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CUBULATING RANDOM QUOTIENTS OF HYPERBOLIC

CUBULATED GROUPS

DAVID FUTER AND DANIEL T. WISE

Abstract. We show that low-density random quotients of cubulated hyper-
bolic groups are again cubulated (and hyperbolic). Ingredients of the proof
include cubical small-cancellation theory, the exponential growth of conjugacy
classes, and the statement that hyperplane stabilizers grow exponentially more
slowly than the ambient cubical group.

1. Introduction

Gromov introduced the density model of random groups [Gro93, Chapter 9].
Given a free group F , let S�(F ) be the set of length � words. For a density d ∈
(0, 1), choose a set R ⊂ S� by selecting �|S�|d� elements from S�, uniformly and
independently. The associated random group at density d is the quotient F/〈〈R〉〉.
Thus, for a rank r free group, a density d random quotient has the form 〈a1, . . . , ar |
g1, . . . , gk〉, where k ∼ (2r−1)d� and the gi are independently chosen random words.

Gromov proved that with overwhelming probability as � → ∞, random groups at
density d are hyperbolic when d < 1

2 , and trivial or Z2 when d > 1
2 . Ollivier proved

that the same phase transition at density 1
2 occurs in quotients of any torsion-free

hyperbolic group [Oll04]. While Gromov’s intention was perhaps to illustrate the
ubiquity of hyperbolic groups, his construction initiated a fertile topic of study.
For instance, Żuk showed that random groups at density d > 1

3 satisfy Kazhdan’s

property (T), with overwhelming probability [Żuk03]. See Kotowski and Kotowski
[KK13] for full details, and Ollivier [Oll05] for an excellent survey of related topics.
Very recently, Ashcroft extended this result, proving that random quotients of a
hyperbolic group at density d > 1

3 have property (T) [Ash22a].
The property of being cocompactly cubulated—acting properly and cocompactly

on a CAT(0) cube complex—can be viewed as a strong negation of property (T)
[NR98]. In this direction, a simple computation shows that with overwhelming
probability as � → ∞, random groups at density d < 1

12 satisfy the C ′( 16 ) small-
cancellation condition, hence are cocompactly cubulated by [Wis04]. Ollivier and
Wise [OW11] showed that the same conclusion holds at density d < 1

6 . A series of
papers by Mackay and Przytycki [MP15], Montee [Mon23], and Ashcroft [Ash22b]
produced a nontrivial action on a CAT(0) cube complex at density d < 1

4 . See
also Odrzygóźdź [Odr18] and Duong [Duo17] for cubulation results in the square
probability model.

The purpose of this text is to extend these cubulation results from quotients
of a free group (the fundamental group of a graph) to quotients of a cubulated
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hyperbolic group. Interestingly, our density statement is entangled with the rela-
tionship between the growth of a hyperbolic group G and the growth of hyperplane
stabilizers in G.

1.1. Main result. Our main theorem is the following.

Theorem 1.1. Let G = π1X, where X is a compact nonpositively curved cube
complex, and suppose that G is hyperbolic. Let b be the growth exponent of G

with respect to the universal cover X̃. Let a be the maximal growth exponent of a

stabilizer of an essential hyperplane of X̃. Let k ≤ ec�, where

c < min

{
(b− a)

20
,

b

41

}
.

Then with overwhelming probability as � → ∞, for any set of conjugacy classes
[g1], . . . , [gk] with translation length |gi| ≤ �, the group G/〈〈g1, . . . , gk〉〉 is hyperbolic
and is the fundamental group of a compact, nonpositively curved cube complex.

In Theorem 1.1, |gi| is the translation length of gi acting on the universal cover

X̃; see Definition 2.1. The growth exponent of G with respect to X̃ is a constant

b > 0 such that the number of G-orbit points in an �-ball in X̃ is approximately
eb�. See Definition 2.2 and Theorem 2.4 for a more precise characterization. The
growth exponent of a hyperplane stabilizer is defined analogously.

A hyperplane Ũ ⊂ X̃ is essential if X̃ is not contained in a finite neighborhood

of Ũ . A typical inessential hyperplane arises when X̃ ∼= Ỹ × F̃ , where F̃ is finite
and nontrivial. After subdividing, a compact nonpositively curved cube complex
X always deformation retracts to X ′, where all hyperplanes of X ′ are essential.

The model of randomness employed in Theorem 1.1 is that we are sampling

uniformly from the set of conjugacy classes whose translation length on X̃ is at most
�. This departs from Gromov’s density model in two small ways: we are permitting
relators whose translation length is less than �, and we are only counting one relator

per conjugacy class. Ultimately, the exponential growth rate of balls in X̃ is the
same as the growth rate of spheres, and the growth of group elements is nearly the
same as the growth of conjugacy classes (Theorem 2.4). Therefore, small variations
in the model of randomness tend to have no effect on the conclusions one can reach
about random quotients. See Ollivier ([Oll04, Sections 4 and 5] and [Oll05, Section
I.2.c]) for a detailed and axiomatic discussion of this phenomenon.

The conclusion of Theorem 1.1—that G = G/〈〈g1, . . . , gk〉〉 is hyperbolic and
cocompactly cubulated—has powerful consequences. A theorem of Agol [Ago13]
implies G is virtually special, meaning G virtually embeds into a right-angled Artin
group. Then, by a theorem of Haglund andWise [HW10], all quasiconvex subgroups
of G are separable. Furthermore, G is linear over Z [HW99, DJ00] and virtually
surjects the free group F2 [AM15].

1.2. Density and optimality of constants. In Theorem 1.1, the density of the
random presentation G/〈〈g1, . . . , gk〉〉 is c

b . Thus all densities in the conclusion of

the theorem are at most 1
41 , and might be lower, depending on the value of a.

This is considerably lower than the densities appearing in the theorems surveyed
at the start of Section 1. The primary reason for needing the low density is that
Theorem 1.1 is proved by establishing that random quotients of G satisfy the C ′( 1

20 )
cubical small cancellation condition. (See Definition 3.2 for the definition and
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Theorem 3.5 for the precise statement that C ′( 1
20 ) plus several mild hypotheses

implies cubulation of the quotient.) Indeed, the probabilistic pigeonhole principle
[Oll05, p. 31] implies that at any density larger than 1

40 there will almost surely

be pieces that fellow-travel for more than 1
20 of their length. Thus our density

hypotheses are nearly optimal for ensuring C ′( 1
20 ) small cancellation.

Strengthening Theorem 1.1 beyond density 1
40 would require one of two

improvements. First, one could attempt to strengthen Theorem 3.5 and estab-
lish the cubulation of C ′(α) quotients for some parameter α > 1

20 . Second, one
could move away from small cancellation theory entirely, for instance by employing
isoperimetric inequalities for van Kampen diagrams as in the work of Ollivier and
Wise [OW11]. This is also the approach employed in Ollivier’s work on quotients
of torsion-free hyperbolic groups [Oll04, Thm 3], which applies at all densities up
to 1

2 but only ensures the hyperbolicity of the quotient.
We remark that so long as G � Z, the main theorem is nonvacuous, meaning

a < b, because hyperplane stabilizers in G have strictly lower growth exponents
than G itself. See [DFW19, Thm 1.3] and Theorem 2.3. Thus we may always pick
c > 0 in Theorem 1.1. This leads to Corollary 1.2.

Corollary 1.2. Let X be a compact nonpositively curved cube complex, such that
π1X is hyperbolic and nonelementary. Then, at a sufficiently low density, generic
quotients of π1X are cocompactly cubulated and hyperbolic.

For instance, if G is a surface group and the hyperplane stabilizers are cyclic
(which occurs in the standard cubulations of G), we have a = 0, hence random
quotients of G are cubulated and hyperbolic at density 1

41 . This is far lower than

the density of 1
6 at which the corresponding conclusion is known for quotients of

free groups. This supports our belief that the constants in Theorem 1.1 can be
improved considerably, especially for surface groups. See Problems 7.1 and 7.2.

1.3. Actions on other metric spaces. The growth of a group G is highly sen-
sitive to the choice of metric space on which G acts. For instance, hyperbolic
manifold groups in dimension n ≥ 3 admit canonical geometric actions on a hy-
perbolic space Υ = Hn, but any cubulated group admits infinitely many distinct
actions on nonisometric cube complexes. We may wish to study quotients of G
by some number of relators that are sampled with respect to length in Υ rather

than a cube complex X̃. Although lengths in X̃ and Υ can be compared via an
(equivariant) quasiisometry, measuring lengths in the two spaces can lead to rather
distinct samples of short words.

Nonetheless, there is an analogue of Theorem 1.1 for sampling words in G with
respect to an action on Υ. To formulate Theorem 1.3, we introduce the following
nonstandard quantification of quasiisometries. A λ–quasiisometry is a coarsely

surjective function f : X̃ → Υ such that there exist positive constants λ1, λ2, ε with
λ1λ2 = λ, where every pair of points x, y ∈ X satisfies

(1.1)
1

λ1
d

˜X(x, y)− ε ≤ dΥ(f(x), f(y)) ≤ λ2d ˜X(x, y) + ε.

The product λ1λ2 = λ remains unchanged if the metric on one of the spaces

X̃ or Υ is rescaled by a multiplicative constant. More generally, λ ≥ 1 has the

following meaning. If G acts properly and cocompactly on both X̃ and Υ, then
these actions induce pseudometrics d1, d2 on G itself. We call these pseudometrics
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roughly similar if they are related by a G-equivariant 1–quasiisometry. The space
of rough similarity classes of pseudometrics on G is itself an interesting metric space
D(G), studied topologically since the work of Furman [Fur02], and metrically since
the work of Reyes [Rey23, Def 1.2]. In Reyes’s natural metric on D(G), the distance
between [d1] and [d2] is precisely log λ for the optimal constant λ = λ1λ2 in a

G-equivariant quasiisometry X̃ → Υ. See [Rey23,CR23a,BR].
We are interested in quotients of G, where the conjugacy classes of relators are

drawn uniformly from among all elements of Υ-length less than �. At sufficiently
low density, depending on λ, these quotients are again hyperbolic and cubulated.

Theorem 1.3. Let G = π1X, where X is a compact nonpositively curved cube
complex, and suppose that G is hyperbolic. Suppose that G also acts properly and
cocompactly on a geodesic metric space Υ, where every nontrivial element of G
stabilizes a geodesic axis. Suppose that there is a G-equivariant λ–quasiisometry

X̃ → Υ.
Let b be the growth exponent of G with respect to Υ, and let a be the maximal

growth exponent in Υ of a stabilizer of an essential hyperplane of X̃. Let k ≤ ec�,
where

c < min

{
(b− a)

20λ
,

b

40λ+ 1

}
.

Then with overwhelming probability as � → ∞, for any set of conjugacy classes
[g1], . . . , [gk] with translation length |gi|Υ ≤ �, the group G = G/〈〈g1, . . . , gk〉〉 is
hyperbolic and is the fundamental group of a compact, nonpositively curved cube
complex.

As with Theorem 1.1, this result is nonvacuous, because hyperplane stabilizers
in G have strictly lower exponential growth rates (with respect to Υ) than G itself.
By Theorem 2.3, we have b > a, hence we may choose c > 0.

As a special case, suppose that a group G preserves a tiling of H2 by

regular right-angled pentagons. Let X̃ be the square complex dual to the
pentagonal tiling. Then every hyperplane is a line, hence hyperplane stabilizers are
cyclic and have exponential growth rate a = 0. By a theorem of Huber [Hub59],
generalized by Margulis [Mar69], the growth exponent of G with respect to H2

is b = 1. Furthermore, in Proposition 6.1, we show that the optimal multiplica-

tive constant in a λ–quasiisometry from X̃ to H2 is λ ≈ 1.5627. Consequently,
Theorem 1.3 has the following corollary.

Corollary 1.4. Let S be a hyperbolic surface tiled by regular right-angled pentagons,
and let G = π1S. For a number � � 0, let k ≤ e�/63.51, and let [g1], . . . , [gk] be
conjugacy classes in G, chosen uniformly at random from among those of

S̃-length at most �. Then with overwhelming probability as � → ∞, the group
G = G/〈〈g1, . . . , gk〉〉 is hyperbolic and is the fundamental group of a compact,
nonpositively curved cube complex.

In particular, Corollary 1.4 says that quotients of surface groups, with words
sampled from a pentagonal hyperbolic metric, are cubulated and hyperbolic at
density 1

64 . This is somewhat worse than sampling with respect to a cubical

metric, where we obtain the same conclusion at density 1
41 ; see the discussion

after Corollary 1.2. The multiplicative gap between these densities is essentially
the constant λ.
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Studying the effect of quasiisometry constants on density statements about
quotients of G has led us to conjecture that there exist cubulations of a
hyperbolic manifold group with quasiisometry constant λ arbitrarily close to 1.
Equivalently, the points of D(G) corresponding to cocompact hyperbolic structures
are limit points of metrics coming from cocompact cubulations. See Conjecture 7.8
and the subsequent discussion. This conjecture has been recently proved by Brody
and Reyes [BR].

1.4. Overview. Section 2 reviews several results about the growth of a hyperbolic
group, including the existence of a growth exponent and the statement that infinite-
index quasiconvex subgroups have a lower growth exponent than the ambient group.
Section 3 reviews the definitions of cubical small-cancellation theory and proves
Theorem 3.5, a nonprobabilistic cubulation criterion for C ′( 1

20 ) small-cancellation
quotients of a cubulated group. This criterion is of independent interest, and has
already been used in the work of Jankiewicz and Wise [JW22].

The probabilistic arguments supporting the proof of Theorem 1.1 are contained
in Section 4. In that section, we control the sizes of pieces in a generic cubical
presentation and show that below a certain density, a cubical presentation is C ′( 1

20 ),
hence the quotient group is hyperbolic and cubulated. All of the geometric
arguments in that section are coarse in nature, and it becomes natural to work
with a certain generalization of pieces called loose pieces. The study of loose pieces

also permits a translation between a G-action on a cube complex X̃ and a G-action
on a more general metric space Υ. We undertake this translation in Section 5,
where we prove Theorem 1.3. Finally, in Section 6, we find the optimal multiplica-
tive constants in a quasiisometry between a pentagonal tiling of H2 and the dual
cube complex, proving Proposition 6.1 and Corollary 1.4.

In Section 7, we collect some problems and questions motivated by these results.

2. Growth

This section collects several definitions and results about the growth of
hyperbolic groups. None of the results recalled here are original.

Definition 2.1 (Translation lengths). Let G be a group acting properly and
cocompactly on a metric space Υ, and let g ∈ G be an infinite-order element.
The translation length of g is defined to be |g|Υ = inf{d(x, gx) : x ∈ Υ}. The stable
translation length of g is

�g�Υ = lim
n→∞

d(x, gnx)

n
,

for an arbitrary x ∈ Υ. It is a standard property of isometries of metric spaces that
the limit exists and is independent of x [BH99, page 230].

Observe that each of |g|Υ and �g�Υ only depends on the conjugacy class [g]. By
triangle inequalities, �g�

Υ
≤ |g|

Υ
for every g. In addition, when Υ is hyperbolic,

there is a constant C such that the following holds for every infinite-order g ∈ G:

�g�Υ ≤ |g|Υ ≤ �g�Υ + C.

Finally, if g stabilizes a geodesic axis in Υ (as will typically be the case in our
applications), we have �g�

Υ
= |g|

Υ
.
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Definition 2.2 (Growth). Let G be a finitely generated group acting properly and
cocompactly on a metric space Υ. Fix a basepoint x ∈ Υ and a subset H ⊂ G. The
growth function of H with respect to Υ is the function fH,Υ : N → N defined by

fH,Υ(n) = # {h ∈ H : dΥ(x, hx) ≤ n} .
Since G is a quotient of a finite-rank free group, and the action on Υ is proper,

the growth function fH,Υ is no larger than exponential. Thus it makes sense to
consider the logarithm of f . The growth exponent of H with respect to Υ is

ξH(Υ) = lim
n→∞

log fH,Υ(n)

n
,

whenever the limit exists. We emphasize that the limit depends a great deal on
Υ. However, triangle inequalities in Υ imply that ξH(Υ) is independent of the
basepoint.

