 = StabΓ̊(𝐴).
Equivalently, 𝐾 is disjoint from all Γ̊-conjugates of g𝑖 StabΓ̊(𝐵𝑖).
By Theorem 1.4, there is a homomorphism 𝜑𝑖 ∶ Γ̊ → 𝐺𝑖 , where 𝐺𝑖 is a finite group, such that

𝜑𝑖(𝐾) is disjoint from all 𝐺𝑖-conjugates of 𝜑𝑖(g𝑖 StabΓ̊(𝐵𝑖)). We can now consider the product
homomorphism

𝜑 = (𝜑1, … , 𝜑𝑛)∶ Γ̊⟶ 𝐺 = 𝐺1 ×⋯ × 𝐺𝑛.

Then, for each 𝑖, the image 𝜑(𝐾) is disjoint from all 𝐺-conjugates of 𝜑(g𝑖 StabΓ̊(𝐵𝑖)).
Now, let Γ = 𝜑

−1◦𝜑(𝐾), and let𝑀 = ℍ3∕Γ. We get a covering map 𝑓∶ 𝑀 → �̊�. Then, by con-
struction, every Γ̊-conjugate of g𝑖 StabΓ̊(𝐵𝑖) is disjoint from Γ. Since 𝐾 = StabΓ̊(𝐴) = Stab

Γ
(𝐴),

the horocusp �̊� ⊂ �̊� lifts to a horocusp 𝐴 = 𝐴∕𝐾 ⊂ 𝑀. Similarly, �̊� lifts to a drilled ananas
𝑁 = �̃�∕𝐾 ⊂ 𝑀. The thorn of 𝑁 is in the horocusp 𝐵 that is covered by 𝐵, hence 𝐵 covers �̊�. This
proves the first two bullets in the lemma.
For the next bullet, let 𝛾 be an 𝐴-parabolic diagonal in  . Since ℍ3 → 𝑀 is a regular cover, we

may choose a lift 𝛾 that is an 𝐴-parabolic diagonal in ̃ . Recall that all 𝐴-parabolic diagonals in
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INFINITELY MANY VIRTUAL GEOMETRIC TRIANGULATIONS 2383

̃ lie in 𝜕�̃� and have their endpoints in horoballs of 𝐾𝐵. Since 𝐾 ⊂ Γ, it follows that 𝛾 ⊂ 𝜕𝑁 has
its endpoints in 𝐵, as desired.
To prove the remaining conclusion, let 𝑃 be a polyhedron of  . If 𝑃 has an ideal vertex in some

cusp that does not belong to 𝑓
−1
(�̊�), then certainly 𝑃 has a vertex that is not in 𝐵. Otherwise,

𝑃 = 𝑃𝑖 is a lift of some �̊�𝑖 . Let 𝛽𝑖 ⊂ 𝑃𝑖 be a lift of �̊�𝑖 ⊂ �̊�𝑖 . We claim that the endpoints of 𝛽𝑖 are in
distinct cusps of𝑀, and in particular one endpoint is not in 𝐵.
Let 𝛾𝑖 ⊂ ℍ3 be an arbitrary preimage of 𝛽𝑖 , and let 𝐶𝑖, 𝐶′𝑖 be horoballs in the packing containing

the ends of 𝛾𝑖 . Since 𝛾𝑖 and 𝛽𝑖 both cover �̊�𝑖 ⊂ �̊�, there is an isometry ℎ𝑖 ∈ Γ̊ such that ℎ𝑖(𝛾𝑖) = 𝛽𝑖 ,
which implies ℎ𝑖(𝐶𝑖) = 𝐵𝑖 and ℎ𝑖(𝐶′𝑖 ) = 𝐵′

𝑖
. Thus the set of all isometries in Γ̊ taking𝐶𝑖 to𝐶′𝑖 can be

written as ℎ−1
𝑖

⋅ g𝑖 StabΓ̊(𝐵𝑖) ⋅ ℎ𝑖 . By construction, this conjugate of g𝑖 StabΓ̊(𝐵𝑖) is disjoint from Γ.
Thus 𝐶𝑖 and 𝐶′𝑖 lie in distinct Γ-orbits, which means that the endpoints of 𝛽𝑖 are in distinct cusps.
This proves the claim and the lemma. □

The next lemma, corresponding to Step 4 of the outline, builds a cover

(

𝑀 with even stronger
restrictions on the returning diagonals of the polyhedral decomposition

(

 .

