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SYMMETRIC LINKS AND CONWAY SUMS:
VOLUME AND JONES POLYNOMIAL

David Futer, Efstratia Kalfagianni, and Jessica S. Purcell

Abstract. We obtain bounds on hyperbolic volume for periodic links and Conway sums

of alternating tangles. For links that are Conway sums we also bound the hyperbolic

volume in terms of the coefficients of the Jones polynomial.

1. Introduction

Given a combinatorial diagram of a knot in the 3–sphere, there is an associated
3–manifold, the knot complement, which decomposes into geometric pieces by work
of Thurston [26]. A central goal of modern knot theory is to relate this geometric
structure to simple topological properties of the knot and to combinatorial knot in-
variants. To date, there are only a handful of results along these lines. Lackenby
found bounds on the volume of alternating links based on the number of twist regions
in the link diagram [16]. We extended these results to all links with at least seven
crossings per twist region in [12], and in [11] we obtain similar results for links that
are closed 3–braids. Our method is to apply a result bounding the change of volume
under Dehn filling based on the length of the shortest filling slope. In all these cases
the relation between twist number and volume was also important in establishing a
coarse volume conjecture: a linear correlation between the coefficients of the classical
Jones polynomial and the volume of hyperbolic links.

In the present paper, we build upon the methods of [12] as well as very recent work
of Gabai, Meyerhoff, and Milley [14]; Agol, Storm, and Thurston [8]; and Agol [6].
We use this work to give explicit estimates on the volume for links with symmetries
of order at least six, and to give estimates on the volume and coefficients of the Jones
polynomial under Conway summation of tangles. As in the results above, we obtain
explicit linear bounds on volume in terms of the twist number of a diagram.

1.1. Links with high order of symmetry. A link K is called periodic with period
an integer p > 1 if there exists an orientation–preserving diffeomorphism h : S3 → S3

of order p, such that h(K) = K and either h has fixed points or hi has no fixed
points for all 0 < i < p. The solutions to the Smith conjecture [23] and the spherical
spaceforms conjecture [22] imply that h is conjugate to an element of SO(4). Thus, if
h has no fixed points, the group generated by h acts freely on S3 and the quotient of
S3 is a lens space L(p, q). Furthermore, the quotient of S3rK is a link complement
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in L(p, q). Otherwise, the orthogonal action conjugate to h must be a 2π/p rotation
about a great circle Ch ⊂ S3, and the quotient is still S3. When the axis Ch is either
a component of K or disjoint from K (in particular, when p > 2), the quotient of K
is a link K ′ ⊂ S3.

Theorem 1.1. Let K be a hyperbolic periodic link in S3. Assume that the period of
K is p ≥ 6, and acts by rotation about an axis Ch. Let K ′ be the quotient of K. Then

vol(S3rK) ≥ p

(
1− 2

√
2π2

p2

)3/2

vol(S3rK ′).

In the statement above, S3rK ′ may or may not be hyperbolic. We let vol(S3rK ′)
denote simplicial volume, i.e. the sum of the volumes of the hyperbolic pieces in the
geometric decomposition of S3rK ′.

We combine Theorem 1.1 with a result of Agol, Storm, and Thurston (see Theorem
2.2) to give a bound in terms of the diagram of K ′. We first make the following
definitions.

Definition 1.2. For a knot or link K, we consider a diagram D(K) as a 4–valent
graph in the plane, with over–under crossing information at each vertex. A link
diagram D is called prime if any simple closed curve that meets two edges of the
diagram transversely bounds a region of the diagram with no crossings.

Two crossings of a link diagram D are defined to be equivalent if there is a simple
closed curve in the plane meeting D in just those crossings. An equivalence class of
crossings is defined to be a twist region. The number of distinct equivalence classes
is defined to be the twist number of the diagram, and is denoted tw(D).

Our definition of twist number agrees with that in [8], and differs slightly from that
in [12]. The two definitions agree provided the diagram is sufficiently reduced (i.e.
twist reduced in [12]). We prefer Definition 1.2 as it does not require us to further
reduce diagrams.

Corollary 1.3. With the notation and setting of Theorem 1.1 suppose, moreover,
that K ′ is alternating and hyperbolic, with prime alternating diagram D′. Then

vol(S3rK) ≥

(
1− 2

√
2π2

p2

)3/2

p v8

(
tw(D′)

2
− 1
)
,

where v8 = 3.6638 . . . is the volume of a regular ideal octahedron in H3.

By combining Theorem 1.1 with recent results by Agol [6] and Gabai, Meyerhoff,
and Milley [14], we obtain a universal estimate for the volumes of periodic links. For
ease of notation, define the function ψ : {x ∈ R : x≥ 5.5} → R by

ψ(x) := min

2.828, 3.647

(
1− 2

√
2π2

x2

)3/2
 .

Note that the right–hand term in the definition of ψ is greater than 2.828 for x ≥ 14.
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Theorem 1.4. Let K be a hyperbolic periodic link in S3, of period p ≥ 6, where we
allow freely periodic links as well as those in which the symmetry acts by rotation.
Then either

(1) vol(S3rK) ≥ p · ψ(p), or
(2) K is one of two explicit exceptions: a 5–component link of period 10 whose

quotient is L(10, 3)rm003 or a 5–component link of period 15 whose quotient
is L(15, 4)rm006. Here, m003 and m006 are manifolds in the SnapPea cen-
sus; each of these two manifolds is the complement of a unique knot in the
respective lens space.

The estimate (1) is sharp for four freely periodic links, whose periods are 14, 18, 19,
and 21.

1.2. Tangles and volumes. A tangle diagram T (or simply a tangle) is a graph
contained in a unit square in the plane, with four 1–valent vertices at the corners
of the square, and all other vertices 4–valent in the interior. Just as with knot
diagrams, every 4–valent vertex of a tangle diagram comes equipped with over–under
crossing information. Label the four 1–valent vertices as NW, NE, SE, SW, positioned
accordingly.

A tangle diagram is defined to be prime if, for any simple closed curve con-
tained within the unit square which meets the diagram transversely in two edges,
the bounded interior of that curve contains no crossings. Two crossings in a tan-
gle are equivalent if there is a simple closed curve in the unit square meeting D in
just those crossings. Equivalence classes are called twist regions, and the number of
distinct classes is the twist number of the tangle.

An alternating tangle is called positive if the NE strand leads to an over-crossing,
and negative if the NE strand leads to an under-crossing.

