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Large volume fibred knots of fixed genus
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We show that, for hyperbolic fibred knots in the three-sphere, the
volume and the genus are unrelated. Furthermore, for such knots,
the volume is unrelated to strong quasipositivity and Seifert form.
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Figure 1

In this note we prove the following.

Theorem 1. For every g > 1 and for every
V > 0 there is a knot w ⊂ S3 with the follow-
ing properties.

1) S3 − w is fibred over the circle, with
fibre of genus g.

2) S3 − w is hyperbolic, with volume at
least V .

3) Longitudinal surgery on w is hyperbolic,
with volume at least V .

Remark 2. In the opposite direction, the
two-bridge knots with continued fraction
[2g − 1, 1, 2] are hyperbolic and fibred of
genus g, with bounded volume as g → ∞. ♢

Theorem 1 answers a question posed by
Reid. Our proof also provides a family of fi-
bred hyperbolic knots in S2 × S1, of fixed
genus, whose double branched covers have un-
bounded volume. This answers a special case
of a question posed by Hirose, Kalfagianni,
and Kin [10, Question 4]. For more details,
see Remark 9.

This work is in the public domain.
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Proof of Theorem 1. Fix g > 1. Let B2g+1 be the braid group on 2g + 1
strands. Let σi be the positive half-twist between the ith and (i+ 1)th

strands. We define the following braids.

Π = σ2g · σ
−1
2g−1 · σ2g−2 · σ

−1
2g−3 · · ·σ4 · σ

−1
3 · σ2

Φ = σ2 · σ
−1
3

βn = Π · Φn · σ−1
1 · Φ−n

See Figure 1, where we take g = 2 and n = 3.
Let β̂n be the braid closure of βn, taken in S3. Let ωn be its augmenting

braid axis. Let Λn =
(

β̂n ∪ ωn

)

be the resulting two-component link. Note

that ωn bounds a disk Ωn in S3 meeting β̂n in 2g + 1 points. This is shown
at the very bottom of Figure 1. We deduce that S3 − Λn is a punctured disk
bundle over the circle, with monodromy βn.

Claim 3. Both ωn and β̂n are unknots in S3.

Proof. Since ωn bounds the disk Ωn, it is an unknot.
Note that β̂n is stabilised along its first strand. Destabilising has the

effect of smoothing the crossing at σ−1
1 and deleting the first strand. The

factors Φn and Φ−n now cancel, leaving only the (2g–strand) braid closure
Π̂. This is an iterated stabilisation, proving the claim. □

Let γn and δn be the augmentations of βn, taken before and after the
factor σ−1

1 , each containing the second, third, and fourth strands. Again, see
Figure 1. Thus γn and δn bound disks Γn and ∆n in S3, each meeting β̂n in
three points.

Appealing to Claim 3, the branched double cover of S3 along β̂n is again
homeomorphic to S3. Let cn, dn, and wn be the preimages of γn, δn, and
ωn, respectively; let Cn, Dn, and Wn be the preimages of Γn, ∆n, and Ωn,
respectively. Since the disks meet β̂n in an odd number of points, each of
cn, dn, and wn is connected and equals the boundary of the corresponding
surface Cn, Dn, and Wn. An Euler characteristic calculation shows that Cn

and Dn are homeomorphic to S1,1: a torus with one boundary component;
see, for example, [5, Figure 9.13]. Similarly, Wn is homeomorphic to Sg,1: a
surface of genus g with one boundary component. We deduce that the knot
complement Mn = S3 − wn is an Sg,1–bundle over S1. Thus wn is a genus g
fibred knot in S3. This is the family of knots promised in Theorem 1(1).

By a result of Birman and Hilden [5, Theorem 9.2], the monodromy of
Mn is a product of Dehn twists, one for each half-twist generator in B2g+1.
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To fix notation, let si be the Dehn twist in Sg,1 lifting σi. Lifting Π, Φ, and
βn in this way gives the following mapping classes.

P = s2g · s
−1
2g−1 · s2g−2 · s

−1
2g−3 · · · s4 · s

−1
3 · s2

F = s2 · s
−1
3

bn = P · Fn · s−1
1 · F−n

Thus bn is the monodromy of Mn = S3 − wn.