Many results in the literature are expressed in terms of the growth rate λH(Υ) =

lim n
√
fH,Υ(n) = eξH(Υ) instead of the growth exponent ξH(Υ). However, the two

notions carry the same information.
The following result was proved by Dahmani and the authors [DFW19, Thm

1.1], and independently by Matsuzaki, Yabuki, and Jaerisch [MYJ20, Cor 2.8]. See
also [DFW19, Thm 1.3] for a statement that does not assume G is hyperbolic, but
does assume Υ is a CAT(0) cube complex and H is a hyperplane stabilizer.

Theorem 2.3. Let G be a nonelementary hyperbolic group acting properly and
cocompactly on a metric space Υ. Let H be a quasiconvex subgroup of infinite
index. Then the growth exponents ξH and ξG exist, and

ξH(Υ) < ξG(Υ).

Theorem 2.4 combines two results of Coornaert and Knieper [Coo93, CK02].
Recall that a nontrivial element g ∈ G is primitive if g �= hn for any n > 1.
Primitive conjugacy classes are defined similarly.

Theorem 2.4. Let G be a nonelementary group acting properly and cocompactly
on a δ-hyperbolic metric space Υ. Then, there exist positive constants A,B, b, n0,
where b = ξG(Υ), such that the following hold for n ≥ n0.

(1) The total number fG,Υ(n) of elements that translate a basepoint x ∈ Υ by
distance at most n satisfies

Aebn ≤ fG,Υ(n) ≤ Bebn.

(2) The number pn of primitive conjugacy classes of translation length at most
n satisfies

A
ebn

n
≤ pn ≤ Bebn.

Proof. Conclusion (1) is due to Coornaert [Coo93, Thm 7.12]. Conclusion (2) is
due to Coornaert and Knieper [CK02, Thm 1.1]. �

Remark 2.5. One consequence of Theorem 2.4 (1) is that when Υ is a cell complex,
we get the same upper and lower bounds (with a modified upper constant B) on
the number of vertices in a metric ball in Υ, where the vertices being counted are
not required to be in the G-orbit of the basepoint x. This holds because of the
cocompactness of the G-action.
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Remark 2.6. The upper bound on the number pn of primitive classes in
Theorem 2.4 (2) implies that the number of nonprimitive conjugacy classes of
translation length at most n is bounded above by

n/2∑
j=1

Bebj < nBebn/2 � pn.

Combining this fact with the lower bound of Theorem 2.4 (2) implies that the
proportion of nonprimitive conjugacy classes is at most

n2B

A
e−bn/2.

Hence, for large n, the nonprimitive conjugacy classes form a vanishingly small
proportion of all conjugacy classes up to length n.

3. Cubical presentations and small-cancellation theory

This section reviews some definitions and results about cubical small-cancellation
theory. Our primary reference is Wise [Wis21, Chapters 3–5]. We also prove
Theorem 3.5, a properness criterion that follows from [Wis21, Thm 5.44] but is
easier to apply.

3.1. Cubical presentations and pieces.

Definition 3.1 (Cubical presentation). A cubical presentation X∗=〈X|Y1, . . . , Ym〉
consists of nonpositively curved cube complexes X and Yi, and a set of local isome-
tries Yi � X. The cubical presentation X∗ corresponds to a topological space, also
denoted X∗, consisting of X with a cone on each Yi. Accordingly, we call each Yi

a cone of X∗.

See Figure 1 for an example. In this paper, it will always be the case that
π1Yi

∼= Z. However, this assumption is not present elsewhere in the literature.

For a hyperplane Ũ of X̃, the carrier N(Ũ) is the union of all closed cubes

intersecting Ũ .
The systole ||X|| is the infimal length of an essential combinatorial closed path in

X. In terms of Definition 2.1, ||X|| is the smallest translation length of a nontrivial

element of π1X acting on X̃.

Definition 3.2 (Pieces). Let X∗ = 〈X|Y1, . . . , Ym〉 be a cubical presentation. A

cone-piece of X∗ between Yi and Yj is a component of Ỹi ∩ Ỹj , for some choice of

lifts of Ỹi and Ỹj to X̃, excluding the case where Ỹi = Ỹj .

A wall-piece of X∗ in Yi is a nonempty intersection of Ỹi ∩N(Ũ), where Ũ is a

hyperplane that is disjoint from Ỹi.
Given a constant α > 0, we say that X∗ satisfies the C ′(α) small-cancellation

condition if every cone-piece or wall-piece P involving Yi satisfies diam(P ) < α||Yi||.

When pieces are small, the topological space X∗ satisfies a number of pleasant
properties.

Lemma 3.3 ([Wis21, Thm 3.32 and Thm 4.1]). If X∗ is C ′( 1
12 ), then every cone

Yi � X∗ lifts to an embedding Yi ↪→ X̃∗.
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Figure 1. A cubical presentation illustrating conditions (1) and
(2) of Definition 3.6. In this example, as in Theorem 3.5, we have
π1Yi

∼= Z for each Yi, and the wallspace structure on Yi has two
diametrically opposed hyperplanes in each wall. Unlike the setting
of Theorem 3.5, π1X is not hyperbolic in this example.

In a generalization of ordinary small-cancellation theory, small pieces guarantee
the persistence of hyperbolicity in X∗.

Lemma 3.4 ([Wis21, Lem 3.70 and Thm 4.7]). If π1X is hyperbolic and X∗ is
compact and C ′( 1

14 ), then π1X
∗ is hyperbolic.

The main result of this section is Theorem 3.5, which guarantees that π1X
∗ acts

properly on a CAT(0) cube complex.

Theorem 3.5. Let X∗ = 〈X | Y1, . . . , Yk〉 be a C ′( 1
20 ) cubical presentation.

Suppose that X is compact, and every Yi is compact and deformation retracts
to a closed-geodesic. In addition, suppose that for every hyperplane U ⊂ Yi, the
carrier N(U) is embedded, the complement Yi �U is contractible, and furthermore
diam(N(U)) < 1

20 ||Yi||.
Then π1X

∗ acts properly and cocompactly on a CAT(0) cube complex dual to a

wallspace structure on X̃∗ satisfying the B(8) condition.
Moreover, if g ∈ π1X

∗ � {1} stabilizes a cell of the dual cube complex, then g is
the image of an element g ∈ π1X such that a conjugate of some π1Yi lies in 〈g〉.
In particular, if each π1Yi is maximal cyclic, then π1X

∗ acts freely on X̃∗.

Theorem 3.5 will be proved with the aid of [Wis21, Thm 5.44 and Cor 5.45].
Setting up the proof using those results requires a number of auxiliary definitions,
beginning with the B(8) condition.

3.2. Wallspace small-cancellation conditions. We will construct a wallspace

structure for X̃∗. To do so, we will define a wallspace on each Yi, whose walls are
equivalence classes of hyperplanes in Yi. This will generate a wallspace structure for

X̃∗ whose walls are equivalence classes of hyperplanes generated by the equivalence

relation fostered by the wallspace structures on the lifts Yi ↪→ X̃∗.

Definition 3.6 (B(6) and B(8) conditions). Suppose that X∗ = 〈X | Y1, . . . , Yk〉
is a C ′( 1

12 ) cubical presentation. A B(6) structure on X∗ consists of a wallspace
structure on each Yi, which is preserved by its automorphisms, and satisfies a certain
small-cancellation condition (see Figure 1 for an example). More precisely:

(1) The collection of hyperplanes of each Yi is partitioned into classes satisfying
the following conditions. No two hyperplanes in the same class cross or
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osculate; in particular, the carrier of each hyperplane uj embeds. The
union U = ∪uj of the hyperplanes in a class is called a wall. Furthermore,

for each wall U , there are halfspaces
←−
U ,

−→
U such that Yi =

←−
U ∪ −→

U and

U =
←−
U ∩ −→

U .
(2) Aut(Yi → X) preserves the above wallspace structure on Yi.
(3) If P is a path in Yi that is the concatenation of at most 7 piece-paths and P

starts and ends on the carrier N(U) of a wall U , then P is path-homotopic
into N(U).

The B(8) condition is defined by replacing (3) with the stronger condition:

(3′) If P is a path that is the concatenation of at most 8 piece-paths and P
starts and ends on the carrier N(U) of a wall then P is path-homotopic
into N(U).

In the above, a piece-path in Y is a path in a piece of Y . Meanwhile, Aut(Yi → X)

is the group of automorphisms φ : Yi → Yi such that
Yi Yi

X

commutes.

3.3. The properness criterion. We now collect some terminology that will be
needed to state and apply Theorem 3.8.

In our usage, geodesics are globally distance realizing. By contrast, a closed-
geodesic w → Y in a nonpositively curved cube complex is a combinatorial
immersion of a circle whose universal cover w̃ lifts to a combinatorial geodesic

w̃ → Ỹ in the universal cover of Y . We emphasize that (the image of) a closed-
geodesic is not a geodesic in Y , because it is not distance realizing.

Let U be a hyperplane and v a 0-cube. We say that U is m-proximate to v if
there is a path P = P1 · · ·Pm such that each Pi is either a single edge or a path in
a piece, and v is the initial vertex of P1 and U is dual to an edge in Pm. A wall is
m-proximate to v if it has a hyperplane that is m-proximate to v.

A hyperplane u of a cone Y of X∗ is piecefully convex if the following holds: for
any path ξρ → Y with endpoints on N(u), if ξ is a geodesic and ρ is either trivial
or lies in a piece of Y containing an edge dual to u, then ξρ is path-homotopic in
Y to a path μ → N(u).

We will verify pieceful convexity via the following criterion.

Remark 3.7 ([Wis21, Rem 5.43]). Let M be the maximal diameter of any piece
of Y in X∗. Then a hyperplane u of Y is piecefully convex provided its carrier

N = N(u) satisfies d
˜Y (gÑ, Ñ) > M for any translate gÑ �= Ñ ⊂ Ỹ .

The following is a simplified restatement of [Wis21, Thm 5.44], which also
incorporates [Wis21, Lem 3.70 and Cor 5.45].

Theorem 3.8. Suppose that X∗ = 〈X | {Yi}〉 satisfies the following hypotheses:

(1) X∗ is C ′( 1
14 ) and satisfies the B(6) condition.

(2) Each hyperplane of each cone Yi is piecefully convex.
(3) For each Yi, each infinite order element of Aut(Yi) is cut by a wall of Yi.
(4) Let κ → Yi be a geodesic with endpoints p, q. Let u1 and u′

1 be distinct
hyperplanes in the same wall of Yi. Suppose κ traverses a 1-cell dual to u1,
and either u′

1 is 1-proximate to q or κ traverses a 1-cell dual to u′
1. Then

there is a wall U2 in Yi that separates p, q but is not 2-proximate to p or q.
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Then π1X
∗ acts with torsion stabilizers on the dual cube complex of the B(6)

structure.

We refer to Figure 2 for a depiction of the notation in hypothesis (4). We will
now use Theorem 3.8 to prove Theorem 3.5.

p

q

κ

w

Y

Yj

u2

u′
2

U2

u1

u′
1

U1

Figure 2. The scenario that arises in hypothesis (4) of Theorem
3.8. For the geodesic κ, we have to verify that neither p nor q is
2-proximate to U2 = u2 ∪ u′

2.

Proof of Theorem 3.5. Observe that Definition 3.2 of the C ′(α) condition involves
a strict inequality. Since X∗ is a finite C ′( 1

20 ) presentation, we may choose a

constant α < 1
20 such that X∗ is C ′(α) and such that diamN(u) < α||Yi|| for every

hyperplane of every Yi. Fix such an α for the remainder of the proof.
Observe that cubical subdivision preserves all the hypotheses of the theorem,

and the C ′(α) condition in particular. We subdivide X a number of times, while
retaining the original metric. That is, every original edge of X continues to have
length 1, while every edge of the mth subdivision has length 2−m. The reason for
the iterated subdivision is that the length of an edge contributes additive error
to several calculations below, and a large value of m will make this additive error
negligible. For instance, since α < 1

20 and ||Yi|| ≥ 1, a large value of m ensures that

20α||Yi|| < ||Yi|| − 2−m for every i.

Other inequalities with additive constants will follow similarly.
After the first subdivision of X, the hyperplanes of X and of Yi become 2-sided.

By hypothesis, there is a closed-geodesic wi that generates π1Yi. Moreover, we
may assume that Aut(Yi → X) stabilizes wi, for the following reason. Since Yi is

compact, Ỹi is a quasiline, hence Stab(Ỹi) is virtually cyclic. Let g be the generator

of the maximal cyclic subgroup in Stab(Ỹi). Since we have subdivided X at least

once, g stabilizes a geodesic axis ṽi ⊂ Ỹi, by [Hag23]. Let vi = 〈g〉\ṽi. Now, we
may choose wi = 〈gn〉\ṽi, where gn generates π1(Yi).
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After the first subdivision, the closed-geodesic wi ⊂ Yi has an even number
of edges. The hypothesis that every hyperplane of Yi has contractible
complement implies that every hyperplane intersects some edge of wi. Our wallspace
structure on each Yi will be defined by declaring each wall to consist of the pair of
hyperplanes corresponding to a pair of antipodal edges of wi. (See Figure 1 for a
partial illustration of such a pairing, where the closed-geodesics wi are presumed
to run along the inner boundary of each Yi.)

For the rest of the proof, we focus on one relator Y = Yi and its closed-geodesic
w = wi. Before verifying the hypotheses of Theorem 3.8, we check an inequality
that will be very useful in the sequel.

Let u, u′ ⊂ Y be a pair of hyperplanes in the same wall of Y . This means that
u, u′ are dual to edges u̇, u̇′ ⊂ w. Recall that u has an embedded carrier such that
diam(N(u)) < α||Y ||, and similarly for N(u′). Now, let x ∈ N(u) and x′ ∈ N(u′)
be arbitrary. Then

d(x, x′) ≥ d(u̇, u̇′)− d(x, u̇)− d(u̇′, x′)

>

(
1

2
||Y || − 2−m

)
− 2α||Y ||(3.1)

> 8α||Y ||,(3.2)

because α < 1
20 and m is chosen so that 2−m is tiny.

Next, we check the hypotheses of Theorem 3.8. In lieu of the B(6) condition of
Definition 3.6, we will in fact verify the stronger B(8) condition.

To check condition (1) of Definition 3.6, let u, u′ be distinct hyperplanes in
the same wall of Y . Then each of N(u) and N(u′) is embedded by hypothesis.
Furthermore, equation (3.2) implies N(u)∩N(u′) = ∅. Thus u∪u′ partition Y into
two halfspaces. Condition (2) of Definition 3.6 holds because our (revised) choice of
w ensures that Aut(Y → X) stabilizes w, hence preserves the wallspace structure.

For condition (3′), consider P = P1 · · ·P8, a concatenation of 8 piece-paths that
starts on N(u) and ends on either N(u′) or on N(u). We may assume that each Pi is
a geodesic. If P ends on N(u′), then the C ′(α) hypothesis implies that |Pi| < α||Y ||,
hence |P | < 8α||Y ||, contradicting equation (3.2).

Now, consider the case where P starts and ends on N(u). Since we have already

checked that P is too short to reach N(u′), it follows that P lifts to Ỹ − (π1Y )ũ′,
each of whose components is convex. Thus P is path-homotopic into N(u). We
have verified condition (3′) of Definition 3.6. Hence X∗ satisfies the B(8) condition,
and hypothesis (1) of Theorem 3.8.

Hypothesis (2) of Theorem 3.8, namely pieceful convexity of the hyperplanes of
Y , follows from Remark 3.7. Indeed, let x ∈ N(ũ) and x′ ∈ gN(ũ) be points on

the carriers of two distinct lifts of u to Ỹ . Then, by the same calculation as in
equations (3.1) and (3.2), we have d(x, x′) > 8α||Y ||, which exceeds the diameter of
a piece.