The closure of a tangle is defined to be the link diagram obtained by connecting NW
to NE and SW to SE by crossing–free arcs on the exterior of the disk. A tangle sum,
also called a Conway sum, of tangles T1, . . . , Tn is the closure of the tangle obtained
by connecting diagrams of the tangles T1, . . . , Tn linearly west to east. Notice that
if T1, . . . , Tn are all positive or all negative, their tangle sum will be an alternating
diagram.

Finally, we will call a tangle diagram T an east–west twist if tw(T ) = 1 and the
diagram consists of a string of crossings running from east to west. The closure of
such a tangle gives a standard diagram of a (2, q) torus link.

Theorem 1.5. Let T1, . . . , Tn, n ≥ 12, be tangles admitting prime, alternating di-
agrams, none of which is an east–west twist. Let K be a knot or link which can be
written as the Conway sum of the tangles T1, . . . , Tn, with diagram D. Then K is
hyperbolic, and

v8
2

(
1−

(
8π

11.524 + n 4
√

2

)2
)3/2

(tw(D)− 3) ≤ vol(S3rK) < 10 v3 (tw(D)− 1).

Here, v3 = 1.0149 . . . is the volume of a regular ideal tetrahedron and v8 = 3.6638 . . .
is the volume of a regular ideal octahedron in H3.

The upper bound is due to Agol and D. Thurston [16]. The lower bound approaches
(v8/2)(tw(D) − 3) as the number of tangles n approaches infinity – similar to the
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(sharp) lower bound for alternating diagrams proved by Agol, Storm, and Thurston
[8]. However, Theorem 1.5 applies to more classes of knots than alternating. For
example, it applies to large classes of arborescent links (e.g. Montesinos links of
length at least 12). In fact, our method of proof applies to links that are obtained by
summing up any number of “admissible” tangles, where the term admissible includes,
but is not limited to, alternating tangles, tangles that admit diagrams containing at
least seven crossings per twist region and tangles whose closures are links of braid
index 3.

1.3. Jones polynomial relations. The volume conjecture of Kashaev and Murakami-
Murakami asserts that the volume of hyperbolic knots is determined by certain asymp-
totics of the Jones polynomial and its relatives. At the same time, recent results
[10, 12] combined with a wealth of experimental evidence suggest a coarse version of
the volume conjecture: that the coefficients of the Jones polynomial of a hyperbolic
link should determine the volume of its complement, up to bounded constants. To
state the contribution of the current paper to this coarse volume conjecture we need
some notation. For a link K, we write its Jones polynomial in the form

JK(t) = αtk + βtk−1 + . . .+ β′tm+1 + α′tm,

so that the second and next-to-last coefficients of JK(t) are β and β′, respectively.
Dasbach and Lin proved [10] that if D(K) is a prime, alternating diagram, then
tw(D) = |β| + |β′|. In [12], we extended their results to give relations between the
coefficients of the Jones polynomial of links and the twist number of link projections
that contain at least three crossings per twist region. We further extend the result
here.

Above, we defined the closure of a tangle (also called the numerator closure) to be
the link diagram obtained by connecting NW to NE and SW to SE by simple arcs
with no crossings. The denominator closure of the tangle is defined to be the diagram
obtained by connecting NW to SW, and NE to SE by simple arcs with no crossings.
We say that a tangle diagram T is strongly alternating if it is alternating and both
the numerator and denominator closures define prime diagrams.

Theorem 1.6. Let T1, . . . , Tn be alternating tangles whose Conway sum is a knot K
with diagram D. Define T+ to be the result of joining all the positive Ti west to east,
T− to be the result of joining all the negative Ti west to east. Then, if both T+ and
T− are strongly alternating,

tw(D)
2

− 2 ≤ |β|+ |β′| ≤ 2 tw(D).

If some Ti is an east–west twist, then the denominator closure of T+ or T− will
contain nugatory crossings, failing to be prime. Thus the hypotheses of Theorem 1.6
imply that no Ti is an east–west twist. As a result, combining Theorems 1.5 and 1.6
gives

Corollary 1.7. Let K be a knot which can be written as the Conway sum of tangles
T1, . . . , Tn. Let T+ and T− be the sums of the positive and negative Ti, respectively.
Suppose that n ≥ 12, and both T+ and T− are strongly alternating. Then K is
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hyperbolic, and

v8
4

(
1−

(
8π

11.524 + n 4
√

2

)2)3/2

(|β|+ |β′| − 6) ≤ vol(S3rK) < 20v3

(
|β|+ |β′|+ 3

2

)
.

The hypothesis that K be a knot is crucial in the statements of Theorem 1.6 and
Corollary 1.7. Both statements fail, for example, for the family of (2, · · · , 2,−2, · · · ,−2)
pretzel links. Theorem 1.5 implies the volume of K will grow in an approximately
linear fashion with the number of positive and negative 2’s. On the other hand, using
Lemma 5.1 below one can easily compute that |β|+ |β′| = 2 for this family of links.

1.4. Organization. The proofs of our theorems bring together several very recent
results of Agol [6]; Agol, Storm, and Thurston [8]; Gabai, Meyerhoff, and Milley [14];
and the authors [12]. We survey the results in Section 2. In Section 3, we move on to
periodic links to prove Theorems 1.1 and 1.4 and establish some corollaries. Then, in
Section 4 we use Adams’ “belted sum” operations to study the behavior of hyperbolic
volume under the Conway summation of tangles, proving Theorem 1.5. In Section 5
we prove Theorem 1.6.

2. Recent estimates of hyperbolic volume and cusp area

In this section, we survey several recent results by Agol [6], Agol–Storm–Thurston
[8], the authors [12], and Gabai–Meyerhoff–Milley [14], which we will apply in later
sections. Taken together, these theorems give powerful structural results about the
volumes of hyperbolic manifolds. We also prove Theorem 2.7, which follows quickly
from the above recent results, and will be important in Section 4.

2.1. Estimates from guts. Let M be a hyperbolic 3–manifold, and S ⊂ M an
essential surface. When we cut MrS along essential annuli, it decomposes into a
characteristic submanifold B (the union of all I–bundles in MrS), and a hyperbolic
component called guts(M,S). Using Perelman’s estimates for volume change under
Ricci flow with surgery, Agol, Storm, and Thurston proved the following result.

Theorem 2.1 (Theorem 9.1 of [8]). Let M be a finite–volume hyperbolic 3–manifold,
and let S ⊂M be an essential surface. Then

vol(M) ≥ −v8 χ(guts(M,S)).