Claim 4. For all g, the knot complement M0 is hyperbolic. The same holds
for its longitudinal filling.

Proof. Since n = 0, the monodromy of M0 simplifies to

b0 = (s2g · s
−1
2g−1) · (s2g−2 · s

−1
2g−3) · · · (s4 · s

−1
3 ) · (s2 · s

−1
1 ).

Alternatingly applying cyclic conjutation and far commutivity we obtain

(s2 · s
−1
1 )(s4 · s

−1
3 ) · · · (s2g · s

−1
2g−1).

Another application of far commutivity yields

(s2g · s2g−2 · · · s4 · s2)(s2g−1 · s2g−3 · · · s3 · s1)
−1.

Let αi ⊂ Sg,1 be the core curve of the Dehn twist si. We isotope the curves
αi to intersect minimally. This done, αi and αj intersect (and then intersect
in a single point) if and only if |i− j| = 1. Thus, the union

⋃

i αi is connected.
Also, the complement of

⋃

i αi is a peripheral annulus. We now apply a
criterion of Thurston [18, Theorem 7] (see also Veech [19, pages 578–579]).
Let N be the matrix with Nij = |αi ∩ αj |. Let µ be the largest real eigenvalue
of NN t; note that µ is positive. Let A be the union of the αi for i even; let B
be the union of the αi for i odd. Let TA and TB be the corresponding multi-
twists. The image of TA · T−1

B under Thurston’s representation has trace
2 + µ, hence b0 is pseudo-Anosov. Appealing to Thurston’s hyperbolisation
theorem for mapping tori [17, Theorem 5.6], we find that M0 is hyperbolic.

If we fill, replacing Sg,1 by Sg, then the complement of
⋃

i αi is a disk.
Thus the same proof shows that the longitudinal filling of M0 is hyperbolic.
This proves the claim. □

Remark 5. By an observation of Gabai and Kazez [7, Proposition 2],
the knots w0 are two-bridge. In genus g, the continued fraction for w0 is
[2, 2, . . . , 2] with 2g terms. This gives another proof that M0 is hyperbolic. ♢
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We now prove Theorem 1(2).

Claim 6. In fixed genus g, as n tends to infinity, the knot complements Mn

are eventually hyperbolic, with volumes tending to infinity.

Proof. We fix a genus g and reuse the notation above, taking N = M0 −
(c0 ∪ d0). Since M0 is hyperbolic (Claim 4), since c0 and d0 lie in distinct
fibres, and since c0 and d0 are not isotopic, we deduce that N is hyperbolic
by Thurston’s hyperbolisation theorem [17, Theorem 2.3].

Let C,D ⊂ N be the images of C0 and D0 respectively. We cut the cusps
off of N and then cut along small open regular neighbourhoods of C and D

to obtain a compact three-manifold P . Let ρ ⊂ ∂P be the remains of the
cusp tori about w0, c0, and d0. That is, ρ consists of a torus, coming from
w0, and two paring annuli, coming from c0 and d0. The annular components
of ρ separate the genus two components of ∂P into one-holed tori C± and
D± respectively. These form the horizontal boundary of (P, ρ)

Since C and D were contained in distinct fibres in M0, the horizontal
boundary of (P, ρ) is incompressible in (P, ρ). Thus (P, ρ) is a compact,
oriented, irreducible, atoroidal three-manifold with incompressible horizontal
boundary and with non-abelian fundamental group. Since c0 and d0 are
not homotopic in M0, we deduce that (P, ρ) is a pared manifold as in [2,
Section 2.4].

For each horizontal boundary component E of (P, ρ) we now chose any
complete marking µ(E); see [2, Section 2.1]. Define Nn = Mn − (cn ∪ dn).
Let m(cn) and m(dn) be the meridional slopes in the associated torus cusps
of Nn. We note that Nn is obtained from (P, ρ) by gluing C+ to C−, and
D− to D+, using the nth power of F , the monodromy of the figure-eight
knot complement. Since F is pseudo-Anosov, we deduce that the gluings
Nn have R–bounded combinatorics and increasing height in the sense of [2,
Section 2.12].