Lemma 6.6. Let𝑀 = ℍ3∕Γ be a cusped hyperbolic 3-manifold containing a distinguished horocusp
𝐴 and a horocusp𝐵. Suppose that is a polyhedral decomposition of𝑀, such that every𝐴-parabolic
diagonal of  has its endpoints in 𝐵. Then there is a finite cover

(

𝑓∶

(

𝑀 → 𝑀 where 𝐴 lifts to a
distinguished cusp

(

𝐴, such that every returning diagonal of

(

 has its endpoints in

(

𝑓 −1(𝐵).

Proof. Let 𝑅 = {𝛽1, … , 𝛽𝑛} be the set of returning diagonals of  whose endpoints are not in 𝐵.
This set is finite because  has finitely many polyhedra, and each polyhedron contains finitely
many diagonals. By hypothesis, every diagonal 𝛽𝑖 ∈ 𝑅 is not 𝐴-parabolic. Assume that 𝑅 ≠ ∅, as
otherwise we may simply take

(

𝑀 = 𝑀.
Let 𝐴 be a horoball covering 𝐴, and let 𝐾 = Stab

Γ
(𝐴). For each 𝛽𝑖 , choose a preimage 𝛽𝑖 ⊂ ℍ3.

The ends of 𝛽𝑖 lie in horoballs 𝐵𝑖, 𝐵′𝑖 , which cover the same cusp of 𝑀 because 𝛽𝑖 is a returning
diagonal. Thus there is an isometry g𝑖 ∈ Γ = 𝜋1(𝑀) such that g𝑖(𝐵𝑖) = 𝐵′

𝑖
. By Lemma 5.1, the set

of all isometries in Γ taking 𝐵𝑖 to 𝐵′𝑖 is a left coset g𝑖 StabΓ(𝐵𝑖). Since 𝛽𝑖 is not𝐴-parabolic, the coset
g𝑖 StabΓ(𝐵𝑖) is disjoint from all Γ-conjugates of 𝐾 = Stab

Γ
(𝐴).

As in the proof of Lemma 6.5, we use Theorem 1.4 to find a finite-index subgroup

(

Γ ⊂ Γ that
contains𝐾 and is disjoint from every Γ-conjugate of g𝑖 StabΓ(𝐵𝑖). Let

(

𝑀 = ℍ3∕

(

Γ. Since𝐾 ⊂

(

Γ, the
horocusp𝐴 ⊂ 𝑀 lifts to a horocusp

(

𝐴 ⊂

(

𝑀. As in the proof of Lemma 6.5, the disjointness of

(

Γ and
all Γ-conjugates of g𝑖 StabΓ(𝐵𝑖) implies that every lift

(

𝛽𝑖 of 𝛽𝑖 has endpoints in distinct cusps, and
is not a returning diagonal. Thus any returning diagonal in

(

𝑀must be the preimage of a returning
diagonal in𝑀 whose endpoints are in 𝐵; hence, it has endpoints in

(

𝑓 −1(𝐵). □

Following Lemma 6.6, the manifold

(

𝑀 has so few returning diagonals that it is possible to
impose a partial order≺ on the cusps of

(

𝑀 such that every polyhedron

(

𝑃 ⊂

(

 has a unique lowest
vertex. Using Corollary 2.10, we can refine

(

 to a geometric triangulation  , and apply Lemma 3.6
to build infinitely many geometric triangulations of

(

𝑀. See Claim 6.8 below for details.
To find geometric triangulations of Dehn fillings, we need to take one more cover.

Lemma 6.7. Let

(

𝑀 = ℍ3∕

(

Γ be a cusped hyperbolic 3-manifold containing at least three cusps and
a distinguished horocusp

(

𝐴. Then there is a double cover 𝑓∶ �̂� →

(

𝑀, where

(

𝐴 has two distinct lifts.
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2384 FUTER, HAMILTON, and HOFFMAN

Proof. Since

(

𝑀 is the interior of a compact 3-manifold with at least three boundary tori, the “half
lives, half dies” lemma [19, Lemma 3.5] implies that𝐻1(

(

𝑀)has aℤ𝑛 direct summand for 𝑛 ⩾ 3. Let
𝐺 be the subgroup of 𝐻1(

(

𝑀) induced by the inclusion

(

𝐴 →

(

𝑀. Since 𝐺 has rank at most 2, there
must be a primitive, infinite-order homology class ℎ ∈ 𝐻1(