Combining Theorem 2.1 with Lackenby’s analysis of checkerboard surfaces in alter-
nating link complements [16] gives the following result, which bounds volume based
on diagrammatic properties.

Theorem 2.2 (Corollary 2.2 of [8]). Let D(K) be a prime, alternating link diagram
with tw(D) ≥ 2. Then K is hyperbolic, and

vol(S3rK) ≥ v8
2

(tw(D)− 2).

More recently, Agol showed that every two–cusped hyperbolic 3–manifold contains
an essential surface with non-trivial guts [6]. Using Theorem 2.1, he obtained
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Theorem 2.3 (Theorem 3.4 of [6]). Let M be an orientable hyperbolic 3–manifold
with two or more cusps. Then

vol(M) ≥ v8,

with equality if and only if M is the complement of the Whitehead link or its sister
(m129 or m125 in the notation of the SnapPea census).

2.2. Bounding volume change under Dehn filling. Given a 3–manifold M with
at least k torus boundary components, we use the following standard terminology. For
the i-th torus Ti, let si be a slope on Ti, that is, an isotopy class of simple closed
curves. Let M(s1, . . . , sk) denote the manifold obtained by Dehn filling along the
slopes s1, . . . , sk.

When M is hyperbolic, each torus boundary component of M corresponds to a
cusp. Taking a disjoint horoball neighborhoods about the cusps, each torus Ti inherits
a Euclidean structure. The slope si can then be given a geodesic representative. We
define the slope length of si to be the length of this geodesic representative. Note that
when k > 1, this definition of slope length depends on the choice of maximal horoball
neighborhood. The authors recently showed the following result.

Theorem 2.4 (Theorem 1.1 of [12]). Let M be a complete, finite–volume hyperbolic
manifold with cusps. Suppose C1, . . . , Ck are disjoint horoball neighborhoods of some
subset of the cusps. Let s1, . . . , sk be slopes on ∂C1, . . . , ∂Ck, each with length greater
than 2π. Denote the minimal slope length by `min. Then M(s1, . . . , sk) is a hyperbolic
manifold, and

vol(M(s1, . . . , sk)) ≥

(
1−

(
2π
`min

)2
)3/2

vol(M).

2.3. Mom technology. In a series of recent papers [?, 14, 21], Gabai, Meyerhoff,
and Milley developed the theory of Mom manifolds. A Mom-n structure (M,T,∆)
consists of a compact 3–manifold M whose boundary is a union of tori, a preferred
boundary component T , and a handle decomposition ∆ of the following type. Starting
from T × I, n 1–handles and n 2–handles are attached to T × 1 such that each 2–
handle goes over exactly three 1–handles, counted with multiplicity. Furthermore,
each 1–handle encounters at least two 2–handles, counted with multiplicity. We say
that M is a Mom-n if it possesses a Mom-n structure (M,T,∆).

In [?], Gabai, Meyerhoff, and Milley enumerated all the hyperbolic Mom-2’s and
Mom-3’s (there are 21 such manifolds in total). In [14], they showed that every cusped
hyperbolic manifold of sufficiently small volume (or cusp area) must be obtained by
Dehn filling a Mom-2 or Mom-3 manifold:

Theorem 2.5 ([14]). Let M be a cusped, orientable hyperbolic 3–manifold. Assume
that vol(M) ≤ 2.848 or that a maximal horoball neighborhood C of one of its cusps
has area(∂C) ≤ 3.78. Then M is obtained by Dehn filling on one of the 21 Mom-2 or
Mom-3 manifolds.

Proof. The volume part of the theorem is explicitly stated as Theorem 1.1 of [14]. The
cusp area part of the statement follows by evaluating Gabai, Meyerhoff, and Milley’s
cusp area estimates [14, Lemmas 4.6, 4.8, 5.4, 5.6, and 5.7] on the parameter space
of all ortholengths corresponding to manifolds without a Mom-2 or Mom-3 structure.
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Figure 1. The complement of the 3–chain link is the only Mom-2
or Mom-3 manifold with more than two cusps.

The rigorous C++ and Mathematica code to construct and evaluate those estimates
was helpfully supplied by Milley [20]. �

Because each of the Mom-2 and Mom-3 manifolds has volume significantly higher
than 2.848, Theorem 2.4 bounds the length of the slope along which one must fill a
Mom manifold to obtain M . Thus, Theorem 2.5 combined with Theorem 2.4 reduces
the search for small–volume manifolds to finitely many Dehn fillings of the 21 Mom-2’s
and Mom-3’s.

Corollary 2.6 (Theorem 1.2 of [21]). Let M be a cusped, orientable hyperbolic man-
ifold whose volume is at most 2.848. Then M is one of the SnapPea census manifolds
m003, m004, m006, m007, m009, m010, m011, m015, m016, or m017. In particular, every
cusped hyperbolic manifold with vol(M) ≤ 2.848 can be obtained by Dehn filling two
cusps of the 3–chain link complement in Figure 1.

Theorem 2.5 can also be employed to give universal estimates for the cusp area of
those manifolds that have two or more cusps:

Theorem 2.7. Let M be an orientable hyperbolic 3–manifold with two or more cusps.
Suppose that M contains a belt (an essential twice–punctured disk). If C is a maximal
neighborhood of one of the cusps of M , then

area(∂C) ≥ 3.78.

Remark. The hypothesis that M contains a belt should be unnecessary. However,
proving the theorem without this hypothesis would require studying infinitely many
fillings of the 3–chain link in Figure 1.

Proof. Theorem 2.5 implies that every cusped hyperbolic manifold either has cusp
area at least 3.78, or is obtained by Dehn filling on one of the Mom-2 or Mom-3
manifolds. Among these 21 Mom manifolds, 20 have exactly two cusps. Thus, if M
is obtained by filling on one of these 20 manifolds, the filling must be trivial and it
already is one of the Mom manifolds. Individual verification shows that a maximal
neighborhood of any cusp of any of the Mom-2 or Mom-3 manifolds has area at least
4 (with the minimum of 4 realized by the Whitehead link). Therefore, M either has
cusp area at least 3.78, or is obtained by Dehn filling one cusp of the single 3–cusped
Mom manifold N , namely the complement of the 3–chain link depicted in Figure 1.
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Proposition 2.8. Let M be a hyperbolic 3–manifold obtained by filling one cusp of the
3–chain link complement N . Suppose that M contains an essential twice–punctured
disk. If C is a maximal neighborhood of one of the cusps of M , then area(∂C) ≥ 4.

