Section 3.4

16. $g'(x) = (2x - 1)e^{x^2 - x}$

Section 3.5

12.
$$y' = -\frac{y \sin(xy)}{x \sin(xy) + \cos y}$$

50. $y' = \frac{2x}{1+x^4}$
52. $y' = \frac{x+y}{x+4y}$ and the tangent line is $y = -\frac{1}{2}x+2$
 $y' = \frac{2x}{1+x^4}$
53. $y' = \frac{1}{2\sqrt{x}\sqrt{1-x}}$

Section 3.6

18.
$$y' = \csc x$$
 50. $y' = (\ln x)^{\cos x} \left(\frac{\cos x}{x \ln x} - \sin x \ln(\ln x)\right)$

Chapter 3 Review:

4.
$$y' = \frac{(1+\cos x)\sec^2 x + \tan x \sin x}{(1+\cos x)^2}$$

72. $y' = 2x g'(x^2)$
76. $y' = g'(x) e^{g(x)}$
77. $y' = \frac{g(x) f'(x) - f(x) g'(x)}{2[g(x)]^{3/2} \sqrt{f(x)}}$

Section 4.1

62. Critical numbers are $x = \pm 1$. $f(1) = 1 - \frac{\pi}{2}$ is absolute minimum value and $f(4) = 4 - 2\tan^{-1}(4)$ is absolute maximum value.

Section 4.2

- 8. f(x) = x + 1/x, $\begin{bmatrix} \frac{1}{2}, 2 \end{bmatrix}$. $f'(x) = 1 1/x^2 = \frac{x^2 1}{x^2}$. f is a rational function that is continuous on its domain, $(-\infty, 0) \cup (0, \infty)$, so it is continuous on $\begin{bmatrix} \frac{1}{2}, 2 \end{bmatrix}$. f' has the same domain and is differentiable on $\begin{pmatrix} \frac{1}{2}, 2 \end{pmatrix}$. Also, $f(1) = \frac{5}{2} f(2) f'(2) = 0$, $\psi = \frac{c^2 1}{2} = 0$, $\psi = \frac{c^2}{2} 1 = 0$, $\psi = \frac{c^2}{2} 1 = 0$, $\psi = \frac{c^2}{2} 1 = 0$.
 - $f\left(\frac{1}{2}\right) = \frac{5}{2} = f(2)$. $f'(c) = 0 \iff \frac{c^2 1}{c^2} = 0 \iff c^2 1 = 0 \iff c = \pm 1$. Only 1 is in $\left(\frac{1}{2}, 2\right)$, so 1 satisfies the conclusion of Rolle's Theorem.

Section 4.3:

14. (a) f is increasing on $(\frac{\pi}{2}, \frac{3\pi}{2})$ and f is decreasing on $(0, \frac{\pi}{2}) \cup (\frac{3\pi}{2}, 2\pi)$. (b) Local minimum is $f(\frac{\pi}{2}) = -2$ and local maximum is $f(\frac{3\pi}{2}) = 2$. (c) f is concave upward on $(\frac{\pi}{6}, \frac{5\pi}{6})$ and f is downward on $(0, \frac{\pi}{6}) \cup (\frac{5\pi}{6}, 2\pi)$. Inflection points are $(\frac{\pi}{6}, -\frac{1}{4})$ and $(\frac{5\pi}{6}, -\frac{1}{4})$. **22a.** Since $y' = x^3(x-1)^2(7x-4)$ so crotical numbers are 0, 1, and $\frac{4}{7}$.

- (a) dy/dx > 0 (f is increasing) and d²y/dx² > 0 (f is concave upward) at point B.
 (b) dy/dx < 0 (f is decreasing) and d²y/dx² < 0 (f is concave downward) at point E.
 (c) dy/dx < 0 (f is decreasing) and d²y/dx² > 0 (f is concave upward) at point A.
 Note: At C, dy/dx > 0 and d²y/dx² < 0. At D, dy/dx = 0 and d²y/dx² ≤ 0.
- 44. (a) G is increasing on (0, 1) and G is decreasing on $(-\infty, 1) \cup (1, \infty)$. (b) Local minimum is G(0) = 0 and local maximum is G(1) = 3.
- (c) G is concave upward on $(-\infty, -\frac{1}{2})$ (d) and concave downward on $(-\frac{1}{2}, 0) \cup (0, \infty)$. Inflection point is $(-\frac{1}{2}, \frac{6}{\sqrt[3]{4}})$.

(d)

48. (a) S is increasing on (0, 4π) and never decrease.
(b) No local minimum or local maximum.

(c) S is concave upward on (o, π) ∪ (2π, 3π) and concave downward on (π, 2π) ∪ (3π, 4π).
 Inflection points are (π, π), (2π, 2π), and (3π, 3π).

Section 4.4

14. $\frac{3}{2}$ **40.** 2