Hypothesis (3) of Theorem 3.8 holds vacuously, since each Y is compact.
We now verify hypothesis (4) of Theorem 3.8. Let κ → Y be a geodesic from

p to q, as in that condition. We begin by deriving upper and lower bounds on
|κ| = d(p, q). Let ṗ, q̇ be vertices of w that are closest to p, q, respectively. Since
a hyperplane carrier containing p cuts w and has diameter less than α||Y ||, we
have d(p, ṗ) ≤ α||Y ||, and similarly d(q, q̇) ≤ α||Y ||. Since |w| = ||Y ||, we have
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d(ṗ, q̇) ≤ 1
2 ||Y ||. Thus

|κ| = d(p, q) ≤ d(p, ṗ) + d(ṗ, q̇) + d(q̇, q)

<
1

2
||Y ||+ 2α||Y ||.(3.3)

For the lower bound on |κ|, recall that there is a wall U1 = u1 ∪ u′
1 such that κ

traverses a 1-cell dual to u1, and either u′
1 is 1-proximate to q or κ traverses a 1-cell

dual to u′
1. See Figure 2. If κ intersects u′

1, then equation (3.1) implies

|κ| ≥ d(N(u1), N(u′
1)) >

(
1

2
||Y || − 2−m

)
− 2α||Y ||.

Otherwise, if q is 1-proximate to u′
1, then d(q, u′

1) < α||Y ||, hence we obtain the
weaker conclusion

|κ| > d(N(u1), N(u′
1))− α||Y ||

>

(
1

2
||Y || − 2−m

)
− 3α||Y ||.(3.4)

Now, let y be the midpoint of κ, and let u2 be a hyperplane such that y ∈ N(u2).
Let u′

2 be the other hyperplane in the same wall U2. We claim that neither u2 nor
u′
2 is 2-proximate to p or q. To see this, we will check that d({p, q}, u2) > 2α||Y ||,

and similarly for u′
2. For any x ∈ N(u2), we have

d({p, q}, x) ≥ d({p, q}, y)− d(x, y)

>
1

2
|κ| − α||Y ||

>
1

2

(
1

2
||Y || − 2−m − 3α||Y ||

)
− α||Y ||

=
1

4
||Y || − 5

2
α||Y || − 2−(m+1)

> 2α||Y ||.
Here, the first inequality is the triangle inequality, the second inequality is the
diameter bound on N(u2), the third inequality is equation (3.4), and the final
inequality follows because α < 1

20 and 2−m is tiny. Similarly, for any x′ ∈ N(u′
2),

we have

d({p, q}, x′) ≥ d(x′, y)− d({p, q}, y)

>

(
1

2
||Y || − 2−m − 2α||Y ||

)
− 1

2
|κ|

>

(
1

2
||Y || − 2−m − 2α||Y ||

)
− 1

2

(
1

2
||Y ||+ 2α||Y ||

)

=
1

4
||Y || − 3α||Y || − 2−m

> 2α||Y ||.
Here, the first inequality is the triangle inequality, the second inequality is equation
(3.1), the third inequality is equation 3.3, and the final inequality holds because
α < 1

20 and 2−m is tiny. Thus neither p nor q can be 2-proximate to u2 or u′
2. We

have thus verified that Theorem 3.8 applies, hence π1X
∗ acts with torsion stabilizers
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on the CAT(0) cube complex dual to the wallspace structure we have constructed.
Since X is compact, this action is cocompact.

Finally, we check the conclusion about cell stabilizers in π1X
∗. We have already

shown that cell stabilizers must be torsion. By [Wis21, Thm 4.2 and Rem 4.3], we
know that when α < 1

20 , any torsion element in π1X
∗ lies in Aut(Yi → X) for some

lift Yi ↪→ X̃∗. Recall that Ỹi is quasiisometric to a line. If σ ∈ Aut(Yi → X) is
nontrivial, let Yi = 〈σ〉\Yi. Then Yi → X is a local isometry, with π1(Yi) an infinite
cyclic subgroup properly containing π1Yi. In particular, if π1Yi is maximal cyclic,
then we obtain a contradiction, hence π1X

∗ acts freely. �

4. Controlling pieces in generic quotients

This section contains the proof of the main theorem, Theorem 1.1. In the proof,
we need to control the sizes of pieces in a generic cubical presentation. Wall-pieces
are controlled in Proposition 4.7 and cone-pieces are controlled in a sequence of
lemmas, culminating in Proposition 4.17.

Most of the work in this section occurs in the language of loose pieces, which
represent a coarsening of the overlaps defined in Definition 3.2. We define loose
pieces in Definition 4.4. In Lemma 4.5, we show that every wall-piece or cone-piece
in the sense of Definition 3.2 gives rise to a corresponding loose piece.

Via loose pieces, the proofs of Propositions 4.7 and 4.17 readily generalize to the
context of noncubical hyperbolic metric spaces in Section 5.

4.1. Loose pieces and convex hulls of quasi-axes. Let Υ be a metric space. For
any subset s ⊂ Υ and J > 0, the notation NJ (s) denotes the closed J-neighborhood
of s.

Definition 4.1 (Quasi-axes). Let w̃, w̃′ be bi-infinite geodesics in a metric space
Υ. We declare them to be equivalent, and write w̃ ≈ w̃′, whenever w̃ ⊂ Nr(w̃

′)
for some r ≥ 0. In the main case of interest, when Υ is δ-hyperbolic, we can use a
uniform value r = 2δ, and deduce that w̃ ≈ w̃′ if and only if ∂w̃ = ∂w̃′.

Let g be a hyperbolic isometry of Υ. A quasi-axis for g is a bi-infinite geodesic
w̃ ⊂ Υ such that gw̃ ≈ w̃. When Υ is δ-hyperbolic, any geodesic connecting the
fixed points of g on ∂Υ is a quasi-axis for g.

Lemma 4.2. Let X̃ be a δ-hyperbolic, finite dimensional CAT(0) cube complex.

Then there is a uniform constant K = K(X̃) with the following property. For
every bi-infinite geodesic w̃, the convex hull of w̃ satisfies

hull (w̃) ⊂ NK(w̃).

Proof. Consider a vertex p ∈ X̃ that lies far from w̃. Let s be a shortest CAT(0)
(noncombinatorial) geodesic segment from p to w̃, oriented outward from p. Sageev
and Wise have observed [SW15, Remark 3.2] that the first cube met by s contains
a midcube of a hyperplane H that intersects s at an angle bounded away from 0.
The angle bound depends only on the dimension of the cube, hence can be taken

uniformly over X̃.
We claim that when s is sufficiently long, H∩w̃ = ∅. In other words, H separates

p from w̃, hence p /∈ hull(w̃). The claim holds because an intersection H ∩ w̃ would
determine a CAT(0) geodesic triangle with a long base along s and two large angles
along s. Such a triangle cannot be δ-thin. �
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The following construction relates cubical presentations to quasi-axes. Given

G = π1X and g ∈ G − {1}, choose any quasi-axis w̃ for g. Let Ỹ be the convex

hull of the union of all geodesics equivalent to w̃. Then the quotient Y = 〈g〉\Ỹ
admits a local isometry to X. By Lemma 4.2, Ỹ lies in a uniform neighborhood of
w̃, hence its quotient Y is compact. We say that Y is a quasicircle defined by g.

If g stabilizes an axis w̃, as will be the case following Convention 4.3, then the
quasicircle Y deformation retracts to the closed-geodesic w = 〈g〉\w̃.

Now, we adopt Convention 4.3.

Convention 4.3. From now until the start of the proof of Theorem 1.1, the

symbol X denotes a compact nonpositively curved cube complex, such that X̃
is δ-hyperbolic for some δ. We assume that G = π1X is nonelementary.

We assume that X has been subdivided at least once, so that every g �= 1

stabilizes a geodesic axis in X̃ [Hag23].
Finally, we assume that every hyperplane of X is essential. This assumption is

harmless, because every nonpositively curved cube complex X ′ contains a convex
essential core, whose hyperplanes are essential. See, for instance, Caprace and
Sageev [CS11, Proposition 3.5].

Our arguments in this section will employ the following, looser analogue of
Definition 3.2.

Definition 4.4 (Loose pieces). Let X be as in Convention 4.3. Fix a constant

J ∈ N. We define J–loose pieces first in X̃, then in X.

Consider bi-infinite geodesics w̃, w̃′ that do not share an endpoint in ∂X̃. Then a
J–loose cone-piece between w̃ and w̃′ is the maximal geodesic segment s ⊂ w̃ whose
endpoints are contained in NJ (w̃

′). The companion of s is the maximal segment
s′ ⊂ w̃′ whose endpoints are at distance J from the corresponding endpoints of s.

Now, let w,w′ be closed-geodesics in X. If w �= w′, a J–loose cone-piece between
w and w′ is the projection of a J–loose cone-piece between preimages w̃ and w̃′. A
J–loose cone-piece between w and itself arises in the above scenario where w̃′ = hw̃
for some h /∈ StabG(w̃).

In a similar manner, a J–loose wall-piece in w̃ is a maximal geodesic segment

s ⊂ w̃ whose endpoints are contained in NJ (N(Ũ)) for a hyperplane U . A J–loose
wall-piece in a closed-geodesic w is the projection of a J–loose wall-piece in w̃.

Lemma 4.5 shows that there is a uniform value J = J(X̃) such that every piece
in a cubical presentation X∗ must correspond to a J–loose piece in X.

Lemma 4.5. Consider a cubical presentation X∗ = 〈X | Y1, . . . , Ym〉. Suppose that
X̃ is hyperbolic and that every Yi is a quasicircle. Let w̃i be a bi-infinite geodesic

in Ỹi. Then there is a constant J = J(X̃) such that the following hold for every
d ≥ 0:

(1) Every diameter ≥ d cone-piece of X∗ between Yi and Yj determines a
J–loose cone-piece between w̃i and w̃j, of diameter ≥ d.

(2) Every diameter ≥ d wall-piece of X∗ in Yi determines a J–loose wall-piece
in w̃i, also of diameter ≥ d.

(3) Every diameter ≥ d intersection between Ỹi and a hyperplane carrier N(U)
determines a J–loose wall-piece in w̃i, of diameter ≥ d.

Furthermore, we may take J ≤ 3K, where K is the constant of Lemma 4.2.
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Proof. First, consider cone-pieces. Let p, q ∈ Ỹi∩ Ỹj be points such that d(p, q) ≥ d.
By Lemma 4.2, there are points pi, qi ∈ w̃i that are K-close to p and q, respectively.
Applying Lemma 4.2 to the quasicircle Yj shows that pi, qi are 2K-close to w̃j . Since
w̃i is a geodesic, we have d(pi, qi) ≥ d−2K. Extending the segment [pi, qi] by K in
each direction, we obtain a geodesic segment [p′i, q

′
i] ⊂ w̃i whose length is at least

d and whose endpoints lie in N3K(w̃j). Thus [pi, qi] is contained in a 3K–loose
cone-piece between w̃i and w̃j .

The proof for wall-pieces and intersections with hyperplanes is identical. In this
case, we may take J = 2K. �

Remark 4.6. Besides the looseness constant J , there is one important respect in
which Definition 4.4 is more general than Definition 3.2. Whereas the definition
of a wall-piece in Yi requires the hyperplane U to be disjoint from Yi, the defini-
tion of a J–loose wall-piece in w̃i has no analogous restriction. Consequently, the
J–loose wall-pieces in Lemma 4.5.(3) need not come from wall-pieces. When we
apply Theorem 3.5, we will care about all intersections between Yi and hyperplane
carriers in X, and all such intersections will be controlled using J–loose wall-pieces.

4.2. Wall-pieces. Our next goal is to give a criterion on the growth of the number
of relators ensuring that with overwhelming probability, the diameter of wall-pieces
in a cubical presentation is bounded by α||Yi||. We formulate the criterion in terms of
loose pieces, for greater applicability in Theorem 3.5 and in the generalized setting
of Section 5.

Recall that by Convention 4.3, we are assuming that G is nonelementary and the
hyperplanes of X are essential. By Theorem 2.4, the growth function of G acting

on X̃ is bounded by constants times eb�, where b > 0 is the growth exponent. Let
a be the largest growth exponent among the carriers of the finitely many orbits

of hyperplanes of X̃. Then a is also the largest growth exponent of any of the
J-neighborhoods of the hyperplanes, for an arbitrary J . Recall that a < b by
Theorem 2.3.

For each � > 0, let G(�) denote the set of nontrivial conjugacy classes in π1X of
length at most �. For the duration of this section, we will be sampling randomly
from G(�), for large �.

Proposition 4.7. Let X be as in Convention 4.3. For each nontrivial conjugacy
class π1X, choose a representative closed-geodesic. Let a < b be growth exponents
as above, let α ∈ (0, 1), and fix a positive number c < α(b − a). Then, for every
J ∈ N, there is a constant C = C(J,X), with the following property.

For k ≤ ec�, choose conjugacy classes [g1], . . . , [gk] ∈ G(�) uniformly at random.
Let wi be the closed-geodesic representing [gi]. Then, for all � � 0, the probability
that some wi contains a J–loose wall-piece of diameter at least α||wi|| is bounded
above by

C�2e(c+(a−b)α)�.

Consequently, with overwhelming probability as � → ∞, all J–loose wall-pieces in
wi have diameter less than α|gi|.

Proof. Let Π(α, �) denote the proportion of representative closed-geodesics w of
length at most � such that w contains a J–loose wall-piece of diameter at least
α||w||. That is, Π(α, �) denotes the proportion of all w of length at most � such that
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w̃∩NJ(N(Ũ)) contains the endpoints of a segment of length at least α||w|| for some
hyperplane U . Our goal is to estimate Π(α, �).

For each n ≤ �, let U(n, α) be the set of (conjugacy representatives of) closed-
geodesics w of length exactly n that contain a J–loose wall-piece s with |s| ≥ αn.
Then

Π(α, �) =

∑�
n=1 |U(n, α)|

|G(�)| .

Each element w ∈ U(n, α) can be cyclically permuted to be of the form s · y,
where s lies in NJ (N(Ũ)) for some hyperplane Ũ , and |s| ≥ αn. By Theorem 2.4 (1)

and Remark 2.5, the number of such paths s, up to homotopy in X̃, is bounded
above by B′ea|s|, for some constant B′ depending on J . Similarly, the number of
paths y is bounded above by B′′eb|y|, for some constant B′′.

Let B = B′B′′. Since there are at most n distinct cyclic permutations of w, the
number of elements in U(n, α) is

(4.1) |U(n, α)| ≤ n ·Bea|s|eb|y| = Bnea|s|+b(|w|−|s|) ≤ Bne(aα+b(1−α))n.

Summing over all lengths up to �, we obtain

�∑
n=1

|U(n, α)| ≤
�∑

n=1

Bne(aα+b(1−α))n

≤ B�

�∑
n=1

(
eaα+b(1−α)

)n

< B�

∞∑
m=0

(
eaα+b(1−α)

)�−m

= B�
e(aα+b(1−α))�

1− e−(aα+b(1−α))

= eb� · �e(a−b)α� · B

1− e−(aα+b(1−α))

≤ eb� · �e(a−b)α� · B

1− e−a
.

Meanwhile, Theorem 2.4 (2) implies that |G(�)| ≥ A
� e

b�. Thus

(4.2) Π(α, �) ≤
∑

|U(n, α)|
|G(�)| ≤ �2e(a−b)α� · B

A(1− e−a)
.

Among all choices (w1, w2, . . . , wk) ∈ G(�)k, the proportion of k-tuples where
some wi ∈ U(n, α) is bounded above by kΠ(α, �). Since k ≤ ec�, equation (4.2) says
that the total probability of a large piece is bounded by

kΠ(α, �) ≤ �2ec�+(a−b)α� · B

A(1− e−a)
.

Setting C = B
A(1−e−a) completes the proof of the estimate. In particular, since

c+ (a− b)α < 0 by hypothesis, we have kΠ(α, �) → 0 as � → ∞. �
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4.3. Cone-pieces between two closed-geodesics. Our next goal is to control
cone-pieces whose diameter is bounded below by a constant d. The gist of the
following sequence of lemmas is that the probability of a J–loose cone-piece of
diameter at least d declines exponentially with d. See Proposition 4.14.

We will need to employ separate arguments for pieces between closed-geodesics
w and w′ chosen separately, and pieces between a closed-geodesic w and itself. In
the case of a piece between w and itself, we will further need to consider overlaps,
defined as follows.

Definition 4.8 (Orientation and overlaps). Let w → X be a closed-geodesic.
Choose distinct preimages w̃ and hw̃ of w and a constant J ∈ N. Suppose
s = [p, q] ⊂ w̃ is a J–loose piece between w̃ and hw̃, such that |s| > 2J . Let
s′ = [p′, q′] ⊂ hw̃ be the companion of s, so that d(p, p′) = J = d(q, q′).