Proof. Suppose that M contains an essential twice–punctured disk P . Isotope P to
minimize its intersection number with the core of the solid torus added during Dehn
filling. Then S = P ∩N is an essential surface in N ; more precisely, it is an essential
sphere with (n + 3) holes, where n of its boundary circles run in parallel along the
filling slope. Since every thrice–punctured sphere in N meets all three cusps (and
thus becomes an essential annulus after filling along one of its boundary circles), we
can conclude that n ≥ 1.

Now, expand a maximal horospherical neighborhood H of the cusp of N that we
are filling. Consider the length ` of the filling slope along ∂H. Since S ∩ ∂H consists
of n distinct circles of that slope, a result of Agol and Lackenby (see [7, Theorem 5.1]
or [15, Lemma 3.3]) implies that the total length of those circles is

n ` ≤ −6χ(S) = 6(n+ 1) ≤ 12n.

Therefore, M is obtained by filling one cusp of N along a slope of length at most 12.
To complete the proof, we enumerate the slopes that have length at most 12. Note

that since the symmetry group of N permutes all three cusps, it suffices to consider
a single cusp. In complex coordinates on this maximal cusp, the knot–theoretic
longitude is a translation by 4, while the meridian is a translation by 3

2 +
√

7
2 i. Thus

the slopes on a cusp of N that have length at most 12 are:

(1)

1/0
−7 −6 · · · 3 4

−7/2 −5/2 −3/2 −1/2 1/2
−8/3 −7/3 −5/3 −4/3 −2/3 −1/3

−7/4 −5/4

Martelli and Petronio [19] have shown that the non-hyperbolic fillings of one cusp of
N are exactly the fillings along slope ∞,−3,−2,−1, 0. For each of the 21 remaining
slopes, SnapPea finds (an approximate solution for) a hyperbolic structure on the
filled manifold. A theorem of H. Moser [24] then implies that the true hyperbolic
structure on each of these manifolds is indeed ε–close to the one found by SnapPea.
In each case, the cusp area is bounded below by 4. �

Proposition 2.8 completes the proof of Theorem 2.7. �

As a closing remark, we point out that among the hyperbolic fillings of the 3–chain
link listed in (1), only the Whitehead link complement contains a belt. In other
words, a topological analysis of these manifolds shows that the Whitehead link is the
only manifold satisfying the hypotheses of Proposition 2.8. Since we do not need this
stronger statement in the sequel, we omit the details.

3. Volume estimates for periodic links

Let K be a periodic link. Let h : S3 → S3 be an orientation preserving diffeo-
morphism of order p with h(K) = K, such that the set of fixed points Ch of h is a
circle that is either disjoint from K or is a component of K. By Smith theory and
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the solution to the Smith conjecture [23], Ch is the trivial knot and h is conjugate to
a rotation with axis Ch. The quotient of the action of h on K is a link K ′, called the
quotient of K. Let C ′h denote the quotient of the axis Ch under the action of h on
S3.

Theorem 3.1. Let K be a periodic hyperbolic link in S3 of period p ≥ 6. Let C ′h be
the quotient of the fixed point set under h and let K ′ be the quotient link of K. Then,
Lh := K ′ ∪ C ′h is a hyperbolic link, and

p

(
1− 2

√
2π2

p2

)3/2

vol(S3rLh) ≤ vol(S3rK) ≤ p vol(S3rLh).

Proof. The Mostow–Prasad rigidity theorem implies that h can be homotoped to a
hyperbolic isometry h : S3rK → S3rK. Since S3rK is a Haken 3–manifold, a result
of Waldhausen [27] implies that h can actually be isotoped to a hyperbolic isometry.
Thus Ch is either a component of K, or else it is a closed geodesic in S3rK. It follows
that S3r(K ∪ Ch) is hyperbolic (in the case that Ch is a component of K we take
K ∪ Ch = K). Now the quotient of the action h : S3r(K ∪ Ch) → S3r(K ∪ Ch),
which is S3rLh, is also hyperbolic. The quotient map

S3r(K ∪ Ch) −→ S3rLh

is a covering of degree p. Thus

vol(S3r(K ∪ Ch)) = p vol(S3rLh).

If Ch is a component of K, we are done. Otherwise, S3rK is obtained from
S3r(K ∪ Ch) by Dehn filling Ch along the meridian m. This meridian covers the
meridian m′ of C ′h p times. By work of Adams [1], the length of m′ satisfies l(m′) ≥
4
√

2. Thus, l(m) ≥ p 4
√

2. For p ≥ 6 we have l(m) ≥ p 4
√

2 > 2π. Now Theorem 2.4
applies, and we conclude

vol(S3rK) ≥

(
1− 2

√
2π2

p2

)3/2

vol(S3r(Ch ∪K))

=

(
1− 2

√
2π2

p2

)3/2

p vol(S3rLh).

As for the upper bound, we note that volume strictly decreases under Dehn filling
[25, Corollary 6.5.2]. Thus, if Ch is not already a component of K, we have

p vol(S3rLh) = vol(S3r(K ∪ Ch)) > vol(S3rK).
�

Next we derive Theorem 1.1 from Theorem 3.1. To that end, for a 3–manifold
M we will let ‖M‖ denote the Gromov norm of M . By [25, Theorem 6.5.4], if
M is hyperbolic then vol(M) = v3 ‖M‖. More generally, v3 ‖M‖ is the simplicial
volume of M , equal to the sum of volumes of the hyperbolic pieces in the geometric
decomposition of M .
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Proof of Theorem 1.1. If the axis Ch is not already a component of K, the comple-
ment S3rK ′ is obtained by Dehn filling from S3rLh. We note that K ′ need not
be hyperbolic. By [25, Corollary 6.5.2], we have

∥∥S3rLh

∥∥ > ∥∥S3rK ′
∥∥. Since, by

Theorem 3.1, Lh is hyperbolic, vol(S3rLh) = v3
∥∥S3rLh

∥∥. Combining these facts
with the left-hand inequality of Theorem 3.1 gives

vol(S3rK) ≥

(
1− 2

√
2π2

p2

)3/2

p v3
∥∥S3rK ′∥∥ .

�

Now, we turn our attention to Theorem 1.4. Define ψ : {x ∈ R : x≥ 5.5} → R by

ψ(x) := min

2.828, 3.647

(
1− 2

√
2π2

x2

)3/2
 .

Theorem 3.2 (Theorem 1.4). Let K be a hyperbolic periodic link in S3, of period
p ≥ 6. Then either

(1) vol(S3rK) ≥ p · ψ(p), or
(2) K is one of two explicit exceptions: a 5–component link of period 10 whose

quotient is L(10, 3)rm003 or a 5–component link of period 15 whose quotient
is L(15, 4)rm006.