(

𝑀) such that ⟨ℎ⟩ is a direct summand
that is linearly independent from 𝐺. Thus we may define a projection 𝜋ℎ ∶ 𝐻1(

(

𝑀) → ⟨ℎ⟩ such
that 𝐺 ⊂ ker(𝜋ℎ).
Now, consider the sequence of surjective homomorphisms

(

Γ = 𝜋1(

(

𝑀)
ab
���→ 𝐻1(

(

𝑀)
𝜋ℎ
���→ ⟨ℎ⟩ ≅ ℤ⟶ ℤ∕2ℤ,

where ab is abelianization. Let 𝜑∶
(

Γ → ℤ∕2ℤ be the composition, and let Γ̂ = ker(𝜑). By con-
struction, 𝐺 ⊂ ker(𝜋ℎ), hence 𝜋1(

(

𝐴) ⊂ ker(𝜑) = Γ̂. By the lifting criterion,

(

𝐴 lifts to �̂� = ℍ3∕Γ̂.
Since 𝑓∶ �̂� →

(

𝑀 is a regular cover of degree 2, there must be two distinct lifts. □

We can now prove our main result, Theorem 1.2.

Proof of Theorem 1.2. Let𝑀 be a cusped hyperbolic 3-manifold containing a horocusp𝐴. Consider
the sequence of finite covers

�̂�
𝑓
��→

(

𝑀

(

𝑓
��→ 𝑀

𝑓
��→ �̊�

�̊�
��→ 𝑀

constructed in the preceding lemmas. The cusp 𝐴 ⊂ 𝑀 lifts along each covering map. Recall that
by Lemma 6.4, �̊� has at least three cusps, hence

(

𝑀 does also, andwemay indeed apply Lemma 6.7
to construct 𝑓.
By Lemma 6.4, �̊� has a polyhedral decomposition ̊ such that one or two ideal 3-cells of ̊ fit

together to formadrilled ananas �̊� that deformation retracts to �̊�. The 1-skeleton of ̊ decomposes
𝜕�̊� into two ideal triangles or one ideal rectangle. Furthermore, since �̊� lifts to𝐴 ⊂ 𝑀 and

(

𝐴 ⊂

(

𝑀,
the drilled ananas �̊� lifts to 𝑁 ⊂ 𝑀 and

(

𝑁 ⊂

(

𝑀.

Claim 6.8. The polyhedral decomposition

(

 of

(

𝑀 can be refined to a geometric ideal triangulation

(

 . If 𝜕

(

𝑁 is a single ideal rectangle, then we may choose either diagonal of this rectangle to be an
edge in

(

 . Finally,

(

 is the start of an infinite sequence of geometric triangulations of

(

𝑀.

Recall, from Lemma 6.5, that the drilled ananas𝑁 ⊂ 𝑀 has its thorn in a horocusp 𝐵, such that
every polyhedron𝑃 ⊂  has a vertex in some horocusp apart from𝐵. Thus, in the lifted polyhedral
decomposition

(

 of

(

𝑀, every polyhedron

(

𝑃must have at least one vertex in a horocusp that is not
in

(

𝑓 −1(𝐵). We call the cusps of

(

𝑓 −1(𝐵) blue. By Lemma 6.6, all returning diagonals of

(

 have their
endpoints in blue cusps.
Let 𝑉 be the set of cusps of

(

𝑀. We impose a partial order ≺ on 𝑉 as follows: the non-blue cusps
are totally ordered in some fashion; the blue cusps are pairwise incomparable; and

(

𝐶 ≺

(

𝐵 for every
blue cusp

(

𝐵 and non-blue cusp

(

𝐶. Since every polyhedron 𝑃 ⊂

(

 has at least one non-blue ideal
vertex, and the non-blue vertices of 𝑃 are totally ordered below the blue ones, it follows that 𝑃 has
a unique ≺-minimal vertex. Thus, by Lemma 2.9, the iterated coning of  induced by ≺ produces(

 ′, a well-defined subdivision of

(

 into geometric ideal pyramids. By Corollary 2.10, any choice
of diagonals in the non-triangular faces of

(

 ′ produces a geometric ideal triangulation

(

 .
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By construction, the thorn of

(

𝑁 is in a blue cusp of

(

𝑓 −1(𝐵). Thus the partial order ≺ does not
impose any ordering on the ideal vertices of 𝜕