Suppose that w̃ is oriented from p to q, and transfer this orientation to hw̃ via h.
Since |s| = d(p, q) > 2J , the endpoints p′, q′ of the companion s′ cannot coincide.
We say that h preserves orientation on s if p′ comes before q′ in the orientation on
hw̃, and reverses orientation on s otherwise. See Figure 3.

The h-overlap in s is the interval u = s ∩ h−1s′.

w̃

w̃′ = hw̃

h−1q′
p h−1p′ q

hq p′ hp q′

J J
s

s′

Figure 3. The terminology and setup of Definition 4.8. The J–
loose piece s = [p, q] is shown in yellow, and the companion s′ =
[p′, q′] in orange. In this example, h reverses orientation on the
piece s, and s has nontrivial h-overlap [p, h−1p′].

The main steps of the proof of Proposition 4.14 can be organized as follows:

• In Lemma 4.10, we show that any orientation-reversing piece between w
and itself has small overlap, universally bounded by a constant R. This is
an unconditional (nonprobabilistic) statement.

• In Lemma 4.11, we show that pieces between separately sampled closed-
geodesics w and w′ are exponentially rare. Similarly, pieces between w and
itself with small overlap (of size ≤ R) are exponentially rare.

• In Lemma 4.13, we show that pieces between w and itself with big overlap
(of size ≥ R) are also exponentially rare. This allows us to conclude that
each type of piece of diameter ≥ d is exponentially rare.

We will need the following standard fact about thin quadrilaterals.

Lemma 4.9. Suppose that X̃ is δ-hyperbolic. Let Q be a geodesic quadrilateral
with corners p, q, q′, p′, such that d(p, p′) ≤ J and d(q, q′) ≤ J . Then every point

x ∈ [p, q] lies within distance J̊ = J + 2δ of some point of [p′, q′].

Proof. This is standard. Since triangles in X̃ are δ-thin, then quadrilaterals are
2δ-thin. Thus x ∈ [p, q] is 2δ-close to some point x′ ∈ [p, p′] ∪ [p′, q′] ∪ [q′, q]. But
every point of [p, p′] ∪ [q′, q] is J-close to [p′, q′]. �
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Lemma 4.10. Suppose X is compact and X̃ is δ-hyperbolic. For every J ∈ N,
there is a constant R = R(J, δ) ≥ 10J such that the following holds. Suppose that
s ⊂ w̃ is a J–loose cone-piece between w̃ and hw̃, where h reverses orientation on
s. Then the h-overlap u ⊂ s has diameter |u| ≤ R.

Proof. In the notation of Definition 4.8, the overlap is u = [p, q]∩ h−1[p′, q′]. Since
h is orientation-reversing, the endpoints of u are x ∈ {p, h−1q′} and y ∈ {q, h−1p′}.
We begin by showing there is a constant L = L(J, δ) such that

(4.3) d(x, hy) ≤ L and d(y, hx) ≤ L.

To prove (4.3), we consider two cases. For the first case, suppose d(p, h−1q′) ≤ 2J
and d(q, h−1p′) ≤ 2J . Since x ∈ {p, h−1q′} and hy ∈ {p′, hq}, triangle inequalities
imply that

d(x, hy) ≤ d(x, p) + d(p, p′) + d(p′, hy) ≤ 2J + J + 2J = 5J.

By an identical calculation, d(y, hx) ≤ 5J .
For the second case, suppose that d(p, h−1q′) > 2J or d(q, h−1p′) > 2J . Since

we have |d(p, q)− d(p′, q′)| ≤ 2J , it follows that one of h−1(q′), h−1(p′) lies in [p, q].
Assume without loss of generality that h−1(p′) ∈ [p, q]. If we furthermore assume
that d(q, h−1p′) > 2J , then the endpoints of u are x = p and y = h−1p′, as depicted
in Figure 3. It follows immediately that

d(x, hy) = d(p, p′) = J.

Furthermore, as in Lemma 4.9, every point of [p, q] is 2δ-close to some point of
[p, p′] ∪ [p′, q′] ∪ [q′, q]. Since d(y, q) > J , it follows that y ∈ [p, q] is 2δ-close to
some point y′ ∈ [p′, q′]. Furthermore, since d(x, y) = d(hy, hx) = d(p′, hx), triangle
inequalities imply that d(hx, y′) ≤ J + 2δ. Thus

d(y, hx) ≤ d(y, y′) + d(y′, hx) ≤ 2δ + (J + 2δ) = J + 4δ.

It remains to consider the possibility that h−1(p′) ∈ [p, q] and d(q, h−1p′) ≤ 2J .
Since we are in the second case, triangle inequalities imply that 2J < d(p, h−1q′) ≤
4J . Now, we argue exactly as in the first case, and conclude

d(x, hy) ≤ 4J + J + 2J = 7J and d(y, hx) ≤ 4J + J + 2J = 7J.

Setting L = max(7J, J + 4δ) completes the proof of equation (4.3).
Now, we complete the proof of the lemma. Applying (4.3) twice shows that

d(x, h2x) ≤ 2L and d(h−1x, hx) ≤ 2L. By Convention 4.3, h has an invariant

geodesic axis ṽ in X̃, hence �h� ≥ 1. Thus the 〈h2〉-orbit {h2n(x) | n ∈ Z} lies along
a quasigeodesic whose quality depends only on J and δ. Similarly, {h2n(hx) | n ∈ Z}
lies along a uniform quasigeodesic.

The above quasigeodesics must uniformly fellow-travel ṽ. As a consequence,
there is a uniform radius r, depending only on J and δ, such that 〈h〉(x) ⊂ Nr(ṽ).

Since x, hx ∈ Nr(ṽ), considering closest-point projections to ṽ gives

d(x, hx) ≤ r + �h� + r ≤ 2r + L.

Meanwhile equation (4.3) gives d(hx, y) ≤ L. Thus R = 2r+2L is a uniform bound
on |u| = d(x, y). Since L ≥ 7J by definition, we have R ≥ 14J . �

Now, we argue that closed-geodesics containing a piece of diameter ≥ d happen
with a probability that decays exponentially with d.



640 DAVID FUTER AND DANIEL T. WISE

Lemma 4.11. Suppose that every nontrivial element of π1X stabilizes a geodesic

in a δ-hyperbolic space X̃. For each nontrivial conjugacy class in π1X, choose a
closed-geodesic in X that represents it.

Fix constants J,R ∈ N. Then, for all d > 2J and all � sufficiently large, the
following hold:

(1) Among all pairs of conjugacy classes [g], [g′] of length at most �, the
proportion whose representative closed-geodesics have a J–loose cone-piece
of diameter ≥ d is less than M�2 e−bd, for a constant M = M(X, J).

(2) Among all conjugacy classes [g] of length at most �, the proportion whose
representative closed-geodesic has a J–loose cone-piece with itself, with
diameter ≥ d and overlap of length ≤ R, is less than M0�

2e−bd, for a
constant M0 = M0(X, J,R).

Proof. Before beginning the probabilistic portion of the proof, we make a reduction,
introduce notation, and name some constants. Let D be the diameter of X. Let
J̊ = J + 2δ, and let V be the maximal number of vertices in a ball of radius

(D+J + J̊) in X̃. Let W be the maximal number of vertices in a ball of radius n0,

where n0 is the threshold constant of Theorem 2.4. Fix a basepoint x0 ∈ X̃.
Suppose that [g], [g′] are conjugacy classes represented by closed-geodesics w,w′

that have a J–loose cone-piece. (For now, we do not place any constraint on the
lengths of w,w′, or the piece.) By Definition 4.4, the piece in w is the image of a

geodesic segment s ⊂ w̃ ⊂ X̃, which is a J–loose cone-piece between w̃ and w̃′. By
choosing the preimage s appropriately, we ensure the additional property that the

initial point p ∈ s lies within radius D of the basepoint x0 ∈ X̃. Let s′ ⊂ w̃′ be the
companion of s. Then the initial point of s′ is a point p′ that lies J-close to p ∈ S,
hence within distance D + J of the basepoint x0. Furthermore, by Lemma 4.9,
every point of s′ lies within distance J̊ = J + 2δ of some point of s.

Since conjugacy classes in π1X correspond to free homotopy classes in X, every
geodesic segment in w̃′ of length |w′| is a fundamental domain for w′. It will be
convenient to choose a fundamental domain v′ ⊂ w̃′ that begins at p′, such that the
initial segment of v′ coincides with the initial segment of s′. Since the orientation
of s′ (determined by the condition that the initial point p′ ∈ s′ is J-close to p ∈ s)
may or may not coincide with the orientation of w′, we conclude that the segment
v′ chosen as above is a fundamental domain for (w′)±1.

Now, we proceed to the proof of Lemma 4.11 (1). Fix a conjugacy class [g] and
its representative closed-geodesic w. We will bound the number of conjugacy classes
[g′], with representative closed-geodesic w′, such that w has a J–loose cone-piece
with w′, of diameter at least d.

As in the above notation, let s ⊂ w̃ be a preimage of the piece in w that begins
within distance D of the basepoint x0. As in the opening paragraph of the proof,
let s′ ⊂ w̃′ be the corresponding subsegment of w̃′, so that the initial point p ∈ s is
J-close to the initial or terminal point p′ ∈ s′.

As a warm-up case, suppose that |s′| ≥ |w′| − n0, where n0 is the threshold
constant in Theorem 2.4. As above, (w′)±1 has a fundamental domain v′ ⊂ w̃′

whose initial segment coincides with the initial segment of s′. More precisely,
we have a fundamental domain v′ = [p′, r′] and a point q′ ∈ [p′, r′] such that
s′ ∩ v′ = [p′, q′] and d(q′, r′) ≤ n0. Then, by construction, we have d(p, p′) = J .
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Furthermore, by Lemma 4.9, we have d(q′, q) ≤ J̊ for some point q ∈ s. Observe

that |d(p, q)− d(p′, q′)| ≤ J + J̊ .
By the definition of V , and the choice of s so that its start lies close to the

basepoint, there are at most V choices for where p′ can lie. Then, once n = d(p, q)
is chosen, the point q ∈ s is determined, hence there are at most V choices for
q′ ∈ s′. Since d(q′, r′) ≤ n0, it follows that once q′ is chosen, there are at most W
choices for r′. Consequently, for every n, there are at most V 2W choices for the
segment v′, hence at most 2V 2W choices for [g′], where the factor of 2 accounts for

the orientation of g′. Recalling that n ≤ �+J + J̊ , the total number of possibilities
for [g′] is at most

2V 2W · (�+ J + J̊).

In particular, the bound grows linearly with � in the (nongeneric) warm-up case.
Having finished the warm-up case, assume that |s′| < |w′| −n0. Then, as above,

(w′)±1 has a fundamental domain v′ ⊂ w̃′ whose initial segment coincides with that
of s′. Since |w′| > |s|+ n0, we have v′ = s′ · y′, where |y′| > n0.

We first bound the number of possibilities for s′. Since the endpoints of s′ are
J-close to those of s, for every choice of s there are at most 2V 2 choices for where
s′ begins and ends. (The factor of 2 comes from the choice of direction of fellow-
traveling.) Turning attention to y′, observe that the endpoint of s′ is the starting
point of y′. Since |y′| ≥ n0, Theorem 2.4.(1) and Remark 2.5 imply that there are

at most Beb|y
′| choices of where y′ ends. Thus, for every choice of s, the number of

choices for (s′y′)±1 up to path-homotopy is at most

(4.4) 2 · V 2 ·Beb|y
′| ≤ 2V 2Beb(|w|−|s|+2J) ≤ 2V 2Beb(�−|s|+2J).

Recall that the companion s′ is determined by the J–loose cone-piece s ⊂ w̃.
There are |w| ≤ � possible choices of where the projection of s begins in the closed-
geodesic w. There are also choices for the length |s|, constrained by the inequalities
d ≤ |s| < |w′| ≤ �. Summing over these possible choices, we conclude that for
every conjugacy class [g], the number of possibilities for [g′] such that the J–loose
cone-piece s has diameter at least d is bounded above by

(4.5)

�∑
|s|=d

� · 2V 2Beb(�−|s|+2J) <

∞∑
|s|=d

� · 2V 2Beb(�−|s|+2J) =
2V 2B� eb(�−d+2J))

1− e−b
.

By increasing the constant B if needed, we may ensure that the above exponential
bound subsumes the linear bound in the nongeneric warm-up case.

Next, recall that G(�) denotes the set of nontrivial conjugacy classes of translation
length at most �. By Theorem 2.4 (2), the number of such conjugacy classes satisfies

|G(�)| ≥ A

�
eb�.

Dividing the previous two equations produces a bound on the fraction of conju-
gacy classes [g′] whose representative closed-geodesic w′ has a J–loose cone-piece
of diameter at least d with w. This fraction is at most

2V 2B�eb(�−d+2J)

1− e−b
· �

A
e−b� = e−bd · �2 · 2V 2Be2bJ

A(1− e−b)
= e−bd · �2 M.

Here, M = 2V 2Be2bJ

A(1−e−b)
is a constant that depends only on X and J .
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The proof of conclusion (2) is very similar. Suppose that s ⊂ w̃ is a J–loose cone-
piece between w̃ and hw̃, of diameter |s| ≥ d > 2J . Since d is large, Definition 4.8
applies. Let s′ ⊂ hw̃ be the companion of s, and let u = s∩h−1(s′) be the overlap.
By hypothesis, we have |u| ≤ R. Let (v′)±1 = s′ � h(u) = s′ � h(s) be the portion
of s′ that is not in the image of the overlap. Then s and v′ project to disjoint
portions of the closed-geodesic w ⊂ X, and the sign ±1 is chosen so that s and v′

are oriented consistently along w. Thus there is a fundamental domain for w of the
form y1v

′y2s.
Observe that |y1v′y2| ≤ �− |s|, and the subsegment v′ of length |v′| ≥ |s′| −R ≥

|s|−2J−R is entirely determined by s and a bounded amount of extra data. Thus,
as in equation (4.4), we compute that for every choice of s, the number of choices
for y1v

′y2 up to path-homotopy is at most

2� V 2Beb(�−2|s|+2J+R).

Compared to (4.4), the extra factor of � comes from the choice of where in the
fundamental domain the subword v′ occurs, and the extra constant R in the
exponent comes because we have removed the overlap from s′. Since there are
at most Beb|s| choices for s, we conclude that the number of possibilities for w is
bounded above by

2� V 2B2eb(�−|s|+2J+R) ≤ 2� V 2B2eb(�−d+2J+R).

The remainder of the proof of Lemma 4.11 (1), comparing the above upper bound
to the lower bound G(�) ≥ (A/�)eb�, goes through verbatim. We conclude that the
fraction of conjugacy classes [g] whose representative closed-geodesic has a J–loose
cone-piece with itself, with diameter ≥ d and overlap of length ≤ R, is bounded by

2� V 2B2eb(�−d+2J+R) · �

A
e−b� = e−bd · �2 · 2V

2B2eb(2J+R)

A
.

Setting M0 = 2V 2B2eb(2J+R)/A completes the proof. �

Lemma 4.12. Suppose X is compact and X̃ is δ-hyperbolic. Choose a nontrivial

element h ∈ π1X. Suppose that yx is a path from p ∈ X̃ to hp ∈ X̃. Suppose that
each of x and y is a geodesic, and that |x| ≤ J for some J ≥ 0. Define L to be
the maximal length of a terminal segment of y that is a 2δ fellow-traveler with an
initial segment of hy.

Let (yx)∞ denote the bi-infinite path · · ·h−1(yx)h0(yx)h1(yx)h2(yx) · · · . Then
(yx)∞ is an η-quasigeodesic, with η depending only on J , δ, and L.

Proof. If |y| is small, there are only finitely many possibilities for yx. The bi-infinite
path (yx)∞ lies at bounded distance from some quasi-axis of h. So, take the worst
case scenario for the quasigeodesic constant η.

If |y| is large, we have large geodesic subpaths of (yx)h(y). By hypothesis, we
have a bound L on the length of backtracking in (yx)h(y). Now, apply a “local to
global” principle for quasigeodesics. See, e.g., Cannon [Can84, Thm 4]. �

We can now use Lemmas 4.10, 4.11, and 4.12 to show that large J–loose pieces
between a closed-geodesic and itself are exponentially rare.