Estimate (1) is sharp for four freely periodic links, whose periods are 14, 18, 19, and
21.

Proof. Let h : S3 → S3 be the diffeomorphism of order p that sends K to itself.
As discussed in the introduction, the solutions to the Smith conjecture [23] and the
spherical spaceforms conjecture [22] imply that we may take h to be an orthogonal
action by an element of SO(4). We need to consider two cases: either h fixes an
invariant axis Ch, or hi acts on S3 without fixed points, for all 0 < i < p.

If h has an invariant axis Ch, then Theorem 3.1 applies, and

vol(S3rK) ≥ p

(
1− 2

√
2π2

p2

)3/2

vol(S3rLh).

Now, because Lh is a hyperbolic link of two or more components, Agol’s Theorem 2.3
gives vol(S3rLh) ≥ 3.663, completing the argument in this case.

If hi acts on S3 without fixed points, for all 0 < i < p, the quotient of S3 is a lens
space L(p, q) and the quotient of S3rK is a hyperbolic manifold M , obtained as the
complement of a link in L(p, q). Thus

vol(S3rK) = p · vol(M).

If vol(M) ≥ 2.828, then K satisfies the statement of the theorem. On the other hand,
if vol(M) ≤ 2.848, then M is one of the ten one–cusped manifolds listed in Corollary
2.6. Thus, to complete the proof, it suffices to enumerate all of the ways in which each
of these ten manifolds occurs as the complement of a knot in a lens space. Because
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each manifold in Corollary 2.6 is a filling of two cusps of the complement N of the
3–chain link of Figure 1, we can use the extensive tables compiled by Martelli and
Petronio [19, Section A.1] to enumerate their lens space fillings:

Manifold Alternate name Volume Surgery on N Lens space fillings

m003 figure–8 sister 2.0298... N(1,−4) L(5, 1), L(10, 3)

m004 figure–8 knot 2.0298... N(1, 2) S3

m006 2.5689... N(1,−3/2) L(5, 2), L(15, 4)
m007 2.5689... N(1,−1/2) L(3, 1)

m009 p. torus bundle LLR 2.6667... N(1, 3) L(2, 1)
m010 p. torus bundle −LLR 2.6667... N(1,−5) L(6, 1)
m011 2.7818... N(−3/2,−5) L(9, 2), L(13, 4)

m015 52 knot 2.8281... N(1, 1/2) S3

m016 (−2, 3, 7) pretzel knot 2.8281... N(−3/2,−1/2) S3, L(18, 5), L(19, 7)
m017 2.8281... N(1,−5/2) L(7, 2), L(14, 3), L(21, 8)

The proof will be complete after several observations. First, we may ignore lens
spaces L(p, q) with p ≤ 5, because we have assumed p ≥ 6. Second, the two ex-
ceptions to the theorem are obtained by lifting to S3 the knots (L(10, 3)rm003) and
(L(15, 4)rm006). Homology considerations show that both of these exceptions are
5–component links. Third, even though L(6, 1), L(9, 2), and L(13, 4) are obtained by
filling manifolds of volume less than 2.828, the corresponding links satisfy the theorem
because 3.647

(
1− 2

√
2π2/62

)3/2
< 2.666 and

3.647

(
1− 2

√
2π2

92

)3/2

< 3.647

(
1− 2

√
2π2

132

)3/2

< 2.7818.

Finally, the four examples demonstrating the sharpness of the theorem are the 18–fold
and 19–fold covers of m016 and the 14–fold and 21–fold covers of m017. �

Note that if the link K in Theorem 1.4 is not freely periodic, then the volume is
actually bounded by the quantity on the right in the definition of ψ(n).

4. Belted sums and Conway sums

4.1. Belted sums. Let T be a tangle diagram. Given T , we may form a link diagram
as follows. First, form the closure of T by connecting NE to NW, and SE to SW.
Then, add an extra component C that lies in a plane orthogonal to the projection
plane and encircles the two unknotted arcs that we have just added to T . See the left
of Figure 2. We call the resulting link the belted tangle corresponding to T , or simply
a belted tangle. Note that C bounds a 2–punctured disk S in the complement of the
link. We will call the link component C the belt component of the link. We will only
be interested in belted tangles admitting hyperbolic structures.

Given two hyperbolic belted tangles corresponding to T1 and T2, with complements
M1 and M2, belt components C1 and C2, and 2–punctured disks S1 and S2, we form
the complement of a new belted tangle as follows. Cut each manifold Mi along the
surface Si, and then glue two manifolds with two 2–punctured disks as boundary.
Since there is a unique hyperbolic structure on a 2–punctured disk we may glue M1

to M2 by an isometry that glues C1 to C2. The result is the complement of a new
belted tangle. See Figure 2. We call this new belted tangle the belted sum of the
tangles T1 and T2. Belted sums were studied extensively by Adams [2]. Note that
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the Conway sum of T1 and T2 is obtained by meridional Dehn filling on the belt
component of the belted sum of T1 and T2.

4.2. Arc lengths on belted tangles. Consider a maximal neighborhood C of the
cusp corresponding to the belt component. Denote by the width the length of the
shortest nontrivial geodesic arc running from the 2–punctured disk to itself on ∂C.
Adams et al observed that the length of the shortest nontrivial arc from an embedded
totally geodesic surface to itself is bounded below by 1 (see [5, Theorem 4.2] or [4,
Theorem 1.5]). In the case at hand, their result gives the following.

Lemma 4.1. The width of a belt component of a belted tangle is at least 1.

Note that since the 2–punctured disk intersects the cusp in a longitude, the merid-
ian must be at least as long as the width. We will also need bounds on the length of
a longitude.

Lemma 4.2. The length of the longitude of a belt component is at most 4, and at
least 4

√
2.