We now apply a theorem of Brock, Minsky, Namazi, and Souto [2, Theo-
rem 8.1] to find that, for sufficiently large n, the gluing Nn is hyperbolic and
has a bilipschitz model Mn. We deduce that the volumes of the manifolds
Nn tend to infinity coarsely linearly with n. Likewise, the lengths of the
meridional slopes m(cn) and m(dn) tend to infinity. Applying a Dehn surgery
result [6, Theorem 1.1], we find that the manifolds Mn are hyperbolic, and
have volume tending to infinity coarsely linearly with n. □

The proof of Theorem 1(3) is similar. Fix the genus g. By Claim 4, the
longitudinal filling M ′ of M0 is hyperbolic.
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Taking N ′ to be the longitudinal filling of N along w0, we deduce from
the above that N ′ is also hyperbolic. We cut along the surfaces C ′ and
D′ (the images of C0 and D0) to obtain a pared manifold (P ′, ρ′). We now
again apply the machinery of [2] and of [6]. This completes the proof of
Theorem 1. □

Remark 7. There is another, related, proof of parts (2) and (3) of Theorem 1.
One uses the work of Clay, Leininger, and Mangahas [4, Theorem 5.2] to
show that the monodromies bn have linearly growing subsurface projections
to Cn and Dn. Pairing this with the Masur-Minsky distance formula [12,
Section 8] and results of Brock [3, Theorems 1.1 and 2.1], we find that Mn

has linearly growing volume. ♢

Remark 8 (An enhancement of Theorem 1). Our knots wn, produced
via a branched double covering construction, are morally similar to a family
of hyperbolic knots produced by Misev [13, Section 3], using a plumbing
construction. However, in any fixed genus Misev’s family has bounded hy-
perbolic volume. Nevertheless, with a bit more work one may adapt the
construction of Theorem 1 so that the family of knots has volume going to
infinity while satisfying Misev’s conclusions. In particular, for each g ≥ 2,
there is a family of knots wn with the following properties.

1) S3 − wn is fibred over the circle, with fibre of genus g.

2) S3 − wn is hyperbolic, with volume at least V .

3) Longitudinal surgery on wn is hyperbolic, with volume at least V .

4) wn is strongly quasipositive.

5) wn has the same Seifert form as the torus knot T (2g + 1, 2).

Following Rudolph [15, 16], we call a knot K strongly quasipositive if it
is the closure of a braid that lies in the monoid generated by all elements of
the following form.

(σjσj−1 . . . σi+1)σi(σjσj−1 . . . σi+1)
−1

By work of Livingston [11], such knots K have τ(K) = g4(K) = g3(K): here
g4 is the four-ball genus, g3 is the Seifert genus, and τ is the Ozsváth–Szabó
concordance invariant. By a result of Hedden [9, Proposition 2.1], if K is
strongly quasipositive and fibred then it serves as the binding of an open
book decomposition that supports the tight contact structure on S3. If K has
the same Seifert form as T = T (2g + 1, 2) then K has the same Alexander
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module and signature function as T . We refer to Misev [13] for further
discussion and implications of these properties.

To construct the sequence wn having properties (1)–(5), we modify the
definitions of the braids Φ, Π, and βn appearing in the proof of Theorem 1.
We first require Φ to factor as a product of (conjugates of) squares of full
twists on sets of odd numbers of strands. We also require Φ to be a pseudo-
Anosov element on the last 2g strands. For instance, when g = 2, one can
take

Φ =
(

σ3σ
2
4 · (σ2σ3)

6 · σ−2
4 σ−1

3

)

·
(

σ−1
3 σ−2

4 · (σ2σ3)
6 · σ2

4σ3
)

.

We define Π and βn as follows.

Π = σ2g · σ2g−1 · σ2g−2 · σ2g−3 · · · σ4 · σ3 · σ2

βn = Π · Φn · σ1 · Φ
−n

Property (1) now holds, for the same reason as above.
The choices of Π and βn ensure that the fibre of wn is a plumbing of

a positive Hopf band onto the fibre of the torus link T (2, 2g). The strong
quasipositivity of wn now follows from the strong quasipositivity of T (2, 2g)
by [15, Proposition 4.2], yielding property (4).