Lemma 4.13. Suppose X is compact and X̃ is hyperbolic. Fix a constant J ∈ N.
Then there is a constant M = M(X, J) such that for all sufficiently large � and
for all d ∈ [2J + 1, �/3], the following holds. Among all conjugacy classes [g] of
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length at most �, the proportion whose representative closed-geodesic has a J–loose
cone-piece with itself, with diameter ≥ d, is less than M�2e−bd.

Proof. Consider a closed-geodesic w representing the conjugacy class [g]. As a
warm-up, we dismiss the (nongeneric) possibility where |w| ≤ 2d. Since d ≤ �/3, it
follows that |w| ≤ 2�/3. By Theorem 2.4.(2), the total number of conjugacy classes
of length at most 2�/3 is at most Be2b�/3, whereas the total number of length at
most � is at least Aeb�/�. Thus, the probability that |w| is at most 2/3 of the
allowed length is

G(2�/3)
G(�) ≤ Be2b�/3

Aeb�/�
=

B�

A
e−b�/3 ≤ B

A
� e−bd.

Thus the conclusion of the lemma holds for M1 = B/A. Note that this warm-up
case did not use any hypotheses about pieces between w and itself.

Now, suppose that a closed-geodesic w representing the conjugacy class [g] has
a J–loose cone-piece with itself. Following Definition 4.4, let s ⊂ w̃ be a preimage
of the piece in w, where the endpoints of s lie at distance J from hw̃. Following
Definition 4.8, let s′ ⊂ hw̃ be the companion of s, and let u = s ∩ h−1s′ be the
h-overlap in s.

Let R = R(J, δ) ≥ 10J be the constant of Lemma 4.10. By Lemma 4.11.(2),
pieces with an overlap of diameter |u| ≤ R occur with probability at mostM2�

2e−bd,
where M2 = M2(X, J) = M0(X, J,R(J, δ)) in the notation of Lemma 4.11. Thus,
we may suppose that |u| > R. By Lemma 4.10, h preserves the orientation on s.
We now consider two cases.

Case 1 (|s| ≤ 1
2 |w|). Without loss of generality, suppose that the overlap u ⊂ s

occurs at the beginning of u. Then there is a subgeodesic y1y2y3 ⊂ w̃, where s =
y2y3 and s′ = h(y1y2), so that y2 = s∩h−1s′ is the h-overlap. Then |y2| ≥ R ≥ 10J ,
where the second inequality comes from Lemma 4.10. Consequently,

|y1| = |y1y2| − |y2| ≤ |y1y2| − 10J ≤ (|y2y3|+ 2J)− 10J ≤ 1
2 |w| − 8J,

and we can conclude that |y1y2y3| < |w|. Thus we may choose a fundamental
domain for w of the form y1y2y3z.

Let x1 denote a geodesic from the endpoint of y1 to the start of h(y1), and let x3

denote a geodesic from the endpoint of y3 to the start of h(y3). Then |x1|, |x3| ≤ J .
Since y1y2 is a geodesic and h(y1) fellow-travels with y2, we see that in the path
y1x1h(y1) there is a uniform upper bound on the amount of (2δ)–fellow-traveling
between the terminal subpath of y1 and the initial subpath of h(y1). Thus, in the
notation of Lemma 4.12, we conclude that (x1y1)

∞ is an η-quasigeodesic for some
η = η(δ, J) > 0. Likewise, (y3x3)

∞ is an η-quasigeodesic. These quasigeodesics
fellow-travel, since they are periodically joined by translates of y2. See Figure 4.

Let δ′ = δ′(δ, J) be a uniform constant such that η(δ, J)-quasigeodesic

quadrilaterals in X̃ must be δ′-thin. Then it follows that (x1y1)
∞ and (y3x3)

∞

are δ′–fellow-travelers. Since the endpoint of y3 is δ′-close to (x1y1)
∞, we have an

η-quasigeodesic triangle with sides consisting of a subpath of (x1y1)
∞, a copy of

(y2y3), and a geodesic segment of length at most δ′ (shown dashed in Figure 4).
Since the dashed segment is δ′-short, all of y2y3 is 2δ′-close to (x1y1)

∞. Since
|x1| ≤ J , all of y2y3 is determined by y1 and a universally bounded amount of
data. Since |y2y3| ≥ d, the same argument as in Lemma 4.11 (2), shows that the
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y1 y2 y3

x1 x3

hy1 hy2 hy3

hx1 hx3

h2y1 h2y2 h2y3

h2x1 h2x3
h3y1 h3y2 h3y3

δ′

Figure 4. Bottom: y1y2 is a geodesic, and hy1 fellow-travels y2.
Hence there is a bounded amount of fellow-travelling between y1
and hy1. This implies (y1x1)

∞ is a quasigeodesic, and similarly
for (y3x3)

∞. The two quasigeodesics must δ′–fellow-travel, hence
there is a geodesic of length δ′ from the endpoint of y3 to some
point on (y1x1)

∞.

probability of a J–loose cone-piece with this configuration is at most M3�
2e−bd, for

a constant M3 = M3(X, J).

Case 2 (|s| > 1
2 |w|). By the warm-up argument at the beginning of the proof, we

may assume d ≤ 1
2 |w| < |s|. As in Case 1, we may assume without loss of generality

that the overlap u occurs at the beginning of s. Let s̊ be the terminal subgeodesic of
s, of length |̊s| = d. By Lemma 4.9, there is a subgeodesic s̊′ ⊂ s′ whose endpoints

are J̊-close to those of s̊, for J̊ = J + 2δ. Let ů = s̊ ∩ h−1(̊s′). We think of s̊ as a
subpiece and ů as a suboverlap.

If |̊u| ≤ R = R(J, δ), observe that s̊ and v̊′ = s̊′�h(ů) project to disjoint portions
of the closed-geodesic w, and that v̊′ is determined by s̊ and a universally bounded
amount of extra data. Thus, by Lemma 4.11 (2), the probability of a J–loose cone-
piece containing this configuration is at most M4�

2e−bd, where M4 = M4(X, J) =

M0(X, J̊, R(J, δ)) in the notation of Lemma 4.11.

If |̊u| ≥ R = R(J, δ), we employ the argument of Case 1, with J̊ in place of J ,
to show that the probability of a J–loose cone-piece with this configuration is at
most M5�

2e−bd, for a constant M5 = M5(X, J).
To complete the proof, recall the constants M1, . . . ,M5 defined above, so that

the probability of a J–loose cone-piece of each type is bounded by Mj�
2e−bd for

the appropriate Mj . Setting M = maxj Mj completes the proof. �

Proposition 4.14. Suppose X is compact and X̃ is hyperbolic. Fix constants
J ∈ N and φ ∈ (0, 1) and C > 2/b(1− φ). Then, for all sufficiently large � and for
all d ∈ [C log �, �/3], the following holds.

Suppose that conjugacy classes [g], [g′] are chosen at random from among those
of length at most �. Then there is an e−bdφ upper bound on the probability that there
is a J–loose piece of diameter at least d between the representative closed-geodesics.
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Similarly, for a randomly chosen conjugacy class [g] of length at most �, there is
an e−bdφ upper bound on the probability that there is a J–loose piece of diameter at
least d between the representative closed-geodesic and itself.

Proof. Let M = M(X, J) be the larger of the two constants in Lemma 4.11 (1)
and Lemma 4.13. Combining the two lemmas, we see that a J–loose cone-piece of
diameter at least d in the closed-geodesic representing [g] occurs with probability
at most M�2 e−bd.

Now, let C > 2
b(1−φ) be as in the statement of the lemma. Then, choosing �

large ensures that the additive difference
(
C log � − 2 log �

b(1−φ)

)
is as large as we like.

In particular, for � � 0 and d ≥ C log �, we have

d ≥ C log � >
2 log �

b(1− φ)
+

logM

b(1− φ)
=

log(M�2)

b(1− φ)
.

After exponentiating and rearranging terms, we obtain

M�2 < ebd(1−φ), hence M�2e−bd < e−bφd. �

4.4. Controlling pieces among many conjugacy classes. We can now apply
Proposition 4.14 to bound the probability of a large J–loose cone-piece between a
pair of conjugacy classes that are sampled from a large collection, where “large”
is defined as a fraction of the systole. See Proposition 4.17. We can then combine
this result with Proposition 4.7 to prove the main theorem.

Lemma 4.15. Fix constants q ∈
(
0, 1

6

]
and J ∈ N. Let k ≤ ec�, where c < qb and b

is the growth exponent of X̃. Select conjugacy classes [g1], . . . , [gk] at random from
among those of length at most �, with each [gi] represented by a closed-geodesic wi.

Then, with overwhelming probability as � → ∞, all J–loose cone-pieces among
the wi have diameter strictly less than 2q�.

Proof. Since c < qb, we may choose a constant φ ∈ (0, 1) such that c < qbφ2. We
will consider pieces of diameter at least d ≥ 2q�. Since d is bounded below by a
linear function of �, the logarithmic hypothesis on d in Proposition 4.14 is satisfied
for � � 0.

The above choices imply that there are k2 ≤ e2c� < e2qbφ
2� pairs of indices (i, j).

When � is sufficiently large, Proposition 4.14 says that for every pair (i, j), the
probability of a J–loose cone-piece of diameter at least d between wi and wj is less
than e−bdφ. (This includes the case wi = wj .) Thus the total probability that some
pair has a J–loose cone-piece of diameter ≥ d is less than

k2e−bdφ < e2qbφ
2�e−bdφ = e(2qφ�−d) bφ.

Recall that d ≥ 2q� and φ ∈ (0, 1). Then, as � → ∞, the exponent in the above
probability estimate is bounded as follows:

(2qφ�− d) bφ ≤ (2qφ�− 2q�) bφ = (φ− 1) · 2qφ · b� −→ −∞.

We conclude that with overwhelming probability as � → ∞, there are no J–loose
pieces of diameter d ≥ 2q�. �

Lemma 4.16. Select conjugacy classes [g1], . . . , [gk] at random from among those
of length at most �, where k ≤ ec� for some constant c < qb where 0 < q < 1. Then,
with overwhelming probability as � → ∞, we have min{|gi| : 1 ≤ i ≤ k} ≥ (1− q)�.
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Proof. Let wi be a closed-geodesic representing [gi]. By Theorem 2.4 (2), the
conditional probability that |wi| ≤ (1− q)� given that |wi| ≤ � is

G((1− q)�)

G(�) ≤ Beb(1−q)�

Aeb�/�
=

B

A
�e−bq�.

Thus the conditional probability that |wi| < (1− q)� for some 1 ≤ i ≤ k is bounded
above by (kB�

A )e−bq�. This upper bound approaches zero exponentially quickly

when k ≤ ec� and c < qb. �

Proposition 4.17. Fix J∈N and α∈
(
0, 2

5

]
. Suppose conjugacy classes [g1], . . . , [gk]

are chosen at random from among all those of length at most �. Assume that k ≤ ec�

for some constant c < bα/(α+ 2). Then, with overwhelming probability as � → ∞,
all J–loose cone-pieces among the closed-geodesics representing [g1], . . . , [gk] have
diameter strictly less than α|gi| for every i.

Proof. We will use Lemmas 4.15 and 4.16 with q = α
α+2 . Observe that the

hypothesis α ≤ 2
5 implies q ≤ 1

6 , as required for Lemma 4.15.
With this value of q, Lemma 4.15 says that with overwhelming probability as � →

∞, all cone-pieces have diameter strictly less than 2α
α+2�. Meanwhile, Lemma 4.16

says that with overwhelming probability as � → ∞, minki=1{|gi|} ≥ (1−q)� = 2
α+2 �.

Putting together the last two results, we conclude that the diameter of every
cone-piece in wi is less than α|wi|. �

In the same spirit as Lemma 4.16, we have

Lemma 4.18. Suppose k ≤ ec� for some constant c < b/2. Then, with
overwhelming probability as � → ∞, a set of k randomly chosen conjugacy classes
has the property that each one is primitive.

Proof. By Remark 2.6, the probability that [gi] is nonprimitive is bounded above
by

�2B

A
e−b�/2.

Thus the probability that a k-tuple of conjugacy classes contains a nonprimitive
class is at most

k
�2B

A
e−b�/2 ≤ �2B

A
e(c−b/2)�,

which goes to 0 as � → ∞ because (c− b/2) < 0. �

We can now restate and prove Theorem 1.1.

Theorem 1.1. Let G = π1X, where X is a compact nonpositively curved cube
complex, and suppose that G is hyperbolic. Let b be the growth exponent of G with

respect to X̃, and let a be the maximal growth exponent of a stabilizer of an essential

hyperplane of X̃. Let k ≤ ec�, where

c < min

{
(b− a)

20
,

b

41

}
.
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Then with overwhelming probability as � → ∞, for any set of conjugacy classes
[g1], . . . , [gk] with each |gi| ≤ �, the group G = G/〈〈g1, . . . , gk〉〉 is hyperbolic and is
the fundamental group of a compact, nonpositively curved cube complex.

Proof. We may assume that G is nonelementary; otherwise, a = b = 0 and the
theorem holds vacuously. We begin by replacing X with a closely related cube
complex that satisfies Convention 4.3. First, we perform a cubical subdivision of
X, while retaining the original metric. Then every conjugacy class [g] ⊂ G can be
assigned a closed-geodesic representative w → X. Second, if some hyperplane of
X is inessential, we replace X by its essential core, as in [CS11, Proposition 3.5],
which has the same growth exponents a and b.

For every relator [gi] in the statement of the theorem, let wi → X be the chosen

closed-geodesic. Let w̃i ⊂ X̃ be a geodesic axis that covers wi, stabilized by gi ∈ [gi].

For each w̃i, let Ỹi = hull(w̃i) ⊂ X̃, whose quotient Yi = 〈gi〉\Ỹi admits a local

isometry into X. By Lemma 4.2, Ỹi lies in a uniform neighborhood of w̃i, hence
its quotient Yi is compact and a quasicircle. By construction, every hyperplane of

Ỹi = hull(w̃i) cuts w̃i. This gives us a cubical presentation X∗ = 〈X | Y1, . . . , Yk〉
such that π1X

∗ = G.
Define J = J(X̃) as in Lemma 4.5. Then every diameter ≥ d cone-piece of

X∗ between Yi and Yj corresponds to a J–loose cone-piece between wi and wj , of
diameter ≥ d. Similarly, every diameter ≥ d wall-piece of X∗ in wi corresponds to
a J–loose wall-piece, also of diameter ≥ d.

The hypotheses on c allow us to choose a constant α < 1
20 , such that c < α(b−a)

and c < bα
α+2 . Indeed, c <

1
20 (b−a) and c < b/20

1/20+2 = b
20 ·

20
41 . Then Propositions 4.7

and 4.17 ensure that with overwhelming probability as � → ∞, the J–loose (wall
or cone) pieces in every wi have diameter strictly less than α|wi| = α||Yi||. Thus, by
Lemma 4.5, the wall-pieces and cone-pieces in a relator Yi of X

∗ also have diameter
strictly less than α||Yi||. Thus X∗ satisfies the C ′(α) small-cancellation condition.
Since α < 1

14 , Lemma 3.4 ensures that π1X
∗ is hyperbolic.

Next, we check the hypotheses of Theorem 3.5. We have verified that with
overwhelming probability, X∗ is C ′( 1

20 ) and that every Yi is a compact
quasicircle that deformation retracts to a closed-geodesic wi. By Lemma 4.5 (3),
every hyperplane U ⊂ Yi has a carrier N(U) of diameter strictly less than α||Yi||,
which implies that N(U) is embedded. Since U must cut the closed-geodesic wi,
we also conclude that Yi�U is contractible. Finally, Lemma 4.18 implies that with
overwhelming probability, every wi is primitive. Therefore, Theorem 3.5 ensures
that π1X

∗ acts freely and cocompactly on the CAT(0) cube complex dual to the

wallspace on X̃∗. �

5. Generalization to other metric spaces

In this section, we prove Theorem 1.3, which generalizes Theorem 1.1 to the
setting of groups acting on other, noncubical metric spaces. The idea is to prove
a probabilistic statement for quotients G = G/〈〈g1, . . . , gk〉〉 where the relators gi
are sampled from all short conjugacy classes in a G-action on some metric space
Υ. As discussed in Section 1, there are many situations (for instance, hyperbolic
manifolds) where the most natural geometry associated to a group G is carried by
a metric space that is not cube complex. The results of this section enable us to
draw conclusions using the growth of Υ rather than the growth of a cube complex.
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5.1. Cube-free definitions and results.