Proof. Both bounds are due to Adams. In [1], he proves that if M is not the comple-
ment of the figure–8 knot or the 52 knot, then the shortest curve has length at least
4
√

2.
As for the upper bound, the length of the longitude is maximal when the maximal

cusp in M restricts to a maximal cusp on the 3–punctured sphere. By [3, Theorem
2.1], the length of a maximal cusp on the 3–punctured sphere is 4. �

We need to determine a maximal cusp corresponding to the belt component of a
belted sum of two tangles, T1 and T2. When we expand a horoball neighborhood
about this cusp, the cusp neighborhood may bump itself in one component of the
belt sum before it bumps in the other. When the cusp bumps itself, it determines a
longitude of the belt component. Thus the longitude of the belt component of the
belted sum will have length equal to the minimum of the longitude lengths of T1

and T2. Say this minimum occurs in T1. Then the length of any arc running from
3–punctured sphere to 3–punctured sphere in T2 will be scaled by the ratio of the
length of the longitude of T1 and the length of the longitude of T2. In particular, the
width of the belted sum will not necessarily be the width of T1 plus the width of T2,
but rather the width of T1 plus the width of T2 times the ratio of the longitude length
of T1 to the longitude length of T2.
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Lemma 4.3. Let T be a belted tangle obtained as the belted sum of n hyperbolic belted
tangles T1, . . . , Tn. Let ` be the length of the shortest longitude of a belt component of
the Tj. Then the width of the belt component of T is at least

w ≥ 3.78
`

+ (n− 1)
`

4
.

Proof. Without loss of generality, suppose T1 has the shortest longitude. By Theorem
2.7, the cusp area corresponding to the belt component is at least 3.78. Thus the width
of T1 is at least 3.78/`. By Lemma 4.2, the longitudes of the other Tj ’s are at most
4, and by Lemma 4.1, the widths of these are at least 1. When we do the belted sum,
the longitudes will rescale to be length `, and the widths will rescale to be at least
`/4. Thus the total width will be at least w ≥ 3.78/`+ (n− 1)(`/4). �

4.3. Volumes and belted tangles.

Lemma 4.4. Let T be a prime, alternating tangle that is not an east–west twist. Let
L denote the belted tangle corresponding to T . Then L is hyperbolic. Furthermore,
(A) If 1/n Dehn filling along the belt component adds a new twist region to the closure
of T , then

vol(S3rL) ≥ v8
2

(tw(T )− 1).

(B) If 1/n Dehn filling along the belt component adds crossings to an existing twist
region in the closure of T , then

vol(S3rL) ≥ v8
2

(tw(T )− 2).

Proof. Let L(n) denote the link formed by performing 1/n Dehn filling on the belt
component of L, where n is positive or negative depending on which sign makes L(n)
alternating. When we form L(n), we may either add a new twist region to the closure
of T , or we may add additional crossings to an existing twist region. In either case
the link L(n) has at least two twist regions, since T is not an east–west twist. Hence
L(n) is hyperbolic.

In case (A), Theorem 2.2 implies the volume of S3rL(n) is at least v8/2((tw(T )+
1)−2). In case (B), Theorem 2.2 implies the volume of S3rL(n) is at least v8/2(tw(T )−
2). Because volume goes down under Dehn filling, these lower bounds on the volume
of vol(S3rL(n)) also serve as lower bounds on vol(S3rL). �

Lemma 4.5. Let T1, . . . , Tn prime, alternating tangle diagrams, none of which is an
east–west twist. Let D(K) be the Conway sum of T1, . . . , Tn, and let L be the belted
sum of these tangles. Then

vol(S3rL) ≥ v8
2

(tw(D)− 3).

Proof. Because we formed the belted sum L by gluing belted tangles along totally
geodesic 2–punctured disks, the volume of L will remain unchanged if we permute
the order of the Ti. Thus, without loss of generality, we may assume that T1, . . . , Tr

are positive tangles and Tr+1, . . . , Tn are negative tangles. Furthermore, if the Ti are
all positive or all negative, then D(K) is a prime, alternating diagram, and the result
follows by Lemma 4.4. Thus we may assume that 0 < r < n.
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With these assumptions, let D+ be the Conway sum and L+ be the belted sum
of T1, . . . , Tr. Let D− be the Conway sum and L− be the belted sum of Tr+1, . . . Tn.
Then each of D+ and D− is the closure of a prime, alternating tangle. Thus, by
Lemma 4.4,

vol(S3rL+) ≥ v8
2

(tw(D+)− 2) and vol(S3rL−) ≥ v8
2

(tw(D−)− 2),

with a sharper estimate if either D+ or D− falls into case (A) of the Lemma.
Suppose that either D+ or D− falls into case (A) of Lemma 4.4. Then, since

equivalent crossings remain equivalent after gluing, tw(D+) + tw(D−) ≥ tw(D), and
thus

vol(S3rL) = vol(S3rL+) + vol(S3rL−) ≥ v8
2

(tw(D)− 3).

On the other hand, suppose that both D+ and D− fall into case (B) of Lemma 4.4.
Then 1/n Dehn filling along the belt component of both L+ and L− adds crossings
to existing twist regions of both D+ and D−. In this situation, the crossings in these
two twist regions become equivalent when we join D+ and D−. Thus it follows that
tw(D+) + tw(D−) ≥ tw(D) + 1, and

vol(S3rL) ≥ v8
2

(tw(D+) + tw(D−)− 4) ≥ v8
2

(tw(D)− 3).
�

We may now prove Theorem 1.5, which was stated in the Introduction.

Proof of Theorem 1.5. Let L be the belted sum of T1, . . . , Tn. We obtain K by
meridional filling on the belt component of L. By Lemma 4.5,

vol(S3rL) ≥ v8/2 (tw(D)− 3).

Thus, using Theorem 2.4, we can estimate the volume of S3rK once we estimate the
meridian length of the belt. To apply Theorem 2.4, we also need to ensure that this
length is at least 2π. The meridian is at least as long as the width, which by Lemma
4.3 is at least 3.78/`+ (n− 1)(`/4).

By Lemma 4.2, ` ∈ [ 4
√

2, 4]. Thus we need to minimize the quantity

3.78/`+ (n− 1)(`/4)

over the interval [ 4
√

2, 4]. For n ≥ 12, we find this is an increasing function of `, so the
minimum value occurs when ` = 4

√
2. Hence the meridian will have length at least

`min ≥ 3.78
4
√

2
+ (n− 1)

4
√

2
4

>
11.524 + n 4

√
2

4
,

which is greater than 2π for n ≥ 12. Thus Theorem 2.4 applies, and we obtain

vol(S3rK) ≥

(
1−

(
2π
`min

)2
)3/2

vol(S3rL)

≥

(
1−

(
8π

11.524 + n 4
√

2

)2
)3/2

v8
2

(tw(D)− 3) .

�

5. The Jones polynomial and tangle addition

In this section, we will prove Theorem 1.6, which gives Corollary 1.7.
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5.1. Adequate link preliminaries. We begin by recalling some terminology and
notation from [9] and [12]. Let D be a link diagram, and x a crossing of D. Associated
to D and x are two link diagrams, each with one fewer crossing than D, called the
A–resolution and B–resolution of the crossing. See Figure 3.
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Figure 3. A– and B–resolutions of a crossing.