(

𝑁. If this boundary is a single ideal rectangle, the
coning induced by ≺ in Lemma 2.9 does not subdivide it, and we may choose our preferred diag-
onal to subdivide

(

𝑁 into two ideal tetrahedra. By Lemma 3.6,

(

𝑁 admits infinitely many geometric
ideal triangulations, hence

(

𝑀 does also. This proves Claim 6.8. ✧

Next, we lift the triangulation

(

 of

(

𝑀 to a geometric triangulation ̂ of �̂�. Then the infinite
sequence of geometric triangulations of

(

𝑀 lifts to an infinite sequence of geometric triangulations
of �̂�, as claimed in the statement of the theorem.
By Lemma 6.7, the horocusp

(

𝐴 ⊂

(

𝑀 has two distinct lifts to �̂�, which we call 𝐴 and 𝐴′. Con-
sequently, the drilled ananas

(
𝑁 ⊃

(

𝐴 also has two distinct lifts to �̂�, namely, �̂� ⊃ 𝐴 and �̂�′ ⊃ 𝐴′.
The two distinct lifts of

(

𝐴 and
(

𝑁 play distinct roles in the Dehn filling argument.

Claim 6.9. For all but finitely many choices of slope 𝑠 on 𝜕𝐴, the following hold.

∙ The Dehn filled manifold �̂�(𝑠) has a hyperbolic structure where the core curve 𝛾 of the filled
solid torus is isotopic to a closed geodesic 𝛾𝑠.

∙ The ideal tetrahedra of ̂ remain geometric in the hyperbolic metric on �̂�(𝑠). Each ideal vertex
of a tetrahedron of ̂ that used to enter cusp 𝐴 now spins about the geodesic 𝛾𝑠.

∙ With an appropriate choice of diagonals in Claim 6.8, the union of the two tetrahedra in �̂� has
convex boundary in �̂�(𝑠).

The first two bullets in the claim follow from Thurston’s hyperbolic Dehn surgery theorem
[29, Chapter 4]. For a sufficiently long slope 𝑠, the hyperbolic metric on �̂�(𝑠) is obtained via an
arbitrarily small deformation of the metric on �̂�. Thus, for every ideal tetrahedron 𝑇 ⊂ ̂ , a suf-
ficiently small deformation of the metric will keep 𝑇 geometric and positively oriented. As in [29,
Section 4.4], the two tips of ideal tetrahedra that enter𝐴will now spin about the core geodesic 𝛾𝑠.
For the last bullet of the claim, suppose first that the cusp 𝐴 ⊂ 𝑀 is non-rectangular (hence,

so are its lifts). Then Corollary 3.4 implies that the original drilled ananas �̊� consists of acute
tetrahedra, and 𝜕�̊� is strictly convex at all three of its edges. The same properties are preserved in
the lift �̂� and are still preserved in �̂�(𝑠) after a sufficiently small deformation of the metric.
Next, suppose that 𝐴 ⊂ 𝑀 is rectangular. Then Corollary 3.4 implies that the original drilled

ananas �̊� has convex boundary, with interior angles strictly less than𝜋 at the two edges of 𝜕�̊� ∩ ̊ ,
and an angle of𝜋 along the (arbitrary) diagonal of the ideal rectangle. The same properties remain
true in the lift �̂� ⊂ �̂�. When we deform the metric on �̂� to obtain �̂�(𝑠), the interior angle of 𝜋
may become 𝜋 + 𝜖 for small 𝜖, violating convexity, but then the opposite choice of diagonal on
𝜕�̂� will have interior angle 𝜋 − 𝜖. Thus an appropriate choice of diagonal in Claim 6.8 keeps 𝜕�̂�
convex in �̂�(𝑠), proving Claim 6.9. ✧

To construct geometric triangulations of �̂�(𝑠), we need to introduce the solid-torus analog of a
drilled ananas.A filled ananas is a 3-manifold𝑋 homeomorphic to a solid toruswith one boundary
point removed, and endowed with a complete hyperbolic metric with the following properties.
The boundary 𝜕𝑋 is made up of two totally geodesic ideal triangles, with vertices at the removed
point. These two ideal triangles are glued by isometry along their edges to form a standard two-
triangle triangulation of a once-punctured torus, with shearing and bending allowed along the
edges. Furthermore, 𝑋 is subdivided into geometric ideal tetrahedra.