Convention 5.1. The following assumptions and terminology hold throughout
this section. Let G be a nonelementary, torsion-free group acting properly and
cocompactly on a δ-hyperbolic geodesic metric space Υ. Let H1, . . . , Hm be a
collection of infinite index quasiconvex subgroups of G, which will remain fixed
for the rest of this section. (In the main case of interest, the Hi are hyperplane

stabilizers of some action of G on a CAT(0) cube complex X̃.) Fix a basepoint
υ ∈ Υ.

We assume that every nontrivial element g ∈ G stabilizes a geodesic axis γ̃ ⊂ Υ̃.
For every conjugacy class [g], we choose a representative closed-geodesic γ ⊂ G\Υ.
Then every g ∈ [g] stabilizes some preimage γ̃ of γ.

Definition 5.2 (Loose pieces in Υ). Fix a constant J > 0. Consider bi-infinite
geodesics γ̃, γ̃′ ⊂ Υ that do not share an endpoint in ∂Υ. Observe that γ̃ ∩NJ (γ̃

′)
is a closed set because NJ (γ̃

′) is a closed neighborhood, and is bounded because
the geodesics do not share an endpoint. Thus γ̃ ∩ NJ (γ̃

′) is compact. A J–loose
cone-piece between γ̃ and γ̃′ is the maximal geodesic segment s ⊂ γ̃ whose endpoints
lie in NJ (γ̃

′). The companion of s is the maximal segment s′ ⊂ γ̃′ whose endpoints
are at distance J from the corresponding endpoints of s.

Now, let γ, γ′ be closed-geodesics in G\Υ. Then a J–loose cone-piece between γ
and γ′ is the projection of a J–loose cone-piece between arbitrary preimages γ̃ and
γ̃′, excluding the case where γ̃ = γ̃′.

A J–loose wall-piece in γ̃ is a maximal geodesic segment s ⊂ γ̃ whose endpoints
are contained in NJ (gHip) for one of the chosen subgroups Hi and for some g ∈ G.
A J–loose wall-piece in a closed-geodesic γ is the projection of a J–loose wall-piece
in γ̃.

Definition 5.3 (Cube-free C ′(α) presentations). Let Υ, δ, υ, G, and H1, . . . , Hm

be as in Convention 5.1. Let κj be the quasiconvexity constant of the orbit Hjυ,
and let κ = maxj{κj}+ 2δ.

Let g1, . . . , gk be infinite-order elements of G. For each gi, let γi → G\Υ be the
chosen closed-geodesic representing [gi]. Since each gi stabilizes an axis γ̃i ⊂ Υ, we
have |γi| = |gi|Υ = �gi�Υ in Definition 2.1.

The presentation 〈G : H1, . . . , Hm | g1, . . . , gk〉 is called C ′(α) with respect to
(Υ, υ, γ1, . . . , γk) if

(1) For every gi, gj , the diameter of any 2δ–loose cone-piece between γi and γj
is less than α�gi�Υ .

(2) For every gi, any κ–loose wall-piece in γi has diameter less than α�gi�Υ .

The results of Section 4 have the following generalization to this context.

Proposition 5.4. Let G, Υ, and {Hi} be as in Definition 5.3. Let b be the growth
exponent of G acting on Υ. Consider conjugacy classes [g1], . . . , [gk] in G, chosen
uniformly from all conjugacy classes of Υ-length at most �. Suppose k ≤ ec� for
some constant c < bα/(α + 2). Then, with overwhelming probability as � → ∞,
property (1) of Definition 5.3 holds.

Proposition 5.5. Let G, Υ, and {Hi} be as in Definition 5.3. Let b be the growth
exponent of G, and let a be an upper bound on the growth exponents of the Hj.
Note that all lengths and growths are measured with respect to the action on Υ.
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Consider conjugacy classes [g1], . . . , [gk] in G, chosen uniformly from all conju-
gacy classes of Υ-length at most �. Suppose k ≤ ec� for some c < α(b− a). Then,
with overwhelming probability as � → ∞, property (2) of Definition 5.3 holds.

Sketch of proof. The proofs of Propositions 5.4 and 5.5 are nearly identical to those
of Propositions 4.17 and 4.7, respectively. There are two differences in the argu-

ment. The primary difference is that Υ is substituted for X̃, and hyperplane sta-
bilizers are replaced by general quasiconvex subgroups Hi. The requirement that
every infinite-order element of π1X stabilizes a geodesic axis (compare Convention
4.3), which was heavily used in the proofs of Propositions 4.17 and 4.7, is mirrored
in our setting by the same requirement in Υ. Note that in both Propositions 4.7
and 4.17, we obtain genericity statements via the counts of Theorem 2.4, which
apply perfectly well to the G-action on Υ.

The second difference is more subtle. In the arguments of Section 4, a loose piece
s ⊂ w̃ is always a combinatorial geodesic segment whose endpoints are at vertices

of X̃. Thus, when we factor a fundamental domain of w as s · y, the parts s and
y are both combinatorial geodesics, and the number of possibilities for y can be
estimated via Theorem 2.4 and Remark 2.5. Meanwhile, in Υ, the set of endpoints
of loose pieces s ⊂ γ̃ might be locally infinite. To enable counting arguments, we
make the following adjustment: when we factor a fundamental domain for γ as s ·y,
we perturb both s and y so that they begin and end at points in the G-orbit of
the basepoint υ. This adjustment perturbs lengths by a bounded additive error,
which becomes absorbed into the multiplicative constants of calculations such as
(4.1) and (4.4). Thus perturbing γ̃ to pass through the orbit Gυ does not affect
the probabilistic conclusions. �

Combining Propositions 5.4 and 5.5 gives Corollary 5.6.

Corollary 5.6. Let G, Υ, and {Hi} be as in Definition 5.3. Let b be the growth
exponent of G with respect to Υ, and let a be an upper bound on the growth exponents
of the Hi. As above, choose a basepoint υ ∈ Υ, and a representative closed-geodesic
in G\Υ for every conjugacy class in G.

Let k ≤ ec�, where c < min{α(b − a), bα/(α + 2)}, and consider conjugacy
classes [g1], . . . , [gk] in G, chosen uniformly from all conjugacy classes of Υ-length
at most �. Then, with overwhelming probability as � → ∞, the presentation 〈G :
H1, . . . , Hm | g1, . . . , gk〉 is C ′(α) with respect to (Υ, υ, γ1, . . . , γk).

5.2. Translation back to cube complexes. In Section 4, we used Lemma 4.5 to
show that every piece in a cubical presentation is associated with a corresponding
J–loose piece, in the sense of Definition 4.4. The following statement is an analogue
of Lemma 4.5 that allows us to compare pieces in a cubical presentation 〈X |
Y1, . . . , Yk〉 to loose pieces in a G-action on Υ.

Proposition 5.7. Let G = π1X, where X is a compact nonpositively curved cube
complex whose immersed hyperplanes are essential, and let H1, . . . , Hm be their
fundamental groups. Suppose that G acts properly and cocompactly on a δ-hyperbolic

geodesic metric space Υ that admits a G-equivariant λ–quasiisometry from X̃.

Let [g1], . . . , [gk] be conjugacy classes in G. For each i, let Ỹi = hull(w̃i), where

w̃i is an axis for gi in X̃. Finally, let Yi = 〈gi〉\Ỹi.
Suppose that, for some λ > λ, the presentation 〈G : H1, . . . , Hm | g1, . . . , gk〉

is C ′(α/λ) with respect to (Υ, p, γ1, . . . , γk). Then there exists a constant
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M = M(α, δ, κ, λ, λ,X) such that whenever �gi�Υ
≥ M for all i, the following

holds. The cubical presentation 〈X | Y1, . . . , Yk〉 is C ′(α). Moreover, every hyper-
plane U ⊂ Yi has a carrier N(U) of diameter strictly less than α||Yi||.

Proof. We begin by recalling the above definition of a λ–quasiisometry. By equa-

tion (1.1), there is a (G-equivariant) function f : X̃ → Υ, along with positive
constants λ1, λ2, ε such that λ1λ2 = λ and

(5.1)
1

λ1
d

˜X(x, y)− ε ≤ dΥ(f(x), f(y)) ≤ λ2d ˜X(x, y) + ε.

We can now relate the systole of Yi in X to the (stable) translation length of gi in
Υ. By Definitions 3.2 and 2.1, we have

||Yi|| = |gi|X ≥ �gi�X = lim
n→∞

d
˜X(q, gni q)

n
,

for an arbitrary point q ∈ X̃. Letting q′ = f(q) ∈ Υ yields

λ2||Yi|| ≥ λ2 lim
n→∞

d
˜X(q, gni q)

n
= lim

n→∞

λ2d ˜X(q, gni q) + ε

n

≥ lim
n→∞

dΥ(q
′, gni q

′)

n
= �gi�Υ .(5.2)

There is a constant η = η(δ, λ1, λ2, ε) with the following properties. First, for

every convex set S ⊂ X̃, the image f(S) ⊂ Υ is η-quasiconvex. Second, for every

bi-infinite geodesic w̃ → X̃, the quasigeodesic image f(w̃) is an η–fellow-traveler
with every geodesic that has the same endpoints in ∂Υ.

Suppose that there is a diameter d cone-piece in X∗ between Yi and Yj , where
d is very large (the precise criterion will be described below). Following Definition

3.2, this piece is a component of Ỹi ∩ Ỹj for appropriate preimages Ỹi and Ỹj . Let

x, y ∈ Ỹi ∩ Ỹj be points such that d
˜X(x, y) = d. By Lemma 4.2, there are points

xi, yi ∈ w̃i and xj , yj ∈ w̃j that are K-close to x and y, respectively.
The following construction in Υ is illustrated in Figure 5. Let γ̃i, γ̃j be the

representative axes for gi, gj , respectively, in Υ. Let �̃i = f(w̃i) be the image of w̃i

in Υ, and observe that �i lies in the η-neighborhood of the axis γ̃i. Similarly, let
�̃j = f(w̃j), and observe that �̃j lies in the η-neighborhood of the axis γ̃j . Label
points x′

i = f(xi), y
′
i = f(yi) ∈ �̃i and x′

j = f(xj), y
′
j = f(yj) ∈ �̃j . Finally, let

x′′
i , y

′′
i ∈ γ̃i be points within η of x′

i, y
′
i, and similarly define x′′

j , y
′′
j ∈ γ̃j .

Observe that the second inequality in equation (5.1) gives

dΥ(x
′′
i , x

′′
j ) ≤ dΥ(x

′
i, x

′
j) + 2η ≤ λ2d ˜X(xi, xj) + ε+ 2η ≤ λ2 · 2K + ε+ 2η,

and similarly dΥ(y
′′
i , y

′′
j ) ≤ λ2 · 2K + ε+ 2η. At the same time, the first inequality

in equation (5.1) gives

(5.3) dΥ(x
′′
i , y

′′
i ) ≥ dΥ(x

′
i, y

′
i)− 2η ≥ 1

λ1
d

˜X(xi, yi)− ε− 2η ≥ d− 2K

λ1
− ε− 2η.

Thus, when d is sufficiently large, we have dΥ(x
′′
i , y

′′
i ) > 2λ2K + ε+ 2η + 2δ.

Next, observe that the geodesic quadrilateral with vertices x′′
j , x

′′
i , y

′′
i , y

′′
j is

2δ-thin. Thus every point of [x′′
i , y

′′
i ] ⊂ γ̃i must be 2δ-close to some other side

of the quadrilateral. Let x′′′
i ∈ [x′′

i , y
′′
i ] be the point such that dΥ(x

′′
i , x

′′′
i ) =

2λ2K+ε+2η+2δ. Since we have taken d to be large, this point x′′′
i exists and is far

from y′′i . Then the side that is 2δ-close to x′′′
i must be on γ̃j . The same conclusion
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≤ η

≤ λ2 · 2K + ε

≤ η

≤ η

≤ λ2 · 2K + ε

≤ η

�̃i = f(w̃i)

�̃j = f(w̃j)

γ̃j

γ̃i

x′
j

x′
i

y′j

y′i

x′′
j y′′j

x′′
i y′′i

x′′′
i y′′′i

Figure 5. The figure lives in Υ. The blue quasigeodesics �̃i and

�̃j are the images of axes in X̃. The black geodesics are axes γ̃i
and γ̃j , respectively. Since �̃i must η–fellow-travel with γi, there
is a point x′′

i that is η-close to x′
i, and similarly for the others. The

2δ–loose cone-piece between γ̃i and γ̃j will contain the segment
[x′′′

i , y′′′i ].

holds for the point y′′′i ∈ [x′′
i , y

′′
i ] such that dΥ(y

′′
i , y

′′′
i ) = 2λ2K + ε + 2η + 2δ. In

particular, the entire segment [x′′′
i , y′′′i ] lies in N2δ(γ̃j). Hence there is a 2δ–loose

cone-piece in Υ, of diameter at least

dΥ(x
′′′
i , y′′′i ) = dΥ(x

′′
i , y

′′
i )− 2(2λ2K + ε+ 2η + 2δ).

Since 〈G : H1, . . . , Hm | g1, . . . , gk〉 is C ′(α/λ) with respect to (Υ, p, γ1, . . . , γk),
we get

α

λ
�gi�Υ

> dΥ(x
′′′
i , y′′′i )

= dΥ(x
′′
i , y

′′
i )− 2(2λ2K + ε+ 2η + 2δ)

≥ dΥ(x
′
i, y

′
i)− 2η − 2(2λ2K + ε+ 2η + 2δ)

= dΥ(x
′
i, y

′
i)− (4λ2K + 6η + 4δ + 2ε)

≥ 1

λ1
d

˜X(xi, yi)− ε− (4λ2K + 6η + 4δ + 2ε)

≥ 1

λ1
(d

˜X(x, y)− 2K)− (4λ2K + 6η + 4δ + 3ε)

=
1

λ1
(d− 2K)− (4λ2K + 6η + 4δ + 3ε).

Combining the last computation with equation (5.2), we obtain

λ1λ2

λ
α||Yi|| ≥

λ1

λ
α�gi�Υ

> d − 2K − λ1(4λ2K + 6η + 4δ + 3ε).

Since λ1λ2 = λ < λ, there is a constant M1 such that when �gi�Υ ≥ M1, we have

α||Yi|| >
λ1λ2

λ
α||Yi||+ 2K + λ1(4λ2K + 6η + 4δ + 3ε) > d.

In other words, the diameter of every cone-piece in Yi is less than α||Yi||. This
establishes the cone-piece portion of the claim that 〈X | Y1, . . . , Yk〉 is C ′(α).

For the wall-piece portion of the desired conclusion, suppose that P = Ỹi∩N(Ũj),

where Ũj is a hyperplane of X̃, and suppose that diam(P ) = d is very large. (Note

that P may or may not be disjoint from Ỹi, hence might not be a wall-piece,
according to Definition 3.2. Compare Remark 4.6.) Let x, y ∈ P be points realizing



652 DAVID FUTER AND DANIEL T. WISE

the diameter. By Lemma 4.2, there are points xi, yi ∈ w̃i that are K-close to x and

y, respectively. Similarly, there are points xj , yj ∈ Ũj that are 1-close to x and y,
respectively.

Let �̃i = f(w̃i) be the image of w̃i in Υ, and observe that �̃i lies in the
η-neighborhood of the axis γ̃i. Let x′

i = f(xi), y
′
i = f(yi) be points in �̃i, and

let x′′
i , y

′′
i ∈ γ̃i be points within η of x′

i, y
′
i.

Let Θj ⊂ Υ be the image of Ũj under the quasiisometry, and let x′
j = f(xj), y

′
j =

f(yj) ∈ Θj be the images of xj , yj . Recall that υ ∈ Υ is the prechosen basepoint,
and that each orbit Hjυ is κj-quasiconvex. Note that Θj ∈ Nψ(gHjυ) for some
g ∈ G, where ψ depends on X,λ1, λ2, ε, κj . Let x′′

j , y
′′
j ∈ gHjυ be points that are

ψ-close to x′
j , y

′
j , respectively.