Starting with any D, let sA := sA(D) (resp. sB := sB(D)) denote the crossing–
free diagram obtained by applying the A–resolution (resp. B–resolution) to all the
crossings of D. We obtain graphs GA, GB as follows: The vertices of GA are in
one-to-one correspondence with the circles of sA. Every crossing of D gives rise to
two arcs of the A–resolution. These will each be associated with a component of sA,
so correspond to vertices of GA. Add an edge to GA connecting these two vertices for
each crossing of D. In a similar manner, construct the B–graph GB by considering
components of sB .

A link diagram D is called adequate if the graphs GA, GB contain no edges with
both endpoints on the same vertex. A link is called adequate if it admits an adequate
diagram.

Let vA, eA denote the number of vertices and edges of GA, respectively. Similarly,
let vB and eB denote the number of vertices and edges of GB . The reduced graph
G′

A is obtained from GA by removing multiple edges connected to the same pair of
vertices. The reduced graph G′

B is obtained similarly. Let e′A (resp. e′B) denote the
number of edges of G′

A (resp. G′
B). A proof of the following lemma can be found in

[10].

Lemma 5.1 (Stoimenow). Let D be an adequate diagram of a link K. Let β and β′

be the second and next-to-last coefficients of JK(t). Then

|β|+ |β′| = e′A + e′B − vA − vB + 2.

5.2. Tangle addition. Let D be a diagram of a link K obtained by summing
strongly alternating diagrams of tangles T1, . . . , Tn as in the statement of Theorem
1.6. By work of Lickorish and Thistlethwaite [18], D is an adequate diagram; thus the
result stated above applies to K. To estimate the quantity e′A + e′B − vA − vB + 2 we
need to examine the loss of edges as one passes from GA, GB to the reduced graphs.

Let T denote a strongly alternating tangle. Recall T lies inside a disk on the plane.
One can define the A–graph ΓA(T ), and the B–graph ΓB(T ), corresponding to T in
a way similar to the diagram D, by resolving the crossings of T in the interior of the
disk. Similarly, we can consider the reduced A and B graphs of T ; denote them by
Γ′A(T ) and Γ′B(T ), respectively.

In an alternating diagram of a tangle or link, every component of sA and sB follows
along the boundary of a region of the diagram. Thus the vertices of ΓA(T ) and ΓB(T )
are in 1–1 correspondence with regions in the diagram of T . These graphs will have
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=+

Figure 4. An example of unexpected losses. Upon tangle addition,
the dark edges connect the same pair of vertices.

two types of vertices: interior vertices, corresponding to regions that lie entirely in
the disk, and two exterior vertices, corresponding to the two regions with sides on the
boundary of the disk.

Lemma 5.2. Let T be an alternating tangle. Then the only edges lost as we pass
from ΓA(T ), ΓB(T ) to Γ′A(T ), Γ′B(T ) are multiple edges from twist regions. In a twist
region with cR crossings, we lose exactly cR − 1 edges.

Compare this to [9, 10], where similar statements are proved for knots and links.

Proof. We have observed above that the vertices of ΓA(T ) and ΓB(T ) are in 1–1
correspondence with regions in the diagram of T . Thus if edges e and e′ connect
the same pair of vertices, the loop e ∪ e′ passes through exactly two regions of the
diagram, while intersecting the diagram at two crossings. Therefore, these crossings
are equivalent, and belong to the same twist region.

Conversely, a twist region R with cR crossings corresponds to a pair of vertices
that are connected by cR edges. Therefore, as we pass to the reduced graphs Γ′A(T )
and Γ′B(T ), we lose exactly cR − 1 edges from R. �

As we add several tangles to obtain a link diagram D, we may encounter additional,
unexpected losses of edges, because the two exterior vertices in a tangle become amal-
gamated when we perform the Conway sum. Note that because each tangle is chosen
to be strongly alternating, the two exterior vertices of any tangle cannot be connected
to each other by an edge in the tangle. Thus each edge with an endpoint on one ex-
terior vertex must have the other endpoint on an interior vertex. Then when we do
the sum, the only way to pick up an unexpected loss is to have a tangle with both
exterior vertices connected by edges to the same interior vertex, and then in the sum
to have those two exterior vertices identified to each other. See Figure 4.

Definition 5.3. Let D be a diagram obtained by summing strongly alternating dia-
grams of tangles T1, . . . , Tn. Let `in(D) denote the total loss of edges as we pass from
eA + eB to e′A + e′B which come from equivalent crossings in the same tangle Ti. Let
`ext(D) denote the total loss of edges coming from tangle addition.

For a tangle T ∈ {T1, . . . , Tn} a bridge of ΓA(T ) (resp. ΓB(T )) is a subgraph
consisting of an interior vertex v, the two exterior vertices v′, v′′ and two edges e′, e′′

such that e′ connects v to v′ and e′′ connects v to v′′. The bridge is called inadmissible
iff v′, v′′ collapse to the same vertex in GA (resp. GB). This is the situation of Figure
4.

It follows that eA + eB − e′A − e′B = `in + `ext. By Lemma 5.2, we have `in =
c(D)− tw(D). In the next lemma we estimate `ext.
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(a) (b)

Figure 5. (a) A type (II) bridge gives a bigon of the diagram D.
(b) More that one type (II) bridge implies the tangle has more than
one component.

Lemma 5.4. Let T1, T2 be strongly alternating tangles whose Conway sum is a knot
diagram D(K). Then

`ext(D) ≤ tw(D)
2

+ 4.

Proof. For T ∈ {T1, T2} let bA(T ), bB(T ) denote the number of bridges in ΓA(T ),
ΓB(T ), respectively. Then, the contribution of T to `ext is at most bA(T )+bB(T ).

Now let b be a bridge of a tangle T . There are two possibilities for b:

(I) The edges e′, e′′ of definition 5.3 do not come from resolutions of a single
twist region.

(II) The edges e′, e′′ of definition 5.3 do come from resolutions of a single twist
region.