Since Φ factors as product of squares of full twists (each about an odd
number of strands), its lift F factors as a product of Dehn twists along
null-homologous curves. Since we are twisting along null-homologous curves,
the Seifert form of wn is independent of n. This yields property (5), as w0 is
the torus knot T (2, 2g + 1).

Observe that βn factors as follows.

βn = (Πσ1) · (σ
−1
1 Φnσ1 · Φ

−n)

The first term in parentheses is periodic; in fact, (Πσ1)
2g+1 is a Dehn twist

about the boundary curve ωn (and thus trivial in the mapping class group).
We now claim that βn is pseudo-Anosov. It suffices to prove that β2g+1

n is
pseudo-Anosov. To see this, note that we can pull all copies of the first term
Πσ1 to the front by conjugating the copies of the second term, σ−1

1 Φnσ1 · Φ
−n.

Thus β2g+1
n is a Dehn twist about ωn, composed with a product of conjugates

of the second term. These are themselves a product of one conjugate of Φn and
one conjugate of Φ−n. Each conjugate is supported in a sub-disk containing
2g punctures, so every pair of supporting domains is neither disjoint nor
nested. Furthermore, each conjugate has large translation distance acting on

waiz0aw8xF3PBHwwLWNiQvt+oU90MM0X9VGumMVJqL3Rwh7Lym2gmJNcvE6+Hlq+T45bifYI4LGuuVOSWtwP7Q==

waiz0aw8xF3PBHwwLWNiQvt+oU90MM0X9VGumMVJqL3Rwh7Lym2gmJNcvE6+Hlq+T45bifYI4LGuuVOSWtwP7Q==



✐

✐

“2-Schleimer” — 2024/11/17 — 1:17 — page 1311 — #7
✐

✐

✐

✐

✐

✐

Large volume fibred knots of fixed genus 1311

the curve complex of its supporting domain. Thus [4, Theorem 6.1] implies
that β2g+1

n is pseudo-Anosov when n is large.
Since βn is pseudo-Anosov, so is its lift bn, hence Mn is hyperbolic.

Since Φ is pseudo-Anosov on a sub-disk containing the last 2g strands, it
follows that its lift F is pseudo-Anosov on the branched double cover, a
copy of Sg−1,2. As in the previous paragraph, b2g+1

n factors as a product of
conjugates of large powers of F or F−1. Thus [4, Theorem 5.2] implies that
b
2g+1
n has linearly growing translation distances in curve complexes of the
corresponding supporting domains. Properties (2) and (3) now follow exactly
as in Remark 7. ♢

Remark 9 (Other work). Baker [1, Theorem 4.1] finds among the Berge
knots a sub-collection which have unbounded volume. However, as observed
by Goda and Teragaito [8, page 502], all Berge knots are closures of positive
(or negative) braids, hence there are only finitely many Berge knots of any
given genus. Positivity also implies that the Berge knots are fibred.

Hirose, Kalfagianni, and Kin [10, Theorem 2] give a construction of
branched double covers (of any fixed closed, connected, oriented three-
manifold M) that are fibred of genus g ≫ 0 and hyperbolic with volume
tending to infinity with g. They ask [10, Question 4] whether, for every M ,
there is such a sequence with genus fixed and volume unbounded.

Our work gives a positive answer for M = S2 × S1, as follows. By Claim 3,
the longitudinal filling of ωn ⊂ S3 is M = S2 × S1. Let ω′

n ⊂ M be the core
of the filling solid torus. Then the longitudinal fillings of the knots wn, as in
Theorem 1(3), are branched double covers of M with branch locus β̂n ∪ ω′

n.
Finally, by using our Theorem 1(1)(2), Hirose, Kalfagianni, and Kin give
a positive answer to their Question 4 with M = S3 and genus even [10,
Corollary 11].

Very recently, Oakley proved a version of our Theorem 1 for knots in
arbitrary closed three-manifolds [14]. Combined with [10, Theorem 10], this
gives a complete positive answer to [10, Question 4] for even genus. ♢
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