First, observe that

dΥ(x
′′
i , x

′′
j ) ≤ dΥ(x

′′
i , x

′
i) + dΥ(x

′
i, x

′
j) + dΥ(x

′
j , x

′′
j )

≤ η + (λ2d ˜X(xi, xj) + ε) + ψ

≤ η + (λ2(K + 1) + ε) + ψ.

The same estimate holds for dΥ(y
′′
i , y

′′
j ).

The geodesic quadrilateral with vertices x′′
j , x

′′
i , y

′′
i , y

′′
j is 2δ-thin. Thus every

point of [x′′
i , y

′′
i ] ⊂ γ̃i must be 2δ-close to some other side of the quadrilateral. Let

x′′′
i ∈ [x′′

i , y
′′
i ] be the point such that dΥ(x

′′
i , x

′′′
i ) = η+ λ2(K +1)+ ε+ψ+2δ. (As

with cone-pieces, such a point x′′′
i exists whenever d is sufficiently large.) Then the

side that is 2δ-close to x′′′
i must be the opposite side, namely [x′′

j , y
′′
j ]. The same

conclusion holds for the point y′′′i ∈ [x′′
i , y

′′
i ] such that dΥ(y

′′
i , y

′′′
i ) = η + λ2(K +

1) + ε+ ψ + 2δ. Thus

x′′′
i , y′′′i ∈ γ̃i ∩ N2δ([x

′′
j , y

′′
j ]) ⊂ γ̃i ∩Nκ(gHjυ).

The last containment uses the property κ ≥ 2δ+κj , where gHjυ is κj-quasiconvex.

Since 〈G : H1, . . . , Hm | g1, . . . , gk〉 is C ′(α/λ) with respect to (Υ, p, γ1, . . . , γk),
we get

α

λ
�gi�Υ > dΥ(x

′′′
i , y′′′i )

= dΥ(x
′′
i , y

′′
i )− 2(η + λ2(K + 1) + ε+ ψ + 2δ)

≥ dΥ(x
′
i, y

′
i)− 2(η + λ2(K + 1) + ε+ ψ + 2δ)− 2η

= dΥ(x
′
i, y

′
i)− 2(2η + λ2(K + 1) + ε+ ψ + δ)

≥ 1

λ1
d

˜X(xi, yi)− ε− 2(2η + λ2(K + 1) + ε+ ψ + δ)

≥ 1

λ1
(d

˜X(x, y)− 2K)− 2(2η + λ2(K + 1) + 2ε+ ψ + δ)

=
1

λ1
(d− 2K)− 2(2η + λ2(K + 1) + 2ε+ ψ + δ).

Combining the last computation with equation (5.2), we obtain

λ1λ2

λ
α||Yi|| ≥

λ1

λ
α�gi�Υ

> d − 2K − 2λ1(2η + λ2(K + 1) + 2ε+ ψ + δ).
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Since λ1λ2 = λ < λ, there is a constant M2 such that when �gi�Υ
≥ M2, we have

α||Yi|| >
λ1λ2

λ
α||Yi||+ 2K + 2λ1(2η + λ2(K + 1) + 2ε+ ψ + δ) > d.

Thus d = diam(P ) < α||Yi||. This bounds the size of hyperplane carriers in Yi, as
well as wall-pieces involving Yi. We conclude that when �gi�Υ

≥ M = max(M1,M2)
the cubical presentation is C ′(α). �

5.3. Main result. We can now restate and prove Theorem 1.3. After the proof,
we discuss a potential strengthening.

Theorem 1.3. Let G = π1X, where X is a compact nonpositively curved cube
complex, and suppose that G is hyperbolic. Suppose that G also acts properly and
cocompactly on a geodesic metric space Υ, where every nontrivial element of G
stabilizes a geodesic axis. Suppose that there is a G-equivariant λ–quasiisometry

X̃ → Υ.
Let b be the growth exponent of G with respect to Υ, and let a be the maximal

growth exponent in Υ of a stabilizer of an essential hyperplane of X̃. Let k ≤ ec�,
where

c < min

{
(b− a)

20λ
,

b

40λ+ 1

}
.

Then with overwhelming probability as � → ∞, for any set of conjugacy classes
[g1], . . . , [gk] with each |gi|Υ ≤ �, the group G = G/〈〈g1, . . . , gk〉〉 is hyperbolic and is
the fundamental group of a compact, nonpositively curved cube complex.

Proof. Observe that our hypotheses on c can be restated as

c < (b− a)
1/20

λ
and c <

b( 1
20 )/λ

( 1
20 )/λ+ 2

.

By continuity, we may choose constants α < 1
20 and λ > λ such that

c < (b− a)
α

λ
and c <

bα/λ

α/λ+ 2
.

As in the proof of Theorem 1.1, we replace X by its essential core, so that all
hyperplanes are essential. This does not affect the multiplicative constant λ in the
quasiisometry to Υ. Let H1, . . . , Hm be the hyperplane stabilizers in G = π1X.
We also subdivide X while retaining the original metric, so that every nontrivial
conjugacy class is represented by a closed-geodesic. Both operations preserve the
growth exponents a and b. Corollary 5.6 implies that with overwhelming probability
as � → ∞, the presentation 〈G : H1, . . . , Hm | g1, . . . , gk〉 is C ′(α/λ) with respect
to Υ and any choice of basepoint and axes.

For each i, let w̃i ⊂ X̃ be a geodesic axis stabilized by gi ∈ [gi]. For each w̃i,

let Ỹi = hull(w̃i) ⊂ X̃, whose quotient Yi = 〈gi〉\Ỹi admits a local isometry into

X. By Lemma 4.2, Ỹi lies in a uniform neighborhood of w̃i, hence its quotient Yi is

compact and a quasicircle. By construction, every hyperplane of Ỹi cuts w̃i. This
gives us a cubical presentation X∗ = 〈X | Y1, . . . , Yk〉 such that π1X

∗ = G.
Now, Proposition 5.7 implies that with overwhelming probability as � → ∞, the

cubical presentation X∗ = 〈X | Y1, . . . , Yk〉 is C ′(α) with α < 1
20 .

Furthermore, every hyperplane U of every Yi satisfies diamN(U) < α||Yi||. Since
α < 1

14 , Lemma 3.4 ensures that π1X
∗ is hyperbolic.
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Next, we check the hypotheses of Theorem 3.5. We have verified that with
overwhelming probability, X∗ is C ′( 1

20 ) and that every Yi is compact and
deformation retracts to a closed-geodesic. By Proposition 5.7, every hyperplane
U ⊂ Yi has a carrier N(U) of diameter strictly less than α||Yi||, which implies that
N(U) is embedded. Since U must cut the closed-geodesic wi, we also conclude
that Yi � U is contractible. Finally, the same argument as in Lemma 4.18 implies
that with overwhelming probability, every gi is primitive. Therefore, Theorem 3.5
ensures that π1X

∗ acts freely and cocompactly on the CAT(0) cube complex dual

to the wallspace on X̃∗. �

Remark 5.8. In the above proof of Theorem 1.3, all of the probabilistic arguments
happen inside Corollary 5.6, which combines Propositions 5.4 and 5.5. By contrast,
Proposition 5.7 involves a global assumption (a G-equivariant λ–quasiisometry),
and the proof works entirely in the language of coarse geometry without invoking
any counting or probability. One can envision a strengthening of Proposition 5.7
that tracks the behavior of a typical conjugacy class and a typical piece.

To make this precise, choose a basepoint x ∈ X̃ and let Bn(X̃) = {g ∈ G :
d

˜X(x, gx) ≤ n}. Define Bn(Υ) similarly using the basepoint υ ∈ Υ, and recall
from Definition 2.2 that fG,Υ(n) counts the cardinality of Bn(Υ). Define the mean

distortion of X̃ with respect to Υ to be

τ (X̃/Υ) = lim
n→∞

1

fG,Υ(n)

∑
g∈Bn(Υ)

d
˜X(x, gx)

n
= lim

n→∞

1

fG,Υ(n)

∑
g∈Bn(Υ)

d
˜X(x, gx)

dΥ(υ, gυ)
.

In words, τ (X̃/Υ) measures the average factor by which an element of G sampled

using Υ gets stretched in X̃. See [CT21, Eqn (1.1) and Thm 1.2] for a proof that
the limit exists.

The mean distortion can be bounded as follows. Suppose there is a G-equivariant

λ–quasiisometry f : X̃ → Υ, as in equation (5.1), so that f(x) = υ. Then

1

λ1
≤ 1

τ (X̃/Υ)
≤ λ2.

For a chosen ε > 0, an element g ∈ G or a conjugacy class [g] is called Υ-typical
if

(5.4)
(
τ (X̃/Υ)− ε

)
�g�Υ ≤ �g�

X
≤

(
τ (X̃/Υ) + ε

)
�g�Υ .

For each ε > 0, a conjugacy class sampled uniformly from all those of Υ-length at
most � will be Υ-typical with overwhelming probability. Indeed, if Υ is the Cayley
graph of G with respect to some generating set, this follows from a large deviation
result of Cantrell and Tanaka [CT21, Thm 4.23]. If Υ is itself a CAT(0) cube
complex, this follows from a large deviation theorem of Cantrell and Reyes [CR23b,
Thm 1.4]. For general Υ, the referee informs us that this can be derived from
Cantrell and Reyes [CR23a, Eqn (5.2)].

We now discuss the prospects for removing λ from the statement of
Proposition 5.7. The proof begins by observing that every conjugacy class [gi]
satisfies �gi�X ≥ (λ2)

−1�gi�Υ ; see equation (5.2). Since [gi] is Υ-typical with

overwhelming probability, we may replace (λ2)
−1 by

(
τ (X̃/Υ) − ε

)
. Next, the

proof of Proposition 5.7 uses the constant λ1 to pass from the diameter of a piece
in X∗ to the diameter of a loose piece in Υ; see equation (5.3). If one knew that a
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cone-piece or wall-piece in X∗, coming from a random presentation as in the
statement of Theorem 1.3, also corresponds to an Υ-typical group element of G,

one could replace λ1 by
(
τ (X̃/Υ) + ε

)
. The upshot would be that the product

λ = λ1λ2 would be replaced by the quotient
(
τ (X̃/Υ) + ε

)
/
(
τ (X̃/Υ) − ε

)
, which

approaches 1 as ε → 0.
Whether the pieces coming from a random presentation (sampled using lengths

in Υ) can be represented by Υ-typical group elements is an interesting problem.
See Question 7.10.

6. Pentagonal surfaces

Throughout this section, we consider the setting where Υ = H2 is the hyperbolic

plane, equipped with a tiling T by regular right-angled pentagons, and X̃ is the
square complex dual to this tiling. We work out the optimal constant λ in a

λ–quasiisometry from X̃ to Υ. This can be considered the first interesting example
where Theorem 1.3 applies.

Proposition 6.1. Let T be the tiling of H2 by regular right-angled pentagons, with
hyperbolic metric dH. The dual tiling T ∗, with five quadrilaterals at every vertex,

can be identified with a CAT(0) square complex X̃, with combinatorial metric d
˜X .

Then the identity map id : (X̃, d
˜X) → (H2, dH) is a λ–quasiisometry, where

λ =
arccosh(2K2 + 2K + 1)

arccosh(K + 1)
≈ 1.5627 for K = cos

(
2π
5

)
.

Furthermore, this value of λ is optimal.

As mentioned in Section 1, combining Theorem 1.3 with Proposition 6.1 and the
classical work of Huber [Hub59] yields a proof of Corollary 1.4.

The proof of Proposition 6.1 is entirely elementary and largely pictorial; see
Figures 6–13. The proof also trades the coarse geometry that has dominated most of
this paper for the fine geometry of H2. We begin with Lemma 6.2, which computes
a number of lengths in a single right-angled pentagon using the hyperbolic laws
of sines and cosines [Fen89,Rat19]. We then continue with Proposition 6.3, which
considers a number of combinatorial possibilities for how a hyperbolic geodesic
segment can cross a sequence of several adjacent pentagons.

Lemma 6.2. Let P ⊂ H2 be a regular right-angled pentagon. Label lengths as in
Figure 6. Set K = cos

(
2π
5

)
. Then the labeled lengths can be expressed as follows:

a = arccosh
(√

K + 1
)
≈ 0.5306.(6.1)

b = arccosh
(

1√
1−K

)
≈ 0.6269.(6.2)

c = arccosh(K + 1) ≈ 0.7672.(6.3)

d = arccosh(2K2 + 2K + 1) ≈ 1.1989.(6.4)

e = arccosh
(
(2K + 1)

√
K + 1

)
≈ 1.2265.(6.5)

f = arccosh(4K2 + 4K + 1) ≈ 1.6169.(6.6)

Furthermore, the length g of a geodesic segment contained in two adjacent
right-angled pentagons, as in Figure 6, satisfies

2g = arccosh(1 + 2K(8K2 + 8K + 1)2) ≈ 3.1838.(6.7)
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a a

a a

a a

a a

a a

b b

b b

c

d/2 d/2

θ

2a

2a 2a

2a 2a2a 2a

e

f/2 f/2

g g

Figure 6. Lengths in a right-angled pentagon, as computed in
Lemma 6.2.

Proof. In Figure 6, left, the right-angled pentagon P is subdivided into five
isometric quadrilaterals, arranged symmetrically about the center point of P . Each
quadrilateral Q has two sides of length a, two sides of length b, three right angles,
and one angle of θ = 2π

5 . The presence of three right angles makes Q a Lambert
quadrilateral or almost rectangular quadrilateral in the terminology of Ratcliffe
[Rat19, Sec 3.5]. By [Rat19, Thm 3.5.9], we have

K = cos θ = sinh2 a,

hence K + 1 = cosh2 a, implying equation (6.1). By [Rat19, Thm 3.5.8], we have

cosh2 b =

(
cos θ · cos(π2 ) + cosh a

sin θ · sin(π2 )

)2

=
cosh2 a

sin2 θ
=

1 +K

1−K2
=

1

1−K
,

implying equation (6.2).
The hyperbolic law of cosines [Rat19, Thm 3.5.3] implies the following version

of the Pythagorean theorem as a special case. In a hyperbolic right triangle, with
legs of length x, y and hypotenuse of length z, the lengths satisfy

(6.8) coshx · cosh y = cosh z.

Now, consider the distances between the midpoints of edges in the right-angled
pentagon P . By (6.8), the midpoints of two adjacent edges are separated by distance
c, where

cosh c = cosh2 a = sinh2 a+ 1 = K + 1,

implying equation (6.3). By [Rat19, Thm 3.5.3], the midpoints of two nonadjacent
edges are separated by distance d, where

cosh d = cosh2 b− sinh2 b · cos(2θ).
Substituting cosh2 b = 1

1−K and sinh2 b = K
1−K , as well as cos(2θ) = 2K2 − 1 gives

cosh d =
1

1−K
− K(2K2 − 1)

1−K
= 2K2 + 2K + 1,

implying equation (6.4).
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To compute the lengths e and f , observe that

cosh a =
√
sinh2 a+ 1 =

√
K + 1 and cosh(2a) = 2 sinh2 a+ 1 = 2K + 1.

Now, (6.8) gives

cosh(e) = cosh(2a) · cosh a = (2K + 1)
√
K + 1,

implying equation (6.5). Similarly, (6.8) gives

cosh(f) = cosh(2a)2 = (2K + 1)2 = 4K2 + 4K + 1,

implying equation (6.6).
Finally, we use Figure 6 to compute the length g. In that figure, we have a

hyperbolic quadrilateral with two right angles at the ends of a side of length 2a,
adjacent sides of length 4a, and the fourth side of length 2g. According to first
formula in the last block of displayed equations on [Fen89, page 88], we have

(6.9) cosh(2g) = − sinh2(4a) + cosh2(4a) cosh(2a).

Above, we have already computed that cosh(2a) = 2K + 1, hence

cosh(4a) = 2 cosh2(2a)− 1 = 8K2 + 8K + 1.