Note for a type (II) bridge, the interior vertex v comes from a bigon of the diagram,
and the corresponding twist region has exactly two crossings. This is illustrated in
Figure 5(a) for ΓA(T ): A type (II) bridge gives two crossings as in that figure, where
shaded regions become vertices of ΓA(T ). By definition of twist region, there is a
simple closed curve meeting the diagram in exactly the two crossings, as shown by
the dotted line. The strands of the crossing cannot cross the shaded region inside
the dotted line, since this becomes a single vertex of ΓA(T ). Since the diagram is
prime, the tangle within the dotted line must be trivial, consisting of two unknotted
arcs. Finally, no other crossing can be in the same equivalence class as the two shown,
because such a crossing would have to lie in one of the shaded regions, but these are
vertices of ΓA(T ).

As we pass from the graphs GA, GB to the reduced ones G′
A, G′

B each bridge loses
exactly one of the edges e′, e′′. The contribution to `ext from type (I) bridges is half
of the number of twist regions in T involved in such bridges.

As for type (II) bridges, if a tangle T ∈ {T1, T2} is such that ΓA(T ) or ΓB(T ) has
more than one bridge of type (II), then K has more than one component. This is
illustrated in Figure 5(b). If ΓA(T ) has more than one bridge of type (II), T must
be as shown in the figure, with shaded regions corresponding to vertices of ΓA(T ),
and possibly additional crossings in the white regions of the diagram. Note the four
strands in the center region must connect to form one or two distinct link components.



250 D. FUTER, E. KALFAGIANNI, AND J. PURCELL

Also observe that there cannot simultaneously be two–crossing twist regions con-
necting the east side to the west and the north to the south. Hence we may conclude
that T contains at most one bridge of type (II).

Figure 6. If ΓA(T ) contains at least three bridges, as at left, then
T is as at center, so ΓB(T ), at right, cannot contain any bridges.

Case 1: Suppose that bA(T ) ≥ 3 or bB(T ) ≥ 3. Without loss of generality, say
bA(T ) ≥ 3. Then we claim that bB(T ) = 0. This is illustrated in Figure 6: If ΓA(T )
contains at least three bridges, then the tangle T must have crossings in the form of
the center of that figure. Note no edge of ΓB(T ) can run through the shaded regions
of that figure, else it will correspond to a crossing which would split an interior bridge
vertex of ΓA(T ). Thus any path from the left to the right exterior vertex of ΓB(T )
must contain at least three edges, so ΓB(T ) cannot contain any bridges.

Then either there are no type (II) bridges in ΓA(T ), and then at most tw(T )/2
bridges, or there are at most (tw(T )− 1)/2 bridges of type (I) and a single bridge of
type (II). In either case, the contribution of T to `ext is at most

bA(T ) + bB(T ) ≤ (tw(T )− 1)
2

+ 1 <
tw(T )

2
+ 2.

Figure 7. When bA(T ) = bB(T ) = 2, T must be as shown in the
center. This forces T to have at least two components, as at right.

Case 2: Next, suppose that bA(T ) ≤ 2 and bB(T ) ≤ 2. Then bA(T ) + bB(T ) ≤ 4,
and the maximum contribution to `ext(T ) occurs when bA(T ) = bB(T ) = 2. However,
we now show that when bA(T ) = bB(T ) = 2, we actually have a link rather than
a knot. This is illustrated in Figure 7. If bA(T ) = 2, the tangle diagram must be
as in the left of that figure. Similarly, if bB(T ) = 2, the tangle diagram must be as
in the left, but rotated 90 degrees. Since edges of ΓB(T ) cannot pass through the
vertices of ΓA(T ) (shaded regions of the figure), and vice versa, the only possibility
is that the tangle T has the form in the center. Here the lighter shaded regions
become vertices of ΓA(T ), and the darker become vertices of ΓB(T ). But then T



SYMMETRIC LINKS AND CONWAY SUMS 251

must actually have a diagram as on the right of the figure, because closures of the
diagram are prime, implying the diagram is prime. Note the tangle must consist of
at least two components.

So suppose bA(T ) = 2 and bA(T ) = 1, or vice versa. Then because there is at most
one bridge of type (II), T must contain at least two twist regions. Thus

bA(T ) + bB(T ) = 3 ≤ tw(T )
2

+ 2.

For strongly alternating tangles, the twist number is additive under tangle addition,
which can be seen as follows. Suppose Ta and Tb are tangles whose sum has diagram ∆.
First, since equivalent crossings in a tangle are still equivalent after tangle addition,
and tangle addition does not produce more crossings, tw(∆) ≤ tw(Ta) + tw(Tb).
Suppose tw(∆) is strictly less than tw(Ta) + tw(Tb). That means two twist regions
in distinct tangles become equivalent under tangle sum. By definition, there exists a
simple closed curve γ in ∆ meeting just a crossing in Ta, and just a crossing in Tb. It
must run through the unit square bounding Ta. Note by parity, γ either intersects the
north and south edges of the unit square, or the east and west edges. But in the first
case, the denominator of the tangle is not prime, and in the second the numerator
is not prime, contradicting strongly alternating. Thus the twist number is additive
under tangle addition.

The previous inequality therefore implies that

`ext(D) ≤
∑

i=1,2

(bA(Ti) + bB(Ti)) ≤ tw(D)
2

+ 4.

�

Proof of Theorem 1.6. It is well–known that the Jones polynomial of a link remains
invariant under mutation [17]. Thus, for our purposes, we are free to modify D by
mutation. After mutation we can assume that the sum of the tangles T1 + . . .+ Tn is
either a strongly alternating tangle, or it splits in the form T + T ′ where each of T ,
T ′ is strongly alternating and T + T ′ is not alternating. In the former case we have
a stronger result: Dasbach and Lin [10] have shown that tw(D) = |β|+ |β′|.

So now we assume that D is not alternating. By work of Lickorish and Thistleth-
waite [18], D is an adequate diagram; thus the results stated above apply for K. By
Propositions 1 and 5 of [18] (see also [9]) we have

(2) vA + vB = c,

where c := c(D) denotes the crossing number of D. Now, recall that every edge of
GA or GB that is lost as we pass to G′

A and G′
B either comes from a twist region in

a tangle, or an edge of an inadmissible bridge. The number of edges lost due to twist
regions is c− t, where t = tw(D). Thus

eA + eB − e′A − e′B = (c− t) + `ext.
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Now by Lemma 5.1, we have

|β|+ |β′| = e′A + e′B − vA − vB + 2
= (e′A + e′B − eA − eB) + eA + (eB − vA − vB) + 2
= −(c− t+ `ext) + c+ (c− vA − vB) + 2
≥ t− `ext + 2 (by (2))

≥ t− t

2
− 4 + 2 =

t

2
− 2 (by Lemma 5.4)

The upper bound on |β|+ |β′| was proved in Proposition 4.6 of [12]. �
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