Claim 6.10. For all but finitely many choices of slope 𝑠 on 𝜕𝐴, the hyperbolic manifold �̂�(𝑠) has
a geometric triangulation ̂ (𝑠) with the following properties. Finitely many tetrahedra of ̂ (𝑠)
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2386 FUTER, HAMILTON, and HOFFMAN

fit together to form a filled ananas 𝑋(𝑠). Furthermore, the restriction of ̂ (𝑠) to the complement
�̂�(𝑠) ⧵ 𝑋(𝑠) is combinatorially isomorphic to the restriction of ̂ to the complement �̂� ⧵ �̂�.

This statement is due to Guéritaud and Schleimer, and closely resembles [15, Theorem 1].
Assuming that ̂ is the canonical triangulation of �̂� with respect to some choice of horocusps,
they construct the triangulated filled ananas𝑋(𝑠) and endow it with a geometric structure isomet-
ric to the completion of the two spun tetrahedra of �̂� mentioned in Claim 6.9. Then they replace
�̂�with𝑋(𝑠), and prove that the resulting triangulation ̂ (𝑠) is the canonical triangulation of �̂�(𝑠).
In fact, the construction of 𝑋(𝑠), which occurs in [15, Section 2] and is encapsulated in [15, Corol-
lary 16], only uses the hypotheses that ̂ is geometric and that �̂� remains convex in �̂�(𝑠). See also
[16, Corollary 4.18]. The combinatorial structure of the triangulation of 𝑋(𝑠) is closely guided by
the combinatorics of the Farey graph and the continued fraction expansion of the filling slope 𝑠,
while the hyperbolic metric on 𝑋(𝑠) is constructed using Casson and Rivin’s work on angle struc-
tures and volume optimization [11, 27]. In particular, the canonicity of ̂ is not needed in the proof
that ̂ (𝑠) is geometric. This proves Claim 6.10. ✧

To complete the proof of the theorem, we have the following.

Claim 6.11. For all but finitely many choices of slope 𝑠 on 𝜕𝐴, the Dehn filled manifold �̂�(𝑠) has
an infinite sequence of geometric triangulations connected by geometric 2–3 moves.

Observe that by Claim 6.10, the geometric triangulation ̂ (𝑠) agrees with ̂ on the drilled
ananas �̂�′ ⊂ �̂�(𝑠). By Lemma 3.6, this two-tetrahedron geometric triangulation of �̂�′ is the start
of an infinite sequence of geometric triangulations connected by geometric 2–3 moves. □

The following remark states a version of Theorem 1.3 for manifolds with rectangular cusps. In
the statement, a 4–4move is a localmove on topological triangulations, which takes an octahedron
that has been decomposed into 4 tetrahedra along one of its three internal diagonals and replaces
it with a decomposition into 4 tetrahedra along a different internal diagonal. The move is called
a geometric 4–4 move if both decompositions are into geometric ideal tetrahedra.

Remark 6.12. If𝐴 ⊂ 𝑀 is a rectangular cusp, the cover

(

𝑀 contains an infinite trivalent tree of geo-
metric ideal triangulations, where one edge of the tree is a geometric 4–4move and the remaining
edges are geometric 2–3 moves. This can be seen as follows. In Claim 6.8 of the above proof, the
drilled ananas

(

𝑁 consists of an ideal rectangular pyramid

(

𝑃 ⊂

(

 . After the pyramidal decompo-
sition induced by ≺, the 3-cell

(

𝑃 ′ glued to

(

𝑃 is also an ideal rectangular pyramid. The two choices
of diagonal for the shared face of

(

𝑃 ∩

(

𝑃 ′ lead to ideal triangulations that differ by a geometric 4–4
move. Each of these choices can serve in Lemma 3.6 as the starting configuration in an infinite
sequence of geometric ideal triangulations. In the proof of Proposition 3.10, the dual tree of the
Farey complex splits in half along the edge 0

1
− 1

0
: half of the tree is reachable by geometric 2–

3 moves if we choose the diagonal 1

1
, and the other half is reachable if we choose the diagonal

−1

1
. The union of these halves is an infinite trivalent tree of geometric 2–3 moves, with one edge

replaced by a 4–4 move.

We close the paper by pointing out that the figure-8 knot complement 𝑀 does not contain a
drilled ananas, because𝑀 has only one cusp. Nevertheless, by thework of Dadd andDuan [9], this
manifold has an infinite family of geometric triangulations. Thus the presence of a drilled ananas
is a sufficient but not necessary condition. We wonder what other features will also guarantee an
infinite sequence of geometric triangulations.
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