Substituting all this into equation (6.9) gives

cosh(2g) = − sinh2(4a) + cosh2(4a) cosh(2a)

= 1− cosh2(4a) + cosh(2a) cosh2(4a)

= 1 + (cosh(2a)− 1) cosh2(4a)

= 1 + 2K(8K2 + 8K + 1)2,

implying equation (6.7). �

For the rest of this section, the symbols a, . . . , g will always denote the constants
computed in Lemma 6.2. Now, we can prove the following more global comparison
between the cubical and hyperbolic metrics on H2.

Proposition 6.3. Let T be the tiling of H2 by regular right-angled pentagons, with
hyperbolic metric dH. The dual tiling T ∗, with five quadrilaterals at every vertex,

can be identified with a CAT(0) square complex X̃, with combinatorial metric d
˜X .

Then there is a constant ε > 0 such that for all x, y ∈ X̃0, the distances dH(x, y)
and d

˜X(x, y) can be compared as follows:

c · d
˜X(x, y)− ε ≤ dH(x, y) ≤ d · d

˜X(x, y) + ε,(6.10)

where the constants c, d are as in Lemma 6.2. Furthermore, the multiplicative
constants c, d in (6.10) are sharp.

Observe that the constant λ in the statement of Proposition 6.1 is exactly d/c.
Thus Proposition 6.3 implies Proposition 6.1.

Proof. We begin by proving the second inequality of (6.10). Let w → X̃ be a

combinatorial geodesic in X̃ with endpoints x, y ∈ X̃0. By choosing a sufficiently
large additive constant ε, we may assume without loss of generality that |w| =
d

˜X(x, y) ≥ 2. In the hyperbolic metric on H2, the combinatorial geodesic w is a
concatenation of two or more edges of the dual tiling T ∗. By Lemma 6.2, every
edge of w has hyperbolic length 2b.
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x

y

w γ

x

y

w

γ

Figure 7. The blue path w → X is a combinatorial geodesic from
x to y. The pink path γ is constructed by taking hyperbolic short-
cuts between midpoints of consecutive edges of w. Each segment
of γ in a pentagon of T has length c or d. The sharpness of the
constants c and d in (6.10) is demonstrated by the right and left
panels, respectively.

Since edges of T ∗ meet at angles of θ = 2π
5 or 2θ = 4π

5 , we may homotope w to
a shorter piecewise-geodesic path γ by constructing hyperbolic shortcuts between
midpoints of consecutive edges. See Figure 7. Each such shortcut replaces two
cubical half-edges (of combined cubical length 1) by a hyperbolic segment of length
either c or d. The first and last half-edges of w remain as they are, and have
hyperbolic length b. Since c < d, it follows that

dH2(x, y) ≤ b+ d(|w| − 1) + b ≤ d|w|+ ε = d · d
˜X(x, y) + ε,

for an appropriate value of ε. Sharpness of the multiplicative constant d holds
because one may concatenate arbitrarily many segments of length d in adjacent
pentagons to form a hyperbolic geodesic. See the left panel of Figure 7.

By the same token, sharpness of the multiplicative constant c in the first
inequality of (6.10) holds because one may concatenate arbitrarily many segments
of length c in adjacent pentagons to form a hyperbolic geodesic, as in the right
panel of Figure 7.

To prove the first inequality of (6.10), with its optimal multiplicative constant,
we make the following definitions. An altitude of a right-angled pentagon P is a
geodesic segment � from a vertex to the midpoint of the opposite edge. If s ⊂ P is a
hyperbolic geodesic connecting interior points of sides E1, E2, the altitude associated
to s is the unique altitude � with the property that reflection in � interchanges E1

with E2. See Figure 8.
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s

s
� �

E1 E2

E1 E2

Figure 8. The two combinatorial types of segment s cutting
through a right-angled pentagon, and the altitude � associated to
each s.

Let γ → H2 be a hyperbolic geodesic with endpoints x, y ∈ X̃0. Then d
˜X(x, y)

equals the number of hyperplanes that separate x from y. Since the hyperplanes
of X are identified with the bi-infinite geodesics containing edges of T , it follows
that d

˜X(x, y) is the number n of edges of T crossed by γ. After an arbitrarily
small perturbation, affecting lenH(γ) by an additive error, we may assume that γ
is disjoint from T 0.

In every pentagon P that intersects γ but does not contain the endpoints x, y,
draw the altitude associated to γ ∩ P . These (n − 1) altitudes partition γ into a
concatenation γ1γ2 · · · γn, where γ1 is the segment from x to the first altitude; γn
is the segment from the last altitude to y; and every remaining γi connects the
altitudes in adjacent right-angled pentagons. To prove (6.10), we will show that
the average length of a segment γi for 0 < i < n is at least c ≈ 0.7672.

There are five combinatorial possibilities for a segment γi between two altitudes,
corresponding to five types of intersections between γ and two adjacent pentagons.
See Figure 9. If � and �′ are the altitudes in adjacent pentagons P and P ′, respec-
tively, the convexity of distance functions implies that the shortest geodesic segment
from � to �′ meets each of them orthogonally or at an endpoint. Consequently, it
is not hard to determine the shortest possible length from � to �′; see Figure 10.

P

P ′

I

II

III

IV

P P ′

V

Figure 9. The five combinatorial types of (unoriented) intersec-
tion between a hyperbolic geodesic and two adjacent pentagons
P, P ′. In types I–IV, the geodesic γ enters through a side of P
that is not adjacent to the shared side P ∩ P ′. In type V, the
geodesic γ both enters and exits P ∪ P ′ through sides adjacent to
the shared side P ∩ P ′.

In type I, Figure 10 shows that the worst-case scenario for len(γi) is a ≈ 0.5306;
since a < c, this complicated case is analyzed below. In type II, Figure 10 shows
that we always have len(γi) ≥ 2a > c. In type III, we always have len(γi) ≥ d > c.
In type IV, we always have len(γi) ≥ f/2 > c. Finally, in type V, we always have
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I
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II
a a

III

d/2
d/2

IV

f/2

V

c/2
c/2

Figure 10. For each combinatorial type of intersection between
a hyperbolic geodesic and two adjacent pentagons, the highlighted
segment shows the infimal length between the altitudes.

len(γi) ≥ c. The comparisons to c come from the numerical values computed in
Lemma 6.2. Thus, in every case except type I, we have len(γi) ≥ c.

It remains to analyze segments γi of type I. We claim the following:

(1) If γi is of type I, and 2 < i < n−1, then there is an adjacent index j = i±1
such that the corresponding segment γj is of type II, III, or IV.

(2) If γj is of type II or IV, then γi is the only type-I segment adjacent to γj .
(3) For all types of γj , we have len(γi) + len(γj) ≥ min(3a, g) > 2c.
(4) If γj is of type III, and furthermore γj also adjacent to a type-I segment γk

where k = i± 2, then len(γi) + len(γj) + len(γk) ≥ 2e > 3c.

Assuming these claims, we can complete the proof as follows. By claim (1), every
segment γi of type I (where 3 ≤ i ≤ n − 2) borrows some of the length from an
adjacent segment γj of type II, III, or IV. By claim (2), every segment γj of type
II or IV acts as a “lender” to at most one segment of type I. Every segment γj of
type III acts as a “lender” to at most two segments of type I. In all cases, claims
(3) and (4) say that the average length of γj and its adjacent type-I segments is
more than c. Putting it all together, we have

dH2(x, y) = len(γ) =

n∑
i=1

len(γi) >

n−2∑
i=3

c = (n− 4)c = c · d
˜X(x, y)− 4c,
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P

Q

R

II

IIIIV

δ

ξ

γ

γ
γ

Figure 11. Three possibilities for a geodesic γ that intersects
{P,Q} in a segment of type I. The next segment of γ in pentagons
Q ∪R must be of type II, III, or IV.

which completes the proof of equation (6.10).
Figure 11 illustrates the proof of claims (1) and (2). The geodesic γ intersects

the left-most pair of pentagons {P,Q} in a segment γi ⊂ γ of type I. We assume
without loss of generality that the indices are increasing as γ traverses the figure
from left to right. The continuation of γ must exit the central pentagon R through
one of the sides marked II, III, or IV, because γ cannot intersect δ twice. This
proves claim (1). If the next segment γj = γi+1 is of type II, then the following
segment γk = γi+2 cannot be of type I, because otherwise γ would again intersect
δ twice. Similarly, if γj = γi+1 is of type IV, then the following segment γk = γi+2

cannot be of type I, because γ cannot intersect the geodesic ξ twice. This proves
claim (2).

II

IIIIV

γi γi+1

γi+1

γi+1

�II

�III

�IV

3a

g

δ
Figure 12. The left-most segment γi is of type I. The next seg-
ment γj = γi+1 is of type II, III, or IV, and terminates at the
altitude �II, �III, or �IV, respectively. In type II and type IV, the
shortest possible lengths of γi ∪ γi+1 are highlighted. In type III,
γi+1 must intersect �II or �IV.
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For the three combinatorial types of γj = γi+1, Figure 12 illustrates the infimal
lengths of (γi ∪ γj). Let �II, �III, �IV be the terminal altitudes for the three possible
types of γj . If γj is of type II, then the worst-case scenario is when γ fellow-travels
δ, hence we obtain len(γi ∪ γj) > 3a > 2c, where the final inequality uses Lemma
6.2. If γj is of type IV, then the worst-case scenario is when γi ∪ γj starts at
the endpoint of an altitude and ends perpendicular to �IV. In this case, we have
len(γi ∪ γj) ≥ g > 2c, where the final inequality is by Lemma 6.2. Finally, observe
that if γj is of type III, then γj must intersect either �II or �IV. Thus, by the cases
already discussed, we have len(γi ∪ γj) > 2c. This proves claim (3).

γi

γi+1

γi+2

Figure 13. If γj = γi+1 is of type III and γi, γi+2 are both of type
I, the shortest possible configuration is symmetric about the point
in the center. In this configuration, each half of (γi ∪ γi+1 ∪ γi+2)
is a segment of length e.

Finally, Figure 13 illustrates the proof of claim (4). If γj = γi+1 is of type III
and γi, γi+2 are both of type I, then the shortest possible length of (γi ∪ γj ∪ γk)
is 2e > 3c, where the inequality follows from Lemma 6.2. This completes the proof
of claims (1)–(4), implying equation (6.10) and Proposition 6.3. �

7. Problems

This section collects several problems and suggested directions for future
research.

Problem 7.1. Determine the optimal density at which random quotients of a
surface group G are cubulated. How does the answer depend on the choice of
proper metric on G?

Problem 7.2. Given a nonpositively curved cube complex X such that G = π1X
is hyperbolic, find the optimal density such that quotients of G are cubulated. How
does the answer depend on X and the growth rate of its hyperplanes?

Problems 7.3–7.5 are stated in order of increasing relatively hyperbolic ambition.

Problem 7.3. Let G = G1 ∗G2 be a free product of cubulated groups. Find the
optimal density at which random quotients of G are cubulated. Letting Gi = π1Xi,
where Xi is a nonpositively curved cube complex, we think of G = π1X, where
X = X1 ∪A ∪X2, where A ∼= [0, n] is an arc glued to X1 and X2 at its endpoints.
Does the optimal density depend on the length of A? See Martin–Steenbock [MS17]
and Jankiewicz–Wise [JW22].
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Problem 7.4. LetG be a relatively hyperbolic group that is the fundamental group
of a compact nonpositively curved cube complex. Show that there is a density at
which random quotients of G are cubulated (and relatively hyperbolic).

Problem 7.5. Let G be an acylindrically hyperbolic group that is the fundamental
group of a compact nonpositively curved cube complex. Show that there is a density
at which random quotients of G are cubulated.

Problem 7.6 has not even been studied for virtually free groups.

Problem 7.6. Generalize Theorem 1.1 to cubulated hyperbolic groups with
torsion.

The main challenge is that cubical small-cancellation theory was not described
in the case where there is torsion. One could either develop that theory or use
another hyperbolic Dehn filling theory with walls (e.g., Osin [Osi07], Groves–
Manning [GM08], or Dahmani–Guirardel–Osin [DGO17]) to ensure that the
relators embed in the universal cover of the quotient, and subsequently apply the

criterion of Theorem 3.5 which can instead be applied to X̃∗.

Problem 7.7. Let G be a nonelementary relatively hyperbolic group. Prove that
there is a density such that all low-density quotients of G are again relatively
hyperbolic. Note that the (torsion-free) hyperbolic case was already handled by
Ollivier [Oll04].

An unlikely but more fanciful possibility is to use Theorem 1.1 to find new
examples of hyperbolic groups that are not cubulated.

Conjecture 7.8. Let M = Hn/Γ be a closed hyperbolic n-manifold. Assume that
either n ≤ 3 or that M is arithmetic of simplest type. Then, for every λ > 1, M is
homotopy equivalent to a compact nonpositively curved cube complex X such that

there is a Γ-equivariant λ–quasiisometry from X̃ to M̃ .

Recall that the definition of a λ–quasiisometry appears in equation (1.1).
Conjecture 7.8 is supported by the following intuition. If M is a surface, then

there is a plethora of cubulations of M via closed-geodesics. As � → ∞, a randomly
chosen closed-geodesic γ of length approximately � is nearly equidistributed in M
(as well as in T 1M). Therefore, the number of lifts of γ separating a distant pair

of points p, q ∈ M̃ = H2 should be nearly proportional to dH2(p, q). The same
intuition applies for n = 3, where a closed hyperbolic 3-manifold M has a plethora
of cubulations via nearly geodesic surfaces that are similarly nearly equidistributed
in M . See Kahn and Markovic [KM12].

Similarly, an arithmetic hyperbolic manifold M = Hn/Γ of simplest type always
contains totally geodesic (codimension-1) hypersurfaces. Since the commensurator
Comm(Γ) is dense in Isom(Hn), one may move a single hypersurface by many
elements of Comm(Γ), as in [BHW11], to achieve a cubulation of Γ such that,
again, dHn(p, q) is nearly proportional to the number of hypersurfaces separating p
from q.

Brody and Reyes [BR] have very recently proved Conjecture 7.8, formalizing the
intuition in the above discussion.

An ambitious generalization of Conjecture 7.8 asks for arbitrarily homogeneous
cubulations of more general groups.
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Question 7.9. Let G be a cubulated, hyperbolic group that acts geometrically on
a metric space Υ. Is it true that for every λ > 1, there exists a (proper, cocompact)

G-action on a nonpositively curved cube complex X̃, admitting a G-equivariant

λ–quasiisometry f : X̃ → Υ?

Finally, we pose a probabilistic question about pieces that is prompted by
Remark 5.8.

Question 7.10. Suppose, as in Theorem 1.3, that G = π1X, where X is a compact
nonpositively curved cube complex. Suppose G is hyperbolic, and acts properly
and cocompactly on a geodesic metric space Υ. Consider a cubical presentation
X∗ = 〈X | Y1, . . . , Yk〉.

Let D = diam(X). For ε > 0, a piece P of X∗ is called Υ-typical if there are
points x, y ∈ P realizing d

˜X(x, y) = diam(P ), and an Υ-typical group element
g ∈ G such that d

˜X(gx, y) ≤ D. Recall that Υ-typical group elements are defined
in equation (5.4), using an additive constant ε.

Suppose that [g1], . . . , [gk] have been sampled uniformly from among all the
conjugacy classes satisfying �g�

Υ
≤ �, and X∗ = 〈X | Y1, . . . , Yk〉 is the cubical

presentation associated toG/〈〈g1, . . . , gk〉〉. What is the distribution of pieces (above
a certain threshold of diameter)? Is it true that with overwhelming probability, all
sufficiently large pieces of X∗ are Υ-typical?

A positive answer to Question 7.10 would enable one to complete the line of
argument outlined in Remark 5.8. We suspect that the answer is “yes” for
cone-pieces. We are less confident about wall-pieces, because the distribution of
wall-pieces may depend on the Υ-action of hyperplane stabilizers in G.
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[AM15] Yago Antoĺın and Ashot Minasyan, Tits alternatives for graph products, J. Reine
Angew. Math. 704 (2015), 55–83, DOI 10.1515/crelle-2013-0062. MR3365774

[Ash22a] Calum J. Ashcroft, Property (T) in random quotients of hyperbolic groups at densities
above 1/3, arXiv:2202.12318, 2022.

[Ash22b] Calum J. Ashcroft, Random groups do not have Property (T) at densities below 1/4,
arXiv:2206.14616, 2022.
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